
Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 472

Tencent Push Notification Service

SDK Documentation

Product Documentation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 472

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 472

Contents

SDK Documentation
Android Integration Guide

Overview
SDK Integration
API Documentation
Vendor Channel Integration Guide

Huawei Channel v5 Integration
FCM Channel Integration
OPPO Channel Integration

Vendor Channels
Badge Adaptation Guide
Vendor Channel Testing Method
Troubleshooting Vendor Channel Registration Failures
Vendor Message Classification Feature Use Instructions
Acquisition of Vendor Channel Arrival Receipt
Vendor Channel Limit Description
Vendor Channel QPS Limit Description

Android SDK FAQs
Compatibility with Android P
Error Codes

iOS Integration Guide
Overview
SDK Integration
API Documentation
Acquisition of Push Certificate
Push Environment Selection Description
Error Codes
Extension Feature

Notification Service Extension
iOS SDK FAQs

Client Integration Plugin
macOS Integration Guide

Overview
SDK Integration
API Documentation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 472

Push Certificate Description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 472

SDK Documentation
Android Integration Guide
Overview
Last updated：2024-01-16 17:39:39

Tencent Push Notification Service is a professional mobile app push platform that can deliver tens of billions of
notifications and messages within seconds. It supports both Android and iOS systems. Developers can embed SDK,
API calls, or web-based visuals to send pushes to specific users, improving user activity and engagement. Real-time

push effect data are also available.

Feature Overview

Android SDK provided by Tencent Push Notification Service contains APIs for clients to implement message pushing.
It carries out the following features:
Provides two types of push (notification and message) for easy use.
Bind accounts, tags, and devices, so you can push messages to specific user groups and have more push methods.

Report the number of clicks, i.e., how many times a message is clicked by users.
Provides multi-vendor channel integration for users to integrate push services from multiple vendors.

SDK Description

The following files can be obtained after decompressing the package downloaded from the official website:

Five folders obtained in the root directory after decompression

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 472

 Demo folder: Contains the official demo of Tencent Push Notification Service. You can refer to it for relevant

configurations.
 flyme-notification-res folder: Contains resource files for the Meizu channel, which are used to enable

compatibility with Meizu phones on lower versions. For users of Meizu phones on Flyme 6.0 or below, the
corresponding files should be copied to the res directory of the application.

 libs folder: Contains the .jar and .so files of Tencent Push Notification Service.

 Other-Platform-SO folder: Contains the .so files for other less commonly used CPU architectures.

 Other-Push-jar : Contains the .jar packages encapsulated by Tencent Push Notification Service for Huawei,

Meizu, Mi, OPPO, vivo, and FCM channels.

libs directory description

 android-support-v4.jar : Compatible package provided by Google, which is compatible with Android 1.6 and

above.
 jg-filter-sdk-1.1.jar : JAR package for KingKong scan, which is required for any product that uses a

Tencent SDK.
 tpns-baseapi-sdk-x.x.x.x.jar : Certain underlying common APIs provided by Tencent Push Notification

Service.
 tpns-core-sdk-x.x.x.x.jar : Core module code of the Tencent Push Notification Service SDK, which

contains all the classes, APIs, and components used externally.

 tpns-mqttchannel-sdk-x.x.x.x.jar : MQTT-based communication feature implemented at upper layers of

Tencent Push Notification Service. The persistent connection is made independent in one process.
 tpns-mqttv3-sdk-x.x.x.x.jar : MQTT protocol package modified by Tencent Push Notification Service,

which provides the multi-vendor channel integration feature for you to integrate push services from multiple vendors.

Flow Description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 472

Device registration flow

The device registration flow is as shown below. For specific API methods, see "Launch and Registration" in API
Documentation.

https://intl.cloud.tencent.com/document/product/1024/30715

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 472

Device unregistration flow

The device unregistration flow is as shown below. For specific API methods, see "Unregistration" in API
Documentation.

https://intl.cloud.tencent.com/document/product/1024/30715

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 472

Account flow

The account flow is as shown below. For specific API methods, see "Account Management" in API Documentation.

https://intl.cloud.tencent.com/document/product/1024/30715

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 472

Tag flow

The tag flow is as shown below. For specific API methods, see "Bucket Tag" in API Documentation.

https://intl.cloud.tencent.com/document/product/1024/30715

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 472

User attribute flow

The user attribute flow is as shown below. For specific API methods, see "User Attribute Management" in API
Documentation.

https://intl.cloud.tencent.com/document/product/1024/30715

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 472

SDK Integration
Last updated：2024-01-16 17:39:39

Overview

This document describes how to integrate the online channel push capabilities of the Tencent Push Notification
Service SDK using two methods: automatic integration with Android Studio Gradle and manual integration with
Android Studio. If you want your push to be received even when the application process is killed, complete the

integration operations provided in this document and integrate with vendor channels as instructed in the Vendor
Channel Integration Guide.

SDK Integration (Two Methods)

Automatic integration with Android Studio Gradle

Directions

Caution:
 Before configuring the SDK, make sure you have created an application for the Android platform.
1. Log in to the Tencent Push Notification Service console and get the application's AccessID and AccessKey

in Product Management > Configuration Management.
2. Get the version number of the latest SDK on the SDK Download page.
3. Configure the following in the build.gradle file of the application:

https://intl.cloud.tencent.com/document/product/1024/37176
https://console.intl.cloud.tencent.com/tpns
https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 472

android {

 defaultConfig {

 // The package name registered in the console. Note that the application ID, t

 applicationId "your package name"

 ndk {

 // Add .so libraries corresponding to the CPU type as needed.

 abiFilters 'armeabi', 'armeabi-v7a', 'arm64-v8a'

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 472

 // You can also add 'x86', 'x86_64', 'mips', and 'mips64'

 }

 manifestPlaceholders = [

 XG_ACCESS_ID : "accessid of the registered app",

 XG_ACCESS_KEY : "accesskey of the registered app",

]

 }

}

dependencies {

 // Add the following dependencies:

 implementation 'com.tencent.tpns:tpns:[VERSION]-release'

 // For Tencent Push Notification Service push, [VERSION] is the latest SDK v

}

Note:
If the service access point of your application is Guangzhou, the SDK implements this configuration by default.
If the service access point of your application is Shanghai, Singapore, or Hong Kong (China), follow the step to
complete the configuration; otherwise, the push service registration will fail, with an error code -502 or 1008003
returned.

Add the following metadata in the application tag in the AndroidManifest file:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 472

<application>

 // Other Android components

 <meta-data

 android:name="XG_SERVER_SUFFIX"

 android:value="Domain names of other service access points" />

</application>

Note：

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 472

The domain names of other service access points are as follows:
Shanghai: tpns.sh.tencent.com

Singapore: tpns.sgp.tencent.com

Hong Kong (China): tpns.hk.tencent.com

Points for attention
If the following notification appears in Android Studio after you add the above-mentioned abiFilter configuration:

"NDK integration is deprecated in the current plugin. Consider trying the new experimental plugin", you need to add
android.useDeprecatedNdk=true in the gradle.properties file under the project root directory.

If you need to listen for messages, see the XGPushBaseReceiver API or the MessageReceiver class in the demo (in
the SDK compression package, which can be obtained from SDK Download). You can inherit XGPushBaseReceiver
and configure the following content in the configuration file (do not process time-consuming operations in the receiver):

https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 472

<receiver android:name="com.tencent.android.xg.cloud.demo.MessageReceiver">

 <intent-filter>

 <!-- Receive in-app messages -->

 <action android:name="com.tencent.android.xg.vip.action.PUSH_MESSAGE" />

 <!-- Listen for results of registration, unregistration, tag setting/deletion,

 <action android:name="com.tencent.android.xg.vip.action.FEEDBACK" />

 </intent-filter>

</receiver>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 472

For compatibility with Android P, you must add and use the Apache HTTP client library. To do this, add the following
configuration to the AndroidManifest application node.

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Manual integration with Android Studio

Go to SDK Download to get the latest SDK version and import it into your Android project as instructed.

Configuring the project

https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 472

Import the SDK into the project as follows:
1. Create or open an Android project.
2. Copy all the .jar files in the libs directory under the Tencent Push Notification Service SDK directory to the

project's libs (or lib) directory.

3. .so files are necessary components of Tencent Push Notification Service and support armeabi, armeabi-v7a,
arm64-v8a, mips, mips64, x86, and x86_64 platforms. Add the appropriate platform currently supported by your .so
files.
4. Open Androidmanifest.xml and add the following configurations (we recommend you modify these

configurations according to the Merged Manifest file in the demo provided in the download package). Make sure the
configurations are completed as required. Otherwise, the service may not work properly.

Configuring permissions

The permissions required by the Tencent Push Notification Service SDK to operate normally. Sample code is as
follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 472

<!-- **(Required)** Permissions required by Tencent Push Notification Service SDK V

<permission

 android:name="application package name.permission.XGPUSH_RECEIVE"

 android:protectionLevel="signature" />

<uses-permission android:name="application package name.permission.XGPUSH_RECEIVE"

<!-- **(Required)** Permissions required by Tencent Push Notification Service SDK -

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.SCHEDULE_EXACT_ALARM" />

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 472

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

<!-- **(Common)** Permissions required by Tencent Push Notification Service SDK -->

<uses-permission android:name="android.permission.WAKE_LOCK" />

<uses-permission android:name="android.permission.VIBRATE" />

<uses-permission android:name="android.permission.RECEIVE_USER_PRESENT" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<uses-permission android:name="android.permission.GET_TASKS" />

Permission Required Description

android.permission.INTERNET Yes Allows the application to access the
internet, which may incur GPRS traffic

android.permission.ACCESS_WIFI_STATE Yes
Allows the application to get the current
Wi-Fi access status and WLAN hotspot
information

android.permission.ACCESS_NETWORK_STATE Yes Allows the application to get the network
information status

android.permission.WAKE_LOCK Yes Allows the application to run in the
background after the screen is off

android.permission.SCHEDULE_EXACT_ALARM Yes Allows scheduled broadcasting

android.permission.VIBRATE No Allows the application to access the
vibrator

android.permission.RECEIVE_USER_PRESENT No Allows the application to receive screen-
on or unlock broadcast

android.permission.WRITE_EXTERNAL_STORAGE No Allows the application to write to external
storage

android.permission.RESTART_PACKAGES No Allows the application to end a task

android.permission.GET_TASKS No Allows the application to get task
information

Component and application information configuration

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 472

<application>

 <activity android:name="com.tencent.android.tpush.TpnsActivity"

 android:theme="@android:style/Theme.Translucent.NoTitleBar"

 android:launchMode="singleInstance"

 android:exported="true">

 <intent-filter>

 <action android:name="${applicationId}.OPEN_TPNS_ACTIVITY" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <data

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 472

 android:scheme="tpns"

 android:host="${applicationId}"/>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.BROWSABLE" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action" />

 </intent-filter>

 </activity>

 <activity

 android:name="com.tencent.android.tpush.InnerTpnsActivity"

 android:exported="false"

 android:launchMode="singleInstance"

 android:theme="@android:style/Theme.Translucent.NoTitleBar">

 <intent-filter>

 <action android:name="${applicationId}.OPEN_TPNS_ACTIVITY_V2" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <data

 android:host="${applicationId}"

 android:scheme="stpns" />

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.BROWSABLE" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action" />

 </intent-filter>

 </activity>

 <!-- **(Required)** Tencent Push Notification Service broadcast receiver --

 <receiver

 android:name="com.tencent.android.tpush.XGPushReceiver"

 android:exported="false"

 android:process=":xg_vip_service">

 <intent-filter android:priority="0x7fffffff">

 <!-- **(Required)** The internal broadcast of the Tencent Push Noti

 <action android:name="com.tencent.android.xg.vip.action.SDK" />

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 472

 <action android:name="com.tencent.android.xg.vip.action.INTERNAL_PU

 <action android:name="com.tencent.android.xg.vip.action.ACTION_SDK_

 </intent-filter>

 </receiver>

 <!-- **(Required)** Tencent Push Notification Service -->

 <service

 android:name="com.tencent.android.tpush.service.XGVipPushService"

 android:exported="false"

 android:process=":xg_vip_service">

 </service>

 <!-- **(Required)** Notification service. Change the android:name to the packag

 <service android:name="com.tencent.android.tpush.rpc.XGRemoteService"

 android:exported="false">

 <intent-filter>

 <!-- **(Required)** Changed to the current application package name

 <action android:name="application package name.XGVIP_PUSH_ACTION" /

 </intent-filter>

 </service>

 <!-- **(Required)** **Note:** Change authorities to package name.XGVIP_PUSH_AUT

 <provider

 android:name="com.tencent.android.tpush.XGPushProvider"

 android:authorities="application package name.XGVIP_PUSH_AUTH" />

 <!-- **(Required)** **Note:** Change authorities to package name.TPUSH_PROVIDER

 <provider

 android:name="com.tencent.android.tpush.SettingsContentProvider"

 android:authorities="application package name.TPUSH_PROVIDER" />

 <!-- **(Optional)** Used to strengthen the keep-alive capability -->

 <provider

 android:name="com.tencent.android.tpush.XGVipPushKAProvider"

 android:authorities="application package name.AUTH_XGPUSH_KEEPALIVE"

 android:exported="true" />

 <!-- **(Optional)** Receiver implemented by the application, which is used to r

 <!-- Change YOUR_PACKAGE_PATH.CustomPushReceiver to your own receiver： -->

 <receiver android:name="application package name.MessageReceiver"

 android:exported="false">

 <intent-filter>

 <!-- Receive in-app messages -->

 <action android:name="com.tencent.android.xg.vip.action.PUSH_MESSAGE" /

 <!-- Listen for results of registration, unregistration, tag setting/de

 <action android:name="com.tencent.android.xg.vip.action.FEEDBACK" />

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 472

 </intent-filter>

 </receiver>

 <!-- MQTT START -->

 <service android:exported="false"

 android:process=":xg_vip_service"

 android:name="com.tencent.tpns.mqttchannel.services.MqttService" />

 <provider

 android:exported="false"

 android:name="com.tencent.tpns.baseapi.base.SettingsContentProvider"

 android:authorities="application package name.XG_SETTINGS_PROVIDER" />

 <!-- MQTT END-->

 <!-- **(Required)** Changed to the `AccessId` of your application, which is a 1

 <meta-data

 android:name="XG_V2_ACCESS_ID"

 android:value="Application AccessId" />

 <!-- **(Required)** Changed to the `AccessKey` of your application, which is a

 <meta-data

 android:name="XG_V2_ACCESS_KEY"

 android:value="Application AccessKey" />

</application>

<!-- **(Required)** Permissions required by Tencent Push Notification Service SDK v

<permission

 android:name="application package name.permission.XGPUSH_RECEIVE"

 android:protectionLevel="signature" />

<uses-permission android:name="application package name.permission.XGPUSH_RECEIVE"

<!-- **(Required)** Permissions required by Tencent Push Notification Service SDK -

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.WAKE_LOCK" />

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

<!-- **(Common)** Permissions required by Tencent Push Notification Service SDK -->

<uses-permission android:name="android.permission.VIBRATE" />

<uses-permission android:name="android.permission.RECEIVE_USER_PRESENT" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Caution:
If the service access point of your application is Guangzhou, the SDK implements this configuration by default.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 472

If the service access point of your application is Shanghai, Singapore, or Hong Kong (China), follow the step to
complete the configuration; otherwise, the push service registration will fail, with an error code -502 or 1008003
returned.

Add the following metadata in the application tag in the AndroidManifest file:

 <application>

 // Other Android components

 <meta-data

 android:name="XG_SERVER_SUFFIX"

 android:value="Domain names of other service access points" />

</application>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 472

Note：
The domain names of other service access points are as follows:
Shanghai: tpns.sh.tencent.com

Singapore: tpns.sgp.tencent.com

Hong Kong (China): tpns.hk.tencent.com

Debugging and Registering Devices

Enabling debug log data

Note：
When launching your application, set the field to false to disable debug log data.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 472

XGPushConfig.enableDebug(this,true);

Registering with token

Call the push registration API where you need to start the push service:

Note:
 You are advised to call the registration API only in the main process of your app.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 472

XGPushManager.registerPush(this, new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 // The token may change after you uninstall and then reinstall the SDK in a

 Log.d("TPush", "Registration succeeded. Device token: " + data);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.d("TPush", "Registration failed. Error code: " + errCode + "; error mes

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 472

});

The log of successful registration filtered by "TPush" is as follows:

TPNS register push success with token : 6ed8af8d7b18049d9fed116a9db9c71ab44d5565

Disabling log printing

If you call XGPushConfig.enableDebug(context, false) to disable SDK debugging logs, the SDK still

prints certain daily run logs (including the Tencent Push Notification Service token) by default.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 472

You can call the following method in Application.onCreate to stop printing such daily run logs in the

console：

new XGPushConfig.Build(context).setLogLevel(Log.ERROR);

Code Obfuscation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 472

If you perform code obfuscation by using tools such as ProGuard in your project, keep the following options;
otherwise, the Tencent Push Notification Service will become unavailable:

-keep public class * extends android.app.Service

-keep public class * extends android.content.BroadcastReceiver

-keep class com.tencent.android.tpush.** {*;}

-keep class com.tencent.tpns.baseapi.** {*;}

-keep class com.tencent.tpns.mqttchannel.** {*;}

-keep class com.tencent.tpns.dataacquisition.** {*;}

-keep class com.tencent.bigdata.baseapi.** {*;} // This configuration item is not

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 472

-keep class com.tencent.bigdata.mqttchannel.** {*;} // This configuration item is

Note:
If the Tencent Push Notification Service SDK is included in the application's common SDK, you still need to configure

obfuscation rules for the main project application even though the common SDK includes obfuscation rules.

Advanced Configuration (Optional)

Disabling session keep-alive

To disable the feature, call the following API in onCreate of Application or LauncherActivity during

application initialization and pass in false :

Note:
The session keep-alive feature can be disabled only in SDK v1.1.6.0 or later. In SDKs earlier than v1.1.6.0, the feature

is enabled by default and cannot be disabled.
Starting from Tencent Push Notification Service SDK v1.2.6.0, the session keep-alive feature is disabled by default,
and you do not need to call this API.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 472

XGPushConfig.enablePullUpOtherApp(Context context, boolean pullUp);

If you use Gradle automatic integration, configure the following node under the <application> tag of the

 AndroidManifest.xml file of your application, where xxx is a custom name. For manual integration, modify

node attributes as follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 472

<!-- Add the following node to the `AndroidManifest.xml` file of your application,

<!-- To disable the feature of keep-alive with Tencent Push Notification Service, c

<provider

 android:name="com.tencent.android.tpush.XGPushProvider"

 tools:replace="android:authorities"

 android:authorities="application package name.xxx.XGVIP_PUSH_AUTH"

 android:exported="false" />

If the following log is printed in the console, the session keep-alive feature has been disabled: I/TPush:

[ServiceUtil] disable pull up other app

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 472

Suggestions on getting the Tencent Push Notification Service token

After you integrate the SDK, we recommend that you use gestures or other methods to display the Tencent Push
Notification Service token in the application's less commonly used UIs such as About or Feedback. The console and
RESTful APIs need to use the token to push messages. Subsequent troubleshooting will also need the token for

problem locating.
Sample code:

// Get the token

XGPushConfig.getToken(getApplicationContext());

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 472

Suggestions on getting Tencent Push Notification Service running logs

The SDK provides a log reporting API. If you encounter push-related problems after the application is launched,
trigger this API to upload SDK running logs and get the download address of the log file returned by the callback to
facilitate troubleshooting. For more information, see here.

Sample code:

XGPushManager.uploadLogFile(context, new HttpRequestCallback() {

 @Override

 public void onSuccess(String result) {

 Log.d("TPush", "Upload succeeded. File address:" + result);

https://intl.cloud.tencent.com/document/product/1024/30715#reporting-logs

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 472

 }

 @Override

 public void onFailure(int errCode, String errMsg) {

 Log.d("TPush", "Upload failed. Error code:" + errCode + ", error message:"

 }

});

Suggestions on privacy policy statement

When applying for application permissions, you can use the following content to declare the purpose of authorization:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 472

We use Tencent Push Notification Service to push product information. After you aut

The links to the two authorization items mentioned above are as follows:
Tencent Push Notification Service: https://intl.cloud.tencent.com/products/tpns

https://intl.cloud.tencent.com/products/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 472

API Documentation
Last updated：2024-01-16 17:39:39

Actions

The account feature and tag deletion feature in this document are available for SDK v1.2.3.0 and later. For versions
earlier than v1.2.3.0, see Accounts and Tags.
The package name path prefix of all APIs is com.tencent.android.tpush . The following table lists important

classes that provide APIs for external use.

Class Description

XGPushManager Push service

XGPushConfig Push service configuration item API

XGPushBaseReceiver
Receiver to receive messages and result feedback, which needs to be statically
registered by yourself in AndroidManifest.xml

Launch and Registration

The application can use the SDK push service only after successful application registration and Tencent Push
Notification Service launch. Before launch and registration, ensure that AccessId and AccessKey have

already been configured.
The new version of SDK has integrated Tencent Push Notification Service launch and application registration into the

registration API, which means you can simply call the registration API to complete the launch and registration by
default.
After a successful registration, the device token will be returned. The token uniquely identifies the device and is also
the unique ID for Tencent Push Notification Service to stay connected with the backend. For more information on how
to get tokens, see Getting a device token.
The registration API usually provides a compact version and a version with callback. Please choose an appropriate

version according to your business needs.

Registering a device

The following are device registration API methods. For more information on the timing and principle of calls, see
Device registration flow.

API description

https://intl.cloud.tencent.com/document/product/1024/40596
https://intl.cloud.tencent.com/document/product/1024/32609#device-registration-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 472

Standard registration only registers the current device, and the backend can send different push messages based on
device tokens. There are two versions of the API method:

public static void registerPush(Context context)

Parameter description

 context : Context object of the current application, which cannot be null

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 472

XGPushManager.registerPush(getApplicationContext());

API description

To allow you to know if the registration is successful, a version with callback is provided.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 472

public static void registerPush(Context context,final XGIOperateCallback callback)

Parameter description

 context : Context object of the current application, which cannot be null

 callback : Callback functions, including success and failure callbacks and cannot be null

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 472

XGPushManager.registerPush(this, new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.d("TPush", "Registration succeeded. Device token: " + data);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.d("TPush", "Registration failed. Error code: " + errCode + "; error mes

 }

})

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 472

Getting the registration result

There are two ways to check if the registration is successful.
Using the Callback version of the registration API

The XGIOperateCallback class provides an API to process registration success or failure. Please see the

sample in the registration API.

Sample code

/**

* Operation callback API

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 472

*/

public interface XGIOperateCallback {

 /**

 * Callback when the operation is successful

 * @param data //Business data of a successful operation, such as the token info

 * @param flag //Flag tag

 */

 public void onSuccess(Object data, int flag);

 /**

 * Callback when the operation fails

 * @param data //Business data of a failed operation

 * @param errCode: Error code

 * @param msg //Error message

 */

 public void onFail(Object data, int errCode, String msg);

}

Inheriting XGPushBaseReceiver

The registration result can be obtained by rewriting the onRegisterResult method of

 XGPushBaseReceiver .

Note:

The inherited XGPushBaseReceiver subclass needs to be configured in AndroidManifest.xml . For more

information, see Message configuration below.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 472

/**

*

* @param context //Current context

* @param errorCode //`0` indicates success, while other values are error codes

* @param message //Returned registration result

*/

@Override

public void onRegisterResult(Context context, int errorCode, XGPushRegisterResult m

 if (context == null || message == null) {

 return;

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 472

 String text = "";

 if (errorCode == XGPushBaseReceiver.SUCCESS) { // Registration su

 // Get the token here

 String token = message.getToken();

 text = "Registration succeeded. Token:" + token;

 } else {

 text = message + "Registration failed. Error code:" + errorCode;

 }

 Log.d(LogTag, text);

}

Class method list

Method Returned Value Default Value Description

getToken() String None Device token, i.e., unique device ID

getAccessId() long 0 Gets AccessId for registration

getAccount String None Gets the account bound for registration

getTicket() String None Login state ticket

getTicketType() short 0 Ticket type

Unregistration

The following are unregistration API methods. For more information on the timing and principle of calls, see device
unregistration flow here.
Note:

 After calling the unregistration API, you need to call the registration API again before you can receive pushed
messages.

API description

When a user has logged out or the application is closed and it is no longer necessary to receive push messages, the
device can be unregistered from the application. (Once the device is unregistered, push messages will no longer be
received unless the device is successfully registered again).

https://intl.cloud.tencent.com/document/product/1024/32609

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 472

public static void unregisterPush(Context context)

Parameter description

 context : Context object of the application

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 472

XGPushManager.unregisterPush(getApplicationContext(), new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int i) {

 Log.d("TPush", "Unregistration succeeded");

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.d("TPush", "Unregistration failed. Error code: " + errCode + ", error m

 }

});

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 472

Getting the unregistration result

The unregistration result can be obtained by rewriting the onUnregisterResult method of

 XGPushBaseReceiver .

Note:

Frequent unregistration is not recommended because it may cause delay in backend sync.
Switching accounts does not require unregistration. With multiple registrations, the last registration will automatically
take effect.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 472

/**

* Unregistration result

* @param context //Current context

* @param errorCode //0 indicates success, while other values are error codes

*/

@Override

public void onUnregisterResult(Context context, int errorCode) {

 if (context == null) {

 return;

 }

 String text = "";

 if (errorCode == XGPushBaseReceiver.SUCCESS) {

 text = "Unregistration succeeded";

 } else {

 text = "Unregistration failed" + errorCode;

 }

 Log.d(LogTag, text);

}

Push Notification (Displayed on the Notification Bar)

Push notifications are content displayed on the notification bar of devices. All operations are performed by the Tencent
Push Notification Service SDK. Applications can listen for clicks on notifications. In other words, push notifications
delivered on the frontend do not need to be processed by applications and will be displayed on the notification bar by
default.
Note:

After the Tencent Push Notification Service is successfully registered, notifications can be delivered without any
configuration.
In general, combined with custom notification styles, standard notifications can meet most business needs. If you need
more flexible pushes, consider using messages.

Getting notifications

API description

The Tencent Push Notification Service SDK provides a callback API for developers to get the content of arrived

notifications. Notifications can be obtained by rewriting the onNotificationShowedResult(Context,

XGPushShowedResult) method of XGPushBaseReceiver . Here, the XGPushShowedResult object

provides an API for reading notification content.
Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 472

 Some vendor channel SDKs do not provide a callback method for notification arrival, and vendor channels' arrival
callback methods cannot be triggered unless the app process is running. Therefore, the callback API
 onNotificationShowedResult provided in the Tencent Push Notification Service SDK supports listening for

the arrival of notifications delivered only through the Tencent Push Notification Service channel, but not through
vendor channels.

public abstract void onNotificationShowedResult(Context context,XGPushShowedResult

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 472

 context : Context of current application

 notifiShowedRlt : arrived notification object

Getting notification click results

Notification callback listening and custom parameter interpretation

The Tencent Push Notification Service SDK collects statistics on notification/message arrivals and notification clicks

and clearances by default. The SDK provides a callback API for developers to listen for notification click events.
Notification click events can be obtained by rewriting the onNotificationClickedResult(Context,

XGPushClickedResult) method of XGPushBaseReceiver.

