
Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 25

Elastic MapReduce

Container-Based EMR

Product Documentation

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 25

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 25

Contents

Container-Based EMR
Overview
Operation Guide

Creating Clusters
Managing Cluster

Cluster Management Overview
Managing Spark Job

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 25

Container-Based EMR
Overview
Last updated：2023-12-27 15:03:22

Unavailable for Purchase：
The container-based EMR has been unavailable for purchase from March 10, 2023 for feature updates, and existing
clusters are not affected. The new edition will be available for beta testing soon. Please stay tuned.

Container-based EMR offers a new way of deploying open-source big data components solely based on a container
service. For example, you can deploy big data components to the cloud-native EKS and leverage its strengths in
container application management to reduce the resource Ops costs and quickly create a cluster to run big data jobs.

Deployments

EMR provides open-source big data component deployments on CVM or EKS to meet different user needs.

Deployment Description

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 25

EMR on CVM EMR deploys the open-source big data components on CVM based on user needs and
starts the installed services.
In addition, the EMR console allows for Ops operations on cluster and component services
to facilitate big data job execution.

Container-based
EMR

EMR deploys the big data components in the resources provided by EKS, and the
component services run in the container.
You can run Spark jobs directly in the container cluster and associate them with RSS
clusters to improve stability.

Strengths

Strength Description

Reduced
costs

Container-based EMR is serverless and out-of-the-box with a high resource utilization.
Spark clusters automatically create Pod resources based on job needs and release them after
the jobs end, saving costs.

Easy Ops
Container-based EMR is deployed based on EKS, a fully managed Kubernetes service. In
contrast to CVM, it can quickly recover abnormal component services.
Spark clusters automatically adjust Pod resources, simplifying node resource Ops.

Elastic scaling

Container-based EMR allows you to adjust the number of containers. It relies on EKS's
unlimited resources and proprietary lightweight virtualization technology.
It can implement the quick scaling of Pod resources to support jobs involving a large data
volume.

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 25

Operation Guide
Creating Clusters
Last updated：2023-12-27 15:04:46

Overview

This document describes how to create a container-based EMR cluster in the EMR console.

Prerequisites

1. You have completed the role authorization. For more information, see Role Authorization.
2. You have completed the COS authorization. When you create a cluster, if COS access has not been granted, the

following prompt will be displayed. Click Authorize now to authorize COS. After successful COS authorization, you
won't need to authorize COS again when creating clusters in the future.

Directions

1. Log in to the EMR console and click Create Cluster on the container-based cluster list page.

https://intl.cloud.tencent.com/document/product/1026/34539
https://console.intl.cloud.tencent.com/emr/static/containerdeploy

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 25

2. On the Create Cluster page, configure the following items:

Field Name Description

Cluster Name 1. The name can contain 6–36 letters, digits, hyphens, and underscores.
2. A random cluster name will be generated by default.

Region A region is the physical location of an IDC. Currently supported regions include Beijing,
Shanghai, Guangzhou, and Nanjing.

Cluster Type Currently, Spark and RSS cluster types are supported.

Component
Version

Components and their version information under the selected cluster type.

Container
Type

If you want to select an EKS cluster but there is none in your region, a hidden EKS cluster
(counted against the quota) will be automatically created to expand EMR compute resources.

Container
Network

Set a network dedicated for the hidden EKS cluster. If you have selected a container network
for this EKS cluster, it is bound and cannot be changed.

Specification
Configuration

Currently, resource specifications can be configured only for RSS clusters. You can configure
the Pod specification of the Coordinator and Shuffle Server roles as needed.
Note that once specified, the data disk type, disk size and quantity, CPU type and range, and
memory range cannot be modified.

COS Bucket 1. Select an existing bucket or create a new one in the COS console.
2. Before using COS, you need to grant COS read/write permissions to the EMR cluster first.

3. Click Create. Then, you can view the newly created cluster in the EMR console.

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 25

Managing Cluster
Cluster Management Overview
Last updated：2023-12-27 15:05:06

This document describes how to view the information of a container-based EMR cluster in the console.

Viewing the cluster information

1. After successfully creating a cluster, log in to the container-based EMR console, click the ID/Name of the target
cluster on the Cluster list page, or select Details in the Operation column in the Cluster list.

