&2 Tencent Cloud Game Server Elastic-scaling

Game Server Elastic-scaling

Development Guide

Product Documentation

Teent Cloud

©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 105

@Tencent Cloud Game Server Elastic-scaling

Copyright Notice
©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice
2y Tencent Cloud

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.
Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.

©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 105

&2 Tencent Cloud Game Server Elastic-scaling

Contents

Development Guide

Overall Process

Integrating Server with gRPC Framework
gRPC C++ Tutorial
gRPC C# Tutorial
gRPC Go Tutorial
gRPC Java Tutorial
gRPC Lua Tutorial
gRPC Node.js Tutorial
gRPC Unity Tutorial

Getting Server Address
TencentCloud API Calling Method
Creating Game Server Session
Placing Game Server Session

GSE Local

Latency Test Tool

Game Process Launch Configuration

©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 105

&2 Tencent Cloud

Development Guide

Overall Process

Last updated : 2020-09-08 15:27:29

Overall Flowchart

Q Client (PC, mobile device, or N
game console)

l 4.Access the server

through“Ip:port”

CVM instance

Process

Game server session

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 1. Integrate the
: gRPC framework
| for gRPC
Process : bidirectional
| streaming
>
Game server session :
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Process

Game server session

Game Server Elastic-scaling

(@)

Py Client service

GSE

Provide the runtime

environment
3. Request the
TencentCloud API and get
the server address (IP:port)

Developer

Provide the game framework
and the business logic

Tencent Cloud GSE
Scheduling Center

2. Publish the program: C++ or C# engine/custom framework

Tencent Cloud GSE Console

Integration Steps

©2013-2019 Tencent Cloud. All rights reserved.

Page 4 of 105

@Tencent Cloud Game Server Elastic-scaling

Step 1. Integrate the server with the gRPC framework

The game server communicates with GSE over gRPC. The gRPC framework can be integrated with
the game server program in various programming languages to generate game server executable
files. For more information on how to integrate GSE with the server in different languages, please see
gRPC - C++ Tutorial, gRPC - C# Tutorial, gRPC - Go Tutorial, gRPC - Java Tutorial, gRPC - Lua Tutorial,
and gRPC - Node.js Tutorial. For other languages, please see the gRPC official documentation.

Step 2. Publish the program

1. Upload an asset package
An asset package contains the executable files, dependencies, and installation script of the game
server. You need to package them as a ZIP file before upload. For more information, please see
Creating Code Packages.

2. Create a server fleet
Deploy the uploaded asset package on the created server fleet and complete process
management, deployment configuration, scaling configuration, etc. For more information, please

see Creating Server Fleets.

Step 3. Call a TencentCloud API to get the server address (IP:port)

You can get the server address (IP:port) by creating or placing a game server session.

Method 1. Create a game server session

Call a TencentCloud API:

The client TencentCloud API call process varies by supporting mode of the game server session.

« When a game server session only supports one game:
o Create a game server session (CreateGameServerSession);
o Join a game server session (JoinGameServerSession).
« When a game server session supports multiple games or one service (such as login):
o Query the game server session list (DescribeGameServerSessions) or search in the game server
session list (SearchGameServerSessions);
o If there is a game server session, join it (JoinGameServerSession);
o If there is no game server session, create one (CreateGameServerSession) and join it

(JoinGameServerSession).

For more information on how to call TencentCloud APIs, please see Creating Game Server Session.

Method 2. Place a game server session

e Call a TencentCloud API:

©2013-2019 Tencent Cloud. All rights reserved. Page 5 of 105

https://intl.cloud.tencent.com/document/product/1055/37408
https://intl.cloud.tencent.com/document/product/1055/37409
https://intl.cloud.tencent.com/document/product/1055/37410
https://intl.cloud.tencent.com/document/product/1055/37411
https://intl.cloud.tencent.com/document/product/1055/37412
https://intl.cloud.tencent.com/document/product/1055/37413
http://doc.oschina.net/grpc
https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37131
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37416

&2 Tencent Cloud

Game Server Elastic-scaling

o Start placing a game server session (StartGameServerSessionPlacement);

o Query game server session placement (DescribeGameServerSessionPlacement);

o Stop placing a game server session (StopGameServerSessionPlacement).

For more information on how to call the TencentCloud APIs, please see Placing Game Server Session.

Step 4. The client uses the IP:port to access the server

The client can connect to the target server through the IP:port returned in step 3.

Workflow

Developer Client
Register the service|and publish the code
N
>
<. ___________________________
Return whether the request has been
successfully sent

Request the
server address

Access the
server

Actively initiate the

Console

packages, and

Register conﬁguratior’J

CreateGameServerSession

Game Server

files, models, code
ependencies

rF s

ProcessReady

OnHealthCheck

A

JoinGameServerSession

L4
) OnStartGameServerSession

<

>

ActivateGameServerSession

v

Call the service b

Return the "IP:port"

sed on the address

expansion
>
[WRdtvely iifiate the ~ [T T
reduction N
>
4 ___________________________

AcceptPlayerSession

RemovePlayerSession

>
14

TerminateGameServerSession
N
>

>
»

Deploy

-~

©2013-2019 Tencent Cloud. All rights reserved.

