
TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 14

TencentDB for DBbrain

Best Practices

Product Documentation

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 14

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 14

Contents

Best Practices
Fixing High CPU Utilization on MySQL Instance
Fixing Lock Conflict on MySQL Instance
Fixing High CPU Utilization in MongoDB Instance
Fixing Short Node Oplog Retention Period in MongoDB Instance

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 14

Best Practices
Fixing High CPU Utilization on MySQL
Instance
Last updated：2022-07-31 17:16:07

Problem Description

Generally, high CPU utilization of a TencentDB for MySQL instance will cause system exceptions, such as slow
response, failure to get connections, and timeout. Performance drop is usually caused by a high number of retries
upon timeout, and high CPU utilization is usually caused by exceptional SQL statements. High numbers of lock

conflicts, lock waits, or uncommitted transactions may also cause high CPU utilization of TencentDB for MySQL
instances.
When a database executes business query or statement modification tasks, the CPU will request data blocks (8 KB by
default) from the memory.
If the memory has the target data, the CPU will execute the computation task and return the result to you, which may

involve actions requiring high CPU usage such as sorting.
If the memory does not have the target data, the database will get the data from the disk.
The two data acquisition processes above are called logical read and physical read, respectively. Therefore, poorly
performing SQL statements can easily cause the database to generate a lot of logical reads during the execution,
resulting in high CPU utilization. They may also make the database generate a lot of physical reads, resulting in high
IOPS and I/O latency.

Solutions

DBbrain provides three key features you can use to troubleshoot and optimize exceptional SQL statements that cause
high CPU utilization.
Exception diagnosis: detects and diagnoses exceptions 24/7 and provides optimization suggestions in real time.
Slow SQL analysis: analyzes slow SQL statements of the current instance and provides corresponding optimization
suggestions.

Audit log analysis: performs in-depth analysis on SQL statements and provides optimization suggestions based on
TencentDB audit data (full SQL).

Method 1 (recommended). Use the exception diagnosis feature to troubleshoot database
exceptions

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 14

The exception diagnosis feature can proactively locate and perform optimization for failures, and does not require
OPS experience. It can diagnose not only exceptions of high CPU utilization but also all common exceptions and
failures of TencentDB for MySQL instances.

Directions:
1. Log in to the DBbrain Console, select Diagnosis and Optimization on the left sidebar, and select Exception
Diagnosis at the top.
2. Select (enter or search for) an instance ID in the top-left corner to switch to the target instance.
3. On this page, select "Real Time" or "History" and select the time period to be queried. If any failures exist in this

period, the overview information will be displayed in "Diagnosis Prompt" on the right.
4. Click View Details in the "Real-Time" or "Historical" tab or the target diagnosis item in "Diagnosis Prompt" to
access the diagnosis details page.
Event Overview: includes the diagnosis items, start and end times, risk level, duration, and overview.
Symptom: includes symptom snapshots and performance trends of the exception event or health check event.
Intelligent Analysis: analyzes the root cause of the performance exception to help you locate the specific operation.

Expert Suggestion: provides optimization suggestions, including but not limited to SQL optimization (index and
rewrite), resource configuration optimization, and parameter fine-tuning.
5. Select the Expert Advice tab to view the optimization suggestion provided by DBbrain for this failure. In this
example, the optimization suggestion is provided for the SQL statement, which lacks the corresponding index during
execution. In this case, full-table scan needs to be performed and a single execution is costly. Therefore, the CPU

utilization tends to be high or even 100% in high-concurrence scenarios.

Method 2. Use the "slow SQL analysis" feature to troubleshoot SQL statements that lead to
high CPU utilization

1. Log in to the DBbrain Console, select Diagnosis and Optimization on the left sidebar, and select Slow SQL
Analysis at the top.
2. Select (enter or search for) an instance ID in the top-left corner to switch to the target instance.
3. On this page, select the time period to be queried. If slow SQL statements exist in this period, the time points of

occurrence and the number of statements will be displayed in a bar chart in "SQL Statistics".