2. Cluster Info records the basic information of the EMR cluster, such as Region Info, Namespace, Component
Version, Container/Cluster Type, Container Network, COS, Bucket Name, Custom Service Role, and
Resource Usage.
3. If you need refined authorization, you can set a custom service role for accessing Tencent Cloud resources during
the execution of big data jobs. You should select Tencent Cloud Product Service as the service role type and

Elastic MapReduce as the service supporting the role.

Terminating a cluster

When you no longer need a container-based EMR cluster, you can log in to the container-based EMR console and
select Terminate in the Operation column in the Cluster list. Then, in the Terminate Cluster pop-up window,
confirm the information of the cluster to be terminated and click Terminate.

https://console.intl.cloud.tencent.com/emr/static/containerdeploy
https://console.intl.cloud.tencent.com/emr/static/containerdeploy

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 25

Deleting a cluster

When a container-based EMR cluster fails to be created, you can log in to the container-based EMR console and
select Delete in the Operation column in the Cluster list. Then, in the Delete Cluster pop-up window, confirm the
information of the cluster to be deleted and click Confirm.

https://console.intl.cloud.tencent.com/emr/static/containerdeploy

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 25

Managing Spark Job
Last updated：2023-12-27 15:05:25

Feature Overview

Container-based EMR clusters allow you to submit Spark jobs and view job information in the console.
Note:
 A job should be submitted as a YAML file of up to 10 MB in size.

Directions

1. Log in to the container-based EMR console and click the ID/Name of the target cluster in the Cluster list to enter
the cluster details page.
2. On the cluster details page, click Job Management to submit and query jobs.
3. You can submit YAML job files through CRD in the EMR console after compiling the files.
4. Click Submit Job above the Job List to pop up the Submit Job window. Then, select the job file to be submitted

and click Confirm.

5. Click Details in the Job List to enter the Spark HistoryServer UI to view the job details.
6. Click Delete in the Job List. Then, in the Delete job pop-up window, confirm the information of the job to be
deleted and click Confirm.

Sample Job

https://console.intl.cloud.tencent.com/emr/static/containerdeploy

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 25

The process of submitting a Spark job through CRD is as follows:
1. Write a Spark program.
2. Compile and package the program into a JAR package and put the package in the COS or HDFS file system, or

write a Dockerfile to create an image for the package.
3. Write a YAML file and submit it in the console.
The following describes four sample Spark jobs:

Sample 1. Using a Spark JAR package

Below is a sample YAML job file:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 25

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

 name: test1

spec:

 hadoopConf:

 "fs.cosn.userinfo.secretId":"$SecretId"

 "fs.cosn.userinfo.secretKey":"$SecretKey"

 type: Scala

 mode: cluster

 mainClass: org.apache.spark.examples.SparkPi

 mainApplicationFile: "local:///opt/spark/examples/jars/spark-examples_2.12-3.2.0.

For more information on the parameters used in this sample, visit GitHub.
 apiVersion and kind are the resource version and type in K8s, which cannot be changed here.

 metadata.name defines the job name, which is test1 here and can be customized.

 spec.hadoopConf defines the configuration information of Hadoop. Interacting with COS requires configuring the

key information, which can be obtained on the Manage API Key page. The $SecretId and $Secretkey in the

code should be replaced with your actual SecretId and Secretkey .

 type defines the type of the Spark program, which can be Java, Scala, Python, or R. It is Scala here and can be

selected as needed.

 mode defines the deployment mode of sparkApplication , which can be cluster or client. It is cluster here

and can be selected as needed.
 driver and executor define the Spark driver and executor respectively. They are automatically generated on

the backend as follows by default:

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/v1beta2-1.2.0-3.0.0/docs/api-docs.md
https://console.intl.cloud.tencent.com/cam/capi

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 25

driver:

 cores: 1

 memory: 512m

executor:

 cores: 1

 instances: 2

 memory: 512m

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 25

You can customize the driver and executor parameters and add them to the sample YAML job file 1. Then,

the custom parameters will overwrite the default parameters. Below is a sample:

driver:

 cores: 1

 coreLimit: "1200m"

 memory: "512m"

 executor:

 cores: 1

 instances: 1

 memory: "512m"

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 25

Sample 2. Compiling and packaging a Spark program and putting the JAR package in COS
(recommended)

The following sample shows the complete process of compiling a Spark program, packaging it into a JAR package,
and writing and submitting a YAML job file.
1. Prepare for development.