OnProcessTerminate

F s

ProcessEnding

Destroy

Tencent Cloud backend

Initialize

Access the server

Assign

A player establishes a
connection or exits

Game server session
ends

Expand

Automatically/Manually
reduce

Page 6 of 105

https://intl.cloud.tencent.com/document/product/1055/37130
https://intl.cloud.tencent.com/document/product/1055/37137
https://intl.cloud.tencent.com/document/product/1055/37129
https://intl.cloud.tencent.com/document/product/1055/37417

@Tencent Cloud Game Server Elastic-scaling

Integrating Server with gRPC
Framework
gRPC C++ Tutorial

Last updated : 2021-11-17 18:06:09

Installing gRPC

1. Prerequisites: install CMake.

o Linux

$ sudo apt install -y cmake
o MAC OS

$ brew install cmake

2. Install gRPC and Protocol Buffers locally.

Note
For more information on the installation process, see Installing CMake, Installing gRPC C++,

and Installing Protocol Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note
We provide the .proto files for service definition. You can directly download them with no need

to generate them by yourself.

©2013-2019 Tencent Cloud. All rights reserved. Page 7 of 105

https://cmake.org/install
https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

&2 Tencent Cloud Game Server Elastic-scaling

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and
server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the
server.

3. Steps for generating gRPC code:
In the proto directory, run:

protoc ——cpp out=. *, proto

to generate the pb.cc and pb.h files.

protoc -—grpc_out=. —--plugin=protoc-gen-grpc="which grpc cpp plugin™ *.proto

to generate the corresponding gRPC code.

Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

©2013-2019 Tencent Cloud. All rights reserved. Page 8 of 105

@ Tencent Cloud Game Server Elastic-scaling

Game Server
Client gRPC GSE
framework

ProcessReady

w

OnHealthCheck

e

CreateGameServersession |

-

| OnStartGameServerSession
4

L}

o : . ActivateGameServerSession
JoinGameServersession ¥
b
»

Return the "IP:port"or "domain name"

AcceptPlayerSession

-

RemavePlayerSession

lerminateGameServersession
1]

OnProcessTerminate

F 9

ProcessEnding

w

Destroy
“
Game server callback API list
APl Name API Description
OnHealthCheck Runs health check
OnStartGameServerSession Receives game server session
OnProcessTerminate Ends game process

Game server active API list

©2013-2019 Tencent Cloud. All rights reserved. Page 9 of 105

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

&2 Tencent Cloud

API Name

ProcessReady
ActivateGameServerSession
AcceptPlayerSession
RemovePlayerSession
DescribePlayerSessions
UpdatePlayerSessionCreationPolicy
TerminateGameServerSession
ProcessEnding

ReportCustomData

Others

Game Server Elastic-scaling

API Description

Gets process ready

Activates game server session
Receives player session

Removes player session

Gets player session list

Updates player session creation policy
Ends game server session

Ends process

Reports custom data

When the game process uses gRPC to call a game server active API, you need to add two fields to

meta of the gRPC request.

Field Description

pid pid of the current game process

requestlid
request

Type

string

requestId of the current request, which is used to uniquely identify a

string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide
services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

Status GseManager::ProcessReady(std::vector<std::string> & logPath, int clientPort, int grp

cPort, GseResponse& reply)
{

ProcessReadyRequest request;
// Log path

for (auto iter = logPath.begin(); iter I=

{

request.add logpathstoupload(xiter);

}

©2013-2019 Tencent Cloud. All rights reserved.

logPath.end(); itert++)

Page 10 of 105

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

@Tencent Cloud Game Server Elastic-scaling

GConsolelLog->PrintOut(true, "ProcessReady clientPort is %d¥n”, clientPort);
GConsoleLog-8>PrintOut(true, "ProcessReady grpcPort is %d¥n”, grpcPort);

// Set the ports
request.set clientport(clientPort);
request.set grpcport(grpcPort);

ClientContext context;
AddlMetadata(context);

// Ready to provide services
return stub ->ProcessReady(&context, request, &reply);

}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the
game server every minute. If the health check fails three consecutive times, the process will be
considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::OnHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponsex reply)

{

reply->set healthstatus(healthStatus);

return Status::0K;

}

3. Because the client calls the CreateGameServerSession API to create a game server session and
assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the
process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::0nStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponsex reply)

{

auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);

GseResponse processReadyReply;

Status status = GGseManager->ActivateGameServerSession(gameServerSession. gameserversessionid()
, gameServerSession.maxplayers(), processReadyReply);

// Determine whether the activation has succeeded based on “status” and ‘replay”

©2013-2019 Tencent Cloud. All rights reserved. Page 11 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

return Status::0K;

}

4. After the game server receives onStartGameServerSession , you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the
ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

Status GseManager::ActivateGameServerSession(std::string gameServerSessionld, int maxPlayers, Gse
Response& reply)

{

GConsoleLog->PrintOut(true, "ActivateGameServerSession gameServerSessionId is %s¥n”, gameServerSe
ssionld.c str());

GConsoleLog—->PrintOut(true, "ActivateGameServerSession maxPlayers is %d¥n”, maxPlayers);
ActivateGameServerSessionRequest request;

request.set gameserversessionid(gameServerSessionId);

request. set maxplayers(maxPlayers);

ClientContext context;
AddMetadata(context);

return stub -DActivateGameServerSession(&context, request, &reply);

}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call
the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the
status of PlayerSession will be set to "Active". If the client receives no response within 60
seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

Status GseManager::AcceptPlayerSession(std::string playerSessionld, GseResponse& reply)
{

AcceptPlayerSessionRequest request;

request. set gameserversessionid(gameServerSession. gameserversessionid());

request.set playersessionid(playerSessionld);

ClientContext context;

AddMetadata(context);

©2013-2019 Tencent Cloud. All rights reserved. Page 12 of 105

https://intl.cloud.tencent.com/document/product/1055/39130

@Tencent Cloud Game Server Elastic-scaling

return stub ->DAcceptPlayerSession(&context, request, &reply);

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to
remove the player, change the status of playersession to "Completed", and reserve the player slot
in the game server session.