Note:
Tencent Push Notification Service SDK v1.2.0.1 or later supports listening for the click events of notifications delivered

through the Tencent Push Notification Service channel and various vendor channels.
Do not include a redirection action in this callback API. The SDK will automatically perform notification tap-to-redirect
based on the redirection action set in the push task. If you want to deliver and get custom push parameters, the Intent
mode is recommended. For more information, see Notification Tap-to-Redirect.

API description

https://intl.cloud.tencent.com/document/product/1024/38354

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 472

public abstract void onNotificationClickedResult(Context context, XGPushClickedResu

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 472

// If `actionType` of the notification click callback is `0`, the message was click

@Override

public void onNotificationClickedResult(Context context, XGPushClickedResult messag

 if (context == null || message == null) {

 return;

 }

 String text = "";

 if (message.getActionType() == NotificationAction.clicked.getType()) {

 // The notification is clicked on the notification bar

 // The application handles actions related to the click

 text = "notification opened:" + message;

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 472

 } else if (message.getActionType() == NotificationAction.delete.getType()) {

 // Notification is cleared

 // The application handles related actions after the notification is cleare

 text = "notification cleared:" + message;

 }

 // Handling process of the application

 Log.d(LogTag, "broadcast that the notification is received:" + text);

}

Parameter description

 context : Context of current application

 XGPushClickedResult : Opened object of the notification

Methods of XGPushClickedResult class are as follows:

Method Returned
Value

Default
Value

Description

getMsgId() long 0 Message ID

getTitle() String None Notification title

getContent() String None Notification body content

getActionType() String None 0: The notification is clicked; 2: The notification is cleared

getPushChannel() String 100

ID of the channel through which the clicked notification is
delivered
100: Tencent Push Notification Service channel
101: FCM channel
102: Huawei channel
103: Mi channel
104: vivo channel
105: OPPO channel
106: Meizu channel

Clearing all notifications

API description

This API is used to clear all notifications of the current application on the notification bar.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 472

public static void cancelAllNotifaction(Context context)

Parameter description

 context : Context object

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 472

XGPushManager.cancelAllNotifaction(context);

Creating a notification channel

API description

This API is used to create a notification channel.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 472

public static void createNotificationChannel(Context context, String channelId, Str

Note:

 This API is applicable only to v1.1.5.4 or later.

Parameter description

 context : Context of current application

 channelId : Notification channel ID

 channelName : Notification channel name

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 472

 enableVibration : Whether to enable vibration

 enableLights : Whether to enable LED indicator

 enableSound : Whether to enable sound

 soundUri : Ringtone resource URI, which is valid if enableSound is true . To use the system-default

ringtone, set this parameter to null .

Sample code

// Place the sound file under the Android project resource directory `raw`. Take th

String uri = "android.resource://" + context.getPackageName() + "/" + R.raw.ring;

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 472

Uri soundUri = Uri.parse(uri);

XGPushManager.createNotificationChannel(context, "default_message", "Default notifi

Push Message (Not Displayed on the Notification Bar)

Push messages are content delivered to an application by Tencent Push Notification Service. The application needs
to inherit the XGPushBaseReceiver API to implement and handle all the operations on its own. In other words,

delivered messages are not displayed on the notification bar by default, and Tencent Push Notification Service is
responsible only for delivering messages from the Tencent Push Notification Service server to the application, but not
processing the messages. The messages need to be processed by the application.

Message refers to the text message delivered by you through console or backend scripts. Tencent Push Notification
Service is only responsible for delivering the message to the application, while the application is fully responsible for
handling the message body on its own.
Because the message is flexible and highly customizable, it is suitable for applications to handle custom business
needs on their own, such as delivering application configuration information and customizing message retention and
display.

Message configuration

Inherit XGPushBaseReceiver and configure the following in the configuration file:

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 472

<receiver android:name="com.tencent.android.xg.cloud.demo.MessageReceiver">

 <intent-filter>

 <!-- Receive in-app messages -->

 <action android:name="com.tencent.android.xg.vip.action.PUSH_MESSAGE" />

 <!-- Listen for results of registration, unregistration, tag setting/deleti

 <action android:name="com.tencent.android.xg.vip.action.FEEDBACK" />

 </intent-filter>

</receiver>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 472

Getting in-app messages

A message delivered by a developer in the console can be received by the application if it inherits
 XGPushBaseReceiver and rewrites the onTextMessage method. After successfully receiving the message,

the application can handle it based on specific business scenarios.

Note:
 Please make sure that the receiver has been registered in AndroidManifest.xml , i.e.,

 YOUR_PACKAGE.XGPushBaseReceiver is set.

public void onTextMessage(Context context,XGPushTextMessage message)

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 472

Parameter description

 context : Current context of the application

 message : Received message structure

Class method list

Method Returned
Value

Default
Value

Description

getContent() String None Message body content, and generally it is sufficient to deliver
only this field

getCustomContent() String None Customer key-value of message

getTitle() String None Message title (the description of the in-app message
delivered from the console is not a title)

In-App Message Display

Starting with SDK v1.2.7.0, you can set whether to allow the display of in-app message windows. For example, you

can enable the display of in-app message windows in one Activity page, while disable it in another Activity page.
Caution:
 In-app messages are displayed based on the Android WebView framework. By default, the in-app message display
WebView provided by the Tencent Push Notification Service SDK runs in the main process of an app. Since Android
9, apps can no longer share a single WebView data directory among multiple processes. If your app must

use WebView instances in multiple processes, you must first use the
 WebView.setDataDirectorySuffix() method to specify a unique data directory suffix for each

process; otherwise, app crash may occur. The sample configuration code is as follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 472

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.P) {

 // Starting with Android 9, you need to set different WebView data directories

 String processName = getProcessName()

 if (processName != null

 && !processName.equals(context.getPackageName())) {

 WebView.setDataDirectorySuffix(processName)

 }

}

Note：

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 472

Reference document: Behavior changes: apps targeting API level 28+ (Google Developers).

Setting whether to allow the display of in-app message windows

XGPushConfig.enableShowInMsg(Context context, boolean flag);

Parameter description

 context : Context object

 flag : Whether to allow in-app message display. true : Allow; false : Not allow; default: false .

https://developer.android.com/about/versions/pie/android-9.0-changes-28?hl=en#web-data-dirs

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 472

Sample code

XGPushConfig.enableShowInMsg(context, true);

Local Notification

Adding local notifications

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 472

Local notifications are customized by users and saved locally. When an application is open, the Tencent Push
Notification Service SDK will determine whether there is a notification once every five minutes based on the network
heartbeat. Local notifications will pop up only if the service is enabled, and there may be a delay of about five minutes.

A notification will pop up when the time set is earlier than the current device time.

Sample code

// Create a local notification

XGLocalMessage local_msg = new XGLocalMessage();

// Set the local message type; 1: Notification, 2: Message

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 472

local_msg.setType(1);

// Set the message title

local_msg.setTitle("qq");

// Set the message content

local_msg.setContent("ww");

// Set the message date in the format of 20140502

local_msg.setDate("20140930");

// Set the hour when the message is triggered (in 24-hour clock system); for exampl

local_msg.setHour("19");

// Set the minute when the message is triggered, for example: `05` indicates the 5t

local_msg.setMin("31");

// Set the message style. The default value is 0 or not set

local_msg.setBuilderId(0);

// Set the action type: 1 - open the activity or the app itself; 2 - open the brows

local_msg.setAction_type(1);

// Set the app-pulling page

local_msg.setActivity("com.qq.xgdemo.SettingActivity");

// Set the URL

local_msg.setUrl("http://www.baidu.com");

// Set the Intent

local_msg.setIntent("intent:10086#Intent;scheme=tel;action=android.intent.action.DI

//Whether to overwrite the save settings of the original build_id. 1: Yes; 0: No.

local_msg.setStyle_id(1);

// Set the audio resource

local_msg.setRing_raw("mm");

// Set the key and value

HashMap<String, Object> map = new HashMap<String, Object>();

map.put("key", "v1");

map.put("key2", "v2");

local_msg.setCustomContent(map);

// Add the notification to the local system

XGPushManager.addLocalNotification(context,local_msg);

Clearing local notifications

API description

This API is used to clear local notifications that are created by the application but have not popped up.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 472

public static void clearLocalNotifications(Context context)

Parameter description

 context : Context object

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 472

XGPushManager.clearLocalNotifications(context);

Account Management

The following are account management API methods. For more information on the timing and principle of calls, see

account flow here.

Adding an account

https://intl.cloud.tencent.com/document/product/1024/32609

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 472

API description

This API is used to add or update an account. If there is no account of this type, it will add a new one; otherwise, it will
overwrite the existing one.

public static void upsertAccounts(Context context, List<AccountInfo> accountInfoLis

Parameter description

 context : Context object

 accountInfoList : Account list, containing account types and account names

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 472

 callback : Callback of account binding operation

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 472

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + ms

 }

};

List<XGPushManager.AccountInfo> accountInfoList = new ArrayList<>();

accountInfoList.add(new XGPushManager.AccountInfo(XGPushManager.AccountType.UNKNOWN

XGPushManager.upsertAccounts(context, accountInfoList, xgiOperateCallback);

Note:
Each account can be bound to up to 100 tokens.
The account can be email address, mobile number, username, etc. For account type values, see Account Type Value
Table.

If multiple devices are bound to the same account, the backend will push the message to the last bound device by
default. If you want to push to all the bound devices, you can view the account_push_type parameter settings in

Push API.

Adding a mobile number

API description

This API is used to add or update a mobile number. If you have bound any mobile number before, it will overwrite the
original number; if you haven’t, it will be bound (SDK 1.2.5.0+).
Note:

 The mobile number format is +[country or area code][subscriber number] , for example,

+8613711112222 (where there is a + sign in the front, 86 is the country code, and 13711112222 is the

subscriber number). If the entered mobile number does not contain a country or area code, Tencent Push
Notification Service will automatically add +86 as the prefix when sending SMS messages. If the mobile number

contains a country or area code, it will be bound as is. To delete the bound mobile number, call the

 delAccountsByKeys API and set accountTypeSet to 1002 .

https://intl.cloud.tencent.com/document/product/1024/40598
https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 472

public static void upsertPhoneNumber(Context context, String phoneNumber, XGIOperat

Parameter description

 context : Context object

 phoneNumber : An E.164 mobile number in the format of [+][country code or area code][mobile

number] , for example, +8613711112222

 callback : Callback of mobile number binding operation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 472

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + msg)

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 472

};

XGPushManager.upsertPhoneNumber(context, phoneNumber, xgiOperateCallback);

Unbinding an account

API description

This API is used to unbind a bound account.

// Unbind the specified account (with registration callback)

void delAccount(Context context, final String account, XGIOperateCallback callback)

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 472

// Unbind the specified account (without registration callback)

void delAccount(Context context, final String account)

Note:
 Account unbinding just removes the association between the token and the application account. If full/tag/token push
is used, notifications/messages can still be received.

Parameter description

 context : Context object of the current application, which cannot be null

 account : Account

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 472

XGPushManager.delAccount(getApplicationContext(),"test");

Unbinding by account type

API description

This API is used to unbind accounts of one or multiple types. (SDK v1.2.3.0+)

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 472

public static void delAccounts(Context context, final Set<Integer> accountTypeSet,

Parameter description

 context : Context object

 accountTypeSet : Type of the account to be unbound

 callback : Callback of account unbinding operation

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 472

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + msg)

 }

};

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 472

Set<Integer> accountTypeSet = new HashSet<>();

accountTypeSet.add(XGPushManager.AccountType.CUSTOM.getValue());

accountTypeSet.add(XGPushManager.AccountType.IMEI.getValue());

XGPushManager.delAccounts(context, accountTypeSet, xgiOperateCallback);

Clearing all accounts

Note:
 The delAllAccount API is disused in SDK v1.2.2.0. The clearAccounts API is recommended.

API description

This API is used to unbind all bound accounts.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 472

// Unbind all accounts (with registration callback)

void clearAccounts(Context context, XGIOperateCallback callback)

// Unbind all accounts (without registration callback)

void clearAccounts(Context context)

Note:

 Account unbinding just removes the association between the token and the application account. If full/tag/token push
is used, notifications/messages can still be received.

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 472

 context : Context object of the current application, which cannot be null

Sample code

XGPushManager.clearAccounts(getApplicationContext());

Bucket Tag

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 472

The following are tag management API methods. For more information on the timing and principle of calls, see tag flow
here.

Preset tags

Currently, Tencent Push Notification Service preset tags include application version, system version, province, active

information, system language, SDK version, country/region, phone brand, and phone model tags. Preset tags are
automatically reported in the SDK.

Overwriting multiple tags

API description

Setting multiple tags at a time will overwrite tags previously set for this device.

You can set tags for different users and then send mass notifications based on tag names. An application can have up
to 10,000 tags, and each token can have up to 100 tags in one application. If you want to increase the limits, contact

our online customer service. Each custom tag can be bound to an unlimited number of device tokens, and no spaces
are allowed in the tag.

https://intl.cloud.tencent.com/document/product/1024/32609
https://intl.cloud.tencent.com/contact-us

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 90
of 472

public static void clearAndAppendTags(Context context, String operateName, Set<Stri

Parameter description

 context : Context object

 operateName : User-defined operation name. The callback result will return it as-is, which is used to identify the

operation to which the callback belongs.
tags: A collection of tag names, and each tag is a string. Restrictions: Each tag cannot exceed 50 bytes (otherwise,
the tag will be discarded) nor contain spaces (all spaces will be deleted). Up to 100 tags can be set, and excessive

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 91
of 472

ones will be discarded.

Processing result

The result can be obtained by rewriting the onSetTagResult method of XGPushBaseReceiver .

Sample code

String[] tags = "tag1 tag2".split(" ");

Set<String> tagsSet = new HashSet<>(Arrays.asList(tags));

XGPushManager.clearAndAppendTags(getApplicationContext(), "clearAndAppendTags :" +

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 92
of 472

Adding multiple tags

Note:
 The addTags API is disused in SDK v1.2.2.0. The appendTags API is recommended.

API description

If all tags to be added contain a colon (:), for example, test:2, level:2 , all test:* and level:* tags

bound with the device will be deleted before the test:2 and level:2 tags are added.

If certain tags to be added do not contain a colon (:), for example, test:2 level , all historical tags of the device

will be deleted before the test:2 and level tags are added.

Note:
 In newly added tags, a colon (:) is the backend keyword. Use it according to your business scenarios.

This API should be called at a certain interval (an interval longer than 5 seconds is recommended); otherwise, update
may fail.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 93
of 472

public static void appendTags(Context context, String operateName, Set<String> tags

Parameter description

 context : Context object

 operateName : User-defined operation name. The callback result will return it as-is, which is used to identify the

operation to which the callback belongs.
tags: A collection of tag names, and each tag is a string. Restrictions: Each tag cannot exceed 50 bytes (otherwise,
the tag will be discarded) nor contain spaces (all spaces will be deleted). Up to 100 tags can be set, and excessive

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 94
of 472

ones will be discarded.

Processing result

The result can be obtained by rewriting the onSetTagResult method of XGPushBaseReceiver .

Sample code

String[] tags = "tag1 tag2".split(" ");

Set<String> tagsSet = new HashSet<>(Arrays.asList(tags));

XGPushManager.appendTags(getApplicationContext(), "appendTags:" + System.currentTim

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 95
of 472

Deleting multiple tags

Note:
 The deleteTags API is disused in SDK v1.2.2.0. The delTags API is recommended.

API description

This API is used to delete multiple tags at a time.

public static void delTags(Context context, String operateName, Set<String> tags, X

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 96
of 472

Parameter description

 context : Context object

 operateName : User-defined operation name. The callback result will return it as-is, which is used to identify the

operation to which the callback belongs.

tags: A collection of tag names, and each tag is a string. Restrictions: Each tag cannot exceed 50 bytes (otherwise,
the tag will be discarded) nor contain spaces (all spaces will be deleted). Up to 100 tags can be set, and excessive
ones will be discarded.
 callback : Callback of tag deletion operation

Processing result

The result can be obtained by rewriting the onSetTagResult method of XGPushBaseReceiver .

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 97
of 472

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + msg)

 }

};

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 98
of 472

Set<String> tagSet = new HashSet<>();

tagSet.add("tag1");

tagSet.add("tag2");

XGPushManager.delTags(context, "delTags", tagSet, xgiOperateCallback);

Clearing all tags

Note:
 The cleanTags API is disused in SDK v1.2.2.0 and later versions. You are advised to use the clearTags

API.

API description

This API is used to clear all tags of a device.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 99
of 472

public static void clearTags(Context context, String operateName, XGIOperateCallbac

Parameter description

 context : Context object

 operateName : User-defined operation name. The callback result will return it as-is, which is used to identify the

operation to which the callback belongs.
 callback : Callback of tag clearing operation

Processing result

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 100
of 472

The result can be obtained by rewriting the onSetTagResult method of XGPushBaseReceiver .

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 101
of 472

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + msg)

 }

};

XGPushManager.clearTags(context, "clearTags", xgiOperateCallback);

Querying tags

Note:

 This API is used to get the tags bound to a device and available only for v1.2.5.0 and later.

API description

This API is used to get the tags bound to the device.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 102
of 472

 public static void queryTags(final Context context, final String operateName, fin

Parameter description

 context : Context object.

 operateName : Operation name defined by the user. The callback result will be returned as-is for users to

distinguish the operation.
 offset : Starting point

 limit : Number of tags to get; maximum value: 100

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 103
of 472

 callback : Callback of tag getting operation

Processing result

The result can be obtained by rewriting the onQueryTagsResult method of XGPushBaseReceiver .

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 104
of 472

 Log.i("TPush", "onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 Log.w("TPush", "onFail, data:" + data + ", code:" + errCode + ", msg:" + msg)

 }

};

XGPushManager.queryTags(context, 0, 100, xgiOperateCallback);

User Attribute Management

You can set attributes for different users and then perform personalized push in Tencent Push Notification Service.

The following are user attribute API methods. For more information on the timing and principle of calls, see user
attribute flow here.

Adding user attributes

API description

This API is used to add an attribute (with callback). If there is no attribute, it will add one; otherwise, it will overwrite the
existing one.

https://intl.cloud.tencent.com/document/product/1024/32609

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 105
of 472

public static void upsertAttributes(Context context, String operateName, Map<String

Parameter description

 context : Context object

 operateName : Operation name defined by the user. The callback result will be returned as-is for users to

distinguish the operation.
 attributes : Attribute set, where each attribute is identified by key-value

 callback : Callback of attribute adding operation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 106
of 472

Note:
1. Attributes are transferred through key-value pairs, and only non-empty strings can be accepted.
2. There can be up to 50 attributes.

3. Both the key and value of an attribute can contain up to 50 characters.

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 107
of 472

 log("action - onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 log("action - onFail, data:" + data + ", code:" + errCode + ", msg:" + msg);

 }

};

Map<String,String> attr = new HashMap<>();

attr.put("name", "coding-test");

attr.put("gender", "male");

attr.put("age", "100");

XGPushManager.upsertAttributes(context, "addAttributes-test", attr, xgiOperateCallb

Deleting a user attribute

API description

This API is used to delete a specified attribute.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 108
of 472

public static void delAttributes(Context context, String operateName, Set<String> a

Parameter description

 context : Context object

 operateName : Operation name defined by the user. The callback result will be returned as-is for users to

distinguish the operation.
 attributes : Attribute set, where each attribute is identified by key-value

 callback : Callback of attribute deleting operation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 109
of 472

Note:
1. Attributes are transferred through key-value pairs, and only non-empty strings can be accepted.
2. There can be up to 50 attributes.

3. Both the key and value of an attribute can contain up to 50 characters.

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 110
of 472

 log("action - onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 log("action - onFail, data:" + data + ", code:" + errCode + ", msg:" + msg);

 }

};

Set<String> stringSet = new HashSet<>();

stringSet.add("name");

stringSet.add("gender");

XGPushManager.delAttributes(context, "delAttributes-test", stringSet, xgiOperateCal

Clearing all user attributes

API description

This API is used to delete all configured attributes.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 111
of 472

public static void clearAttributes(Context context, String operateName, XGIOperateC

Parameter description

 context : Context object

 operateName : Operation name defined by the user. The callback result will be returned as-is for users to

distinguish the operation.
 callback : Callback of attribute clearing operation

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 112
of 472

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 log("action - onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 log("action - onFail, data:" + data + ", code:" + errCode + ", msg:" + msg);

 }

};

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 113
of 472

XGPushManager.clearAttributes(context, "cleanAttributes-test", xgiOperateCallback);

Updating user attributes

API description

This API is used to set an attribute (with callback). It will overwrite all the attributes previously set for this device (i.e.,
clearing and setting).

Note:
1. Attributes are transferred through key-value pairs, and only non-empty strings can be accepted.
2. There can be up to 50 attributes.
3. Both the key and value of an attribute can contain up to 50 characters.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 114
of 472

public static void clearAndAppendAttributes(Context context, String operateName, Ma

Parameter description

 context : Context object

 operateName : Operation name defined by the user. The callback result will be returned as-is for users to

distinguish the operation.
 attributes : Attribute set, where each attribute is identified by key-value

 callback : Callback of attribute setting operation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 115
of 472

Sample code

XGIOperateCallback xgiOperateCallback = new XGIOperateCallback() {

 @Override

 public void onSuccess(Object data, int flag) {

 log("action - onSuccess, data:" + data + ", flag:" + flag);

 }

 @Override

 public void onFail(Object data, int errCode, String msg) {

 log("action - onFail, data:" + data + ", code:" + errCode + ", msg:" + msg);

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 116
of 472

};

Map<String,String> attr = new HashMap<>();

attr.put("name", "coding-test");

attr.put("gender", "male");

attr.put("age", "100");

XGPushManager.clearAndAppendAttributes(context, "setAttributes-test", attr, xgiOper

Configuration APIs

All configuration APIs are in the XGPushConfig class. For configurations to take effect in time, you need to ensure

that configuration APIs are called before launching or registering Tencent Push Notification Service.

Disabling session keep-alive (1.1.6.1+)

Tencent Push Notification Service enables the session keep-alive feature by default. To disable it, please call the

following API in onCreate of Application or LauncherActivity during application initialization and

pass in false :

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 117
of 472

XGPushConfig.enablePullUpOtherApp(Context context, boolean pullUp);

Note:

 Starting from Tencent Push Notification Service SDK v1.2.6.0, the session keep-alive feature is disabled by default,
and you do not need to call this API.

Parameter description

 context : Application context

 pullUp : true (enable session keep-alive); false (disable session keep-alive)

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 118
of 472

Note:
 If the following log is printed, the session keep-alive feature has been disabled: I/TPNS: [ServiceUtil]

disable pull up other app .

Sample code

XGPushConfig.enablePullUpOtherApp(context, false); // Default value: true (enable k

Debug mode

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 119
of 472

API description

To ensure data security, make sure the debug mode is turned off when publishing.

public static void enableDebug(Context context, boolean debugMode)

Parameter description

 context : Context object of the application

 debugMode : The default value is false . To enable debug logging, set it to true .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 120
of 472

Sample code

XGPushConfig.enableDebug(context, true); // Default value: false (do not enable)

Getting a device token

API description

A token is the unique ID for Tencent Push Notification Service to stay connected with the backend and the unique ID

for an application to receive messages. A device token can be obtained only after the device is successfully

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 121
of 472

registered. The obtaining methods are described as follows. (The Tencent Push Notification Service token may
change if the application is uninstalled and reinstalled.)

1. Through the registration API with callback

In the onSuccess(Object data, int flag) method of the registration API with XGIOperateCallback ,

the data parameter is the token. For more information, see the relevant sample of the registration API.

2. Inheriting XGPushBaseReceiver

Rewrite the onRegisterResult (Context context, int errorCode,XGPushRegisterResult

registerMessage) method of XGPushBaseReceiver and get the token through the getToken API

provided by the registerMessage parameter. For more information, see Getting registration results.

3. Through the XGPushConfig.getToken(context) API

Once the device is successfully registered, the token will be stored locally and then can be obtained through the

 XGPushConfig.getToken(context) API.

Token is the identity ID of a device. It is randomly generated by the server based on the device attributes and
delivered to the local system. The token of the same application varies by device.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 122
of 472

public static String getToken(Context context)

Note:

 A token is generated during the first application registration and will be stored in the mobile phone. The token always
exists regardless of whether unregistration is performed subsequently. After the application is uninstalled and
reinstalled, the token will change. The token varies by application.

Parameter description

 context : Context object of the application

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 123
of 472

Sample code

XGPushConfig.getToken(context);

Returned values

A standard token will be returned upon success, and null or 0 upon failure.

Getting a third-party vendor token

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 124
of 472

A third-party token is the identity ID of a vendor device. It is delivered to the local system by the vendor. The token of
the same application varies by device.

public static String getOtherPushToken(Context context)

Note:
 This API can be called only after successful registration; otherwise, null will be returned.

Parameter description

 context : Context object of the application

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 125
of 472

Sample code

XGPushConfig.getOtherPushToken(context);

Returned values

A standard token will be returned upon success, and null or 0 upon failure.

Getting custom parameters (custom_content) delivered with the notification on the
notification click target page

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 126
of 472

This is a new API in the SDK v1.3.2.0. When a notification is clicked and opened, you can use this API to directly get
the custom parameters (custom_content) configured when creating the push task on the target notification setting
page.

For usage details, see Notification Tap-to-Redirect.

public static String getCustomContentFromIntent(Context context, Intent intent)

Returned values

Strings of the custom parameters (custom_content) delivered with the push

https://intl.cloud.tencent.com/document/product/1024/38354#rest-api-.E4.BD.BF.E7.94.A8

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 127
of 472

Parameter description

 context : Context object, which cannot be null

intent: Activity intent. Directly pass in this.getIntent() in onCreate, and pass in the intent called back in

onNewIntent.

Sample code

String customContent = XGPushManager.getCustomContentFromIntent(this, intent);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 128
of 472

Setting the AccessID

API description

If the accessKey is already set in AndroidManifest.xml , you do not need to call this API again; if you still

call this API, the accessKey set through this API will prevail.

public static boolean setAccessId(Context context, long accessId)

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 129
of 472

 Context : Object

 accessId : accessId obtained through registration in the console

Sample code

long accessId = 0L; // `accessId` of the current application

XGPushConfig.setAccessId(context, accessId);

Returned values

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 130
of 472

true: Success.
false: Failure.
Note:

 The accessId set through this API will also be stored in the AndroidManifest.xml file.