Click the bar chart, and the information of all corresponding slow SQL statements (those aggregated by template) will
be displayed in the list below, and the duration distribution of SQL statements in the specified time period will be
displayed on the right.
4. You can identify and filter SQL statement execution data in the SQL statement list through the following method:
1. Sort the SQL statements by average duration (or maximum duration). Examine the top SQL statements in terms of

duration. We do not recommend you sort the statements by total duration, as the data may be affected by a high
number of executions.
2. Then, examine the numbers of returned rows and scanned rows.
If there is an SQL statement with the same "number of returned rows" and "number of scanned rows", it is very likely
that the full table has been queried and returned.

https://console.intl.cloud.tencent.com/dbbrain/analysis
https://console.intl.cloud.tencent.com/dbbrain/analysis

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 14

If there are several SQL statements with a large number of scanned rows but no or few returned rows, it means that
the system generated a lot of logical and physical reads. If the volume of the data to be queried is too high and
memory is insufficient, the request will generate many physical I/O requests and consume lots of I/O resources. Too

many logical reads will occupy too many CPU resources, resulting in high CPU utilization.
3. Click an SQL statement to view its details, resource consumption, and optimization suggestions.
On the analysis page, you can view the complete SQL template, SQL statement samples, optimization suggestions,
and description. You can optimize your SQL statements based on the expert suggestions provided by DBbrain to
improve SQL performance and reduce SQL execution duration.

On the statistics page, you can perform cross-sectional analysis of the root cause of a slow SQL statement based on
the percentages of total lock wait time, total scanned rows, and total returned rows in the statistics report, and then
optimize the statement accordingly.
On the duration distribution page, you can view the execution duration distribution intervals of the specified type of
aggregated SQL statements and the access percentage of source IPs.

Method 3. Use the "audit log analysis" feature to troubleshoot SQL statements that cause
high CPU utilization

Prerequisites: the instance needs to have the database audit feature enabled.

1. Log in to the DBbrain Console, select Diagnosis and Optimization on the left sidebar, and select Audit Log
Analysis at the top.
2. Select (enter or search for) an instance ID in the top-left corner to switch to the target instance.
3. You can select to display the insight view by QPS or the number of slow queries. Click Create Audit Task in the
top-right corner of the view. and select the task start time and duration. Then, click Confirm.

After the task is created, it will be displayed in the task list. After the task is completed, find the target record and click
View SQL Analysis to access the SQL analysis details page.
4. On the SQL analysis page, you can display the view by SQL Type, Host, User, or SQL Code. You can specify a
time period to expand the view and view data at specific time points.

The aggregated details and execution information of SQL statements in the specified time period are displayed in the

table below. If you select a time period and stretch it in the table, the SQL data will change accordingly, and only the
SQL analysis result of the selected time period will be displayed.
5. The aggregated SQL statement execution information (including the number of executions, total, maximum, and
minimum delay, and total, maximum, and minimum numbers of affected rows) is displayed in the table in the bottom of
the SQL analysis details page. You can sort SQL statements by multiple metrics to identify the ones that require
optimization.

Example:

Sort the SQL statements by the number of executions to identify the ones whose number of executions is high or has
an exception change. Then, analyze the rationality of the number of executions and optimize the statements based on
DBbrain's suggestions.

https://console.intl.cloud.tencent.com/dbbrain/analysis

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 14

By viewing the number of executions, total delay, and maximum delay, you can find that the average execution delay
of the first and second SQL statements with the highest numbers of executions is very short, which indicates that the
performance of the two SQL statements is normal.

 You can see that the single execution time of the third statement is about 100 seconds. Since its number of
executions is relatively low, its total delay ranks third. However, this SQL type must be optimized. You can click the
SQL to view information such as expert suggestions, the resource consumption analysis curve, and the source IP
analysis provided by DBbrain.
There is another type of SQL statement that requires your attention. You can see that the difference between the

maximum and minimum delays of the fourth statement is large (more than 200 seconds). This indicates that the entire
system is fluctuating, and you need to analyze whether the fluctuation is caused by network problems or changes in
the execution plan due to data volume change.
If the number of executions and the average duration of SQL statements are relatively rational and the SQL
statements with a large number of executions are optimal, it means that the performance has reached a bottleneck.
We recommend you upgrade the instance specification configuration or use read/write separation to disperse SQL

statements with a large number of executions, or use the preset cache database for optimization.