Status GseManager::RemovePlayerSession(std::string playerSessionld, GseResponse& reply)

{

GConsoleLog—>PrintOut(true, "RemovePlayerSession playerSessionld is %s¥n”, playerSessionld.c str
0);

RemoveP layerSessionRequest request;

request.set gameserversessionid(gameServerSession. gameserversessionid());

request.set playersessionid(playerSessionId);

ClientContext context;

AddMetadata(context);

return stub ->RemovePlayerSession(&context, request, &reply);

}

7. After a game server session (a game battle or a service) ends, the game server will call the
TerminateGameServerSession APl to end the GameServerSession and change its status to

Terminated .

Status GseManager::TerminateGameServerSession(GseResponse& reply)

{

GConsoleLog->PrintOut(true, ”start to TerminateGameServerSession¥n”);
TerminateGameServerSessionRequest request;

request.set gameserversessionid(gameServerSession. gameserversessionid());
ClientContext context;

AddMetadata(context);

return stub ->TerminateGameServerSession(&context, request, &reply);

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the
game process. The reduction will be triggered according to the protection policy configured in the
GSE console.

©2013-2019 Tencent Cloud. All rights reserved. Page 13 of 105

https://intl.cloud.tencent.com/document/product/1055/36675

@Tencent Cloud Game Server Elastic-scaling

Status GameServerGrpcSdkServiceImpl::0OnProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponse* reply)

{

auto terminationTime = request->terminationtime();
GGseManager—->SetTerminationTime(terminationTime);

// If the following two APIs are called, the game server session will be ended immediately. MWe
recommend you call “ProcessEnding™ to end the process only when there are no players or game s
erver sessions

// If the following two APIs are not called, “ProcessEnding” will be called to end the process
according to the protection policy. We recommend you configure time-period protection

//End the game server sessions
GseResponse terminateGameServerSessionReply;

GGseManager->TerminateGameServerSession(terminateGameServerSessionReply);

// End the processes
GseResponse processEndingReply;

GGseManager->ProcessEnding(processEndingReply);

return Status::0K;

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The "ProcessEnding™ API will be active
ly called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the “Proces
sEnding™ API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made

Status GseManager::ProcessEnding(GseResponse& reply)

{

GConsoleLog->PrintOut(true, ”start to ProcessEnding¥n”);

ProcessEndingRequest request;

ClientContext context;

AddMetadata(context);

©2013-2019 Tencent Cloud. All rights reserved. Page 14 of 105

@Tencent Cloud Game Server Elastic-scaling

return stub ->ProcessEnding(&context, request, &reply);

}

10. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

Status GseManager::DescribePlayerSessions(std::string gameServerSessionld, std::string playerld,
std::string playerSessionld, std::string playerSessionStatusFilter, std::string nextToken, int Lim
it, DescribePlayerSessionsResponse& reply)

{

GConsoleLog->PrintOut(true, "start to DescribePlayerSessions¥n”);

DescribePlayerSessionsRequest request;

request.set gameserversessionid(gameServerSessionId);

request. set playerid(playerId);

request.set playersessionid(playerSessionId);

request.set playersessionstatusfilter(playerSessionStatusFilter);

request. set nexttoken(nextToken);

request.set Limit(Llimit);

ClientContext context;

AddMetadata(context);

return stub ->DescribePlayerSessions(&context, request, &reply);

}

1. The game server calls the UpdatePlayerSessionCreationPolicy APIto update the player session
creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

Status GseManager::UpdatePlayerSessionCreationPolicy(std::string newpolicy, GseResponse& reply

)

{

GConsoleLog->PrintOut(true, "UpdatePlayerSessionCreationPolicy, newpolicy is %s¥n”, newpolicy.
c str());

UpdatePlayerSessionCreationPolicyRequest request;

request. set gameserversessionid(gameServerSession. gameserversessionid());

request.set newplayersessioncreationpolicy(newpolicy);

ClientContext context;

AddMetadata(context);

©2013-2019 Tencent Cloud. All rights reserved. Page 15 of 105

@Tencent Cloud Game Server Elastic-scaling

return stub —->UpdatePlayerSessionCreationPolicy(&context, request, &reply);

}

12. The game server calls the ReportCustomData API to notify GSE of the custom data that can be
viewed during game server session query (which is optional based on your actual business needs).

Status GseManager::ReportCustomData(int currentCustomCount, int maxCustomCount, GseResponse& repl
y)

{

GConsoleLog->PrintOut(true, "ReportCustomData, currentCustomCount is %d¥n”, currentCustomCount);
GConsoleLog—->PrintOut(true, "ReportCustomData, maxCustomCount is %d¥n”, maxCustomCount);
ReportCustomDataRequest request;

request.set currentcustomcount (currentCustomCount);

request. set maxcustomcount (maxCustomCount);

ClientContext context;
AddMetadata(context);

return stub ->ReportCustomData(&context, request, &reply);
}

Launching Server for GSE to Call

Server running: launch GrpcServer .