Setting the accessKey

API description

If the accessKey is already set in AndroidManifest.xml , you do not need to call this API again; if you still

call this API, the accessKey set through this API will prevail.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 131
of 472

public static boolean setAccessKey(Context context, String accessKey)

Parameter description

 Context : Object

 accessKey : accessKey obtained through registration in the console

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 132
of 472

String accessKey = ""; // `accessKey` of your application

XGPushConfig.setAccessKey(context, accessKey);

Returned values

true: Success.
false: Failure.
Note:
 The access key set through this API will also be stored in the AndroidManifest.xml file.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 133
of 472

Reporting logs

API description

If you find exceptions with TPush, you can call this API to trigger reporting of local push logs. To report the problem,
contact our online customer service with the file address provided to facilitate troubleshooting.

public static void uploadLogFile(Context context, HttpRequestCallback httpRequestCa

Parameter description

https://intl.cloud.tencent.com/contact-us

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 134
of 472

 context : Context object, which cannot be null

 httpRequestCallback : Log reporting result callback, which include callbacks for success and failure and

cannot be null

Sample code

XGPushManager.uploadLogFile(context, new HttpRequestCallback() {

 @Override

 public void onSuccess(String result) {

 Log.d("TPush", "Upload succeeded. File address:" + result);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 135
of 472

 }

 @Override

 public void onFailure(int errCode, String errMsg) {

 Log.d("TPush", "Upload failed. Error code:" + errCode + ", error message

 }

});

Note:
You need to enable XGPushConfig.enableDebug(this, true); first.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 136
of 472

Vendor Channel Integration Guide
Huawei Channel v5 Integration
Last updated：2024-01-16 17:39:39

Scenarios

Tencent Push Notification Service always keeps up with the update progress of each vendor channel's push service. It
provides plugin dependency packages integrated with the HMS Core Push SDK of Huawei Push for your choice.
Caution:

For Huawei Push, you can successfully register with the Huawei channel and push messages through it only in a
signed release package environment.
The Huawei channel supports click callback but not arrival callback.

Application Configuration on Huawei Push Platform

Obtaining a key

1. Go to the Huawei Developer Platform.
2. Register a developer account and log in to the platform. For more information, see Account Registration and

Verification. If you are registering a new account, identity verification is required.
3. Create an application on the Huawei Push platform. For more information, see Creating an App. The application
package name must be the same as that entered in the Tencent Push Notification Service console.
4. Enter the application in My Projects > Project Settings > General to get and copy the APPID and Client

Secret , and then paste them into Tencent Push Notification Service console > Configuration Management >

Basic Configuration > Huawei Official Push Channel.

Configuring the SHA-256 certificate fingerprint

Get the SHA-256 certificate fingerprint as instructed in Generating a Signing Certificate Fingerprint. Then configure
the fingerprint on the Huawei Push platform, and remember to click

 to save the configuration.

http://developer.huawei.com/
https://developer.huawei.com/consumer/cn/devservice/doc/20300
https://developer.huawei.com/consumer/cn/doc/distribution/app/agc-create_app
https://console.intl.cloud.tencent.com/tpns
https://developer.huawei.com/consumer/cn/doc/development/HMS-Guides/Preparations#generate_finger

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 137
of 472

Getting the Huawei Push configuration file

Log in to the Huawei Developer platform, go to My Projects > select a project > Project Settings, and download the
latest configuration file agconnect-services.json of your Huawei application.

Enabling the push service

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 138
of 472

1. On the Huawei Push platform, choose All services > Push Kit to go to the Push Kit page.

2. On the Push Kit page, click Enable now. For more information, see Enabling Services.

https://developer.huawei.com/consumer/cn/doc/distribution/app/agc-enable_service#enable-service

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 139
of 472

SDK Integration (Two Methods)

Using Android Studio Gradle for automatic integration

1. In the build.gradle file in the Android project-level directory, add the Huawei repository address and HMS

Gradle plugin dependencies under repositories and dependencies in buildscript, respectively:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 140
of 472

buildscript {

 repositories {

 google()

 maven {url 'https://developer.huawei.com/repo/'} // Huawei Maven repositor

 }

 dependencies {

 // Other `classpath` configurations

 classpath 'com.huawei.agconnect:agcp:1.6.0.300' // Gradle plugin dependenc

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 141
of 472

2. In the build.gradle file in the Android project-level directory, add the Huawei dependency repository address

under repositories in allprojects:

allprojects {

 repositories {

 google()

 maven {url 'https://developer.huawei.com/repo/'} // Huawei Maven repositor

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 142
of 472

3. Copy the application configuration file agconnect-services.json obtained from the Huawei Push platform

to the app module directory (not the submodule).

4. Add the following configuration to the build.gradle file at its beginning in the app module (not the

submodule build.gradle):

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 143
of 472

// Other Gradle plugins of application

apply plugin: 'com.huawei.agconnect' // HMS Push SDK Gradle plugin

android {

 // Application configuration content

}

5. Import the dependencies related to Huawei Push into the build.gradle file under the app module:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 144
of 472

dependencies {

 // ...Other dependencies of the program

 implementation 'com.tencent.tpns:huawei:[VERSION]-release' // For Huawei

 implementation 'com.huawei.hms:push:6.5.0.300' // HMS Core Push module d

 }

Note:
For Huawei Push, hms:push depends on the preset <queries> tag compatible with Android 11 since

v6.1.300. Upgrade Android Studio to v3.6.1 or later and the Android Gradle plugin to v3.5.4 or later. Otherwise, errors
may occur during project builds.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 145
of 472

For Huawei pushes, [VERSION] is the SDK's latest version number, which can be obtained from the release notes of
SDK for Android.
Starting from v1.2.1.3, Tencent Push Notification Service SDK for Android officially supports Huawei Push v5. Use

Tencent Push Notification Service Huawei dependency v1.2.1.3 or later to avoid integration conflicts.

Manual integration with Android Studio

If you cannot access Huawei Maven repository in your internal development environment, you can try the following
manual integration method:
1. Download the SDK installation package.
2. Open the Other-Push-jar folder and import the dependent packages related to Huawei Push v5 by copying

all JAR and AAR packages into the project.
3. In the build.gradle file in the Android project-level directory, add HMS Gradle plugin dependencies under

dependencies in buildscript:

https://intl.cloud.tencent.com/document/product/1024/36191
https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 146
of 472

buildscript {

 repositories {

 google()

 jcenter()

 }

 dependencies {

 // Other `classpath` configurations

 classpath files('app/libs/agcp-1.4.1.300.jar') // Gradle plugin dependenci

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 147
of 472

4. Copy the application configuration file agconnect-services.json obtained from the Huawei Push platform

to the app module directory.

5. Add the following configuration to the build.gradle file at its beginning in the app module:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 148
of 472

// Other Gradle plugins of application

apply plugin: 'com.huawei.agconnect' // HMS Push SDK v4 Gradle plugin

android {

 // Application configuration content

}

6. Import the dependencies related to Huawei Push into the build.gradle file under the app module:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 149
of 472

dependencies {

 // ...Other dependencies of the program

 implementation files('libs/tpns-huaweiv5-1.2.1.1.jar') // Tencent Push No

 implementation fileTree(include: ['*.aar'], dir: 'libs') // HMS Core Push m

 }

7. Add the following components between the <application> and </application> tags in the

 manifest file:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 150
of 472

<application>

 <service

 android:name="com.huawei.android.hms.tpns.HWHmsMessageService"

 android:exported="false">

 <intent-filter>

 <action android:name="com.huawei.push.action.MESSAGING_EVENT" />

 </intent-filter>

 </service>

</application>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 151
of 472

Huawei Push Activation

1. Enable the third-party push API before calling Tencent Push Notification Service registration API
 XGPushManager.registerPush :

// Enable third-party push

XGPushConfig.enableOtherPush(getApplicationContext(), true);

2. The log of successful registration is as follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 152
of 472

V/TPush: [XGPushConfig] isUsedOtherPush:true

E/xg.vip: get otherpush errcode: errCode : 0 , errMsg : success

V/TPush: [XGPushConfig] isUsedOtherPush:true

I/TPush: [OtherPushClient] handleUpdateToken other push token is : IQAAAACy0PsqAADx

Code Obfuscation

1. Add the following obfuscation rules in the proguard-rules.pro file at the application project level.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 153
of 472

-ignorewarnings

-keepattributes *Annotation*

-keepattributes Exceptions

-keepattributes InnerClasses

-keepattributes Signature

-keepattributes SourceFile,LineNumberTable

-keep class com.hianalytics.android.**{*;}

-keep class com.huawei.updatesdk.**{*;}

-keep class com.huawei.hms.**{*;}

-keep class com.huawei.agconnect.**{*;}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 154
of 472

2. If the application uses the plug-in AndResGuard, add the following in the configuration allowlist of AndResGuard.
Skip this step if AndResGuard is not used.

whiteList = [

 "R.string.hms*",

 "R.string.connect_server_fail_prompt_toast",

 "R.string.getting_message_fail_prompt_toast",

 "R.string.no_available_network_prompt_toast",

 "R.string.third_app_*",

 "R.string.upsdk_*",

 "R.layout.hms*",

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 155
of 472

 "R.layout.upsdk_*",

 "R.drawable.upsdk*",

 "R.color.upsdk*",

 "R.dimen.upsdk*",

 "R.style.upsdk*",

 "R.string.agc*"

]

Note:
 For more obfuscation rules, see Configuring Obfuscation Scripts.

Advanced Configuration (Optional)

Configuring arrival receipt for Huawei channel

The arrival receipt for the Huawei channel should be configured by yourself. After configuring this feature as instructed

in Acquisition of Vendor Channel Arrival Receipt, you can view the arrival data for the Huawei push channel in the
push records.

Badge adaptation for Huawei devices

You can set the application badge on Huawei devices after applying for the application badge setting permission and
setting the application start class. For more information, see Badge Adaption Guide.

Troubleshooting

Querying Huawei Push registration error codes

The Huawei Push service has strict requirements on integration configuration. If you observe logs similar to the

following, it indicates that registration with the Huawei channel fails. In that case, you can use the following method to
get the Huawei Push registration error code.

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/android-config-obfuscation-scripts-0000001050176973
https://intl.cloud.tencent.com/document/product/1024/35246
https://intl.cloud.tencent.com/document/product/1024/35828

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 156
of 472

[OtherPushClient] handleUpdateToken other push token is : other push type: huawei

In debugging mode of the push service, filter logs by the keyword OtherPush or HMSSDK to view the return

code logs, for example, [OtherPushHuaWeiImpl] other push huawei onConnect code:907135702 .

Then locate the error cause and rectify the error by referring to Troubleshooting Vendor Channel Registration Failures.

Why are there no alerts for notifications delivered through the Huawei channel?

Starting from EMUI 10.0, Huawei Push intelligently categorizes notification messages into two levels: general and
important. Versions earlier than EMUI 10.0 don't categorize notifications but have only one level, so all notifications are

https://intl.cloud.tencent.com/document/product/1024/37006

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 157
of 472

displayed through the "default notification" channel, which is equivalent to the important level on EMUI 10.0. If a
notification is categorized as "general", there will be no vibration, ringtone, or status bar icon alerts for it. Currently, the
notification level can be set to "important" through the custom notification channel; however, according to the

applicable Huawei Push rules, the final display effect will still be determined jointly by the set level and the level
calculated by Huawei Push's intelligent categorization, and the lower level will prevail; for example, if the two levels are
"important" and "general", "general" will prevail. For more information, see Huawei Message Classification User Guide
here.

https://intl.cloud.tencent.com/document/product/1024/36250

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 158
of 472

FCM Channel Integration
Last updated：2024-01-16 17:39:39

Overview

The FCM channel is a system-level push channel provided by Google. On mobile phones with the Google service
framework, as the background processes are managed loosely, push notifications can be received if application
processes are not force stopped. This channel is not supported for clusters in the Chinese mainland.

Directions

Obtaining a key

FCM PUSH supports the following two methods of key configuration. You just need to choose one of them, but the
new proposal method using the server private key is recommended.
1. Server private key (recommended)

Register the application at the FireBase official website. Select Firebase Projects > Select a Project App >
Settings > Service Account > Firebase Admin SDK, and click Generate a new private key to get the json file

containing the Firebase server private key. Then, go to the Tencent Push Notification Service console >
Configuration Management > Basic Configuration > FCM Push Channel, select Server Private Key
(Recommended), and click Click to Upload to upload the above-mentioned json file.

https://firebase.google.com/?hl=zh-cn
https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 159
of 472

2. Legacy server key

Register the application at the FireBase official website. Select Firebase Projects > ** Select a Project App** >

Settings > Cloud Messaging to get the Server Key of the FCM app push, and enter the key in the Tencent Push
Notification Service console > Configuration Management > Basic Configuration > FCM Push Channel.

https://firebase.google.com/?hl=zh-cn
https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 160
of 472

Configuration

1. Configure the google-services.json file.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 161
of 472

2. Configure gradle to integrate the Google service.
1. Add the following code to the dependencies node in the project-level build.gradle file:

classpath 'com.google.gms:google-services:4.2.0'

Caution:
 If FCM Register error! java.lang.IllegalStateException: Default FirebaseApp is not

initialized in this process com.qq.xg4all. Make sure to call

FirebaseApp.initializeApp(Context) first. appears for a version earlier than 4.2.0, add

 YOUR_GOOGLE_APP_ID in the string.xml file in the res/values folder.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 162
of 472

2. Add dependencies in the app-level build.gradle file:

 implementation 'com.tencent.tpns:fcm:[VERSION]-release' // For FCM PUSH, [V

 implementation 'com.google.firebase:firebase-messaging:17.6.0'

// In the app-level gradle file, add the following to the last line of the code and

apply plugin: 'com.google.gms.google-services'

Note：

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 163
of 472

For FCM PUSH, [VERSION] is the version number of the current SDK and can be obtained from the SDK for Android.
Configure google-play-services for Google (v17.0.0+ or later recommended; an earlier version may cause FCM
registration failure).

Enabling FCM PUSH

Add the following code before calling the Tencent Push Notification Service registration code
 XGPushManager.registerPush :

XGPushConfig.enableOtherPush(this, true);

https://intl.cloud.tencent.com/document/product/1024/36191

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 164
of 472

The log of successful FCM registration is as follows:

V/TPush: [XGPushConfig] isUsedOtherPush:true

I/TPush: [OtherPush] checkDevice pushClassNamecom.tencent.android.tpush.otherpush.f

I/TPush: [XGPushManager] other push token is : dSJA5n4fSZ27YeDf2rFg1A:APA91bGiqSPCM

Code obfuscation

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 165
of 472

-keep class com.google.firebase.** {*;}

Note:

 Obfuscation rules must be stored in the proguard-rules.pro file at the application project level.

Troubleshooting

Why can't messages pushed through the FCM channel be received?

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 166
of 472

1. On mobile phones with the Google service framework outside the Chinese mainland, as the background processes
are managed loosely, messages pushed through the FCM channel can be received if application processes are not
force stopped.

2. The background process management policies of phone brands in the Chinese mainland are generally strict, which
also restrict the Google services on the background. On such phones, messages pushed through the FCM channel
cannot be sent or received. To receive them, keep the app running on the foreground.

How do I force stop an application process?

Go to Settings > Application Management on the phone, select a specific application, and click Stop, Force Stop,
or a similar button to stop the application. For most Chinese phones, closing the application process on the

multitasking page can also be considered as force stopping the application process (this is not the case for phones
outside the Chinese mainland).

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 167
of 472

OPPO Channel Integration
Last updated：2024-01-16 17:39:39

Overview

The OPPO channel is a system-level push channel officially provided by OPPO. The OPPO's system channel can
deliver push messages to an OPPO phone without requiring the user to open the application. For more information,
visit OPPO PUSH's official website.

Note:
The OPPO channel currently does not support in-app messages, which will be delivered through the TPNS channel.
The OPPO channel imposes a certain quota limit on the number of daily push messages. For more information, see
Vendor Channel Limit Description. When this limit is exceeded, excessive messages will be pushed through the TPNS
channel.

The OPPO channel is supported by OPPO ColorOS v3.1 or later.

Directions

Applying for permission

Use an OPPO enterprise developer account to log in to the OPPO Developer Platform, and select Management
Center > App Service Platform > Mobile App List > Select App > Development Service > Push Service to
apply for the OPPO PUSH permission.
Note:
 The notification bar push permissions can be granted only if the application is published on OPPO AppStore and its

main business is not lending.

Obtaining a key

Note:
 You can only view the key under a developer account (root account).
1. After OPPO PUSH is activated, you can select OPPO PUSH Platform > Configuration Management >
Application Configuration to view the AppKey , AppSecret , and MasterSecret .

2. Copy and paste the AppKey , AppSecret , and MasterSecret parameters of the application into TPNS

console > Configuration Management > Basic Configuration > OPPO Official Push Channel.

Configuring the push channel

https://push-intl.oppo.com/
https://intl.cloud.tencent.com/document/product/1024/35829
https://push-intl.oppo.com/
https://push-intl.oppo.com/
https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 168
of 472

To be compatible with channel configurations for Android 8.0 or later on OPPO phones, you need to create a default
TPNS channel in the OPPO console. For more information, see OPPO's official documentation.

The configuration items are as described below:

Channel ID: default_message

Channel Name: default notification

Configuration

Integrating through Android Studio

Import the dependencies related to OPPO PUSH. The sample code is as follows:

https://open.oppomobile.com/wiki/doc/#id=10198

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 169
of 472

// For OPPO PUSH SDK, [VERSION] is the version number of the current SDK and can be

implementation 'com.tencent.tpns:oppo:[VERSION]-release'

// For SDK v1.3.2.0 or later, you need to add the following dependency statements.

implementation 'com.google.code.gson:gson:2.6.2'

implementation 'commons-codec:commons-codec:1.15'

Note:
 For OPPO PUSH, [VERSION] is the version number of the current SDK and can be viewed in SDK for Android.

Integrating through Eclipse

After getting the TPNS SDK package for OPPO PUSH, configure the major TPNS version and the following content in

the manual integration method detailed on TPNS's official website.
1. Open the Other-push-jar folder and import the OPPO PUSH-related JAR into the project.

2. Add a class resource file to the project with the following code:

https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 170
of 472

package com.pushsdk;

class R {

 public static final class string {

 public final static int system_default_channel = com.tencent.android.tpns.demo.R.s

 }

}

3. Add the following configuration to the Androidmanifest.xml file :

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 171
of 472

<!--Permissions required by OPPO PUSH-->

<uses-permission android:name="com.coloros.mcs.permission.RECIEVE_MCS_MESSAGE"/>

<uses-permission android:name="com.heytap.mcs.permission.RECIEVE_MCS_MESSAGE"/>

<application>

 <service

 android:name="com.heytap.msp.push.service.CompatibleDataMessageCallback

 android:permission="com.coloros.mcs.permission.SEND_MCS_MESSAGE"

 android:exported="true">

 <intent-filter>

 <action android:name="com.coloros.mcs.action.RECEIVE_MCS_MESSAGE" />

 </intent-filter>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 172
of 472

 </service>

 <service

 android:name="com.heytap.msp.push.service.DataMessageCallbackService"

 android:permission="com.heytap.mcs.permission.SEND_PUSH_MESSAGE"

 android:exported="true">

 <intent-filter>

 <action android:name="com.heytap.mcs.action.RECEIVE_MCS_MESSAGE" />

 <action android:name="com.heytap.msp.push.RECEIVE_MCS_MESSAGE" />

 </intent-filter>

 </service>

</application>

Enabling OPPO PUSH

Call the following code before calling TPNS' XGPushManager.registerPush :

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 173
of 472

// Note that OPPO's `AppKey` rather than the `AppID` is required here

XGPushConfig.setOppoPushAppId(getApplicationContext(), "OPPO’s AppKey");

// Note that OPPO's `AppSecret` rather than the `AppKey` is required here

XGPushConfig.setOppoPushAppKey(getApplicationContext(), "OPPO’s AppSecret");

// Enable third-party push

XGPushConfig.enableOtherPush(getApplicationContext(), true);

// The log of successful registration is as follows:

I/TPush: [RegisterReservedInfo] Reservert info: other push token is : CN_fc0f0b3822

I/TPush: [PushServiceBroadcastHandler] >> bind OtherPushToken success ack with [acc

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 174
of 472

Code obfuscation

-keep public class * extends android.app.Service

-keep class com.heytap.mcssdk.** {*;}

-keep class com.heytap.msp.push.** { *;}

Note:
 Obfuscation rules must be stored in the proguard-rules.pro file at the application project level.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 175
of 472

Troubleshooting

Querying OPPO PUSH registration error codes

If you observe logs similar to the following, it indicates that registration with the OPPO channel fails. In this case, you
can use the method described below to get the OPPO PUSH registration error code.

[OtherPushClient] handleUpdateToken other push token is: other push type: OPPO

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 176
of 472

In debugging mode of the push service, filter logs by the keyword OtherPush to view the return code logs, for

example, [OtherPushOppoImpl] OppoPush Register failed, code=14, msg=INVALID_APP_KEY .

Then locate the error cause and rectify the error by referring to Troubleshooting Vendor Channel Registration Failures.

Why do I receive the error code 30 when I push messages with OPPO PUSH?

Official messages cannot be sent during application approval. Please go to the OPPO PUSH platform to check the
push permission approval progress.

https://intl.cloud.tencent.com/document/product/1024/37006

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 177
of 472

Vendor Channels
Badge Adaptation Guide
Last updated：2024-01-16 17:39:39

For Android phones, the opened badge capabilities vary by vendor. The support of Tencent Push Notification Service
for push badge is as detailed below for your reference.

Overview

Vendor
Support for
Display of
Badge/Red Dot

Require
Configuration Badge/Red Dot Display Rule

Huawei/HONOR Badge Yes See Huawei Phone Badge Adaptation Guide.

Mi Badge No

Compliant with the default system logic. Perceive the
number of notifications in the notification bar and
automatically increase or decrease the badge number
by 1 accordingly.

Meizu Red dot No
Compliant with the default system logic. Supports
only red dot display. If there is a notification, a red dot
will be displayed, and vice versa.

OPPO Red dot No

Display of red dot needs to be manually enabled in
notification settings, which is compliant with the
default system logic. If there is a notification, a red dot
will be displayed, and vice versa.
Display of the notification number is available only to
specified applications such as QQ and WeChat and
requires permission application. No adaption
instructions are provided currently.

vivo Badge Yes See vivo Phone Badge Adaptation Guide.

Configuring the Server Delivery Badge

You can configure the server delivery badge in the Tencent Push Notification Service console or through the push API.

Method 1: Configure on the push page in the console

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 178
of 472

Method 2: Configure through the push API
1. Log in to the Tencent Push Notification Service console.
2. Locate the target Android product and click Push Management in the Operation column of the product to go to

the push Task List page.
3. Click the push to configure to go to the push configuration page.
4. In the Advanced settings area, enable badge number.

In the push message body, add the `badge_type` field with the following attributes

Parameter Type Parent Required Default Description

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 179
of 472

Item Value

badge_type int android No -1

Notification badge:
-2: auto increased by 1 (for Huawei devices
only)
-1: unchanged (for Huawei and vivo
devices only)
[0, 100): direct configuration (for Huawei
and vivo devices only)

Note:
Badge adaptation capabilities vary by vendor device. For details, see the badge adaptation description of each vendor
below.
Sample message body:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 180
of 472

{

 "audience_type": "token",

 "expire_time": 3600,

 "message_type": "notify",

 "message":{

 "android": {

 "badge_type": -2,

 "clearable": 1,

 "ring": 1,

 "ring_raw": "xtcallmusic",

 "vibrate": 1,

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 181
of 472

 "lights": 1,

 "action": {

 "action_type": 1,

 "activity": "com.qq.xg4all.JumpActivity",

 "aty_attr": {

 "if": 0,

 "pf": 0

 }

 }

 },

 "title": "android test",

 "content": "android test 21"

 },

 "token_list": [

 "01f6ac091755a79015b4a30c9c4c7ddba1ea"

],

 "multi_pkg": true,

 "platform": "android",

}

General APIs for Terminals

API for setting the badge number (for SDK v1.2.0.1 or later)

This API allows you to set the badge number. It applies to Huawei, OPPO, and vivo phones. For OPPO phones, you
need to apply for the badge display permission from OPPO.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 182
of 472

/**

 * @param context //Application context

 * @param setNum //Set the badge number

 * @since v1.2.0.1

 */

XGPushConfig.setBadgeNum(Context context, int setNum);

Example: When an in-app message is received, call XGPushConfig.setBadgeNum(context, 8) to set the

badge number to 8.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 183
of 472

API for resetting the badge number (for SDK v1.2.0.1 or later)

This API allows you to reset the badge number. It applies to Huawei, OPPO, and vivo phones. For OPPO phones, you
need to apply for the badge display permission from OPPO.

 /**

 * @param context //Application context

 * @since v1.2.0.1

 */

 XGPushConfig.resetBadgeNum(Context context);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 184
of 472

Example: When an in-app message is read or an application is opened, call
 XGPushConfig.resetBadgeNum(context) to reset the badge number.

Note:

For notifications delivered through vendor channels, the badge number cannot be automatically decreased by 1 when
the notifications are cleared. It is recommended that you call this API to clear the badge value when appropriate, for
example, when re-opening the application from the desktop.

Huawei Phone Badge Adaptation Guide

Use limits

Badge display is supported by Huawei phones on EMUI 8.0 or later.

Limited by the openness of Huawei phone badge capabilities, the badge feature varies by push scenario as detailed

below. Please use the Huawei phone badge feature as instructed.

Push Form Badge Capability Implementation Method

Notification
through the
Huawei channel

The badge number can be auto increased by 1, directly
configured, or unchanged; can be auto decreased by 1 for
notification click; but cannot be auto decreased by 1 for
notification dismissal.

Configure in the console
or through the push API
keyword.

Notification
through the
Tencent Push
Notification
Service channel

The badge number can be auto increased by 1, directly
configured, or unchanged; can be auto decreased by 1 for
notification click or dismissal.

Configure in the console
or through the push API
keyword.

In-app message
You can process the badge number configuration, increase,
and decrease logic by yourself.

Call the open API of the
Tencent Push Notification
Service SDK.

Configuration

Applying for permission to set the in-app badge

To implement the correct badge modification effect, please first add the Huawei phone badge read/write permission
for your application by adding the following permission configuration under the manifest tag in the

 AndroidManifest.xml file of the application:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 185
of 472

<uses-permission android:name="com.huawei.android.launcher.permission.CHANGE_BADGE"

<!-- Compatible on HONOR phones -->

<uses-permission android:name="com.hihonor.android.launcher.permission.CHANGE_BADGE

Setting the notification delivery badge

Be sure to enable the Huawei channel in the console and enter the Activity class, such as

 com.test.badge.MainActivity , of the application entry corresponding to the desktop icon in the parameter

configuration area. Otherwise, the badge settings will not take effect.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 186
of 472

Getting startup class name:

Drag and drop the packaged APK file into AndroidStudio. Enter the AndroidManifest.xml file in the package

and search for the keywords "android.intent.category.LAUNCHER" in the file. The activity.name attribute found

is the startup class name.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 187
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 188
of 472

Setting badge number auto increase/decrease for Huawei phones

For Huawei phones, the badge number can be auto increased or decreased by 1. The API is as follows:

 /**

 * Huawei phone badge modification API

 *

 * @param context //Application context

 * @param changeNum //Changed number, which is incremental. For example, if t

 *Valid values: 1 (badge number increased by 1); -1 (badge number decreased by

 */

 XGPushConfig.changeHuaweiBadgeNum(Context context, int changeNum);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 189
of 472

Example: when an in-app message is received, call XGPushConfig.changeHuaweiBadgeNum(context, 1)

to increase the badge number by 1; when the message badge needs to be dismissed, call
 XGPushConfig.changeHuaweiBadgeNum(context, -1) to decrease the badge number by 1.

vivo Phone Badge Adaptation Guide

Use limits

Limited by the openness of vivo phone badge capabilities, the badge number currently can only be directly configured

but cannot be auto increased or decreased. The badge feature supports only notifications delivered through the
Tencent Push Notification Service channel.