You need to have a COS bucket for this job, which can be the bucket you selected when creating the cluster or a new
bucket created in the same region as the previously selected bucket.
2. Create a project with Maven.
You need to create a project and then compile, package, and upload it. Maven is recommended because it can help
you manage project dependency more easily.
3. Write a WordCount program and add the following sample code:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 25

import java.util.Arrays;

import java.util.regex.Pattern;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.sql.SparkSession;

import scala.Tuple2;

public class WordCountOnCos {

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 25

 private static final Pattern SPACE = Pattern.compile(" ");

 public static void main(String[] args){

 if (args.length < 1) {

 System.err.println("Usage: JavaWordCount <file>");

 System.exit(1);

 }

 SparkSession spark = SparkSession.builder().appName("wordCountOnCos").getOr

 JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();

 JavaRDD<String> words = lines.flatMap(s -> Arrays.<String>asList(SPACE.spli

 JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2(s, Inte

 JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> Integer.

 counts.saveAsTextFile(args[1]);

 spark.stop();

 }

}

4. Run the mvn package command to package the entire project.

5. Upload the JAR package to the COS bucket and write a YAML file as follows:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 25

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

 name: test2

spec:

 hadoopConf:

 "fs.cosn.userinfo.secretId":"$SecretId"

 "fs.cosn.userinfo.secretKey":"$SecretKey"

 type: Java

 mode: cluster

 mainClass: com.tencent.WordCountOnCos

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 25

 mainApplicationFile: "cosn://kt-test-251007880/sparkapp/jar/wordcount.jar"

 arguments:

 - "cosn://kt-test-251007880/sparkapp/input/input"

 - "cosn://kt-test-251007880/sparkapp/output"

Here, arguments is the parameters passed to the main class and indicates the input and output directories of the

WordCount program. The mainApplicationFile and the input and output directories of the WordCount

program here are examples and can be customized.

Sample 3. Compiling and packaging a Spark program into a JAR package and putting it in
HDFS

Write a Spark program and package it into a JAR package as shown in sample 2. Then, upload the package to HDFS
and write a YAML file as follows:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 25

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

 name: test3

spec:

 hadoopConf:

 "fs.cosn.userinfo.secretId":"$SecretId"

 "fs.cosn.userinfo.secretKey":"$SecretKey"

 type: Java

 mode: cluster

 mainClass: com.tencent.WordCountOnCos

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 25

 mainApplicationFile: "hdfs://$ip:$port/sparkapp/jar/wordcount.jar"

 arguments:

 - "cosn://kt-test-251007880/sparkapp/input/input"

 - "hdfs://$ip:$port/sparkapp/output"

Note:

 If you store the JAR package in HFDS, HDFS should be in the same VPC as the container-based cluster.

Sample 4. Compiling and packaging a Spark program into a JAR package and creating an
image for it

Write a Spark program and package it into a JAR package as shown in sample 2. Then, create a Dockerfile as
follows:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 25

FROM ccr.ccs.tencentyun.com/emr-image/spark:BaseImage

USER root

RUN mkdir -p /sparkapp

COPY jars/wordcount.jar /sparkapp

ENTRYPOINT ["/opt/entrypoint.sh"]

You need to inherit the base image ccr.ccs.tencentyun.com/emr-image/spark:BaseImage , which

contains the JAR package required to interact with COS.

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 25

docker build -t ccr.ccs.tencentyun.com/emr-image/spark:wc -f ./bin/Dockerfile .

Write a YAML job file as follows:

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 25

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

 name: test4

spec:

 hadoopConf:

 "fs.cosn.userinfo.secretId":"$SecretId"

 "fs.cosn.userinfo.secretKey":"$SecretKey"

 type: Java

 mode: cluster

 mainClass: com.tencent.WordCountOnCos

Elastic MapReduce

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 25

 image: ccr.ccs.tencentyun.com/emr-image/spark:wc

 mainApplicationFile: "local:///sparkapp/wordcount.jar"

 arguments:

 - "cosn://kt-test-251007880/sparkapp/input/input"

 - "cosn://kt-test-251007880/sparkapp/output"

Here, image is the image you created through packaging, and mainApplicationFile is the path of the JAR

package in the image.