https://intl.cloud.tencent.com/document/product/236/19707
https://intl.cloud.tencent.com/document/product/236/7270

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 14

Fixing Lock Conflict on MySQL Instance
Last updated：2022-07-31 17:11:17

Problem Description

Lock conflict is a problem frequently faced by MySQL database businesses, and its symptoms vary by scenario. In
some scenarios, it may directly result in business crash, while in other scenarios, it may be hard to perceive and cause
problems such as incorrect and messy data.

The variety, complexity, and imperceptibility of lock conflict scenarios create issues that require a skilled DBA to
resolve. Troubleshooting such issues is also time-consuming.
The exception diagnosis feature of DBbrain includes dozens of lock diagnoses such as deadlocks, row lock waits,
table locks, read-only locks, DDL/SELECT/DML lock waits, and SQL MDL lock waits, helping you easily solve lock
conflicts in an efficient and professional manner.

This document uses the common row lock wait and deadlock as examples to describe how you can use DBbrain to
solve a lock conflict.

Solution

Scenario 1. Row lock wait

Step 1. View the row lock wait event

Method 1:
1.1 Log in to the DBbrain Console and select Monitoring & Alarm > Exception Alarm on the left sidebar.
1.2 Select the time period to be queried and select "Row lock wait" in the "Item" column for filtering.
1.3 The list will display the row lock wait events of the instance. Click Details in the "Operation" column to access the

event details page.
Method 2:
1.1 Log in to the DBbrain Console, select Diagnosis and Optimization on the left sidebar, and select Exception
Diagnosis.
1.2 Select the target instance above and select "Real-Time" (the data is updated dynamically by default) or "Historical"

(you can customize the time period).
1.3 Check whether there are row lock wait events in the "Diagnosis Prompt" section. You can click an event to access
its details page.

Step 2. Solve the row lock wait event

https://console.intl.cloud.tencent.com/dbbrain/instance
https://console.intl.cloud.tencent.com/dbbrain/instance

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 14

1. On the "Symptom Description" tab on the event details page, you can view the database statement running
conditions when the row lock wait event occurs.
2. Switch to the "Intelligent Analysis" tab and view the cause of the row lock wait event.

In the row lock wait transaction, you can clearly view the status of blocked transaction statements. For example, the
DELETE statement in the figure below is in LOCK WAIT state.
Based on the holdlock transaction result, quickly locate the current status and ID of the transaction with a row lock.
The performance monitoring curve displays the trends of the number of row lock waits.
3. Switch to the "Expert Suggestion" tab and solve the lock conflict problem as prompted. For example, you can run

the kill command to kill the session 3965158 and release the lock.

Scenario 2. Deadlock

Note:
Since MySQL has deadlock monitoring and automatic transaction rollback capabilities, most deadlock scenarios can
heal themselves and are imperceptible to the business. However, problems such as system crash or data
inconsistency may occur due to fragile business logic or extreme conditions. Therefore, you should pay attention to
deadlocks.

Step 1. View the deadlock event

Method 1:
1.1 Log in to the DBbrain Console and select Monitoring & Alarm > Exception Alarm on the left sidebar.
1.2 Select the time period to be queried and select "Deadlock" in the "Diagnosis Item" column for filtering.
1.3 The list will display the deadlock events of the instance. Click Details in the "Operation" column to access the
event details page.

Method 2:
1.1 Log in to the DBbrain Console, select Diagnosis and Optimization on the left sidebar, and select Exception
Diagnosis.
1.2 Select the target instance above and select "Real-Time" (the data is updated dynamically by default) or "Historical"
(you can customize the time period).

1.3 Check whether there are deadlock events in the "Diagnosis Prompt" section. You can click an event to access its
details page.

Step 2. Solve the deadlock event

In the "Symptom Description" tab on the event details page, you can analyze the following information and optimize
the corresponding statements to solve the deadlock event:
Occurrence time and source IP for future traceability.
Two SQL statements with deadlocks. For example, the two INSERT INTO statements below.