Push Form Badge Capability Implementation Method

Notification through the vivo
channel

Not supported Not supported

Notification through the
Tencent Push Notification
Service channel

The badge number can be directly configured
or unchanged, but cannot be auto increased
or decreased.

Configure in the console or
through the push API
keyword.

In-app message
You can process and configure the logic by
yourself.

Call the open API of the
Tencent Push Notification
Service SDK.

Configuration

Applying for permission to set the in-app badge

To implement the correct badge modification effect, please first add the vivo phone badge read/write permission for
your application by adding the following permission configuration under the manifest tag in the

 AndroidManifest.xml file of the application:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 190
of 472

<uses-permission android:name="com.vivo.notification.permission.BADGE_ICON" />

Enabling badge in phone settings

After successful permission configuration, the Badge option is disabled by default and needs to be manually enabled.

Enablement path: Settings > Notification & Status Bar > Notifications Management > Application Name >
Badge

For applications without the badge feature, the Badge option is not provided.
Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 191
of 472

For different OS versions, the name Badge can also be App icon badges or Desktop badges.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 192
of 472

Vendor Channel Testing Method
Last updated：2024-01-16 17:39:39

Note:
This testing method is applicable to phone vendor channels on all versions.
1. Integrate the TPNS SDK v1.0.9 or higher in your application and integrate the required vendor SDK according to

the Integration Guide for Vendor Channels.
2. Confirm that the relevant application information has been entered in TPNS Console > Configuration
Management > Basic Configuration > Vendor Channel. Usually, the relevant configuration will take effect after 1
hour. Please wait patiently and proceed to the next step after it takes effect.
3. Install the integrated application (testing version) on a test device and run the application.

4. Keep the application running in the foreground and try to make single/full push to the device.
5. If the application receives the message, switch the application to the background and stop all application
processes.
6. Make single/full push again, and if the push is received, the vendor channel integration is successful.

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 193
of 472

Troubleshooting Vendor Channel Registration
Failures
Last updated：2024-01-16 17:39:39

Problem Description

If your application is connected to a vendor channel, but a log similar to the following one is found in the application
operation logs:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 194
of 472

[OtherPushClient] handleUpdateToken other push token is : other push type: huawei

Then it means that your application failed to register with the vendor channel. You can locate and troubleshoot the

problem by getting the return code for vendor channel registration failure.

Troubleshooting Directions

Getting the return code for vendor channel registration

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 195
of 472

Tencent Push Notification Service SDK for Android provides the following ways to get the return code for vendor
channel registration:
Filter application operation logs by the keyword OtherPush to find logs similar to the following ones and locate the

return code for vendor channel registration:

// Huawei channel

// If filtering by the keyword `OtherPush` cannot find the return code, you can try

[OtherPushHuaWeiImpl] other push huawei onConnect code:907135702

n// Mi channel

[OtherPush_XG_MI] register failed, errorCode: 22022, reason: Invalid package name:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 196
of 472

// Meizu channel

[OtherPush_XG_MZ] onRegisterStatus BasicPushStatus{code='110000', message='Invalid

// OPPO channel

[OtherPushOppoImpl] OppoPush Register failed, code=14, msg=INVALID_APP_KEY

// vivo channel

[OtherPushVivoImpl] vivoPush Register or UnRegister fail, code = 10003

Troubleshooting by return code

You can refer to the official push documentation of each vendor to get the specific descriptions of return codes and
troubleshoot accordingly. The table below lists some common error codes:

Vendor
Channel

Return
Code

Description
 Suggested Solution
 Link

Huawei

1001

Make sure that the
"HMS" or "HMS-Core"
application is installed
in the phone, which is
required for Huawei
Push

Go to Huawei AppGallery to download
and install the "HMS-Core" application

Huawei
return
codes﻿

6003

The application APK is
not signed or contains
signing information
that doesn't match that
registered on the
Huawei Developer
platform; however, it
must be correctly
signed for Huawei
Push

Sign the APK file or check whether the
signing information is correct

Configuring the signature certificate
fingerprint for the Huawei channel﻿

907135000

The appId is
invalid

Check whether the value of the
 appId field in the Huawei Push
configuration file agconnect-
services.json matches the
application package name
Check whether the configuration file is
in the root directory of the project's
 app module (at the same level as

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-References/error-code-0000001050255690
https://intl.cloud.tencent.com/document/product/1024/37176

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 197
of 472

the build.gradle file of the
application)

907135702

The SHA256 value of
the signature file is
different from that
configured on the
Huawei Push platform

Check whether the entered SHA256
value of the signature file is the same
as the one configured on the Huawei
Push platform (multiple ones can be
added)

907135003 The apiclient
object is invalid

Check whether the phone can access
the internet normally or reconnect it to
the network
This problem is most probably caused
by version incompatibility of the HMS-
Core application on Huawei phones.
You can try searching for HMS-Core or
Huawei Mobile Service in Huawei
AppGallery, check whether the latest
version is installed, and if not, upgrade
it

HONOR

8001000
The device does not
support HONOR push

Use HONOR devices for testing
Update the version of the Magic UI that
includes the push service HONOR

return
codes﻿

8001003
Failed to obtain the
application certificate
fingerprint

Configure your certificate fingerprint

Mi

22006 The application ID is
invalid

Check whether the application
package name, appId , and
 appKey match each other on the Mi
Push platform

Mi return
codes﻿

22007 The application key is
invalid

Check whether the application
package name, appId , and
 appKey match each other on the Mi
Push platform

22022
The application
package name is
invalid

Check whether the application
package name, appId , and
 appKey match each other on the Mi
Push platform

Meizu 110000 The appId is
invalid

Check whether the application
package name, appId , and

Meizu
return

https://developer.hihonor.com/cn/kitdoc?category=%E5%9F%BA%E7%A1%80%E6%9C%8D%E5%8A%A1&kitId=11002&navigation=guides&docId=.%2Fsdk-error-code.md&token=
https://dev.mi.com/console/doc/detail?pId=1557
https://open-res.flyme.cn/fileserver/upload/file/201803/be1f71eac562497f92b42c750196a062.pdf

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 198
of 472

 appKey match each other on the
Meizu Push platform. Check the
application information on the Flyme
Push platform

codes﻿

110001
The appKey is
invalid

Check whether the application
package name, appId , and
 appKey match each other on the
Meizu Push platform

OPPO

14

The AppKey
parameter is invalid

Please note that OPPO's AppKey
instead of AppId should be entered
for setOppoPushAppId , while
OPPO's AppSecret instead of
 AppKey should be entered for
 setOppoPushAppKey

OPPO
return
codes﻿

15

The AppKey
parameter is missing

Enter the AppKey parameter

vivo

10003

The application
package name does
not match the
configured one

Check whether the application
package name, appId , and
 appKey match each other on the
vivo Push platform

vivo
return
codes﻿

10004

The appKey is
incorrect

Check whether the application
package name, appId , and
 appKey match each other on the
vivo Push platform

10005

The appId is
incorrect

Check whether the application
package name, appId , and
 appKey match each other on the
vivo Push platform

Troubleshooting other issues

For Huawei Push, the push service needs to be enabled on the Huawei Push platform

If you cannot get the Huawei token on your Huawei device, and the return code for vendor push channel registration is
0, then please go to the Huawei Push platform, check whether the push service is enabled for the application on the

Development -> Push Service page and whether Push Kit and App Messaging are enabled on the

Development -> Project Settings -> API Management page.

https://open.flyme.cn/
https://open-res.flyme.cn/fileserver/upload/file/201803/be1f71eac562497f92b42c750196a062.pdf
https://open.oppomobile.com/new/developmentDoc/info?id=11224
https://dev.vivo.com.cn/documentCenter/doc/368
https://developer.huawei.com/consumer/cn/

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 199
of 472

For Mi Push, the push service needs to be enabled on the Mi Push platform

If you cannot find the return code for Mi channel registration, please check whether the application's message push
service is enabled on Mi Open Platform -> Push Platform.

For OPPO Push, the push feature needs to be enabled first before messages can be pushed

On the push service page on OPPO Open Platform, you can view applications with the service enabled and those not
enabled. Among those not enabled, click the one for which you want to apply for push permission to enter the push
service page and apply for enablement accordingly.
For vivo Push, the push feature needs to be enabled first before messages can be pushed

Go to vivo Open Platform -> Push Platform -> Message Push -> **All Applications, click Application Name to
select the target application among all the created applications, and click Submit Application.
Note:
For some vendors, the push service will take effect around 5 minutes after it is enabled. If registration still fails after the
push service is enabled, please wait a while and try again.
The HMS version is too low

Search for the keyword "HMSSDK" in the logs, and if a log similar to the following one is found, that is, connect

versionCode is lower than connect minVersion , then it means that the system application "HMS" or

"HMS_Core" is too old. Please retry registering after upgrading the application.

https://dev.mi.com/console/appservice/push.html
https://open.oppomobile.com/
https://dev.vivo.com.cn/home

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 200
of 472

 I/HMSSDK_HuaweiApiClientImpl: ====== HMSSDK version: 20601301 ======

 I/HMSSDK_HuaweiApiClientImpl: Enter connect, Connection Status: 1

 E/HMSSDK_Util: In getHmsVersion, Failed to read meta data for the HMS VERSIO

 I/HMSSDK_HuaweiApiClientImpl: connect minVersion:20600000

 I/HMSSDK_HuaweiMobileServicesUtil: connect versionCode:20301306

 D/HMSAgent: connect end:-1001

Some vivo models do not support the push service

vivo Push is supported only on certain newer models and corresponding OS versions. For more information, please
see here.

https://dev.vivo.com.cn/documentCenter/doc/156#w1-08608733

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 201
of 472

Vendor Message Classification Feature Use
Instructions
Last updated：2024-01-16 17:39:39

Overview

Currently, to avoid end users from being frequently disturbed, vendors are gradually restricting the number and
frequency of notification messages pushed by application developers by type. The message type is mainly identified
by the channel ID (ChannelID). Tencent Push Notification Service classifies messages into two types based on

the types provided by major vendors:
General message (default): This type is suitable for messages about group announcements, operational events,
trending news, etc., which mainly contains user-oriented universal content.
Notification message/private message: This type is suitable for personal notification-related messages such as chat
messages, order status changes, and transaction reminders. The number of notification messages is unlimited.

The message type can be specified when you call the push API.

​Meizu currently does not support message classification or limit the number of messages.

Directions

1. If you need to use vendor notification messages, apply for or create a channel ID as instructed in the following
sections:
OPPO
Mi

vivo
Huawei
HONOR
Note:
From Android 8.0 (API level 26 or higher) on, to enable popping up notification bar notifications, you must first create

notification channels for the application and assign channels for the notifications to pop up. Otherwise, notifications will
not be displayed in the notification bar. By assigning a notification to a specific notification channel, the notification will
be displayed in the notification bar as the enabled behavior feature for that notification channel. Instead of managing
all of your application's notifications directly, you can implement personalized control over each of your application's
notification channels, such as controlling the on/off, visual, and auditory options for each channel.

You can configure multiple notification channels (up to seven as recommended) for an application. Each of the
application's notification channels is distinguished by a notification channel ID (channel_id) and is displayed in

the application's notification settings as the text defined by the notification channel name (channel_name).

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 202
of 472

Once a notification channel is created, the device user has full control, and the developer cannot modify the
notification behavior. For a duplicate code call for the same notification channel ID (channel_id), only the different

notification channel name (channel_name) and channel description parameter will take effect, and other visual,

auditory, and importance options will not be changed.
2. If you need to manage channels by vendor, customize channel IDs to classify messages based on your
application's business message types. You can make vendor-based configurations as below:

Push
Channel

Configuration

Tencent
Push
Notification
Service
channel

On the application, call the channel ID creating API in the SDK for Android to create a channel
ID.
Specify the corresponding channel ID (no limit) when calling the Tencent Push Notification
Service server API.

Huawei

Apply for the self-help message classification permission for an application in the Huawei
console. After the self-help message classification permission takes effect, the messages
pushed by the application will be classified by the `hw_category` field.
Specify the `hw_category` parameter when calling the Tencent Push Notification Service server
API.
Huawei's ChannelID is used as a channel policy to customize the message notification mode
and is not used to classify messages.

Mi

Create a channel ID in the Mi open platform console or through the corresponding Mi server
API.
Specify the corresponding channel ID when calling the Tencent Push Notification Service
server API.

OPPO

On the application, call the SDK for Android to create a channel ID.
Register the same channel ID in the OPPO console.
Specify the corresponding channel ID when calling the Tencent Push Notification Service
server API.

Meizu No instructions on channels are provided.

vivo

You can configure using vivo system messages or operation messages but cannot customize
the notification channel.
Specify the value of the `vivo_ch_id` parameter when calling the Tencent Push Notification
Service server API.

HONOR

You can configure using HONOR "service and communication" or "information and marketing"
messages but cannot customize the notification channel.
Specify the value of the `hw_importance` parameter when calling the Tencent Push Notification
Service server API.

https://intl.cloud.tencent.com/document/product/1024/33764
https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-classification-0000001149358835#section1653845862216
https://intl.cloud.tencent.com/document/product/1024/33764
https://intl.cloud.tencent.com/document/product/1024/33764
https://intl.cloud.tencent.com/document/product/1024/33764
https://intl.cloud.tencent.com/document/product/1024/33764
https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 203
of 472

3. If you need neither vendor notification messages nor a custom channel ID, Tencent Push Notification Service will
specify a default channel ID for all messages of your application and group them into the default type.

OPPO Notification Channel Application Guide

OPPO notification channel overview

The default channel on the OPPO PUSH platform is the public message channel. Now, the private message channel

is provided to push personalized messages to individual users, with no limit on the number of pushes. The table below
compares the public and private message channels.

Type Public Message Channel Private Message Channel

Push content

Universal content for users, for example,
trending news, new product promotions,
platform announcements, community
topics, and lucky draws

Content closely related to
individual users such as changes
of orders, package delivery
notifications, subscribed content
updates, interactive comments,
and loyalty program point updates

Single
user push
limit
(number
of
messages
per day)

News
(third-level
category)

5 Unlimited

Other
application
types

2 Unlimited

Maximum number of
pushes

All public message channels share a total
number of pushes. If the daily limit is
reached, they will stop pushing messages
on the day. The current maximum number
of daily pushes is twice the total number of
all registered users.

Unlimited

Configuration method Default

You need to register the channel
with the OPPO PUSH platform and
set the corresponding channel
attribute to "Private Message"

Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 204
of 472

Official reminder from OPPO: You must not use the private message channel to push universal messages (such as
trending news and new product promotions). The backend will monitor the push content. If you violate the operational
rules, OPush has the right to disable your private channel access, and you shall bear all consequences arising

therefrom, such as exceptional API calls and failure to deliver messages sent through the private message channel.

Applying for the OPPO private message channel

1. Log in to the OPPO PUSH platform and choose App Configuration > Create Channel to create a channel. The
channel ID and name are required and must be the same as those on the application client. Other configuration items
are optional.
Caution:

 Once the channel ID is set, it cannot be randomly changed or deleted.

2. Currently, the OPPO private message channel can take effect only after you apply for it through email. Please send
an application email to the OPPO PUSH platform according to the following requirements. For more information, see
OPPO PUSH Channel Upgrade Beta Invitation.

https://push.oppo.com/
https://open.oppomobile.com/new/developmentDoc/info?id=11227

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 205
of 472

Using the OPPO private message channel

1. Create a notification channel for the client in either of the following ways:

 (1) Use the corresponding Android API to create a notification channel. For more information, see Create and Manage
Notification Channels.

 (2) Use the Tencent Push Notification Service SDK (v1.1.5.4 or above) to create a notification channel. For more
information, see Creating Notification Channel.
2. Configure RESTful API push.
Set the oppo_ch_id parameter in the Android structure of the RESTful API request parameters to implement

delivery based on the notification channel. For more information, see Push API.

Note:
 Currently, notifications pushed through the OPPO private message channel can be delivered only through RESTful
APIs but not the console.
Sample push:

https://developer.android.google.cn/training/notify-user/channels
https://intl.cloud.tencent.com/document/product/1024/30715
https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 206
of 472

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a1c2052ce96f43019a0b7"],

 "message_type": "notify",

 "message": {

 "title": "Test title",

 "content": "Test content",

 "android": {

 "oppo_ch_id": "Private message channel ID"}

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 207
of 472

Mi Notification Channel Application Guide

Mi notification channel overview

The notification channels of Mi Push are divided into two categories: "private message" and "public message". For

more information, see Mi Push Message Categorization Rules
Public message channel: Suitable for pushing universal content for users, for example, trending news, new product
promotions, platform announcements, community topics, and lucky draws.
Private message channel: Suitable for personal notification-related content such as chat messages, order status
changes, package delivery notifications, transaction reminders, and IoT system notifications. The number of pushes

for notification messages is unlimited.

Mi Push uniformly manages the number of push messages and push rate (QPS). For more information, see Mi Push
Message Restrictions.
Restrictions on public and private messages are as follows:

Message
Type

Message Content Message Quantity Limit Application Method

Default
See Public Message Scenario
Description

1 message per
application per device
per day

No application needed

Public
message

Universal content for users, for
example, trending news, new
product promotions, platform
announcements, community topics,
and lucky draws

5-8 messages per
application per device
per day Apply on the Mi Push

platform. For more
information, see Channel
Application and Access
Methods.Private

message

Personal notification-related content
such as chat messages, order
status changes, package delivery
notifications, transaction reminders,
and IoT system notifications

Unlimited

Applying for a push volume increase for Mi Push

Log in to the Mi push operation platform and choose Application Management > Notification Category to apply

for the Mi notification message channel. For more information, see Mi Push Notification Message Channel.
Note:
In order to use Mi Push in a compliant manner, be sure to abide by Mi Push Operation Rules.

https://dev.mi.com/distribute/doc/details?pId=1655
https://dev.mi.com/distribute/doc/details?pId=1656#_2
https://dev.mi.com/distribute/doc/details?pId=1655#_3
https://dev.mi.com/distribute/doc/details?pId=1655#_4
https://dev.mi.com/console/doc/detail?pId=2086#_0_1
https://dev.mi.com/distribute/doc/details?pId=1657

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 208
of 472

Using the Mi notification message channel

Currently, Mi notification messages can be delivered only through RESTful APIs but not the console.
Set the xm_ch_id parameter in the Android structure of the RESTful API request parameters to implement

delivery based on the Mi notification channel. For more information, see the push API parameter description.

Sample push:

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a***2052ce96f43019a0b7"],

 "message_type": "notify",

https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 209
of 472

 "message": {

 "title": "Mi notification message",

 "content": "Test content",

 "android": {

 "xm_ch_id": "channel_id of the Mi notification message"

 }

 }

}

vivo System Message Channel Application Guide

vivo message classification overview

vivo classifies push messages into operation messages and system messages.

To improve users' message notification experience and create a good push ecosystem, vivo push service will
implement unified message management for different application categories from April 3, 2023. For more information,
see vivo push message restrictions.

Message
Type Application Category Push Quantity Limit

Message
Quantity
Limit

System
message /

Number of valid users with the notification bar
enabled x 3(You can apply for an unlimited limit via
email.)

No limit

Operation
message

News(With the Internet
News Information Service
License)

Number of valid users with the notification bar
enabled x 3 5

Others Number of valid users with the notification bar
enabled x 2

2

If the number of pushes exceeds the daily limit, error code 10070 (for operation messages) or 10073 (for system
messages) is returned.

Note:
1. Before June 1, 2020, no matter whether the message classification feature is enabled, the frequency control rule
remains the same: up to 5 public messages (full push, group push, tag push) per application per user per day,
and no limit on the number of messages per push. From June 1, 2020 on, the frequency control rule specifies that the
upper limit for operation messages per application per user is 5, and if any user experience-related complaint
arises, the number will be adjusted.

https://dev.vivo.com.cn/documentCenter/doc/695

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 210
of 472

2. Funtouch OS 10 or later does not provide a message box, and messages are displayed on the narrow bar when the
application is not active.
3. Both the system message quota and operation message quota will automatically change with the number of SDK

subscriptions. If special circumstances require an increase in the system message quota, please submit an
application as instructed in the next section.
4. If a vivo user receives more than 5 operational messages a day, the extra messages beyond the limit (5 messages)
are delivered through the Tencent Push Notification Service channel, instead of the vivo channel.
5. If you have applied to vivo to increase the operating message limit, please contact us so that we can configure it on

the backend; otherwise, the new limit will not take effect.

Applying for vivo system messages

The system message quota is three times the number of SDK subscriptions by default. To increase the system
message quota, send an application email based on the template below to push@vivo.com:

https://dev.vivo.com.cn/documentCenter/doc/359

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 211
of 472

Subject: Application for Increasing the Quota of Instant Messages/System Messages f

Body: …

Application name: …

Package name: …

Application overview: …

Instant Messages/System message quota required (unit: 10,000): ...

Specific push scenarios, such as personal user chat and merchant chat

Using vivo system messages

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 212
of 472

Currently, vivo notification messages can be delivered only through RESTful APIs but not the console.

Set the vivo_ch_id parameter in the Android structure of the RESTful API request parameters to 1 to implement

delivery of vivo system messages. For more information, see Push API.

Note:
The vivo push platform will conduct daily inspection of system messages according to the message classification
criteria. It checks whether developers send operation messages through the system message channel, and imposes
corresponding penalties (may disable the message push feature in worst cases) based on the degree and frequency
of violations.

Please refer to the message classification document to operate strictly in accordance with the platform message
classification. For the penalty rules, see Message Classification Feature Description > V. Operation Supervision and
Penalty > 3. Penalty Rules in this document.
Sample push:

https://intl.cloud.tencent.com/document/product/1024/33764
https://dev.vivo.com.cn/documentCenter/doc/359

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 213
of 472

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a***2052ce96f43019a0b7"],

 "message_type": "notify",

 "message": {

 "title": "vivo system notification",

 "content": "Test content",

 "android": {

 "vivo_ch_id": "1"

 }

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 214
of 472

}

Huawei Message Classification User Guide

Huawei message classification overview

Starting from EMUI 10.0, Huawei Push intelligently categorizes notification messages into two levels: "service and
communication" and "information and marketing". Versions earlier than EMUI 10.0 don't categorize notification

messages and have only one level, where all messages are displayed through the "default notification" channel, which
is equivalent to the service and notification category on EMUI 10.0. From January 5, 2023 on, the number of
information and marketing messages pushed per day will be capped according to the type of application, while there
will be no limit to the number of service and communication messages pushed per day.

Huawei's response code 256 indicates that the number of information and marketing messages sent of the current day

exceeds the limit, and you need to adjust the sending policy. For more information, see here.

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-restriction-description-0000001361648361?ha_source=hms5

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 215
of 472

The table below compares the display style of messages at different levels.

Message Level Displayed in the
Notification Center

Displayed in the
Status Bar

Notification for
Screen Lock

Ringtone Vibration

Service and
communication

Normal Supported Supported Supported Supported

Information and
marketing

Normal Not supported Not supported Not
supported

Not
supported

If you want service and notification messages to be sent silently, you can add the hw_importance field and

specify its value as 1 . For more information, see the parameter description of Push API.

Classification rules:

https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 216
of 472

Intelligent message classification

Intelligent classification algorithms will automatically categorize your messages according to classification criteria
based on multiple dimensional factors such as the content you send.

Self-help message classification

Starting from July 1, 2021, the Huawei Push service will begin to receive developers' applications for self-help
message classification. After their applications are approved, developers can classify messages by themselves
according to Huawei Push's classification specifications.

Applying for self-help message classification permission

The self-help classification permission for Huawei notification messages can take effect only after you apply for it. For

more information, see Message Classification Methods.
Caution:
If the application does not provide the self-help message classification feature, its push messages will be
automatically classified by intelligent classification.
If the application provides the self-help message classification feature, the classification information provided by
developers is trusted, and intelligent classification is not implemented for messages.

Using self-classified messages

Self-classified messages can be delivered only through APIs but not the console. After successfully obtaining the
permission for self-help message classification, you can use the feature as follows:
Configure the hw_category field in the Android request structure of the RESTful API to deliver self-classified

messages. For more information, see the parameter description in Push API.
Sample push:

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-classification-0000001149358835#section1653845862216
https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 217
of 472

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a***2052ce96f43019a0b7"],

 "message_type": "notify",

 "message": {

 "title": "Account logged out:",

 "content": "Your account has been logged out due to login from an unusual l

 "android": {

 "hw_category":"VOIP"

 }

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 218
of 472

}

Creating a Huawei notification channel

Huawei Push supports customizing notification channels for applications. To create a notification channel on the client,
use either of the following methods:

1. Use the Android API to create a notification channel. For more information, see Create and Manage Notification
Channels.
2. Use the Tencent Push Notification Service SDK (version 1.1.5.4 or later). For more information, see Creating a
notification channel in the API Documentation.

Using a Huawei notification channel

Currently, notifications pushed through Huawei's custom channel can be delivered only through a RESTful API but not

the console. After a notification channel is created, you can:
Configure the hw_ch_id field in the Android request structure of the RESTful API to push messages through the

Huawei notification channel. For more information, see the parameter description in Push API.
Caution:
If you select China as the data processing location when you apply for the Huawei push service for your application in

the Huawei push console, the custom channel feature is no longer applicable to your application. Your push messages
will be classified as service and communication messages or information and marketing messages based on the
message levels determined by the smart classification system or the self-help message classification permission. For
more information, see Notification Channel Customization.
The custom channel feature requires the self-help message classification permission for your application. Please
apply for it as instructed above.

Sample push:

https://developer.android.google.cn/training/notify-user/channels
https://intl.cloud.tencent.com/document/product/1024/30715
https://intl.cloud.tencent.com/document/product/1024/33764
https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/android-custom-chan-0000001050040122

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 219
of 472

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a***2052ce96f43019a0b7"],

 "message_type": "notify",

 "message": {

 "title": "Huawei notification message",

 "content": "Test content",

 "android": {

 "hw_ch_id": "channel_id of the Huawei notification message"

 }

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 220
of 472

}

HONOR Message Classification User Guide

HONOR message classification overview

According to the application type, message content, and message sending scenario, HONOR Push classifies push
messages into "information and marketing" messages and "service and communication" messages. The number of

"information and marketing" messages pushed per day will be capped according to the type of application, while there
will be no limit to the number of "service and communication" messages pushed per day. For more information, see
here.

You can manage the default display mode and message style for different message levels as follows:

Message Level Notification Bar Drop-
down List Display

Icon
Display

Notification for
Screen Lock

Ringtone Vibration

Service and
communication

Normal Supported Supported Supported Supported

Information and
marketing

Normal Not
supported

Not supported Not
supported

Not
supported

If the importance field is 1 , the message is an "information and marketing" message, its default display mode

is silent notification, and it is displayed only in the notification bar drop-down list.
If the importance field is 2 , the message is a "service and communication" message, and its default display

modes are notification for screen lock and notification bar drop-down list display.
Classification rules:
Intelligent message classification

Intelligent classification algorithms will automatically categorize your messages according to classification criteria
based on multiple dimensions such as the application type and message content.
Self-help message classification

Developers can classify messages by themselves according to message classification specifications.