GameServerGrpcSdkServiceImpl::GameServerGrpcSdkServiceImpl() : serverAddress(”127.0.0.1:0”), heal
thStatus(true)

{

sem init(&sem, 0, 0);

}

void GameServerGrpcSdkServiceImpl::StartGrpcServer()
{

ServerBui lder builder;

bui lder.AddListeningPort(serverAddress, grpc::InsecureServerCredentials(), &grpcPort);
bui lder.RegisterService(this);

std::unique ptr<Server> server(builder.BuildAndStart());

sem post(&sem);

server—>Wait();

}

©2013-2019 Tencent Cloud. All rights reserved. Page 16 of 105

@Tencent Cloud Game Server Elastic-scaling

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

void GseManager::InitStub()

{

auto channel = grpc::CreateChannel(”127.0.0.1:5758”, grpc::InsecureChannelCredentials());
stub = GseGrpcSdkService: :NewStub(channel);

}

Demo for C++

1. Click here to download the code of the Demo for C++.
2. Generate the gRPC code.
As the gRPC code has already been generated in the cpp-demo/source/grpcsdk directory of the
Demo for C++, you do not need to generate it again.
3. Launch the server for GSE to call.
o Implement the server.
grpcserver.cpp in the cpp-demo/source/api directory implements three server APIs.
o Run the server.
grpcserver.cpp in the cpp-demo/source/api directory launches GrpcServer .
4. Connect the client to the gRPC server of GSE.
o Implement the client.
gsemanager.cpp in the cpp-demo/source/gsemanager directory implements nine client APIs.
o Connect to the server.
Create a gRPC channel, specify the host name and server port to connect to, and use this
channel to create a stub instance.
5. Compile and run the project.
i. Install CMake.
ii. Install GCC v4.9 or above.
iii. Download the code and run the following command in the cpp-demo directory:
mkdir build
cmake ..

make

The corresponding cpp-demo executable file will be generated.

©2013-2019 Tencent Cloud. All rights reserved. Page 17 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/cpp-demo.zip

@Tencent Cloud Game Server Elastic-scaling

iv. Package the cpp-demo executable file as an asset package and configure the launch path as
cpp-demo with no launch parameter needed.
v. Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

©2013-2019 Tencent Cloud. All rights reserved. Page 18 of 105

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

@Tencent Cloud Game Server Elastic-scaling

gRPC C# Tutorial

Last updated : 2021-11-17 18:06:09

Installing gRPC

1. To use gRPC C#, you need to install .Net Core 3.1 SDK first. Taking CentOS as an example, the
version must be v7, v8 or above.

o Add the signature key

sudo rpm -Uvh https://packages.microsoft.com/config/centos/7/packages-microsoft-prod. rpm
o Install .NET Core SDK

sudo yum install dotnet-sdk-3.1

2. In addition, you can also use gRPC C# in the following runtime environments/IDEs:
o Windows: .NET Framework 4.5 or higher, Visual Studio 2013 or higher, Visual Studio Code.
o Linux: Mono 4 or higher, Visual Studio Code.

o macOS X: Mono 4 or higher, Visual Studio Code, Visual Studio for Mac.

Note

For more information on the installation process, please see Installing gRPC C#.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called
remotely by using parameters and return types.

Note :

We provide the .proto files for service definition. You can click here to directly download them
with no need to generate them by yourself.

Generating gRPC Code

©2013-2019 Tencent Cloud. All rights reserved. Page 19 of 105

https://github.com/grpc/grpc/blob/v1.30.0/src/csharp/README.md#prerequisites
https://intl.cloud.tencent.com/document/product/1055/37419

@Tencent Cloud Game Server Elastic-scaling

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and
server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the
server.

3. Steps for generating gRPC code:
o Download the code. In the csharp-demo directory, run

dotnet run

to automatically compile and run the service.

o After the program is compiled and run correctly, the project's dependent libraries and binary
files, and the .cs files created by compiling the proto file will be generated in the csharp-
demo/obj/Debug/netcoreapp3. 1 folder.

o The proto fileis imported in csharp-demo/csharpdemo.csproj :

<Protobuf Include="..¥proto¥csharp-demo¥GameServerGrpcSdkService.proto” Link="GameServerGrpc
SdkService.proto”/>

<{Protobuf Include="..¥proto¥csharp-demo¥GseGrpcSdkService.proto” Link="GseGrpcSdkService. pro
to” />

The project relies on the two proto files GameServerGrpcSdkService.proto and

GseGrpcSdkService. proto in the proto/csharp-demo folder.