Which statement is rolled back (Rollback) and which statement is properly executed (Normal) based on the
 Status field value.

https://console.intl.cloud.tencent.com/dbbrain/instance
https://console.intl.cloud.tencent.com/dbbrain/instance

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 14

(Optional) Specific lock hold and type based on LockRequest and LockHold .

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 14

Fixing High CPU Utilization in MongoDB
Instance
Last updated：2022-08-13 20:18:46

Problem Description

In daily Ops, if the CPU utilization of a MongoDB database is too high, it will be easy to cause system exceptions; for
example, reads/writes slow down, connections are used up, and more connection timeouts occur. A large number of
access timeouts will also trigger repeated reconnection and authentication on the client, which may eventually lead to

a database crash.

It is very common for MongoDB databases in the production environment to experience a high CPU utilization. This
problem is generally caused by SQL exceptions, high traffic, in-memory sort operations, statements without indexes,
or improper use of indexes.
When the database performs operations such as query and modification, the CPU will first request data from the

storage engine cache:
If the engine cache has the target data, the CPU will execute the computing task and return the result, which may
involve actions requiring high CPU usage such as sorting.
If the cache does not have the target data, the database will get the data from the disk.

The two data acquisition processes above are called logical read and physical read, respectively. Therefore, poorly
performing SQL statements can easily cause the database to generate a lot of logical reads during the execution,

resulting in a high CPU utilization. They may also make the database generate a lot of physical reads, resulting in a
high IOPS and I/O latency.

Solution

DBbrain's exception diagnosis feature can easily locate the problem of high CPU utilization, determine the time when
the problem occurs, find the specific SQL statement that causes the problem, and give suggestions for fix. Then, you
can leverage DBbrain's slow SQL optimization feature based on the suggestions to accurately analyze the statement

and avoid similar problems.
Exception diagnosis: It detects and diagnoses exceptions 24/7 and provides optimization suggestions in real time.
Slow SQL analysis: It analyzes slow SQL statements of the current instance and provides corresponding optimization
suggestions.
Real-time session: It displays ongoing operations in the current production database for you to handle abnormal

operations.

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 14

Option 1 (recommended): Use the "exception diagnosis" feature to troubleshoot database
exceptions

The exception diagnosis feature can proactively locate and perform optimization for failures, with no Ops experience
required. It can find abnormal situations with high CPU utilization. Based on TencentDB for MongoDB Ops experts'
many years of experience and combined with machine learning, big data, and intelligent analysis algorithms, this

feature also quickly duplicates the capabilities of senior database experts to empower your MongoDB databases for
smart Ops. It can discover almost all exceptions and failures in MongoDB production databases in real time.
The steps are as shown in the example below:
1. Log in to the DBbrain console and select Performance Optimization on the left sidebar. On the displayed page,
select the Exception Diagnosis tab.

2. Select (enter or search for) an instance ID in the top-left corner to switch to the target instance.
3. On this page, select Real-Time, or select Historical and set the time range to be queried. If any failure occurred in
this period, you can view its overview information in Diagnosis Prompt on the right.
4. Click View Details in the Real-Time Diagnosis or Diagnosis Records section or click an item in the Diagnosis
Prompt section to enter the Diagnosis Details page.
Event overview: Includes the diagnosis item name, time range, risk level, duration, and overview.

Description: Includes symptom snapshots and performance trends of the exception event or health check event.
Intelligent Analysis: Analyzes the root cause of the performance exception to help you locate the specific operation.
Optimization Suggestion: Displays optimization suggestions.
5. Select the Optimization Suggestion tab to view the optimization suggestions provided by DBbrain for the failure.

Option 2: Use the "slow SQL analysis" feature to troubleshoot databases/tables leading to
high CPU utilization

1. Log in to the DBbrain console and select Performance Optimization on the left sidebar. On the displayed page,

select the Slow SQL Analysis tab.
2. Select (enter or search for) an instance ID in the top-left corner to switch to the target instance.
3. On this page, select the time period to be queried. If slow SQL statements exist in this period, the time points of
occurrence and the number of statements will be displayed in a bar chart in "SQL Statistics".