Currently, the self-help message classification rule is adopted for all messages by default. HONOR Push will fully trust
the classification results provided by developers and display the corresponding information. With the continuous

complement and evolution of HONOR Push capabilities, the classification method will be gradually updated and
upgraded. For more information, see here.
Note:
Please comply with HONOR's push message classification rules. Violations will be punished by HONOR. For
violations and corresponding penalties, see here.

https://developer.hihonor.com/cn/kitdoc?category=%E5%9F%BA%E7%A1%80%E6%9C%8D%E5%8A%A1&kitId=11002&navigation=guides&docId=notification-push-standards.md&token=
https://developer.hihonor.com/cn/kitdoc?category=%E5%9F%BA%E7%A1%80%E6%9C%8D%E5%8A%A1&kitId=11002&navigation=guides&docId=notification-class.md&token=
https://developer.hihonor.com/cn/kitdoc?category=%E5%9F%BA%E7%A1%80%E6%9C%8D%E5%8A%A1&kitId=11002&navigation=guides&docId=notification-penalty-standards.md&token=

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 221
of 472

Using self-classified messages

Self-classified messages can be delivered only through APIs but not the console. You can use the feature as follows:
Configure the hw_importance field in the Android request structure of the RESTful API to deliver self-

classified messages. For more information, see the parameter description in Push API.

Sample push:

{

 "audience_type": "token",

 "token_list": ["005c28bf60e29f9a***2052ce96f43019a0b7"],

 "message_type": "notify",

https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 222
of 472

 "message": {

 "title": "HONOR：",

 "content": "Self-classified message",

 "android": {

 "hw_importance":2

 }

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 223
of 472

Acquisition of Vendor Channel Arrival Receipt
Last updated：2024-01-16 17:39:39

To help you analyze the full-linkage message push effect, Tencent Push Notification Service supports the display of
message arrival receipts for vendor channels. The support for message arrival receipts varies with the vendor channel
inside Chinese mainland. The message arrival receipts of certain channels cannot be directly obtained without

corresponding configuration.
After successfully configuring the message arrival receipt display feature, you can view the push conversion data in
push details in the Tencent Push Notification Service console or obtain the push conversion data through a Tencent
Push Notification Service RESTful API.

Overview

Vendor Channel Support for Arrival Receipt Require Configuration

Huawei channel Yes Yes

Meizu channel Yes Yes

Mi channel Yes No

OPPO channel Yes No

vivo channel Yes No

FCM channel Yes No

Note:

 The arrival receipt information of vendor channels is for reference only.

Receipt Configuration Guide for the Huawei Channel

After integrating the Huawei channel SDK, you need to enable and configure the message receipt feature on the
Huawei Developer Platform so that the arrival receipts of the Huawei channel can be obtained. For configuration
details, see Message Receipt. The configuration process is as follows.

Enabling the message receipt feature

1. Log in to AppGallery Connect and select My apps.

https://developer.huawei.com/consumer/cn/doc/development/HMS-Guides/push-receipt#h1-1575515478691
https://developer.huawei.com/consumer/cn/service/josp/agc/index.html

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 224
of 472

2. Select the parent product name of the application for which the service is to be enabled. The application information
page is displayed.

3. On the Application Information page, choose All services > Push Kit.
4. On the Push Kit page, find Application Receipt Status and click Activate.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 225
of 472

Setting receipt parameters

1. Set the message receipt address. Please view the service access point of your application in the Tencent Push
Notification Service console and select the corresponding receipt address for configuration.

Service Access Point Receipt Address

Guangzhou https://stat.tpns.tencent.com/log/statistics/hw/AccessID

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 226
of 472

Hong Kong (China) https://stat.tpns.hk.tencent.com/log/statistics/hw/AccessID

Singapore https://stat.tpns.sgp.tencent.com/log/statistics/hw/AccessID

Shanghai https://stat.tpns.sh.tencent.com/log/statistics/hw/AccessID

Note:
Replace AccessID in the addresses with the access ID of your application. For example, if your application uses the
Guangzhou service access point, set the receipt address to
 https://stat.tpns.tencent.com/log/statistics/hw/1500016691 .

2. Download the HTTPS certificate corresponding to the service access point of your application. Use a text editor to

open the certificate file and copy the certificate to the certificate text box.

Service Access Point Download Address

Guangzhou Download

Hong Kong (China) Download

Singapore Download

Shanghai Download

3. Configure the callback username and key (optional) for authentication.
4. Click Test Receipt to test the receipt address.
Note:
Currently, if you click Test Receipt, the error message "Failed to test the callback address" will be displayed. Ignore it
and click Submit.

5. Click Submit to activate the service.

https://tpns-1259470370.cos.ap-guangzhou.myqcloud.com/tpnshttpscert/tpns-https-cert/tpns-gz1.crt
https://tpns-1259470370.cos.ap-guangzhou.myqcloud.com/tpnshttpscert/tpns-https-cert/tpns-hk.crt
https://tpns-1259470370.cos.ap-guangzhou.myqcloud.com/tpnshttpscert/tpns-https-cert/tpns-sgp.crt
https://tpns-1259470370.cos.ap-guangzhou.myqcloud.com/tpnshttpscert/tpns-https-cert/tpns-sh.crt

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 227
of 472

Receipt Configuration Guide for the Meizu Channel

After integrating the Meizu channel SDK, you need to create a receipt on the Flyme push platform and activate it in the
Tencent Push Notification Service console so that the arrival receipt of the Meizu channel can be obtained. The

configuration process is as follows.
Note:
You need to complete both the following steps; otherwise, delivery through the Meizu channel may fail.

Configuring a receipt

1. Log in to the Flyme Push Platform, select the application for which a receipt is to be configured, and click Open
app.

2. On the push notification page, click Configuration Management > Receipt Management.
3. Enter the receipt address in Create Receipt. Please view the service access point of your application in the
Tencent Push Notification Service console and select the corresponding receipt address for configuration.

https://open.flyme.cn/
https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 228
of 472

Service Access Point Receipt Address

Guangzhou
https://api.tpns.tencent.com/log/statistics/mz

https://stat.tpns.tencent.com/log/statistics/mz

Hong Kong (China) https://stat.tpns.hk.tencent.com/log/statistics/mz

Singapore https://stat.tpns.sgp.tencent.com/log/statistics/mz

Shanghai https://stat.tpns.sh.tencent.com/log/statistics/mz

Note:
For the Guangzhou service access point, both receipt addresses must be entered.

4. After entering the receipt address, click Add on the right. If the newly created receipt is correctly displayed in
Receipt List, the configuration is successful.

Activating the receipt

1. Go to the Product Management page, select the application for which a receipt is to be activated, and click
Configuration Management.

2. On the configuration management page, click the edit icon in Vendor Channel > Meizu Official Push Channel.

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 229
of 472

3. On the Meizu official push channel editing page, click Activate Now.

Receipt Configuration Guide for the HONOR Channel

After integrating the HONOR channel SDK, if you want to activate the HONOR channel arrival receipt, you need to
contact the HONOR Push team and provide the following callback address for configuration. For more information,
please see HONOR Push Receipt Module.

Setting receipt parameters

Please view the service access point of your application in the Tencent Push Notification Service console and select
the corresponding receipt address for configuration.

Service Access Point Receipt Address

Guangzhou https://stat.tpns.tencent.com/log/statistics/honor/AccessID

https://developer.hihonor.com/cn/doc/guides/100372
https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 230
of 472

Hong Kong (China) https://stat.tpns.hk.tencent.com/log/statistics/honor/AccessID

Singapore https://stat.tpns.sgp.tencent.com/log/statistics/honor/AccessID

Shanghai https://stat.tpns.sh.tencent.com/log/statistics/honor/AccessID

Note:
Replace AccessID in the addresses with the access ID of your application. For example, if your application uses the
Guangzhou service access point, set the receipt address to
 https://stat.tpns.tencent.com/log/statistics/honor/1500016691 .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 231
of 472

Vendor Channel Limit Description
Last updated：2024-01-16 17:39:39

Vivo Channel Limits

Quota description

Message push quota description

Official messages include system messages and operation messages. The quota depends on the number of SDK
subscriptions. A subscription number smaller than 10,000 will be counted as 10,000. If the number exceeds 10,000,
the actual number of subscriptions will be counted. If you need to upgrade the system message volume, please see

How to Apply for Vivo System Message.
System message: includes emails, user-specified reminders, logistics messages, order messages, to-do/to-read,
financial messages, feature reminders, and instant messages.
Operation message: includes but is not limited to operation-facilitating messages for advertisements,
recommendations, promotions, as well as events, user-triggered messages, and unsubscribed video/audio messages,

product promotions, advertisements, discounts, red pockets, and coupons.
The number of testing system messages and testing operation messages that can be sent is limited to 10,000 per day
and 100 per day, respectively. There can be up to 20 testing devices.
Currently, the ratio of single push and group push is not limited. The number of users to whom the single/group push
messages can be pushed should not exceed the total daily quota.

Message receive quota description

A user can receive up to 5 operation messages a day from an application, while the number of system messages is

not limited. This limit might be adjusted according to users’ feedback and experience. The specific quota is subject to
the official announcement of Vivo.
The number of messages a user can receive from an application is counted based on whether the number of
messages arrived exceeds 5, which will be checked during message sending. If exceeded, Vivo will control and
decide whether messages can still be sent to the device.

Quota query guide

You can view the number of SDK subscriptions and the total number of deliverable messages in vivo Push Platform >
Push Statistics > Push Data. For more information, see vivo Push Platform User Guide.

OPPO Channel Limits

https://intl.cloud.tencent.com/document/product/1024/36250
https://dev.vivo.com.cn/openAbility/pushNews
https://dev.vivo.com.cn/documentCenter/doc/151#w2-36381313

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 232
of 472

Quota description

For a public message channel (suitable for pushing universal messages to multiple users by default), if the total
number of users is smaller than 50,000, the number of allowed pushes will be 100,000; otherwise, the number of
allowed pushes will be twice the total number of users.

For a private message channel (suitable for pushing private messages to individual users), the number of pushes is
not limited. For more information, see OPPO notification channel overview.
For the OPPO channel (including public and private message channels), the maximum number of messages that can
be received by a single user is 2000 per day.

For the maximum number of messages delivered per device, see here.

Type Public Message Channel
Private
Message
Channel

Single user
push limit
(number of
messages per
day)

News
(third-level
category)

5 Unlimited

Other
application
types

2 Unlimited

Maximum number of pushes

All public message channels share a total number of pushes. If
the daily limit is reached, they will stop pushing messages on the
day. The current maximum number of daily pushes is twice the
total number of all registered users.

Unlimited

Quota query guide

Query in the console: you can query the cumulative number of users on the OPPO PUSH Operation Platform, which is
refreshed once every day.
Query through API: see OPPO PUSH Platform Server-side API.

Mi Channel Limits

Quota description

The total number of public messages (default universal messages to multiple users) that can be pushed per day is the
number of MIUI devices with applications installed and the notification bar enabled multiplied by a factor. The
multiplication factor is 2 by default and is 3 if the applications have the Internet News Information Service License, as

shown in Table 1. If the number of devices with the notification bar enabled is less than 10,000, it will be calculated as
10,000.

https://intl.cloud.tencent.com/document/product/1024/36250
https://open.oppomobile.com/new/developmentDoc/info?id=11210
https://push.oppo.com/
https://developers.oppomobile.com/wiki/doc/index#id=71

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 233
of 472

The number of private messages (private messages to single users) that can be pushed is not limited. For more
information, see Mi notification channel overview.
The multiplication factor-based quota limit on public messages is effective from February 1, 2023. For more

information, see Mi Push Message Restrictions.

With the Internet
News Information
Service License

Multiplication Factor to Calculate the Maximum
Number of Notifications Pushed Per Device Per
Day Per Application

Maximum Number of
Notifications Received Per
Device Per Day Per Application

Yes 3 8

No 2 5

Note:
If the number of pushes through the vendor channel exceeds the daily limit, excessive push tasks will be delivered
through the Tencent Push Notification Service channel.

Quota query guide

Query in the console: you can query the number of daily connected MIUI devices in Mi Open Platform > Push

Operation Platform > Push Statistics > User Data > Detailed Data.
Query through API: for more information on how to query the total number of deliverable messages and number of
arrived messages per day, see Mi Push Message Limit Description.

Meizu Channel Limits

Quota description

There is a limit on the push rate for one application, which is 500 pushes per second per application by default.
The daily number of pushes of one application is limited, which is 1,000 pushes per day by default.
The number of subscribed tags of one application cannot exceed 100.

If the number of pushed messages of one application to a device reaches 4, the messages will be collapsed. If they
are not clicked after a prolonged time, they may be moved to the message box in the upper-right corner.
If a device is inactive for a month, its subscription will be canceled.
The number of API requests that can be initiated at one IP address per hour is limited, and the specific limit is not
disclosed by Meizu.

The total number of API requests that can be initiated by one application per day is limited, and the specific limit is not
disclosed by Meizu.
The total number of pushed messages by one application per day is limited, and the specific limit is not disclosed by
Meizu.

https://intl.cloud.tencent.com/document/product/1024/36250
https://dev.mi.com/distribute/doc/details?pId=1656
https://dev.mi.com/console/appservice/push.html
https://dev.mi.com/console/doc/detail?pId=2086#_0_1

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 234
of 472

Huawei Channel Limits

Quota description

Limit on the number of messages sent: From January 5, 2023 on, the number of "information and marketing"
messages pushed per day will be capped according to the type of application, while there will be no limit to the
number of "service and communication" messages pushed per day. For more information, see here.

Limit on the push rate: Huawei Push Kit calculates and assigns the push rate mainly based on the application's
monthly active users (MAUs) and category of the application in Huawei AppGallery.

HONOR Channel Limits

Quota description

Limit on the number of messages sent: According to message classification standards, HONOR Push classifies push
messages into "information and marketing" messages and "service and communication" messages. The number of
"information and marketing" messages pushed per day will be capped according to the type of application, while there

will be no limit to the number of "service and communication" messages pushed per day. For more information, see
here.

https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides/message-restriction-description-0000001361648361?ha_source=hms5
https://developer.hihonor.com/cn/kitdoc?category=%E5%9F%BA%E7%A1%80%E6%9C%8D%E5%8A%A1&kitId=11002&navigation=guides&docId=notification-push-standards.md&token=

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 235
of 472

Vendor Channel QPS Limit Description
Last updated：2024-01-16 17:39:39

All mobile phone vendors have a certain limit on the queries per second (QPS) of their push channels. If the current
QPS cannot meet your operational needs, you can apply to the vendor for QPS increase as instructed below. (Only
certain vendors allow such application.)

Huawei Push

QPS limit

QPS = app's MAU in the Huawei channel * app category weight * 0.00072

Specification items

MAU: the value of app's pushes through the Huawei channel on the last calendar day in a month is taken as the MAU
of that month.

Categorization rule: the app category in Huawei AppGallery is used.

Group Name App Category Weight

IM Communication 5

Finance Finance 5

News News and information 4

Content Books and references; media and entertainment; photography 3

Ecommerce Shopping 3

Basic life
necessities

Lifestyle and convenience; travel and navigation; food and drink; travel and
accommodation

3

Business Business 3

Gaming Online games; puzzles games; simulation games; board games 2

Tools Tools 1

Sports and health Medicine and health; sports and health 1

Others Kids; education; personalized themes; cars 1

Default Default 1

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 236
of 472

Note:
If your app has not been released on Huawei AppGallery, its category will be "Default".

If your app's QPS calculated by the formula is smaller than 6,000, the QPS of 6,000 will be used by default.

When the traffic across the entire network is high, there may be a system-level traffic throttling.

In addition, no matter what app category it is, the number of pushes for a single device cannot exceed 100,000 per
day; otherwise, push permission will be restricted, and you need to rectify your app and submit your rectification plan
to apply for push permission again.

Applying for QPS increase

If you have any questions and feedback about the product, please send an email in the following format to

hwpush@huawei.com:

Title: [QPS] consultancy and feedback + app name

Application Form for Increasing Huawei Message
Push QPS for App

App name: -

Company name: -

App package name: -

App category on Huawei AppGallery： -

Question type: Application for increasing the QPS, consultancy on the
specific QPS, etc.

Background of the demand: -

Specific demand: -

Contact information (email) -

Mi Push

QPS limit

The assignment of push rate (QPS) by Mi Push is mainly based on the number of daily online MIUI devices of the
application.

QPS indicates the number of requests that can be called in one second. Up to 1,000 target devices can be included in
one request. For example, if the QPS is 3,000, a message can be pushed to up to 3 million devices in one second.

Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 237
of 472

You can query the number of daily online MIUI devices in Push Operation Platform > Push Statistics > User Data >
Detailed Data.
Different numbers of daily online MIUI devices are assigned with different QPS:

Daily Online MIUI Devices QPS

≥10 million 3000

≥5 million and <10 million 2500

≥1 million and <5 million 2000

≥100,000 and <1 million 1000

<100,000 500

Applying for QPS increase

Currently, no application is allowed.

OPPO Push

QPS limit

The QPS assignment by OPPO Push is mainly based on the application's cumulative number of users, application
category weight , and platform push factor. You can query the application's cumulative number of users in OPPO
PUSH Operation Platform > I would like to push messages > Application List.

Calculation formula

Application's QPS = Reference push QPS value * Application category weight * Platform push factor

Cumulative Number of Users QPS Application Category Weight Platform Push Factor (1 by Default)

≥100 million 30000 1 1

≥50 million and <100 million 20000 1 1

≥10 million and <50 million 10000 1 1

<10 million 5000 1 1

Applying for QPS increase

Currently, no application is allowed.

https://admin.xmpush.xiaomi.com/zh_CN/app/unauth

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 238
of 472

vivo Push

QPS limit

QPS: it is automatically adjusted based on the SDK subscription quantity, and the default minimum value is 500
pushes/sec.

Applying for QPS increase

Currently, no application is allowed.

Meizu Push

QPS limit

QPS: it is 500 pushes/sec for an app by default. If you need a higher value, please contact Meizu for adjustment.

Applying for QPS increase

You can contact Meizu for adjustment.

Push service email: push_support@meizu.com.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 239
of 472

Android SDK FAQs
Last updated：2024-01-16 17:39:39

Pushes cannot be received

Use the token obtained to push at TPNS' official website. Please troubleshoot according to conditions described below
if pushes cannot be received. Make sure you have the latest SDK version, because issues in the old version may
have been fixed in the latest version. Try refreshing the webpage if error occurs in website push.

Registration succeeded but pushes cannot be received

Please check whether the current app package name is the same as that entered when TPNS is registered. If not, it is
recommended to enable multi-package name push when pushing.
Check whether the network is exceptional on the phone and switch to 4G network for testing.
TPNS push is divided into "notification bar message" and "in-app message" (passthrough message). A notification bar
message can be displayed in the notification bar, while an in-app message cannot.

Confirm that the phone is in normal mode. Some phones may have restrictions on network and activity of the backend
TPNS process when in Low Power or Do Not Disturb mode.
Check whether the notification bar permission is granted on the phone. On some OPPO and Vivo phones, the
notification bar permission has to be granted manually.

Registration failed and pushes cannot be received

A newly created app will have a data synchronization process of about one minute. During this period, the registration
may return error code 20. You can simply retry later.

[Parameters are incorrectly entered]
Check whether the access id and access key are correctly configured. Common errors are the secret key is misused
or the access key contains spaces.
[Registration returned an error]
If the console returns an error code such as "10004", "10002", or "20", please see Android SDK Error Codes.

[Registration had no callback]
Check whether wup package is added.
Check whether the current network condition is good. It is recommended to use 4G network for testing. Wi-Fi may
cause insufficient network bandwidth due to excessive users.
Nubia phones

Models that were released in the second half of 2015 and 2016 cannot be registered, including "Nubia Z11 series",
"Nubia Z11S series", and "Nubia Z9S series". Models that can be registered are all previous ones, including "Z7
series" and "My Prague series" (this issue is found in TPNS v2.47 and 3.X).

http://ixg.qq.com/
https://intl.cloud.tencent.com/document/product/1024/30722

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 240
of 472

After the app is closed, pushes cannot be received

At present, third-party push services cannot guarantee that the pushes can be received after the app is closed. This is
due to the limitation of the mobile phone's custom ROM on the TPNS service. All activities of TPNS are on the basis
that the TPNS service can connect to the internet and run properly. After the service is terminated, whether it can be

restarted depends on the system settings, security programs, and user operations.
QQ and WeChat are in the system-level app allowlist, and the relevant service will not exit after the app is closed, so
the user can still receive messages after closing the app, and in fact, the relevant service survives in the backend.
On Android, after the app is closed and the TPNS service is disconnected from the TPNS server, the message
delivered to the device will become an offline message, which can be retained for up to 72 hours. If there are multiple

offline messages, up to two of them can be retained. If messages pushed after the app is closed cannot be received
after the app is opened again, please check whether the unregistration API is called:
XGPushManager.unregisterPush(this).

Account pushes cannot be received

Account, also known as alias, refers to the user account of an app with account login function. This is not only for QQ
or WeChat, and all accounts of the user are supported. For example, the account of Mobile QQ is QQ account
number, the account of Gmail is the email address, and the account of China Mobile is the mobile number.

For users to whom pushes are to be made based on the account, you need to bind the account to the token first;
otherwise, pushes will fail. On Android, account binding is performed upon registration, namely through the
registerPush(context,account) API. On iOS, it is configured through setAccount.
When selecting account push, if the system prompts "Token not found, check registration", it means that the account
is not associated with the token. There are two possible reasons for this:

(1) The account or alias is unregistered. It is not necessarily due to app call, in some cases, the unregistration may be
triggered automatically.
(2) The device is registered with another account or alias, which will automatically unbind the original one. (One
device can only correspond to one alias. If there is no device under the current alias, there will certainly be a "not
found" error.)

After the account is bound, you can deliver a notification by specifying the alias (account). Normally, all devices that
have recently logged in to this account can receive the notification. When the user account is logged out, call
registerPush(context,"*") to unbind the current account.
Account (alias) cannot contain only one single character. One account can be bound to up to 100 devices. Only the
last bound device can receive pushes.

Tag pushes cannot be received

Please check whether the tag is successfully bound. An app can have up to 10,000 tags, each token can have up to

100 tags in one app, and no spaces are allowed in the tag.
Use the server push SDK to query the tag and token binding

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 241
of 472

/**

 * Query the token tag

 */

public function QueryTokenTags($deviceToken)

 {

 $ret = array('ret_code' => -1);

 if (!is_string($deviceToken)) {

 $ret['err_msg'] = 'deviceToken is not valid';

 return $ret;

 }

 $params = array();

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 242
of 472

 $params['access_id'] = $this->accessId;

 $params['device_token'] = $deviceToken;

 $params['timestamp'] = time();

 return $this->callRestful(self::RESTAPI_QUERYTOKENTAGS, $params);

 }

Issues with push data

[Push is paused]
Full push limitations (V2, V3):
1.1 You can create up to 30 pushes per hour for full push, and excessive ones will fail.
1.2 Full push of the same content can be performed only once per hour, and excessive ones will fail.

Tag push limitations (V3):
1.1 The same app can create up to 30 tag pushes per hour, and excessive ones will fail.
1.2 Push of the same content with the same tag can be performed only once per hour, and excessive ones will fail.
[Effect statistics]
Next day: The push data can be viewed the next day after pushed
Real-time: The push data can be viewed immediately after pushed. Currently, up to 14 times of real-time statistics

collection are supported per week.
[Actually delivered pushes]
During the offline retention period of the message, there will be successful connections to the TPNS server and
normally delivered pushes. (For example, if the message is retained offline for 3 days, the actually delivered data will
stabilize on the fourth day, and the data will increase as more devices are turned on and connected to the TPNS

server.)
[Historical details]
Historical details only show full pushes, tag pushes, and number package pushes at the official website. (Currently,
push details cannot be displayed for batch accounts or batch devices.)
[Data overview]

It shows the data of the day. The data of a specific day is the total amount of pushes by various push actions on that
day. (There are four types of pushes: unicast, broadcast (i.e., batch push and full push), notification bar message, and
in-app message.)

Message tap event and page redirection method

Since tapping a message generates a tap event by default in the current SDK, the default tap event is to open the
main interface. Therefore, if a redirection action is set in the onNotifactionClickedResult method of the device

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 243
of 472

message tap callback, the custom redirection will conflict with the default tap event. The result is that after tapping, the
user will be redirected to the specified interface and then returned to the main interface. As a result, you cannot set
redirection in onNotifactionClickedResult.

Below lists the solutions (the first one is recommended):
[1] Use Intent to redirect to the specified page (this method is for Android 3.2.3 and higher)
You need to configure the page to redirect to on the client app's manifest, for example, if you want to redirect to
AboutActivity, specify the following page:

<activity

android:name="com.qq.xg.AboutActivity"

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 244
of 472

android:theme="@android:style/Theme.NoTitleBar.Fullscreen" >

<intent-filter >

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT"/>

<data android:scheme="xgscheme"

android:host="com.xg.push"

android:path="/notify_detail" />

</intent-filter>

</activity>

If you use the TPNS console to set the intent for redirection, enter in the following way:

If you use the server SDK to set the intent for redirection, you can set the intent to the following (with the Java SDK as
an example):

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 245
of 472

action.setIntent("xgscheme://com.xg.push/notify_detail");

If you want to bring parameters such as param1 and param2, you can set as below:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 246
of 472

action.setIntent("xgscheme://com.xg.push/notify_detail?param1=aa¶m2=bb");

Get the parameters on the device:

1. In the onCreate method of the page you specify for redirection to:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 247
of 472

Uri uri = getIntent().getData();

 if (uri != null) {

String url = uri.toString();

String p1= uri.getQueryParameter("param1");

String p2= uri.getQueryParameter("param2");

 }

2. If the passed parameters contain special characters such as # and &,

they can be parsed by using the following method:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 248
of 472

Uri uri = getIntent().getData();

 if (uri != null) {

 String url = uri.toString();

 UrlQuerySanitizer sanitizer = new UrlQuerySanitizer();

 sanitizer.setUnregisteredParameterValueSanitizer(UrlQuerySanitizer.getAllButNulLeg

sanitizer.parseUrl(url);

String value1 = sanitizer.getValue("key1");

String value2 = sanitizer.getValue("key2");

Log.i("XG" , "value1 = " + value1 + " value2 = " + value2);

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 249
of 472

[2] Set the page to redirect to upon message tap when delivering the message
(a) You can set the deeplink (package name + class name) directly in the web-based advanced functions;
(b) Set the SetActivity method (package name + class name) of the Action field in the Message class in the backend,

and get the relevant content of the message through XGPushClickedResult: title, content, and additional parameters.
The method of setting the page to redirect to in the backend is as follows (with the Java SDK as an example):

......

XingeApp android = new XingeApp(accessID,secretkey);

Message message_android =new Message();

message_android.setExpireTime(86400);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 250
of 472

message_android.setTitle("TPNS");

message_android.setType(1);

message_android.setContent("android test2");

ClickAction action =new ClickAction();

action.setActivity("com.qq.xgdemo.activity.SettingActivity");

message_android.setAction(action);

JSONObject ret1 = android.pushSingleDevice("token",message_android);

......