Game Process Integration Process

©2013-2019 Tencent Cloud. All rights reserved. Page 20 of 105

@ Tencent Cloud Game Server Elastic-scaling

Game Server
Client gRPC GSE
framework

ProcessReady

w

OnHealthCheck

e

CreateGameServersession |

-

| OnStartGameServerSession
4

L}

o : . ActivateGameServerSession
JoinGameServersession ¥
b
»

Return the "IP:port"or "domain name"

AcceptPlayerSession

-

RemavePlayerSession

lerminateGameServersession
1]

OnProcessTerminate

F 9

ProcessEnding

w

Destroy
“
Game server callback API list
APl Name API Description
OnHealthCheck Runs health check
OnStartGameServerSession Receives game server session
OnProcessTerminate Ends game process

Game server active API list

©2013-2019 Tencent Cloud. All rights reserved. Page 21 of 105

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

&2 Tencent Cloud

API Name

ProcessReady
ActivateGameServerSession
AcceptPlayerSession
RemovePlayerSession
DescribePlayerSessions
UpdatePlayerSessionCreationPolicy
TerminateGameServerSession
ProcessEnding

ReportCustomData

Others

Game Server Elastic-scaling

API Description

Gets process ready

Activates game server session
Receives player session

Removes player session

Gets player session list

Updates player session creation policy
Ends game server session

Ends process

Reports custom data

When the game process uses gRPC to call a game server active API, you need to add two fields to

meta of the gRPC request.

Field Description Type

pid pid of the current game process string
tId of th t t, which i t [ly i tif .

requestld reques of the current request, which is used to uniquely identify a string

request

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

public static GseResponse ProcessReady(string[] logPath, int clientPort, int grpcPort)

{

logger.Println($”Getting process ready, LogPath: {logPath}, ClientPort: {clientPort}, GrpcPor

t: {grpcPort}”);
// Set the ports

var req = new ProcessReadyRequest {

ClientPort = clientPort,
GrpcPort = grpcPort,
};

©2013-2019 Tencent Cloud. All rights reserved.

Page 22 of 105

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

@Tencent Cloud Game Server Elastic-scaling

// Log path

req. LogPathsToUp load. Add(logPath); // After being parsed by “pb°, the “repeated’ type is read-
only and needs to be added by running “Add”

// Ready to provide services

return GrpcClient.GseClient.ProcessReady(req, meta);

}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the
game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

public override Task<HealthCheckResponse> OnHealthCheck(HealthCheckRequest request, ServerCall
Context context)

{

logger.Println($”0nHealthCheck, HealthStatus: {GseManager.HealthStatus}”);
return Task.FromResult(new HealthCheckResponse{

HealthStatus = GseManager.HealthStatus

});

}

3. Because the client calls the CreateGameServerSession API to create a game server session and
assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

public override Task<GseResponse> OnStartGameServerSession(StartGameServerSessionRequest reque
st, ServerCallContext context)

{

logger.Println($”0nStartGameServerSession, request: {request}”);

GseManager. SetGameServerSession(request. GameServerSession) ;

var resp = GseManager.ActivateGameServerSession(request. GameServerSession. GameServerSessionld,
request. GameServerSession. MaxPlayers);

return Task.FromResult(resp);

}

4. After the game server receives onStartGameServerSession , you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the
ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

public static GseResponse ActivateGameServerSession(string gameServerSessionId, int maxPlayer

s)

©2013-2019 Tencent Cloud. All rights reserved. Page 23 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

{

logger.Println($”Activating game server session, GameServerSessionId: {gameServerSessionId}, M
axPlayers: {maxPlayers}”);

var req = new ActivateGameServerSessionRequest {

GameServerSessionld = gameServerSessionld,

MaxPlayers = maxPlayers,

};

return GrpcClient.GseClient.ActivateGameServerSession(req, meta);

}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call
the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the
status of PlayerSession will be set to "Active". If the client receives no response within 60
seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

public static GseResponse AcceptPlayerSession(string playerSessionId)

{

logger.Printn($”Accepting player session, PlayerSessionld: {playerSessionld}”);
var req = new AcceptPlayerSessionRequest {

GameServerSessionld = gameServerSession. GameServerSessionld,

PlayerSessionId = playerSessionld,

};

return GrpcClient. GseClient.AcceptPlayerSession(req, meta);

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to
remove the player, change the status of playersession to "Completed", and reserve the player

slot in the game server session.

public static GseResponse RemovePlayerSession(string playerSessionId)

{

logger.Println($”Removing player session, PlayerSessionld: {playerSessionld}”);
var req = new RemovePlayerSessionRequest {

GameServerSessionld = gameServerSession. GameServerSessionld,

PlayerSessionId = playerSessionld,

};

return GrpcClient. GseClient. RemovePlayerSession(req, meta);

}

©2013-2019 Tencent Cloud. All rights reserved. Page 24 of 105

https://intl.cloud.tencent.com/document/product/1055/39130

@Tencent Cloud Game Server Elastic-scaling

7. After a game server session (a game battle or a service) ends, the game server will call the
TerminateGameServerSession APl to end the GameServerSession and change its status to

Terminated .

public static GseResponse TerminateGameServerSession()

{

logger.PrintIn($’Terminating game server session, GameServerSessionld: {gameServerSession, Game
ServerSessionld}”);

var req = new TerminateGameServerSessionRequest {

GameServerSessionId = gameServerSession. GameServerSessionId

};

return GrpcClient.GseClient. TerminateGameServerSession(req, meta);

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the
game process. The reduction will be triggered according to the protection policy configured in the
GSE console.

public override Task<gseresponse> OnProcessTerminate(ProcessTerminateRequest request, ServerCa
LLContext context)

{

logger.Printn($”0nProcessTerminate, request: {request}”);

// Set the process termination time

GseManager. SetTerminationTime(request. TerminationTime);

// If the following two APIs are called, the game server session will be ended immediately. We
recommend you call “ProcessEnding” to end the process only when there are no players or game s
erver sessions