Click the bar chart, and the information of all corresponding slow SQL statements (those aggregated by template) will

be displayed in the list below, and the consumed time distribution of SQL statements in the specified time period will
be displayed on the right.
4. You can identify and filter SQL statement execution data in the SQL statement list in the following way:
1. Sort the SQL statements by average time consumed (or maximum time consumed). Check slow SQL statements.
Do not sort the statements by total time consumed, as the data may be affected by a high number of executions.
2. Then, check the numbers of returned rows and scanned rows.

If there is a SQL statement with the same number of returned rows and number of scanned rows, it is very likely
that the full table has been queried and returned.

https://console.intl.cloud.tencent.com/dbbrain
https://console.intl.cloud.tencent.com/dbbrain

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 14

If there are several SQL statements with a large number of scanned rows but no or few returned rows, it means that
the system generated a lot of logical and physical reads. If the volume of the data to be queried is too high and
memory is insufficient, the request will generate many physical I/O requests and consume lots of I/O resources. Too

many logical reads will occupy too many CPU resources, resulting in high CPU utilization.

Option 3: Use the "real-time session" feature to kill slow SQL statements

The MongoDB kernel records the currentOp information. DBbrain's real-time session feature enables you to view all
the operations being executed in the database and kill specified time-consuming SQL statements. This releases
resources such as CPU and disk I/O. In addition, the Kill Sessions during a Period option can continuously kill
sessions based on specified conditions. If the database is blocked, you can use this option to fix the exception swiftly.

Kill session:
Click Performance Optimization > Real-Time Session > Active Session, select the session to be killed, and kill
it.
Kill sessions during a period:
The Kill Sessions during a Period option can be configured in dimensions such as database, host, type, and time.
There are two trigger mechanisms: Scheduled stop and Manual stop.

To stop killing sessions during a period, click Stop to close upcoming scheduled tasks or terminate manually triggered
tasks.

TencentDB for DBbrain

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 14

Fixing Short Node Oplog Retention Period in
MongoDB Instance
Last updated：2022-08-13 20:18:46

Problem Description

In MongoDB's replica set structure, a replica node will save the data logs synced from the primary node. This method
is similar to the binlog source-replica replication method of MySQL. MongoDB uses the oplog to sync data from the
primary node to the replica node. However, the configured oplog size is not infinite, and if it is exceeded, older oplog

entries will be overwritten.
In daily Ops scenarios, when a replica database fails, the primary node still runs normally, and the failure will not affect
the running status of the entire replica set. However, if the replica node is restarted, it will need to restore data from the
primary node. At this time, if older oplog entries have been overwritten, the restored data will be incomplete since the
overwritten data is lost, and the replica node cannot return to normal status. In other cases, database restarts and long

primary-replica delays may also cause the problem of insufficient oplog entries.

Solution

DBbrain can help you observe the risks with oplog storage on all production nodes 24/7 in real time.

Using the exception diagnosis feature to troubleshoot database exceptions (recommended)

The exception diagnosis feature can proactively locate and perform optimization for failures, with no Ops experience
required. It can find abnormal situations with high CPU utilization. Based on TencentDB for MongoDB Ops experts'
many years of experience and combined with machine learning, big data, and intelligent analysis algorithms, this
feature also quickly duplicates the capabilities of senior database experts to empower your MongoDB databases for

smart Ops. It can discover almost all exceptions and failures in MongoDB production databases in real time.
The steps are as shown in the example below:
1. Log in to the DBbrain console and select Performance Optimization on the left sidebar. On the displayed page,
select the Exception Diagnosis tab.
2. In the overview section, a yellow mark indicates that a risk item is found at this time point.

3. In the Diagnosis Details list on the right, the risk item that the oplog storage period is too short is displayed at the
same time.
4. Click the risk item to view more detailed exception information. The optimization suggestion will give reasonable
measures based on the current situation.

https://console.intl.cloud.tencent.com/dbbrain/slow-sql