The method of getting the Message parameter on the device is as follows:

// this must be the context of the page to redirect to upon tap.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 251
of 472

XGPushClickedResult clickedResult = XGPushManager.onActivityStarted(this);

// Get the parameters near the message

String ster = clickedResult.getCustomContent();

// Get the message title

String set = clickedResult.getTitle();

// Get the message content

String s = clickedResult.getContent();

[3] Send in-app message to the device; the user-defined notification bar uses local notification pop-up to

set the page to redirect to

FAQs for TPNS Android SDK integration with vendor-specific
channels

Functions supported by vendor-specific channels

Mi channel supports arrival callback and passthrough, but not tap callback.
Huawei channel supports tap callback (requiring custom parameters) and passthrough (ignoring custom parameters),
but not arrival callback.
Meizu channel supports arrival callback and tap callback, but not passthrough.

Note: If you need to get parameters through tap callback or redirect to a custom page, you can use the
Intent to do so. Click here to view the tutorials.

The problem of otherpushToken = null that may be encountered during debugging

For 4.X otherpush version, check whether the vendor-specific channel initialization code is enabled, and add the
following to your app's attachBaseContext function:

https://intl.cloud.tencent.com/document/product/1024/30720

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 252
of 472

StubAppUtils.attachBaseContext(context);

For 4.X otherpush version, after the cloud controller successfully downloads the vendor's dex package for the

corresponding device, you need to kill the app process and restart the app to complete the registration. The
downloaded log is as follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 253
of 472

10-25 15:16:31.067 16551-16551/? D/XINGE: [DownloadService] onCreate()

10-25 15:16:31.073 16551-16757/? D/XINGE: [DownloadService] action:onHandleIntent

10-25 15:16:31.083 16551-16757/? V/XINGE: [CloudCtrDownload] Create downloadControl

10-25 15:16:31.089 16551-16757/? I/XINGE: [CloudCtrDownload] action:download - url:

10-25 15:16:31.097 16551-16757/? V/XINGE: [CloudCtrDownload] Download file: Xg-Xm-p

10-25 15:16:31.641 16551-16757/? D/XINGE: [DownloadService] download file Succeed

10-25 15:16:31.650 16551-16757/? D/XINGE: [CloudCtrDownload] Download succeed.

10-25 15:16:31.653 16551-16551/? D/XINGE: [CloudControlDownloadReceiver] onReceive

10-25 15:16:31.673 16551-16738/? I/test: Download file SuccessXg-Xm-plug-1.0.2.pack

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 254
of 472

If the dex configuration package cannot be downloaded at all, you can use the non-dynamic loading method to
integrate it. In this case, you need to use the TPNS v4.X jar without the vendor-specific channels and then integrate
the jars of each vendor-specific channel. For more information about how to integrate, see the relevant document.

[Troubleshooting for Mi channel]

Check whether the TPNS SDK is v3.2.0 or higher.
Check the manifest file configuration according to the development documentation, especially the places where the
package name needs to be modified.

<permission android:name="com.example.mipushtest.permission.MIPUSH_RECEIVE" android

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 255
of 472

<!-- Here, change com.example.mipushtest to the app package name -->

<uses-permission android:name="com.example.mipushtest.permission.MIPUSH_RECEIVE" />

<!-- Here, change com.example.mipushtest to the app package name -->

Check whether you have set the APPID and APPKEY of Mi before the registration and whether the third-party push
has been started.

// Enable the third-party push

XGPushConfig.enableOtherPush(this,true);

// Set the Appid and Appkey of Mi

XGPushConfig.setMiPushAppId(this,MIPUSH_APPID);

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 256
of 472

XGPushConfig.setMiPushAppKey(this,MIPUSH_APPKEY);

Check whether the app package name is the same as that registered with Mi open push platform and TPNS console.
Listen to the registration result of Mi by implementing the custom broadcast that inherits PushMessageReceiver and

check the registration return code.
Start logcat, observe the log with the tag of PushService to see what error message is present.

[Troubleshooting for Huawei channel]

Check whether the TPNS SDK is v3.2.0 or higher and whether the version in Settings -> Application Management ->
Huawei Mobile Service on the Huawei phone is higher than 2.5.3.
Check the manifest file configuration according to the Huawei channel access guide in the development

documentation.
Check whether the third-party push has been started before the TPNS registration and whether the Huawei APPID is
configured correctly.
Check whether the app package name is the same as that registered with Huawei Push's official website and TPNS
console.

Call XGPushConfig.setHuaweiDebug(true) before registering the code, manually confirm that the storage permission
is granted to the app, check the reason of error of Huawei registration failure outputted in the huawei.txt file in the SD
card directory, and then find the cause corresponding to the error code in Huawei development documentation.
In cmd, run adb shell setprop log.tag.hwpush VERBOSE and

adb shell logcat -v time > D:/log.txt to start to capture the log, test, and then close the cmd window. Send the log to
technical support.

[Troubleshooting for Meizu channel]

Similar to the troubleshooting method for Mi channel. For more information, see troubleshooting for Mi channel.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 257
of 472

Compatibility with Android P
Last updated：2024-01-16 17:39:39

TLS is enabled by default

Add the xg_network_security_config.xml file in the xml directory under the res directory with the following content:

<?xml version="1.0" encoding="utf-8"?>

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 258
of 472

<network-security-config>

 <domain-config cleartextTrafficPermitted="true">

 <domain includeSubdomains="true">182.254.116.117</domain>

 <domain includeSubdomains="true">pingma.qq.com</domain>

 </domain-config>

</network-security-config>

Add the following configuration to the application node of AndroidManifest:

android:networkSecurityConfig="@xml/xg_network_security_config"

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 259
of 472

Add and use the Apache HttpClient library

Add the following configuration to the application node of AndroidManifest:

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Modify compileSdk and targetSdk

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 260
of 472

Use compileSdkVersion 28 and targetSdkVersion 28 when compiling.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 261
of 472

Error Codes
Last updated：2024-01-16 17:39:39

Client Return Codes

Error
Code

Description

0 The call is successful.

2 Incorrect parameter. For example, a single-character alias is bound, or the length of the iOS token,
which should have 64 characters, is incorrect.

-1 SDK internal error. Please save the log and contact us.

-2 Request timeout.

-3 The resource has been terminated. To fix this error, you need to purchase the service again and
upgrade the application to a later version.

-4 The number of connections exceeds the package limit, and connections will be refused randomly.
To fix this error, you need to upgrade the service.

-5
An error occurred while getting Guid . Please check whether the network, AccessId and
 AccessKey are correct and whether the resource has been purchased.

-7 An error occurred while sending the request packet. Please check the network connectively.
Alternatively, you can save the log and contact us.

-11 Failed to connect to the MQTT server. Please check the network connectivity.

-101 Certain content in the SDK is in an incorrect JSON format. Please save the log and contact us.

-102 Unable to get the token. Please check the network connectivity and application configuration.

-502
An error occurred while getting Guid . Check whether the network and the domain name
configured for the service access point are correct. For more information, see SDK Integration.

-701 A network exception occurred while sending the request packet.

-702 Sending the request packet timed out.

-1101 A network exception occurred while connecting to the MQTT server. Please check the network
connectivity.

https://intl.cloud.tencent.com/support
https://intl.cloud.tencent.com/support
https://intl.cloud.tencent.com/support
https://intl.cloud.tencent.com/document/product/1024/30713

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 262
of 472

-1102 A network exception occurred while connecting to the MQTT server. Please check the network or
contact us.

-1103 The connection to the MQTT server timed out. Please check the network connectivity.

-10005 AIDL configuration error.

20 Authentication error. AccessID or AccessKey is incorrectly configured.

10000 Start error.

10001 Operation type error code. For example, this error will occur when the parameter is incorrect.

10002 If a registration operation is requested while the previous registration is ongoing, this error code
will be returned in the callback API.

10003 Incorrect permission configuration or lack of required permissions.

10004
The so library has not been imported correctly. (In Android Studio, you can create the jniLibs
folder in the main directory, and add the 7 so library folders under Other-Platform-SO in the
SDK documentation to this directory).

10005 The XGRemoteService node of the AndroidManifest file was not configured, or the action package
name of the node was incorrectly configured

10008 The ContentProvider was incorrectly configured. Please check the AndroidManifest file.

10009 The jce JAR is incorrect or missing (check whether the wup package has been compiled into it. If
this error occurs after obfuscated packaging, please check the obfuscation code).

10101 Failed to create the linkage (switch to another network and try again).

10102 The linkage is closed during request processing (switch to another network and try again).

10103 The server has closed the linkage during request processing (switch to another network and try
again).

10104 An exception occurs during request processing (switch to another network and try again).

10105 Sending or receiving packets timed out during request processing (switch to another network and
try again).

10106 Failed to send a request due to timeout (switch to another network and try again).

10107 Failed to receive a request due to timeout (switch to another network and try again).

10108 The server returns an exception message.

10109 Unknown exception. Please switch to another network or restart the device.

https://intl.cloud.tencent.com/support

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 263
of 472

10110 The handler for creating the linkage was null.

Other Unknown error. Please save the log and contact us.

10006 Incorrect AccessKey or AccessID.

10007 An error occurred while initializing the TPNS service.

10008 Incorrect AccessKey or AccessID.

10110 Signature authentication error.

10115 Repeated registration in a short amount of time.

10300 Marathon policy return code

10400 Incorrect SDK parameters.

20002 No valid network connection available. Please check whether the application has made the
payment.

10030009 The app does not exist. During SDK integration, you need to configure the domain name based on
your service access point. For more information, see SDK Integration.

Server Return Codes

Error
Code

Description

1010001 No resources are deployed. Please check whether the application has purchased push resources.

1008001 Parameter parsing error.

1008002 The required parameter is missing.

1008003 Authentication failed.

1008004 Service call failed.

1008006 Invalid token. Please check whether the device token has been successfully registered.

1008007 Parameter verification failed.

1008011 File upload failed.

1008012 The uploaded file is empty.

https://intl.cloud.tencent.com/support
https://intl.cloud.tencent.com/document/product/1024/30713

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 264
of 472

1008013 Certificate parsing error.

1008015 The push task ID does not exist.

1008016 Incorrect date and time parameter format.

1008019 Failed to pass the content security review.

1008020 Certificate package name verification failed.

1008021 Failed to pass the p12 certificate verification.

1008022 Incorrect p12 certificate password.

1008025 Application creation failed. The application already exists under the product.

1008026 Batch operation partially failed.

1008027 Batch operation fully failed.

1008028 Frequency limit exceeded.

1008029 Invalid token.

1008030 Unpaid application.

1008031 The application resource has been terminated.

10110008 The queried token and account do not exist.

10010005 The push target does not exist.

10010012

Invalid push time. Please change the push time.
For a scheduled push, if send_time passed in is earlier than the current time, specific rules
are as follows:
If send_time is 10 minutes or less earlier than the current time, the push task is created, and
the API schedules the task immediately when receiving it.
If send_time is over 10 minutes earlier than the current time, the push task is rejected, and
the API returns a failure message.

10010018 Repeated push.

10030002 AccessID and AccessKey do not match.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 265
of 472

iOS Integration Guide
Overview
Last updated：2024-01-16 17:42:20

Pushing messages to iOS devices involves client application (Client App), APNs (Apple Push Notification service),
and Tencent Push Notification Service server (Tencent Push Notification Service Provider). They need to collaborate
throughout the entire process to successfully push messages to the client. An exception from any of them can lead to

a push message delivery failure.

SDK Description

File Composition

 XGPush.h , XGPushPrivate.h (header files where the SDK provides APIs)

 libXG-SDK-Cloud.a (main SDK file)

 libXGExtension.a , XGExtension.h ("arrival and rich media" extension library and API header file)

 XGMTACloud.framework ("click report" component)

 XGInAppMessage.framework (in-app messages)

Release Notes

Supports iOS 8.0 and later
For iOS 10.0 and later
You need to introduce UserNotification.framework .

We recommend you use Xcode 8.0 and later
If you use Xcode 7 or an earlier version , you need to configure the SDK for iOS on your own to support the

compilation of the UserNotification framework.

Description

The SDK for iOS provided by Tencent Push Notification Service contains APIs for clients to implement message
pushing. It is mainly used to:
Get and register device tokens automatically to facilitate integration.
Bind accounts, tags, and devices, so you can push messages to specific user groups and have more push methods.

Report the number of clicks, i.e., how many times a message is clicked by users.

Push channel

Message delivery channels used by Tencent Push Notification Service:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 266
of 472

Tencent Push Notification Service channel: the channel built by Tencent Push Notification Service. It can deliver
messages only when the Tencent Push Notification Service is online (maintaining a persistent connection with the
Tencent Push Notification Service backend server). It requires the SDK 1.2.8.0 or later.

APNs channel: Apple's official message push service. For more information, please see APNs.

Flow Description

Device registration flow

The device registration flow is as shown below. For specific API methods, see the API documentation.

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1
https://intl.cloud.tencent.com/document/product/1024/30727

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 267
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 268
of 472

Device unregistration flow

The device unregistration flow is as shown below. For specific API methods, see the API documentation.

https://intl.cloud.tencent.com/document/product/1024/30727

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 269
of 472

Account flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 270
of 472

The account flow is as shown below. For specific API methods, see the API documentation.

https://intl.cloud.tencent.com/document/product/1024/30727

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 271
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 272
of 472

Tag flow

The tag flow is as shown below. For specific API methods, see the API documentation.

https://intl.cloud.tencent.com/document/product/1024/30727

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 273
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 274
of 472

User attribute flow

The user attribute flow is as shown below. For specific API methods, see the API documentation.

https://intl.cloud.tencent.com/document/product/1024/30727

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 275
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 276
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 277
of 472

SDK Integration
Last updated：2024-01-16 17:42:20

Overview

This document provides sample code for integrating with the TPNS SDK and launching the TPNS service (SDK
version: v1.0+).

SDK Composition

 doc folder: contains the development guide of the TPNS SDK for iOS.

 demo folder: contains demo projects and the TPNS SDK (only the OC demo is included. For the Swift demo,

please go to TGit).

SDK Integration

Preparing for integration

1. Before integrating the SDK, you need to log in to the TPNS console and create the product and iOS application. For
detailed directions, please see Creating Products and Applications.

2. Click Configuration Management to go to the management page.

https://git.code.tencent.com/tpns/XG-Demo-Swift
https://console.intl.cloud.tencent.com/tpns
https://intl.cloud.tencent.com/document/product/1024/32603

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 278
of 472

3. Click Upload Certificate to complete the upload. For more information on how to get a push certificate, please see
Acquisition of Push Certificate.

4. After the certificate is uploaded, get AccessID and AccessKey from the application information column.

Importing the SDK (two methods)

Method 1. Import through CocoaPods

Download through CocoaPods:

https://intl.cloud.tencent.com/document/product/1024/30728

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 279
of 472

pod 'TPNS-iOS', '~> version' // If the version is not specified, the latest versio

Note:

For a first download, you need to log in to TGit to set the username and password on the Account page. After
successful setting, you only need to enter the corresponding username and password in the terminal, and you do not
need to log in again on the current PC.
Due to the change of the repository address, if the pod prompts Unable to find a specification for

'TPNS-iOS' , you need to run the following command to update the repository and confirm the version:

https://git.code.tencent.com/users/sign_in
https://code.tencent.com/help/productionDoc/profile#password

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 280
of 472

pod repo update

pod search TPNS-iOS

pod install // Install the SDK

Method 2. Import manually

1. Log in to the TPNS console and click SDK Download in the left sidebar to go to the download page. Select the SDK
version to download, and click Download in the Operations column.
2. Open the SDK folder under the demo directory. Add XGPush.h and libXG-SDK-Cloud.a to the project. Open the

XGPushStatistics folder and obtain XGMTACloud.framework.

https://console.intl.cloud.tencent.com/tpns
https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 281
of 472

3. Import the InAppMessage folder into the project and add the search path in Build Setting > **Framework Search
Paths (if your SDK version is below 1.2.8.0, you can skip this step).
4. Add the following frameworks to Build Phases:

* XGInAppMessage.framework

* XGMTACloud.framework

* CoreTelephony.framework

* SystemConfiguration.framework

* UserNotifications.framework

* libXG-SDK-Cloud.a

* libz.tbd

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 282
of 472

* CoreData.framework

* CFNetwork.framework

* libc++.tbd

5. After the frameworks are added, the library references are as follows:

Project configuration

1. Open the push notification in the project configuration and backend modes, as shown in the following figure:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 283
of 472

To use the "Time Sensitive Notifications" feature introduced in iOS 15, please enable Time Sensitive

Notifications in Capabilities .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 284
of 472

2. Add the compilation parameter -ObjC .

If checkTargetOtherLinkFlagForObjc reports an error, it means that -ObjC has not been added to

 Other link flags in build setting .

Note:
 If the service access point of your application is Guangzhou, the SDK implements this configuration by default. The
domain name for Guangzhou is tpns.tencent.com .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 285
of 472

If the service access point of your application is Shanghai, Singapore, or Hong Kong (China), please follow the step
below to complete the configuration:
Decompress the SDK file package, add the XGPushPrivate.h file in the SDK directory to the project, and

reference to it (#import "XGPushPrivate.h") in the class that needs to configure the domain name.
Call the domain name configuration API in the header file before calling the
 startXGWithAccessID:accessKey:delegate: method.

To integrate with the Shanghai service access point, set the domain name to tpns.sh.tencent.com .

Example

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 286
of 472

/// @note TPNS SDK1.2.7.1+

[[XGPush defaultManager] configureClusterDomainName:@"tpns.sh.tencent.com"];

To integrate with the Singapore service access point, set the domain name to tpns.sgp.tencent.com .

Example

/// @note TPNS SDK1.2.7.1+

[[XGPush defaultManager] configureClusterDomainName:@"tpns.sgp.tencent.com"];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 287
of 472

To integrate with the Hong Kong (China) service access point, set the domain name to tpns.hk.tencent.com .

Example

/// @note TPNS SDK1.2.7.1+

[[XGPush defaultManager] configureClusterDomainName:@"tpns.hk.tencent.com"];

To integrate with the Guangzhou service access point, set the domain name to tpns.tencent.com .

Example

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 288
of 472

/// @note TPNS SDK1.2.7.1+

[[XGPush defaultManager] configureClusterDomainName:@"tpns.tencent.com"];

Integration sample

Call the API for launching TPNS and implement the method in the XGPushDelegate protocol as needed to launch

the push service.
1. Launch TPNS. The AppDelegate sample is as follows:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 289
of 472

@interface AppDelegate () <XGPushDelegate>

@end

/**

@param AccessID //`AccessID` applied for in the TPNS console

@param AccessKey //`AccessKey` applied for in the TPNS console

@param delegate //Callback object

**/

-(BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDi

{

 [[XGPush defaultManager] startXGWithAccessID:<your AccessID> accessKey:<your Acce

return YES;

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 290
of 472

}

2. In AppDelegate , choose to implement the method in the XGPushDelegate protocol:

/// Unified callback for message receipt

/// @param notification //Message object (there are two types: `NSDictionary` and

/// @note //This callback is the callback for receipt of notification messages in

/// Message type description: if `msgtype` in the `xg` field is `1`, it means notif

- (void)xgPushDidReceiveRemoteNotification:(nonnull id)notification withCompletionH

 /// code

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 291
of 472

 /// Unified message click callback

/// @param response //`UNNotificationResponse` for iOS 10+ and macOS 10.14+, or `

- (void)xgPushDidReceiveNotificationResponse:(nonnull id)response withCompletionHan

 /// code

}

Notification Service Extension Plugin Integration

The SDK provides the Service Extension API, which can be called by the client to use the following extended features:

Collect precise statistics of message arrivals through the APNs channel.
Receive images and audiovisual rich media messages through the APNs channel.
For the integration steps, please see Notification Service Extension.
Note:
If the Service Extension API is not integrated, arrival statistics cannot be collected for the APNs channel.

Debugging Method

Enable debug mode

After enabling debug mode, you can view the detailed TPNS debug information on the device for troubleshooting.

Sample code

https://intl.cloud.tencent.com/document/product/1024/30730

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 292
of 472

// Enable debugging

[[XGPush defaultManager] setEnableDebug:YES];

Implementing the XGPushDelegate protocol

During debugging, it is recommended that you implement the following method in the protocol to obtain detailed
debugging information.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 293
of 472

/**

@brief //Callback for TPNS registration

@param deviceToken //`Device Token` generated by APNs

@param xgToken // token generated by TPNS, which needs to be used during message

@param error //Error message. If `error` is `nil`, the push service has been succ

@note TPNS SDK1.2.6.0+

*/

- (void)xgPushDidRegisteredDeviceToken:(nullable NSString *)deviceToken xgToken:(nu

/// Callback for TPNS registration failure

/// @param error //Error message for registration failure

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 294
of 472

/// @note TPNS SDK1.2.7.1+

- (void)xgPushDidFailToRegisterDeviceTokenWithError:(nullable NSError *)error {

}

Observing logs

If the Xcode console displays a log similar to the one below, the client has properly integrated the SDK.

[TPNS] Current device token is 9298da5605c3b242261b57****376e409f826c2caf87aa0e6112

[TPNS] Current TPNS token is 00c30e0aeddff1270d8****dc594606dc184

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 295
of 472

Note:
Use a TPNS 36-bit token for pushing to a single target device.

Unified Message Receipt Callback and Unified Message Click
Callback

Unified message receipt callback for the TPNS and APNs channels: this callback will be triggered when the

application receives a notification message in the foreground and receives a silent message in all states (foreground,
background, and shutdown).

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 296
of 472

- (void)xgPushDidReceiveRemoteNotification:(nonnull id)notification withCompletionH

Note:

By default, no banner appears when your application receives a notification in the foreground. To show the banner,
add the sample code as below:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 297
of 472

if ([notification isKindOfClass:[UNNotification class]]) {

 completionHandler(UNNotificationPresentationOptionBadge | UNNotificationPresentati

}

When the application receives a notification message in the foreground or a silent message in all states, the unified
message receipt callback xgPushDidReceiveRemoteNotification will be triggered.

The following is the sample code for differentiating the receipt of a notification message in the foreground or a silent

message in all states.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 298
of 472

NSDictionary *tpnsInfo = notificationDic[@"xg"];

NSNumber *msgType = tpnsInfo[@"msgtype"];

if (msgType.integerValue == 1) {

 /// Receipt of a notification message in the foreground

} else if (msgType.integerValue == 2) {

 /// Receipt of a silent message

} else if (msgType.integerValue == 9) {

 /// Receipt of a local notification (TPNS local notification)

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 299
of 472

Unified message click callback: this callback applies to the notification messages of the application in states
(foreground, background and shutdown).

/// Unified message click callback

/// @param response will be `UNNotificationResponse` for iOS 10+/macOS 10.14+, or `

/// @note TPNS SDK1.2.7.1+

- (void)xgPushDidReceiveNotificationResponse:(nonnull id)response withCompletionHan

Note:
The unified message receipt callback xgPushDidReceiveRemoteNotification of the TPNS will process

message receipt and then automatically call the

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 300
of 472

 application:didReceiveRemoteNotification:fetchCompletionHandler method, which, however,

may also be hooked by other SDKs.
If you have integrated only the TPNS platform, you are advised not to implement the system notification callback

method; use only the TPNS notification callback method instead.
If you have integrated multiple push platforms and need to process the services of other platforms using the
 application:didReceiveRemoteNotification:fetchCompletionHandler method, please see the

following guidelines to avoid repeated service processing:
You need to distinguish between message platforms. After getting the message dictionary in the two message

callback methods, use the xg field to tell whether it is a TPNS message. If it is a TPNS message, process it using

the xgPushDidReceiveRemoteNotification method; otherwise, process it using the

 application:didReceiveRemoteNotification:fetchCompletionHandler method.

If both xgPushDidReceiveRemoteNotification and

 application:didReceiveRemoteNotification:fetchCompletionHandler are executed, then

 completionHandler needs to be called only once in total. If it is also called by other SDKs, make sure that it is

called only once overall; otherwise, crashes may occur.

Advanced Configuration (Optional)

Suggestions on getting the TPNS token

After you integrate the SDK, we recommend you use gestures or other methods to display the TPNS token in the
application's less commonly used UIs such as About or Feedback. The console and RESTful API requires the TPNS
token to push messages. Subsequent troubleshooting will also require the TPNS token for problem locating.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 301
of 472

// Get the token generated by TPNS.

[[XGPushTokenManager defaultTokenManager] xgTokenString];

Suggestions on getting TPNS running logs

After integrating the SDK, you are advised to use gestures or other methods to display TPNS running logs in the app’s
less commonly used UI such as About or Feedback. Doing so will facilitate subsequent troubleshooting.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 302
of 472

[[XGPush defaultManager] uploadLogCompletionHandler:^(BOOL result, NSString * _Null

NSString *title = result ? NSLocalizedString(@"report_log_info", nil) : NSLocalized

if (result && errorMessage.length>0) {

UIPasteboard *pasteboard = [UIPasteboardgeneralPasteboard];

pasteboard.string = errorMessage;

}

[TPNSCommonMethodshowAlert:title message:errorMessage viewController:selfcompletion

}];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 303
of 472

API Documentation
Last updated：2024-01-16 17:42:20

Notes

The account, tag, and user attribute features in this document are applicable to SDK v1.2.9.0 and later. For SDK
v1.2.7.2 and earlier, see API Documentation.

Launching the Tencent Push Notification Service

The following are device registration API methods. For more information on the timing and principle of calls, see

Device registration flow.

API description

This API is used to launch the Tencent Push Notification Service by using the information of the application registered
at the official website of Tencent Push Notification Service.

(This API is newly added in SDK v1.2.7.2. For v1.2.7.1 and earlier, see the startXGWithAppID API in the

 XGPush.h file in the SDK package.)

https://intl.cloud.tencent.com/document/product/1024/30727
https://intl.cloud.tencent.com/document/product/1024/30725#device-registration-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 304
of 472

/// @note Tencent Push Notification Service SDK v1.2.7.2 or later

- (void)startXGWithAccessID:(uint32_t)accessID accessKey:(nonnull NSString *)access

Parameter description

 accessID : AccessID applied through the frontend

 accessKey : AccessKey applied through the frontend

 Delegate : callback object

Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 305
of 472

 The parameters required by the API must be entered correctly; otherwise, Tencent Push Notification Service will not
be able to push messages correctly for the application.

Sample code

 [[XGPush defaultManager] startXGWithAccessID:<your AccessID> accessKey:<your Acces

Terminating the Tencent Push Notification Service

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 306
of 472

The following are device unregistration API methods. For more information on the timing and principle of calls, see
Device unregistration flow.

API description

After the Tencent Push Notification Service is stopped, the application will not be able to push messages to devices

through it. To receive messages pushed by it again, you must call the
 startXGWithAccessID:accessKey:delegate: method again to re-activate the service.

- (void)stopXGNotification;

https://intl.cloud.tencent.com/document/product/1024/30725#device-unregistration-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 307
of 472

Sample code

[[XGPush defaultManager] stopXGNotification];

Tencent Push Notification Service Token and Registration Result

Querying a Tencent Push Notification Service token

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 308
of 472

This API is used to query the token string generated by the current application on the Tencent Push Notification
Service server.