// If the following two APIs are not called, “ProcessEnding™ will be called to end the process
according to the protection policy. We recommend you configure time-period protection

// Terminate game server sessions

GseManager. TerminateGameServerSession();

// Exit the process

GseManager. ProcessEnding();

return Task.FromResult(new GseResponse {

Status = GseResponse. Types. Status. 0k,

ResponseData = “SUCCESS”,

});

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

©2013-2019 Tencent Cloud. All rights reserved. Page 25 of 105

https://intl.cloud.tencent.com/document/product/1055/36675

@Tencent Cloud Game Server Elastic-scaling

// Active call: a game battle corresponds to a process. The “ProcessEnding™ API will be active
ly called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the 'Proces
sEnding™ API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made

public static GseResponse ProcessEnding()

{

logger.PrintIn($”Process ending, pid: {pid}”);

var req = new ProcessEndingRequest();

return GrpcClient.GseClient.ProcessEnding(req, meta);

}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

public static DescribePlayerSessionsResponse DescribePlayerSessions(string gameServerSessionl

d, string playerId, string playerSessionId, string playerSessionStatusFilter, string nextToke

n, int Llimit)

{

logger.Println($"Describing player session, GameServerSessionId: {gameServerSessionId}, Player
Id: {playerId}, PlayerSessionId: {playerSessionld}, PlayerSessionStatusFilter: {playerSessionS
tatusFilter}, NextToken: {nextToken}, Limit: {limit}”);

var req = new DescribePlayerSessionsRequest {

GameServerSessionId = gameServerSessionld,

PlayerId = playerld,

PlayerSessionId = playerSessionld,

PlayerSessionStatusFilter = playerSessionStatusFilter,

NextToken = nextToken,

Limit = limit,

};

return GrpcClient. GseClient.DescribePlayerSessions(req, meta);

}

1. The game server calls the UpdatePlayerSessionCreationPolicy APl to update the player session
creation policy and set whether to accept new players, i.e., whether to allow new players to join a
game session (which is optional based on your actual business needs).

public static GseResponse UpdatePlayerSessionCreationPolicy(string newPolicy)

{

logger.Println($”Updating player session creation policy, newPolicy: {newPolicy}”);
var req = new UpdatePlayerSessionCreationPolicyRequest {

GameServerSessionId = gameServerSession. GameServerSessionlId,

©2013-2019 Tencent Cloud. All rights reserved. Page 26 of 105

&2 Tencent Cloud Game Server Elastic-scaling

NewP layerSessionCreationPolicy = newPolicy,
};
return GrpcClient. GseClient.UpdatePlayerSessionCreationPolicy(req, meta);

}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

public static GseResponse ReportCustomData(int currentCustomCount, int maxCustomCount)

{

logger.Println($”Reporting custom data, CurrentCustomCount: {currentCustomCount}, MaxCustomCou
nt: {maxCustomCount}”);

var req = new ReportCustomDataRequest {

CurrentCustomCount = currentCustomCount,

MaxCustomCount = maxCustomCount,

};

return GrpcClient.GseClient.ReportCustomData(req, meta);

}

Launching Server for GSE to Call

Server running: launch GrpcServer .

public class Program

{

public static int ClientPort = PortServer.GenerateRandomPort (2000, 6000);
public static int GrpcPort = PortServer.GenerateRandomPort (6001, 10000);

public static void Main(string[] args)

{

CreateHostBui lder(args).Build().Run();

}

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureWebHostDefaults(webBuilder =8>

{

webBui lder. ConfigureKestrel(options =8>

{

// gRPC port (set the HTTP/2 endpoint without TLS certificate)
options.ListenAnyIP(GrpcPort, o => o.Protocols =
HttpProtocols.Http2);

// HTTP port

©2013-2019 Tencent Cloud. All rights reserved. Page 27 of 105

&2 Tencent Cloud Game Server Elastic-scaling

options.ListenAnyIP(ClientPort);
1)

webBui lder, UseStartup<startup>();
1);
}

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

public class GrpcClient

{
private static string agentAdress = ”127.0.0.1:5758”;
public static GameServerGrpcSdkService. GameServerGrpcSdkServiceClient GameServerClient

{
get
{

Channel channel = new Channel(agentAdress, ChannelCredentials. Insecure);
return new GameServerGrpcSdkService. GameServerGrpcSdkServiceClient(channel);
}

}
public static GseGrpcSdkService. GseGrpcSdkServiceClient GseClient

{

get

{

Channel channel = new Channel(agentAdress, ChannelCredentials. Insecure);
return new GseGrpcSdkService. GseGrpcSdkServiceClient(channel);

}

}

}

Demo for C#

1. Click here to download the code of the Demo for C#.

2. Generate the gRPC code.
As the gRPC code has already been generated in the proto/csharp-demo directory of the Demo for
C#, you do not need to generate it again.

3. Launch the server for GSE to call.

©2013-2019 Tencent Cloud. All rights reserved. Page 28 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/csharp-demo.zip

@Tencent Cloud Game Server Elastic-scaling

o Implement the server.
gameserversdk.cs in the csharp-demo/api directory implements three server APIs.
o Run the server.
Program.cs inthe csharp-demo directory launches GrpcServer .
4. Connect the client to the gRPC server of GSE.
o Implement the client.
GseManager.cs in the csharp-demo/Models directory implements nine client APIs.
o Connect to the server.
Create a gRPC channel, specify the host name and server port to connect to, and use this
channel to create a stub instance.
5. Compile and run the program.

i. Generate the executable file and dependencies

dotnet publish -¢c Release -r linux-x64 --self-contained true

The above operation will generate all the dependent files needed to generate and package the

asset package in the csharp-demo/bin/Release/netcoreapp3. 1/linux-x64 directory, which contains

the executable file csharpdemo used to run the service.
o Copy the pre-request script install.sh

chmod utx install. sh
cp install.sh bin/Release/netcoreapp3. 1/linux-x64

o Package the GSE asset package

cd csharp-demo/bin/Release/netcoreapp3. 1/Llinux-x64
zip -r csharpdemo.zip *

The packaged csharpdemo.zip is the asset package needed by GSE. Configure the launch path
as csharpdemo with no launch parameter needed.

o Create a server fleet and deploy the asset package on it. After that, you can perform various
operations such as scaling.

©2013-2019 Tencent Cloud. All rights reserved. Page 29 of 105

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

@Tencent Cloud Game Server Elastic-scaling

gRPC Go Tutorial

Last updated : 2021-11-17 18:06:09

Installing gRPC

1. To use gRPC Go, you need to install the latest major release of Go first.
2. Install the protocol buffer compiler protoc3.
3. Install the Go plugin in the protocol buffer compiler.

o Run the following command to install the protocol buffer compiler plugin for Go (protoc-gen-go):

$ export GOT111MODULE=on #f Enable module mode
$ go get github.com/golang/protobuf/protoc-gen-go

o Update the path so that the protocol buffer compiler can find the Go plugin:

$ export PATH="$PATH:$(go env GOPATH)/bin”

Note

For more information on the installation process, see Installing Go and Installing Protocol Buffer

Compiler.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called
remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

©2013-2019 Tencent Cloud. All rights reserved. Page 30 of 105

https://github.com/grpc/grpc-go/tree/master/examples
https://www.grpc.io/docs/protoc-installation/
https://intl.cloud.tencent.com/document/product/1055/37419

@Tencent Cloud Game Server Elastic-scaling

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:
In the proto directory, run:

protoc —-—go out=plugins=grpc:. *.proto

to automatically generate the go_package path that contains proto. You can modify the

go_package path as needed but not the package.

Game Process Integration Process

I[](https://main. qcloudimg. com/raw/96018551bc88c71a02333b1f197b3111. png)

1ttt Game server callback API list

| API Name | API Description |

|==m] |

|[OnHealthCheck](https://intL.cloud. tencent. com/document/product/1055/37422) | Runs health chec
k |

|[OnStartGameServerSession](https://intl.cloud. tencent.com/document/product/1055/37423) | Recei
ves game server session |
|[OnProcessTerminate](https://intl.cloud. tencent. com/document/product/1055/37424)| Ends game p
rocess |

1His Game server active API list

| API Name | API Description |

| -=eme o]

|[ProcessReady](https://intLl.cloud. tencent. com/document/product/1055/37426) | Gets process read
y |

|[ActivateGameServerSession](https://intl.cloud. tencent.com/document/product/1055/37427) | Acti
vates game server session |

| [AcceptPlayerSession](https://intl.cloud. tencent. com/document/product/1055/37428)| Receives p
layer session |

| [(RemoveP layerSession](https://intl.cloud. tencent. com/document/product/1055/37429) | Removes pl
ayer session |

| [DescribePlayerSessions](https://intl.cloud. tencent. com/document/product/1055/37430)| Gets pl
ayer session list |

|[UpdatePlayerSessionCreationPolicy](https://intl.cloud. tencent.com/document/product/1055/3743
1)| Updates player session creation policy |
|[TerminateGameServerSession](https://intl.cloud. tencent. com/document/product/1055/37432) | End
S game server session |
|[ProcessEnding](https://intl.cloud. tencent. com/document/product/1055/37434) | Ends process |

| [ReportCustomData](https://intl.cloud. tencent. com/document/product/1055/37435)| Reports custo

©2013-2019 Tencent Cloud. All rights reserved. Page 31 of 105

@Tencent Cloud Game Server Elastic-scaling

m data |

Hiig Others

When the game process uses gRPC to call a game server active API, you need to add two fields t
o ‘meta’ of the gRPC request.

| Field | Description | Type |

| --e | - - - - | |

pid | “pid’ of the current game process | string |

I

| requestId | “requestId™ of the current request, which is used to uniquely identify a request
| string |

1. Generally, after the server is initialized, the process will check itself to see whether it

can provide services, and the game server will call the "ProcessReady”™ API to notify GSE that
the process is ready to host a game server session. After receiving the notification, GSE will
change the status of the server instance to "Active”.

Go

func (g *gsemanager) ProcessReady(logPath []string, clientPort int32, grpcPort int32) error {

logger.Info("start to processready", zap.Any("logPath", logPath), zap.Int32("clientPort", clientPort),

zap. Int32("grpcPort”, grpcPort))

req := &grpcsdk.ProcessReadyRequest{

// Log path
LogPathsToUpload: LlogPath,
// Set the ports
ClientPort: clientPort,
GrpcPort: grpcPort,

}
_, err := g.rpcClient.ProcessReady(g.getContext(), req)
if err '=nil {
logger. Info("ProcessReady fail”, zap.Error(err))
return err
}

// Ready to provide services

logger.Info("ProcessReady success")

©2013-2019 Tencent Cloud. All rights reserved. Page 32 of 105

@Tencent Cloud Game Server Elastic-scaling

return nil

}

2. After the process is ready, GSE will call the “OnHealthCheck™ API to perform a health check
on the game server every minute. If the health check fails three consecutive times, the proces
s will be considered to be unhealthy, and no game server sessions will be assigned to it.