@property (copy, nonatomic, nullable, readonly) NSString *xgTokenString;

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 309
of 472

NSString *token = [[XGPushTokenManager defaultTokenManager] xgTokenString];

Note:

 Token query should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Registration result callback

API description

After the SDK is started, use this method callback to return the registration result and token.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 310
of 472

- (void)xgPushDidRegisteredDeviceToken:(nullable NSString *)deviceToken xgToken:(nu

Response parameters

 deviceToken : device token generated by APNs.

 xgToken : token generated by Tencent Push Notification Service, which needs to be used during message push.

Tencent Push Notification Service maintains the mapping relationship between this value and the device token
generated by APNs.
 error : error message. If error is nil , Tencent Push Notification Service has been successfully registered.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 311
of 472

Registration failure callback

API description

This callback is new in SDK v1.2.7.2 and used for Tencent Push Notification Service registration failures.

/// @note Tencent Push Notification Service SDK v1.2.7.2 or later

- (void)xgPushDidFailToRegisterDeviceTokenWithError:(nullable NSError *)error

Notification pop-up window authorization callback

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 312
of 472

API description

This API was added in SDK v1.3.1.0 and is used to call back the result of notification authorization pop-up window.

- (void)xgPushDidRequestNotificationPermission:(bool)isEnable error:(nullable NSErr

Response parameters

 isEnable : whether authorization is approved or not.

 error : error message. If error is nil , the pop-up authorization result has been successfully obtained.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 313
of 472

Account Feature

The following are account API methods. For more information on the timing and principle of calls, see Account flow.

Adding an account

API description

If there is no account of this type, this API will add a new one; otherwise, it will overwrite the existing one. (This API is
available only in Tencent Push Notification Service SDK v1.2.9.0 or later.)

https://intl.cloud.tencent.com/document/product/1024/30725#account-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 314
of 472

- (void)upsertAccountsByDict:(nonnull NSDictionary<NSNumber *, NSString *> *)accoun

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 accountsDict : account dictionary

Note:
The account type and account name together serve as the composite primary key.

You need to use the dictionary type, where key is the account type and value is the account, for example,

@{@(accountType):@"account"}.
Syntax for Objective-C: @{@(0):@"account0",@(1):@"account1"}; syntax for Swift:
[NSNumber(0):@"account0",NSNumber(1):@"account1"]
For more accountType values, see the XGPushTokenAccountType enumeration in the SDK demo package

or Account Type Value Table.

Sample code

https://intl.cloud.tencent.com/document/product/1024/40598

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 315
of 472

XGPushTokenAccountType accountType = XGPushTokenAccountTypeUNKNOWN;

NSString *account = @"account";

[[XGPushTokenManager defaultTokenManager] upsertAccountsByDict:@{ @(accountType):ac

Adding a mobile number

API description

This API is used to add or update a mobile number. It is equivalent to calling
 upsertAccountsByDict:@{@(1002):@"specific mobile number"} .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 316
of 472

/// @note Tencent Push Notification Service SDK v1.3.2.0+

- (void)upsertPhoneNumber:(nonnull NSString *)phoneNumber;

Parameter description

 phoneNumber : an E.164 mobile number in the format of [+][country code or area code][mobile

number] , for example, +8613711112222. The SDK will encrypt the mobile number for transmission.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 317
of 472

[[XGPushTokenManager defaultTokenManager] upsertPhoneNumber:@"+8613712345678"];;

Note:

1. This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.
2. You can call delAccountsByKeys:[[NSSet alloc] initWithObjects:@(1002), nil] to delete a mobile number.

Deleting accounts

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 318
of 472

This API is used to delete all accounts of a specified account type. (This API is available only in Tencent Push
Notification Service SDK v1.2.9.0 or later.)

- (void)delAccountsByKeys:(nonnull NSSet<NSNumber *> *)accountsKeys;

Note:
This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 accountsKeys : set of account types

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 319
of 472

Note:
A set is required, and the key is fixed.
For more values of accountType , see the enumerated values of XGPushTokenAccountType in the

 XGPush.h file in the SDK package.

Sample code

XGPushTokenAccountType accountType = XGPushTokenAccountTypeUNKNOWN;

NSSet *accountsKeys = [[NSSet alloc] initWithObjects:@(accountType), nil];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 320
of 472

[[XGPushTokenManager defaultTokenManager] delAccountsByKeys:accountsKeys];

Clearing accounts

API description

This API is used to clear all set accounts.

- (void)clearAccounts;

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 321
of 472

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

[[XGPushTokenManager defaultTokenManager] clearAccounts];

Tagging Feature

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 322
of 472

The following are tag API methods. For more information on the timing and principle of calls, see Tag flow.

Binding/Unbinding tags

API description

This API is used to bind tags to different users so that push can be performed based on specific tags.

- (void)appendTags:(nonnull NSArray<NSString *> *)tags

- (void)delTags:(nonnull NSArray<NSString *> *)tags

Note:

https://intl.cloud.tencent.com/document/product/1024/30725#tag-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 323
of 472

This API works in an appending manner.
This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

One application can have up to 10,000 custom tags. One device token can be bound to a maximum of 100 custom

tags (to increase this limit, submit a ticket). One custom tag can be bound to an unlimited number of device tokens.

Parameter description

 tags : tag array

Note:
 For tag operations, tags is a tag string array, which cannot contain spaces or tabs.

Sample code

https://console.intl.cloud.tencent.com/workorder/category

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 324
of 472

// Bind tags

[[XGPushTokenManager defaultTokenManager] appendTags:@[tagStr]];

// Unbind tags

[[XGPushTokenManager defaultTokenManager] delTags:@[tagStr]];

Updating tags

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 325
of 472

This API is used to clear all the existing tags and then add tags in batches.

- (void)clearAndAppendTags:(nonnull NSArray<NSString *> *)tags

Note:
This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

This API will replace all the old tags corresponding to the current token with the current tag.

Parameter description

 tags : tag array

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 326
of 472

Note:
 For tag operations, tags is a tag string array, which cannot contain spaces or tabs.

Sample code

[[XGPushTokenManager defaultTokenManager] clearAndAppendTags:@[tagStr]];

Clearing all tags

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 327
of 472

This API is used to clear all set tags.

- (void)clearTags

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 328
of 472

[[XGPushTokenManager defaultTokenManager] clearTags];

Querying tags

API description

This API is new in SDK v1.3.1.0 and used to query the tags bound to the device.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 329
of 472

- (void)queryTags:(NSUInteger)offset limit:(NSUInteger)limit;

Note:

This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 offset : the offset of this query

 limit : the page size for this query; maximum value: 200

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 330
of 472

 [[XGPushTokenManager defaultTokenManager] queryTags:0 limit:100];

Tag query callback

API description

This API is new in SDK v1.3.1.0 and used to call back the result of tag query.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 331
of 472

- (void)xgPushDidQueryTags:(nullable NSArray<NSString *> *)tags totalCount:(NSUInte

Response parameters

 tags : tags returned for the query

 totalCount : total number of the tags bound to the device

 error : error message. If error is nil , the query is successful.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 332
of 472

User Attribute Feature

The following are user attribute API methods. For more information on the timing and principle of calls, see User
attribute flow.

Adding user attributes

API description

This API is used to add or update user attributes in the key-value structure (if there is no user attribute value

corresponding to the key, it will add a new one; otherwise, it will update the value).

https://intl.cloud.tencent.com/document/product/1024/30725#user-attribute-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 333
of 472

- (void)upsertAttributes:(nonnull NSDictionary<NSString *,NSString *> *)attributes

Note:

This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 attributes : dictionary of user attribute strings, which cannot contain spaces or tabs

Note:
You need to configure user attribute keys in the console first before the operation can succeed.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 334
of 472

Both key and value can contain up to 50 characters.

A dictionary is required, and key is fixed.

Syntax for Objective-C: @{@"gender": @"Female", @"age": @"29"}

Syntax for Swift: ["gender":"Female", "age": "29"]

Sample code

[[XGPushTokenManager defaultTokenManager] upsertAttributes:attributes];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 335
of 472

Deleting a user attribute

API description

The API is used to delete existing user attributes.

- (void)delAttributes:(nonnull NSSet<NSString *> *)attributeKeys

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 336
of 472

Parameter description

 attributeKeys : set of user attribute keys, which cannot contain spaces or tabs

Note:
 It is required to use a key set.

Sample code

[[XGPushTokenManager defaultTokenManager] delAttributes:attributeKeys];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 337
of 472

Clearing all user attributes

API description

This API is used to clear all existing user attributes.

- (void)clearAttributes;

Note:
This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 338
of 472

[[XGPushTokenManager defaultTokenManager] clearAttributes];

Updating user attributes

API description

This API is used to clear all the existing user attributes and then add user attributes in batches.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 339
of 472

- (void)clearAndAppendAttributes:(nonnull NSDictionary<NSString *,NSString *> *)att

Note:

This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 340
of 472

[[XGPushTokenManager defaultTokenManager] clearAndAppendAttributes:attributes];

Badge Feature

Syncing badges

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 341
of 472

This API is used to sync the modified local badge value of an application to the Tencent Push Notification Service
server for the next push. You can choose Create Push > Advanced Settings > Badge Number in the console to
configure the badge number.

- (void)setBadge:(NSInteger)badgeNumber;

Parameter description

 badgeNumber : badge number of an application

Caution:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 342
of 472

 When the local badge number is set for the application, you need to call this API to sync it to the Tencent Push
Notification Service server, which will take effect in the next push. This API must be called after the Tencent Push
Notification Service persistent connection is established successfully (xgPushNetworkConnected).

Sample code

/// Timing for calling a cold start

- (void)xgPushDidRegisteredDeviceToken:(nullable NSString *)deviceToken xgToken:(nu

 /// Report the badge number after registration

 if (!error) {

 /// Reset the application badge. `-1`: Do not clear the notification bar; `0`:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 343
of 472

 [XGPush defaultManager].xgApplicationBadgeNumber = -1;

 /// Reset the server badge base

 [[XGPush defaultManager] setBadge:0];

 }

}

/// Timing for calling a hot start

/// The hot start tag `_launchTag` is managed by the business.

- (void)xgPushNetworkConnected {

 if (_launchTag) {

 /// Reset the application badge. `-1`: Do not clear the notification bar; `

 [XGPush defaultManager].xgApplicationBadgeNumber = -1;

 /// Reset the server badge base

 [[XGPush defaultManager] setBadge:0];

 _launchTag = NO;

 }

}

In-app message display

Polling time setting

API description

This API can be used to set the polling time (minimum: 10s; default: 258s) of in-app messages.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 344
of 472

/// Set the message polling time interval (minimum: 10s). This API should be called

- (void)setMessageTimerInterval:(NSTimeInterval)interval;

Parameter description

 NSTimeInterval : NSTimeInterval type; the in-app message polling time interval

Custom event handling

XGInAppMessageActionDelegate proxy description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 345
of 472

You can obtain custom event parameters through the proxy method onClickWithCustomAction to handle

related businesses.

/// Button event response proxy

@property (weak, nonatomic, nullable) id<XGInAppMessageActionDelegate> actionDelega

Querying Device Notification Permission

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 346
of 472

This API is used to query whether the user allows device notifications.

- (void)deviceNotificationIsAllowed:(nonnull void (^)(BOOL isAllowed))handler;

Parameter description

 handler : result return method

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 347
of 472

[[XGPush defaultManager] deviceNotificationIsAllowed:^(BOOL isAllowed) {

 <#code#>

 }];

Querying the SDK Version

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 348
of 472

This API is used to query the current SDK version.

- (nonnull NSString *)sdkVersion;

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 349
of 472

[[XGPush defaultManager] sdkVersion];

Log Reporting API

API description

If you find push exceptions, you can call this API to trigger the reporting of local push logs. When you submit a ticket to

report the problem, provide us the file address to facilitate troubleshooting.

https://console.intl.cloud.tencent.com/workorder/category

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 350
of 472

/// @note Tencent Push Notification Service SDK v1.2.4.1+

- (void)uploadLogCompletionHandler:(nullable void(^)(BOOL result, NSString * _Null

Parameter description

 @brief : report log information (SDK v1.2.4.1+).

 @param handler : report callback

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 351
of 472

[[XGPush defaultManager] uploadLogCompletionHandler:nil];

Tencent Push Notification Service Log Hosting

API description

This method is used to get Tencent Push Notification Service logs, which is irrelevant to XGPush >

enableDebug .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 352
of 472

Parameter description

 logInfo : log information

Sample code

- (void)xgPushLog:(nullable NSString *)logInfo;

Customizing Notification Bar Message Actions

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 353
of 472

Creating a message action

API description

This API is used to create a click event in the notification message.

+ (nullable id)actionWithIdentifier:(nonnull NSString *)identifier title:(nonnull N

Parameter description

 identifier : unique ID of the action.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 354
of 472

 title : action name.

 options : options supported by the action.

Sample code

XGNotificationAction *action1 = [XGNotificationAction actionWithIdentifier:@"xgacti

Caution:
 The notification bar has the event click feature, which is only supported in iOS 8.0 and later. For iOS 7.x or earlier, this
method will return null.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 355
of 472

Creating a category object

API description

This API is used to create a category object to manage the action object of the notification bar.

+ (nullable id)categoryWithIdentifier:(nonnull NSString *)identifier actions:(nulla

Parameter description

 identifier : category object ID.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 356
of 472

 actions : action object group included in the current category.

 intentIdentifiers : identifiers that can be recognized by Siri.

 options : category characteristics.

Caution:
 The notification bar has the event click feature, which is only supported in iOS 8.0 and later. For versions earlier than
iOS 8.0, this method will return null.

Sample code

XGNotificationCategory *category = [XGNotificationCategory categoryWithIdentifier:@

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 357
of 472

Creating a configuration class

API description

This API is used to manage the style and characteristics of the push message notification bar.

+ (nullable instancetype)configureNotificationWithCategories:(nullable NSSet<id> *)

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 358
of 472

 categories : a collection of categories supported by the notification bar.

 types : the style of the device registration notification.

Sample code

XGNotificationConfigure *configure = [XGNotificationConfigure configureNotification

Local Push

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 359
of 472

For more information about the local push feature, click here.

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SchedulingandHandlingLocalNotifications.html#//apple_ref/doc/uid/TP40008194-CH5-SW1

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 360
of 472

Acquisition of Push Certificate
Last updated：2024-01-16 17:42:20

This document describes how to generate and upload an iOS message push certificate.
Note:
TPNS recommends you use .p12 certificates to manage the push services of your applications separately. Although a

.p8 certificate is valid longer than a .p12 certificate, it has a wider push permission and scope. If leaked, it may cause
more severe consequences.

Step 1. Activate the remote push service for your application

1. Log in to the Apple Developer website and click Certificates, Identifiers & Profiles in the right pane or
Certificates, IDS & Profiles in the left sidebar to access the Certificates, IDS & Profiles page.

2. Click + on the right of Identifiers.

https://developer.apple.com/account/

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 361
of 472

3. Register an AppID by following the steps below. You can also enable Push Notification Service using

your existing AppID. Note that your Bundle ID cannot contain the wildcard * ; otherwise, you will be unable to

use the remote push service.
3.1 Step1:Check App IDs and click Continue.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 362
of 472

3.2 Select App and click Continue.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 363
of 472

3.3 Configure Bundle ID and other information. Click Continue.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 364
of 472

3.4 Check Push Notifications to activate the remote push service.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 365
of 472

Step 2. Generate and upload a .p12 certificate

1. Select your AppID and click Configure.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 366
of 472

2. In the Apple Push Notification service SSL Certificates, you will see two SSL certificates: Development SSL
Certificate and Production SSL Certificate.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 367
of 472

3. ﻿
Click Create Certificate under Development SSL Certificate to create a certificate. You will be prompted that

 Certificate Signing Request (CSR) is required.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 368
of 472

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 369
of 472

4. Open Keychain Access on macOS. Select Keychain Access > Certificate Assistant > Request a Certificate
From a Certificate Authority.

5. Enter your email for User Email Address and your name or company name for Common Name. Select Saved to
disk and click Continue. Then the system will generate a *.certSigningRequest file.

6. Return to the Apple Developer page as shown in step 3 and click Choose File to upload the

 *.certSigningRequest file.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 370
of 472

7. Click Continue to generate the push certificate.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 371
of 472

8. Click Download to save the Development SSL Certificate locally.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 372
of 472

9. Repeat the steps 1–8 to generate and download the Production SSL Certificate .

Note:

 Actually, this certificate is a Sandbox and Production merged certificate that applies to both the

development and production environments.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 373
of 472

10. Double-click and open the Development SSL Certificate and Production SSL Certificate

that have been download to import them to Keychain Access.
11. Open Keychain Access, select Login > My Certificates, and right-click to export the .p12 files for Apple

Development IOS Push Service: com.tpnssdk.pushdemo and Apple Push Services:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 374
of 472

com.tpnssdk.pushdemo respectively.

Note:
Do set the password when saving the .p12 file.

Step 3. Upload certificates to the TPNS Console

1. Log in to the TPNS Console and select Product Management > Configuration Management.
2. Click Upload Certificate in the Push Certificate pane to upload the Development SSL Certificate and Production
SSL Certificate.
3. Enter the certificate password and click Click to select.
4. Choose your certificate and click Upload.

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 375
of 472

Push Environment Selection Description
Last updated：2024-01-16 17:42:20

 When pushing messages in the console, you can select from two environments for push testing.
Development environment: you need to make sure that the application has been packaged with the signature
certificate of the development environment and then use Xcode to directly compile and install it to the device.

Production environment: you need to make sure that the application has been packaged with the signature
certificate of the production environment in one of the following three ways: Ad-Hoc , TestFlight , and

 AppStore .

Specifying Push Environment on Server

When you use a REST API to push messages, you need to specify the environment field in PushAPI ,

which has two valid values: product and dev .

Development environment: you need to specify environment as dev .

Production environment: you need to specify environment as product .

Push Certificate Description

In the console, you need to upload the two-in-one push certificate for both the development and production
environments (Apple Push Notification service SSL (Sandbox & Production)). This certificate can be used to push
messages to both the production and development environments and is selected according to the actual signature
certificate used by the application. For the selection method, please see above.

Note:
Application signature certificate divides into development environment (corresponding to xxx Developer:xxx)

and production environment (corresponding to xxx Distribution:xxx). Please choose according to the actual

situation.
Application push certificate is a merged certificate compatible with both the development and production

environments.

https://intl.cloud.tencent.com/document/product/1024/33764

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 376
of 472

Error Codes
Last updated：2024-01-16 17:42:20

Client Return Codes

Error Code Description

101 Guid request timeout.

701 SDK exception.

801 Persistent connection timeout.

901 Persistent connection error.

1001 Unable to obtain the vendor token because deviceToken is empty.

1101 Device network error.

1102 Not registered.

1103 App information or routing configuration error.

1104 Business API’s operation type pass-in error.

1105 Business API’s parameter pass-in error.

1106 Business API’s parameters are empty.

1107 Not supported by the system.

1110 Start failed.

1111 Insufficient memory.

1501 Failed to establish persistent connection.

1502 Failed to establish persistent connection and the app was not running in the foreground.

Server Return Codes

Error Code Description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 377
of 472

1010001 No resources are deployed. Please check whether the application has purchased push
resources.

1008001 Parameter parsing error.

1008002 The required parameter is missing.

1008003 Authentication failed.

1008004 Service call failed.

1008006 Invalid token. Please check whether the device token has been successfully registered.

1008007 Parameter verification failed.

1008011 File upload failed.

1008012 The uploaded file is empty.

1008013 Certificate parsing error.

1008015 The push task ID does not exist.

1008016 Incorrect date and time parameter format.

1008019 Failed to pass the content security review.

1008020 Certificate package name verification failed.

1008021 Failed to pass the p12 certificate verification.

1008022 Incorrect p12 certificate password.

1008025 Application creation failed. The application already exists under the product.

1008026 Batch operation partially failed.

1008027 Batch operation fully failed.

1008028 Frequency limit exceeded.

1008029 Invalid token.

1008030 Unpaid application.

1008031 The application resource has been terminated.

10110008 The queried token and account do not exist.

10010005 The push target does not exist.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 378
of 472

` 10010012

Invalid push time. Please change the push time.
If send_time passed in is earlier than the current time, the rules are as follows:
If send_time is 10 minutes or less earlier than the current time, the push task is created,
and the API schedules the task immediately when receiving it.
If send_time is over 10 minutes earlier than the current time, the push task is rejected, and
the API returns a failure message.

10010018 Repeated push.

10030002 AccessID and AccessKey do not match.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 379
of 472

Extension Feature
Notification Service Extension
Last updated：2024-01-16 17:42:20

Overview

To accurately count the message reach rate and receive rich media messages, the SDK provides the Service
Extension API that can be called by the client to listen on message arrivals and receive rich media messages. You can
use this feature in the following steps:

Creating a Notification Service Extension Target

1. In the xcode menu bar, select File > New > Target.
Note:
The bundle ID of the primary project must be different from that of the service, and the latter must be prefixed with the
former (for example, the former is com.tencent.tpns and the latter is com.tencent.tpns.service).

If the lowest version supported by the target of the primary project is below 10.0, set the extension target system

version to 10.0.
If the lowest version supported by the target of the primary project is above 10.0, the extension target system version
should be the same as the primary project target version.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 380
of 472

2. Enter the Target page, select Notification Service Extension and click Next.

3. Set Product Name and click Finish.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 381
of 472

Adding Tencent Push Notification Service Extension Libraries (Three
Methods)

Method 1: Integrate through CocoaPods

Download through CocoaPods:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 382
of 472

pod 'TPNS-iOS-Extension', '~> Version' // If the version is not specified, the lat

Use instructions:

1. Create a Notification Service Extension target in Application Extension type, such as

 XXServiceExtension .

2. Add the configuration item of XXServiceExtension in the Podfile.

The display effect after the configuration item is added in the Podfile is as shown below:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 383
of 472

target `XXServiceExtension'do

 platform:ios,'10.0'

 pod 'TPNS-iOS-Extension' , '~> Version' // The version must be consistent with th

end

Method 2: Manually integrate

1. Log in to the Tencent Push Notification Service console.

2. In the left sidebar, choose Toolbox > SDK Download.
3. On the SDK Download page, select the iOS platform and click Download.

https://console.intl.cloud.tencent.com/tpns
https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 384
of 472

4. Decompress the SDK package, go to the demo > sdk > XGPushStatistics > extension directory,

and obtain the XGExtension.h and libXGExtension.a files.

5. Add the XGExtension.h and libXGExtension.a files obtained to the notification service extension

target:
System library: libz.tbd

Tencent Push Notification Service extension library: libXGExtension.a

After the integration, the directory structure is as follows:

Method 3: Integrate through HomeBrew

To install new_tpns_svc_ext for the first time, please run the following command in the terminal:

1. Associate the homebrew repository of Tencent Push Notification Service.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 385
of 472

brew tap tpns/serviceExtension https://github.com/TencentCloud/homebrew-tpnsService

2. Install new_tpns_svc_ext .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 386
of 472

brew install new_tpns_svc_ext

3. Install the notification service extension plug-in for Tencent Push Notification Service.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 387
of 472

new_tpns_svc_ext "AccessID" "AccessKey" "xxx.xcodeproj"

Parameter description:

AccessID: AccessID of your Tencent Push Notification Service product

AccessKey: AccessKey of your Tencent Push Notification Service product

xxx.xcodeproj: full path of .xcodeproj

Sample

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 388
of 472

new_tpns_svc_ext "1600013400" "IWRNAHX6XXK6" "/Users/yanbiaomu/Developer/tencent/de

Note:

 To get AccessID and AccessKey , go to the Tencent Push Notification Service console, choose Product

Management, and click Configuration Management in the record of a target product. Then you can find
 AccessID and AccessKey on the page displayed.

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 389
of 472

4. Run the new_tpns_svc_ext command to verify the result.If the following result is displayed after the

 new_tpns_svc_ext command is run in the terminal, the notification extension plugin is successfully integrated.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 390
of 472

TPNS service auto coding done!

New TPNSService Extension Success

Upgrading new_tpns_svc_ext

When a new version of the SDK notification extension plugin is released, you can run the following command in the
terminal for upgrade:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 391
of 472

brew update && brew reinstall new_tpns_svc_ext

Note:

You can view the release notes of the latest version in SDK for iOS.
Currently, the HomeBrew command new_tpns_svc_ext supports integrating only the notification service

extension plugin TPNSService but not basic push capabilities.

Directions

https://intl.cloud.tencent.com/document/product/1024/36192

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 392
of 472

Calling the SDK's statistics reporting API

1. Import the header file NotificationService into the notification extension class XGExtension.h .

2. Call the following sample code in the callback method
 didReceiveNotificationRequest:withContentHandler :

 /**

@brief //Tencent Push Notification Service processes rich media notifications and d

@param request //Push request

@param accessID //Tencent Push Notification Service application `AccessID`

@param accessKey //Tencent Push Notification Service application `AccessKey`

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 393
of 472

@param handler //Callback of processing messages. Process the associated rich media

*/

(void)handleNotificationRequest:(nonnull UNNotificationRequest *)request

 accessID:(uint32_t)accessID

 accessKey:(nonnull NSString *)accessKey

 contentHandler:(nullable void (^)(NSAr

Sample code

- (void)didReceiveNotificationRequest:(UNNotificationRequest *)request withContentH

 self.contentHandler = contentHandler;

 self.bestAttemptContent = [request.content mutableCopy];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 394
of 472

 /// For clusters outside Guangzhou, please enable the corresponding cluster co

 // [XGExtension defaultManager].reportDomainName = @"tpns.hk.tencent.com"; /

 // [XGExtension defaultManager].reportDomainName = @"tpns.sgp.tencent.com";

 // [XGExtension defaultManager].reportDomainName = @"tpns.sh.tencent.com"; //

 [[XGExtension defaultManager] handleNotificationRequest:request accessID:<your

 > contentHandler:^(NSArray<UNNotificationAttachment *> * _Nullable attachme

 self.bestAttemptContent.attachments = attachments;

 self.contentHandler(self.bestAttemptContent); // If you need to add busine

 }];

}

Integration Verification

After completing the integration as instructed above, you can verify whether the extension plugin is successfully
integrated in the following steps:
1. Close the application and push a notification message to the phone.

2. Without clicking the message, check whether the message arrives on the phone in the console.

If there is arrival data, the integration is successful.

Debugging

If the device receives the pushed message but there is no arrival data, troubleshoot as follows:
1. Run the primary target (demo example in the figure).

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 395
of 472

2. Attach the implementation target (TPNSService-Cloud in the demo) of UNNotificationServiceExtension

to the primary target by PID or Name .

3. Add breakpoints at code lines 34 and 38 as shown in the figure, and send a notification for debugging. Note that the
notification must be sent through the Apple Push Notification service (APNs) channel and that the mutable-

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 396
of 472

content field in the notification content must be 1 (since Tencent Push Notification Service SDK v1.2.8.0, the

APNs channel is used by default in the background, and the Tencent Push Notification Service channel is used in the
foreground. To debug the notification service extension plugin, you need to make the application run in the

background). If the breakpoints are executed, the debugging is successful. Otherwise, stop all targets and start over
from step 1.

FAQs

Why is there no arrival report after I sent a notification?

The notification service extension plugin must be integrated for client arrival reporting. If no arrival data is
reported after integration, check whether AccessID and AccessKey of the primary project are consistent with

those of the notification service extension plugin and whether the mutable-content field in the notification

content in the web console or RESTful API is 1 .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 397
of 472

Only when the two conditions checked are met, the notification service extension plugin on the client will be run, and
arrival data will be reported.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 398
of 472

iOS SDK FAQs
Last updated：2024-01-16 17:42:20

Push messages cannot be received

Message push involves various associated modules, and exception in any steps can leads to message delivery
failure. Below are the most common issues.

Client troubleshooting

Check device notification settings

Please go to Notifications > App name and check whether your app has the permission to push messages.
Check device network settings
Device network problems may lead to client's failure to obtain message-receiving token when registering APNs,
which can prevent TPNS from pushing message to specified devices.
Even if a client correctly obtained token and registered it with TPNS backend, the client will not receive the message

after a message is successfully delivered by the TPNS server if the device is not connected to the internet. Device
may receive a message if the device connects to the Internet in a short time. APNs will retain the message for a while
and deliver it again.
SDK access problem. After the SDK is accessed, please make sure that it can get the device token used to receive
messages. For more information, see iOS SDK Integration Guide.

Server troubleshooting

APNs server problem

As a message sent to an iOS device by the TPNS service is delivered via the APNs service, if APNs fails, the request
to APNs by the TPNS server to deliver the message to the device will fail.
TPNS server problem
The TPNS server achieves message delivery through the collaboration of multiple feature modules. If any of the
modules has a problem, message push will fail.

Push certificate troubleshooting

When the TPNS server requests the APNs to deliver the message, it needs to use two required parameters: the
message push certificate and the device token. When pushing the message, please make sure that the message push
certificate is valid. For more information about the message push certificate settings, see Notes on iOS Push
Certificate.
In order to troubleshoot server problems, you can use the TPNS testing tool, which not only helps verify the conditions

of TPNS and APNs servers, but also verifies the validity of the message push certificate and automatically generates

https://intl.cloud.tencent.com/document/product/1024/30726
https://intl.cloud.tencent.com/document/product/1024/30728
http://ixg.qq.com/pigeon_v2/resource/sdk/XGPushTool.zip

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 399
of 472

the format of the TPNS-specific certificate.
After the certificate is uploaded to the TPNS console, it usually takes about 5 minutes for it to take effect.

Why does account/tag binding or unbinding not work?

When the SDK APIs are used to bind or unbind account or tag, the TPNS server needs about 10 seconds for data

synchronization.

Why is the API for registering token missing in the new version?

In iOS SDK v1.0+, the registration of the device token is automated and handled internally by the SDK, eliminating the
need for you to manually call the API.

The device prompts for error "No valid 'aps-environment' entitlement
string found" .

Please check whether the bundle id configured in the Xcode project matches the configured Provision Profile

file, and whether the Provision Profile file corresponding to the app has been configured with the message push

capability.

How does the client redirect or respond based on the message
content?

When the iOS device receives a push message and the user taps the message to open the app, the app will respond
differently according to the status:
This function will be called if the app status is "not running".
If launchOptions contains UIApplicationLaunchOptionsRemoteNotificationKey , it means that

the user's tap on the push message causes the app to launch.

If the corresponding key value is not included, it means that the app launch is not because of the tap on the message
but probably because of the tap on the icon or other actions.
Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 400
of 472

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

{

 // Get the message content

 NSDictionary *remoteNotification = [launchOptions objectForKey:UIApplicationLau

 // Then logically handle based on the message content

}

If the app status is "in the foreground" or "in the background but still active":
In iOS 7.0+, if the Remote Notification feature is used, the following handler needs to be used:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 401
of 472

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDi

In iOS 10.0+, if the Remote Notification feature is used, it is recommended to add a ̀ `UserNotifications

Framework`` handler and use it. In iOS TPNS SDK v1.0+, the TPNS SDK has encapsulated the new framework.

Please use the following two methods in the ̀ `XGPushDelegate`` protocol:

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 402
of 472

- (void)xgPushUserNotificationCenter:(UNUserNotificationCenter *)center didReceiveN

 NSLog(@"[XGDemo] click notification");

 completionHandler();

}

// This API needs to be called when the app pops up the push message in the foregro

- (void)xgPushUserNotificationCenter:(UNUserNotificationCenter *)center willPresent

 completionHandler(UNNotificationPresentationOptionBadge | UNNotificationPresent

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 403
of 472

How does the client play custom push message audio?

First, on the device development side, place the audio file in the bundle directory;

If you use the TPNS console to create a push, enter the audio file name in Advanced settings (the full path of the
audio file is not required).

If you use REST API call, set the ̀ `sound`` parameter to the audio file name (the full path of the audio file is not

required).

Does iOS support offline retention of push message?

No. When TPSN server sends a message to APNs, if APNs finds that the device is not online, it will retain the
message for a while; however, Apple did not disclose the specific retention duration.

Why is arrival data unavailable for iOS?

In versions below iOS 9.x, the operating system does not provide an API to listen to message arrivals at the devices,

so the arrival data cannot be collected.In iOS 10.0+, the operating system provides a ̀ `Service Extension``

API, which can be called by the client to listen to message arrivals; however, the current iOS message statistics in
TPNS does not include this part of data. Please stay tuned.

How to create silent push using the TPNS server SDK?

Assign a value of 1 to ̀ `content-available `` and do not use alert, badge, or sound.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 404
of 472

Client Integration Plugin
Last updated：2024-01-16 17:42:20

In addition to the native SDK for Android and SDK for iOS, TPNS also provides integration plugins for mainstream
development tools.

Officially Maintained Versions

The officially maintained versions are released in TGit - TPNS as open-source tools. If you need to download the

packages versions, please click Download on the corresponding project page to download the needed plugin
package.
The official plugin address includes installation method, demo (in the example folder), and API description for your

reference.

Project Address

Unity Official address

Flutter Official address

React-Native Official address

Demo for Swift Official address

Cordova Official address

https://git.code.tencent.com/tpns/TPNS-Unity-Plugin
https://github.com/TencentCloud/TPNS-Flutter-Plugin
https://git.code.tencent.com/tpns/TPNS-RN-Plugin.git
https://git.code.tencent.com/tpns/TPNS-Demo-Swift.git
https://www.npmjs.com/package/cordova-plugin-tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 405
of 472

macOS Integration Guide
Overview
Last updated：2024-01-16 17:42:20

Pushing messages to macOS devices involves client app, Apple Push Notification service (APNs), and TPNS sever
(TPNS Provider). They need to collaborate throughout the entire process to successfully push messages to the client.
An exception from any of them can lead to a failure to push messages.

File Composition

XG_SDK_Cloud_macOS.framework (primary SDK file)
XGMTACloud_macOS.framework ("click report" component)

Update Description

Supports macOS v10.8 and later.
For macOS v10.14 and later:
You need to introduce UserNotification.framework .

You are advised to use Xcode v10.0 or later.

Key Features

TPNS SDK for macOS contains APIs for clients to implement message push. They are mainly used to:
Get and register device tokens automatically to facilitate integration.
Bind accounts, tags, and devices, so you can push messages to specific user groups and have more push methods.
Report the number of clicks, i.e., how many times a message is clicked by users.

Differences between TPNS SDKs for macOS and iOS

Feature Differences

Note:
 TPNS SDK for macOS does not provide the following features because they are not officially supported by Apple.

Feature iOS macOS Description

Notification ✓ × TPNS SDK for macOS does not support the notification extension

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 406
of 472

extension plugin plugin, rich media notifications, and offline reach statistics.

Custom notification
sounds

✓ × TPNS SDK for macOS does not support custom notification
sounds.

Silent messages ✓ × TPNS SDK for macOS does not support silent messages.

Notification grouping ✓ × TPNS SDK for macOS does not support notification grouping.

TPNS SDK for iOS is recommended for apps built with Mac Catalyst.
 DeviceToken cannot be obtained in the Big Sur (v11.3 or earlier) production environment.

This is a bug of Big Sur and has been fixed in v11.4.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 407
of 472

SDK Integration
Last updated：2024-01-16 17:42:20

Use Cases

This document provides sample codes for integrating with the TPNS SDK and launching the TPNS service.

SDK composition

 doc folder: contains the development guide of the TPNS SDK for macOS.

 demo folder: mainly contains sample projects and the TPNS SDK.

Integration steps

Preparing for integration

1. Log in to the TPNS console and click Product Management on the left side bar.
2. On the Product Management page, click Add Product.
3. In the Add Product dialog box, enter the product name and product details, select the product type, and click
Confirm to add a new product.
4. After the product is created, click Configuration Management > Basic Configuration on the left sidebar. You

can obtain the AccessID and AccessKEY in the Application Information section.

Importing the SDK (two methods)

Method 1: import using Cocoapods

Download through CocoaPods:

https://console.intl.cloud.tencent.com/tpns

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 408
of 472

pod 'TPNS-macOS'

Method 2: Manual import

Log in to the TPNS console and click SDK Download on the left sidebar to go to the download page. Click Download
in the macOS Platform section to download the SDK for macOS.
1.1 Go to the demo directory, open the XG-Demo-macOS folder, and add

 XG_SDK_Cloud_macOS.framework and XGMTACloud_macOS.framework to the project.

1.2 Add the following frameworks to Build Phases :

https://console.intl.cloud.tencent.com/tpns/sdkdownload

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 409
of 472

* XG_SDK_Cloud_macOS.framework

* XGMTACloud_macOS.framework

* UserNotifications.framework(10.14+)

1.3 Click TARGETS > General and select Embed & Sign in the Embed column under the
Frameworks,Libraries,and Embedded Content option, as shown in the following figure:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 410
of 472

Project configuration

1. Enable Push Notifications in the project configuration, as shown in the following figure:

2.. Add the -ObjC compilation parameter in Build Settings > Other Linker Flags.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 411
of 472

Caution:
 If checkTargetOtherLinkFlagForObjc reports an error, it is because -ObjC has not been added in Build

Settings > Other Linker Flags.

Integration sample

Call the API for launching TPNS and implement the method in the XGPushDelegate protocol as needed to launch

the push service.
1. Launch the TPNS service. The following is a demonstration in AppDelegate :

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 412
of 472

 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

/// Enable the debug mode and you can view the detailed TPNS debug information on t

// [[XGPush defaultManager] setEnableDebug:YES];

[XGPush defaultManager].launchOptions = [[aNotification userInfo] mutableCopy];

[[XGPush defaultManager] startXGWithAccessID:TPNS_ACCESS_ID accessKey:TPNS_ACCESS_K

}

2. In AppDelegate , choose to implement the method in the XGPushDelegate protocol:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 413
of 472

/// Callback for TPNS registration success

/// @param deviceToken: device token generated by APNs

/// @param xgToken: token generated by TPNS. This value is required during message

/// @param error: error message. If `error` is `nil`, the push service has been suc

 - (void)xgPushDidRegisteredDeviceToken:(NSString *)deviceToken xgToken:(NSString *

 if (!error) {

 NSLog(@"%s, register success, deviceToken:%@, xgToken:%@", __FUNCTION__, de

 } else {

 NSLog(@"%s, register failed:%@, deviceToken:%@, xgToken:%@", __FUNCTION__,e

 }

}

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 414
of 472

/// Receive callback for notification messages in a unified manner.

/// @param notification: message object

/// @param completionHandler: callback completed.

/// Message type description: if `msgtype` in the `xg` field is `1`, it means notif

/// `notification` message object description: there are two types, `NSDictionary`

 - (void)xgPushDidReceiveRemoteNotification:(id)notification withCompletionHandler:

 NSLog(@"[TPNS Demo] receive notification: %@", notification);

}

/// Unified click callback

/// @param response //`UNNotificationResponse` for iOS 10+ and macOS 10.14+, or `

/// Message type description: if `msgtype` in the `xg` field is `1`, it means notif

 - (void)xgPushDidReceiveNotificationResponse:(nonnull id)response withCompletionHa

 if ([response isKindOfClass:[UNNotificationResponse class]]) {

 NSLog(@"[TPNS Demo] click notification: %@", ((UNNotificationResponse *)res

 } else if ([response isKindOfClass:[NSDictionary class]]) {

 NSLog(@"[TPNS Demo] click notification: %@", response);

 }

 completionHandler();

}

Observing logs

If Xcode console displays a log similar to the one below, the client has properly integrated the SDK.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 415
of 472

[TPNS] Current device token is 2117b45c7e32bcdae2939f******57e420a376bdd44cf6f5861

[TPNS] Current TPNS token is 0304b8f5d4e*****0af06b37d8b850d95606

[TPNS] The server responds correctly, registering device successfully

Suggestions on Integration

Obtaining a token (optional)

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 416
of 472

It is recommended that after you integrate the SDK, you use gestures or other methods to display the token in the
app’s less commonly used UI such as About or Feedback. Doing so will facilitate subsequent troubleshooting.

Sample code

// Get the token generated by TPNS.

[[XGPushTokenManager defaultTokenManager] xgTokenString];

//Obtain the DeviceToken generated by APN

[[XGPushTokenManager defaultTokenManager] deviceTokenString];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 417
of 472

API Documentation
Last updated：2024-01-16 17:42:20

Launching the TPNS Service

The following are device registration API methods. For more information on the timing and principle of calls, see
Device registration flow.

API description

Launch the TPNS service by using the information of the application registered at the official website of TPNS.

https://intl.cloud.tencent.com/document/product/1024/30725#device-registration-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 418
of 472

- (void)startXGWithAccessID:(uint32_t)accessID accessKey:(nonnull NSString *)access

Parameter description

 accessID : AccessID applied through the frontend

 accessKey : AccessKey applied through the frontend

 Delegate : callback object

Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 419
of 472

 The parameters required by the API must be entered correctly; otherwise, TPNS will not be able to push messages
correctly for the application.

Sample code

 [[XGPush defaultManager] startXGWithAccessID:<your AccessID> accessKey:<your Acces

Terminating the TPNS Service

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 420
of 472

The following are device unregistration API methods. For more information on the timing and principle of calls, please
see Device unregistration flow.

API description

After the TPNS service is stopped, the application will not be able to push messages to devices through TPNS. To

receive messages pushed by TPNS again, you must call the startXGWithAccessID:accessKey:delegate:

method again to restart the TPNS service.

- (void)stopXGNotification;

https://intl.cloud.tencent.com/document/product/1024/30725#device-unregistration-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 421
of 472

Sample code

[[XGPush defaultManager] stopXGNotification];

TPNS Token and Registration Result

Querying the TPNS token

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 422
of 472

This API is used to query the token string generated by the current application on the TPNS server.

@property (copy, nonatomic, nullable, readonly) NSString *xgTokenString;

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 423
of 472

NSString *token = [[XGPushTokenManager defaultTokenManager] xgTokenString];

Registration result callback

API description

After the SDK is started, use this method callback to return the registration result and token.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 424
of 472

- (void)xgPushDidRegisteredDeviceToken:(nullable NSString *)deviceToken xgToken:(nu

Response parameters

 deviceToken : device token generated by APNs.

 xgToken : token generated by TPNS, which needs to be used during message push. TPNS maintains the mapping

relationship between this value and the device token generated by APNs.
 error : error message. If error is nil , TPNS has been successfully registered.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 425
of 472

Registration failure callback

API description

This is a callback for TPNS registration failures.

- (void)xgPushDidFailToRegisterDeviceTokenWithError:(nullable NSError *)error

Notification pop-up window authorization callback

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 426
of 472

This is a callback for notification pop-up window authorization results.

- (void)xgPushDidRequestNotificationPermission:(bool)isEnable error:(nullable NSErr

Response parameters

 isEnable : whether authorization is approved or not.

 error : error message. If error is nil , the pop-up authorization result has been successfully obtained.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 427
of 472

Account Feature

The following are account API methods. For more information on the timing and principle of calls, please see Account
flow.

Adding an account

API description

If there is no account of this type, it will add a new one; otherwise, it will overwrite the existing one.

https://intl.cloud.tencent.com/document/product/1024/30725#account-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 428
of 472

- (void)upsertAccountsByDict:(nonnull NSDictionary<NSNumber *, NSString *> *)accoun

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 accountsDict : account dictionary

Note:
The account type and account name together serve as the composite primary key.
You need to use the dictionary type, where key is the account type and value is the account, for example,

@{@(accountType):@"account"}.

Syntax for Objective-C: @{@(0):@"account0",@(1):@"account1"}; syntax for Swift:
[NSNumber(0):@"account0",NSNumber(1):@"account1"]
For more accountType values, see the XGPushTokenAccountType enumeration in the SDK demo package

or Account Type Value Table.

Sample code

https://intl.cloud.tencent.com/document/product/1024/40598

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 429
of 472

XGPushTokenAccountType accountType = XGPushTokenAccountTypeUNKNOWN;

NSString *account = @"account";

[[XGPushTokenManager defaultTokenManager] upsertAccountsByDict:@{ @(accountType):ac

Adding a mobile number

API description

This API is used to add or update a mobile number. It is equivalent to calling
 upsertAccountsByDict:@{@(1002):@"specific mobile number"} .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 430
of 472

- (void)upsertPhoneNumber:(nonnull NSString *)phoneNumber;

Parameter description

 phoneNumber : an E.164 mobile number in the format of [+][country code or area code][mobile

number] , for example, +8613711112222. The SDK will encrypt the mobile number for transmission.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 431
of 472

[[XGPushTokenManager defaultTokenManager] upsertPhoneNumber:@"13712345678"];;

Note:
1. This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

2. You can call delAccountsByKeys:[[NSSet alloc] initWithObjects:@(1002), nil] to delete a

mobile number.

Deleting accounts

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 432
of 472

API description

This API is used to delete all accounts of a specified account type.

- (void)delAccountsByKeys:(nonnull NSSet<NSNumber *> *)accountsKeys;

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 433
of 472

 accountsKeys : set of account types

Note:
A set is required, and the key is fixed.

For more values of accountType , please see the enumerated values of XGPushTokenAccountType in the

 XGPush.h file in the SDK package.

Sample code

XGPushTokenAccountType accountType = XGPushTokenAccountTypeUNKNOWN;

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 434
of 472

NSSet *accountsKeys = [[NSSet alloc] initWithObjects:@(accountType), nil];

[[XGPushTokenManager defaultTokenManager] delAccountsByKeys:accountsKeys];

Clearing accounts

API description

This API is used to clear all set accounts.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 435
of 472

- (void)clearAccounts;

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

[[XGPushTokenManager defaultTokenManager] clearAccounts];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 436
of 472

Tag Feature

The following are tag API methods. For more information on the timing and principle of calls, please see Tag flow.

Binding/Unbinding tags

API description

This API is used to bind tags to different users so that push can be performed based on specific tags.

- (void)appendTags:(nonnull NSArray<NSString *> *)tags

https://intl.cloud.tencent.com/document/product/1024/30725#tag-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 437
of 472

- (void)delTags:(nonnull NSArray<NSString *> *)tags

Note:
This API works in an appending manner.

This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

One application can have up to 10,000 custom tags. One device token can be bound to a maximum of 100 custom
tags (if you want to increase this limit, please submit a ticket). One custom tag can be bound to an unlimited number of
device tokens.

Parameter description

 tags : tag array

Note:
 For tag operations, tags is a tag string array, which cannot contain spaces or tabs.

Sample code

https://console.intl.cloud.tencent.com/workorder/category

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 438
of 472

// Bind tags

[[XGPushTokenManager defaultTokenManager] appendTags:@[tagStr]];

// Unbind tags

[[XGPushTokenManager defaultTokenManager] delTags:@[tagStr]];

Updating tags

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 439
of 472

This API is used to clear all the existing tags and then add tags in batches.

- (void)clearAndAppendTags:(nonnull NSArray<NSString *> *)tags

Note:
This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

This API will replace all the old tags corresponding to the current token with the current tag.

Parameter description

 tags : tag array

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 440
of 472

Note:
 For tag operations, tags is a tag string array, which cannot contain spaces or tabs.

Sample code

[[XGPushTokenManager defaultTokenManager] clearAndAppendTags:@[tagStr]];

Clearing all tags

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 441
of 472

This API is used to clear all set tags.

- (void)clearTags

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 442
of 472

[[XGPushTokenManager defaultTokenManager] clearTags];

Querying tags

API description

This API is used to query tags bound to a device.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 443
of 472

- (void)queryTags:(NSUInteger)offset limit:(NSUInteger)limit;

Note:

 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 offset : the offset of this query

 limit : the page size for this query; maximum value: 200

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 444
of 472

 [[XGPushTokenManager defaultTokenManager] queryTags:0 limit:100];

Tag query callback

API description

This is a callback for tag query results.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 445
of 472

- (void)xgPushDidQueryTags:(nullable NSArray<NSString *> *)tags totalCount:(NSUInte

Response parameters

 tags : tags returned for the query

 totalCount : total number of the tags bound to the device

 error : error message. If error is nil , the query is successful.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 446
of 472

User Attribute Feature

The following are user attribute API methods. For more information on the timing and principle of calls, please see
User attribute flow.

Adding user attributes

API description

This API is used to add or update user attributes in the key-value structure (if there is no user attribute value

corresponding to the key, it will add a new one; otherwise, it will update the value).

https://intl.cloud.tencent.com/document/product/1024/30725#user-attribute-flow

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 447
of 472

- (void)upsertAttributes:(nonnull NSDictionary<NSString *,NSString *> *)attributes

Note:

 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

 attributes : dictionary of user attribute strings, which cannot contain spaces or tabs

Note:
You need to configure user attribute keys in the console first before the operation can succeed.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 448
of 472

Both key and value can contain up to 50 characters.

A dictionary is required, and key is fixed.

Objective-C syntax: @{@"gender": @"Female", @"age": @"29"}

Syntax for Swift: ["gender":"Female", "age": "29"]

Sample code

[[XGPushTokenManager defaultTokenManager] upsertAttributes:attributes];

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 449
of 472

Deleting user attributes

API description

The API is used to delete existing user attributes.

- (void)delAttributes:(nonnull NSSet<NSString *> *)attributeKeys

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 450
of 472

 attributeKeys : set of user attribute keys, which cannot contain spaces or tabs

Note:
 A set is required and the key is fixed.

Sample code

[[XGPushTokenManager defaultTokenManager] delAttributes:attributeKeys];

Clearing all user attributes

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 451
of 472

API description

This API is used to clear all existing user attributes.

- (void)clearAttributes;

Note:
 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 452
of 472

[[XGPushTokenManager defaultTokenManager] clearAttributes];

Updating user attributes

API description

This API is used to clear all the existing user attributes and then add user attributes in batches.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 453
of 472

- (void)clearAndAppendAttributes:(nonnull NSDictionary<NSString *,NSString *> *)att

Note:

 This API should be called after xgPushDidRegisteredDeviceToken:error: returns a success.

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 454
of 472

[[XGPushTokenManager defaultTokenManager] clearAndAppendAttributes:attributes];

Badge Feature

Syncing badges

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 455
of 472

This API is used to sync the modified local badge value of an application to the TPNS server for the next push. You
can choose Create Push > Advanced Settings > Badge Number in the console to configure the badge number.

- (void)setBadge:(NSInteger)badgeNumber;

Parameter description

 badgeNumber : badge number of an application

Note:

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 456
of 472

After the local badge number is set for the application, call this API to sync it to the TPNS server, which will take effect
in the next push. This API must be called after successful TPNS registration
(xgPushDidRegisteredDeviceToken).

Sample code

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 /// Zero the badge number every time the application is started (you should set

 if ([XGPush defaultManager].xgApplicationBadgeNumber > 0) {

 [XGPush defaultManager].xgApplicationBadgeNumber = 0;

 }

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 457
of 472

 return YES;

}

- (void)xgPushDidRegisteredDeviceToken:(nullable NSString *)deviceToken xgToken:(nu

 /// Sync the badge number to TPNS after registration

 if (!error) {

 [[XGPush defaultManager] setBadge:0];

 }

}

Querying device notification permission

API description

This API is used to query whether the user allows device notifications.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 458
of 472

- (void)deviceNotificationIsAllowed:(nonnull void (^)(BOOL isAllowed))handler;

Parameter description

 handler : result return method

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 459
of 472

[[XGPush defaultManager] deviceNotificationIsAllowed:^(BOOL isAllowed) {

 <#code#>

 }];

Querying the SDK Version

API description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 460
of 472

This API is used to query the current SDK version.

- (nonnull NSString *)sdkVersion;

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 461
of 472

[[XGPush defaultManager] sdkVersion];

Log Reporting API

API description

If you find push exceptions, you can call this API to trigger reporting of local push logs. To report the problem, submit a

ticket with the file address provided to facilitate troubleshooting.

https://console.intl.cloud.tencent.com/workorder/category

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 462
of 472

- (void)uploadLogCompletionHandler:(nullable void(^)(BOOL result, NSString * _Null

Parameter description

 @brief : report log information

 @param handler : report callback

Sample code

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 463
of 472

[[XGPush defaultManager] uploadLogCompletionHandler:nil];

TPNS Log Hosting

API description

This method is used to get TPNS logs, which is irrelevant to XGPush > enableDebug .

Parameter description

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 464
of 472

 logInfo : log information

Sample code

- (void)xgPushLog:(nullable NSString *)logInfo;

Local Push

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 465
of 472

For more information about the local push feature, please click here.

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SchedulingandHandlingLocalNotifications.html#//apple_ref/doc/uid/TP40008194-CH5-SW1

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 466
of 472

Push Certificate Description
Last updated：2024-01-16 17:42:20

macOS Push Certificate Description

Operation Scenarios

macOS push certificates include push certificate for the development environment and push certificate for the release
environment.

According to this tutorial, create a push certificate for the development environment and a push certificate for the

release environment.

Directions

Generating certificate

1. On your computer, open the Keychain Access tool and select Request a Certificate From a Certificate
Authority.

2. Enter your email address, leave other fields empty, and click Continue to save the certificate locally.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 467
of 472

3. Log in to the Apple Developer website and click Certificates, Identifiers & Profiles.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 468
of 472

4. Select the application that needs a message push certificate and check the message push service.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 469
of 472

Create a message push certificate
The following is a demonstration of creating a push certificate for the development environment. The steps for creating

a certificate for the release environment are basically the same.
Go to the Certificate column and click "Add".

Here, create a push certificate for the development environment as an example.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 470
of 472

Then, select the message push certificate request file created in step 2, upload it, and click ̀ `Continue`` .

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 471
of 472

Finally, download the generated message push certificate to the local system.

Step 4. Install the certificate
Double-click the certificate downloaded in the previous step to automatically install the certificate to the Keychain
application.
Step 5. Export the certificate
Open Keychain Access, select the message push certificate to be exported and right-click it. Select Export Certificate

with the export format P12, then set the password.

Tencent Push Notification Service

©2013-2022 Tencent Cloud. All rights reserved. Page 472
of 472

Uploading Certificate

Step 1. Log in to the console.
Step 2. Go to the Configuration Management page and select the application that needs to upload the push

certificate.
Step 3. Enter the certificate password, click Upload Certificate, select your certificate to complete the upload.

https://console.intl.cloud.tencent.com/tpns/applist