Go
func _GameServerGrpcSdkService_OnHealthCheck Handler(srv interface{}, ctx context.Context,
dec func(interface{}) error, interceptor grpc.UnaryServerinterceptor) (interface{}, error) {

in := new(HealthCheckRequest)

if err := dec(in); err = nil {

return nil, err

}
if interceptor == nil {

return srv. (GameServerGrpcSdkServiceServer).OnHealthCheck(ctx, in)
}

info := &grpc.UnaryServerinfo{

Server: srv,
FullMethod: ”/tencentcloud. gse. grpcsdk. GameServerGrpcSdkService/OnHealthCheck”,

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv. (GameServerGrpcSdkServiceServer).OnHealthCheck(ctx, req. (*HealthCheckRequest))

}

return interceptor(ctx, in, info, handler)

}

3. Because the client calls the [CreateGameServerSession](https://intl.cloud. tencent.com/docum
ent/product/1055/37139) API to create a game server session and assigns it to a process, GSE w

©2013-2019 Tencent Cloud. All rights reserved. Page 33 of 105

@Tencent Cloud Game Server Elastic-scaling

ill be triggered to call the “onStartGameServerSession™ API for the process and change the sta
tus of “GameServerSession™ to "Activating”.

Go

func _GameServerGrpcSdkService_OnStartGameServerSession_Handler(srv interface{}, ctx
context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerinterceptor)
(interface{}, error) {

in := new(StartGameServerSessionRequest)

if err := dec(in); err = nil {

return nil, err

}

if interceptor == nil {

return srv. (GameServerGrpcSdkServiceServer).OnStartGameServerSession(ctx, in)

}

info := &grpc.UnaryServerinfo{

Server: sry,
Ful lMethod: ”/tencentcloud. gse. grpcsdk. GameServerGrpcSdkService/OnStartGameServerSession”,

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv. (GameServerGrpcSdkServiceServer).OnStartGameServerSession(ctx, req. (xStartGameServe
rSessionRequest))

}

return interceptor(ctx, in, info, handler)

}

4, After the game server receives ~onStartGameServerSession”, you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the “Act
ivateGameServerSession™ API to notify GSE that the game server session has been assigned to a
process and is ready to receive player requests and will change the server status to "Active”.

©2013-2019 Tencent Cloud. All rights reserved. Page 34 of 105

@Tencent Cloud Game Server Elastic-scaling

Go

func (g *gsemanager) ActivateGameServerSession(gameServerSessionld string, maxPlayers int32)
error {

logger.Info("start to ActivateGameServerSession", zap.String("gameServerSessionld",
gameServerSessionld),

zap. Int32(”"maxPlayers”, maxPlayers))

req := &grpcsdk.ActivateGameServerSessionRequest{

GameServerSessionld: gameServerSessionld,
MaxPlayers: maxPlayers,

_, err := g.rpcClient.ActivateGameServerSession(g.getContext(), req)
if err '=nil {

logger. Error(”ActivateGameServerSession fail”, zap.Error(err))
return err

logger.Info("ActivateGameServerSession success")
return nil

}

5. After the client calls the [JoinGameServerSession](https://intl.cloud. tencent. com/document/
product/1055/39130) API for the player to join, the game server will call the “AcceptPlayerSes
sion” API to verify the validity of the player. If the connection is accepted, the status of °
PlayerSession™ will be set to "Active”. If the client receives no response within 60 seconds a
fter calling the “JoinGameServerSession™ API, it will change the status of “PlayerSession™ to

"Timeout” and then call “JoinGameServerSession™ again.

func (g gsemanager) AcceptPlayerSession(playerSessionld string) (grpcsdk.GseResponse, error) {
logger.Info("start to AcceptPlayerSession", zap.String("playerSessionld", playerSessionld))
req := &grpcsdk.AcceptPlayerSessionRequest{

©2013-2019 Tencent Cloud. All rights reserved. Page 35 of 105

@Tencent Cloud Game Server Elastic-scaling

GameServerSessionld: g.gameServerSession. GameServerSessionld,
PlayerSessionId: playerSessionld,

return g.rpcClient.AcceptPlayerSession(g.getContext(), req)
}

6. After the game ends or the player exits, the game server will call the “RemovePlayerSession
* API to remove the player, change the status of “playersession’ to “Completed”, and reserve t
he player slot in the game server session.

Go

func (g gsemanager) RemovePlayerSession(playerSessionld string) (grpcsdk.GseResponse, error)

{
logger.Info("start to RemovePlayerSession", zap.String("playerSessionld", playerSessionid))

req := &grpcsdk.RemovePlayerSessionRequest{

GameServerSessionId: g.gameServerSession. GameServerSessionld,
PlayerSessionld: playerSessionld,

return g.rpcClient.RemovePlayerSession(g.getContext(), req)

}

7. After a game server session (a game battle or a service) ends, the game server will call th
e TerminateGameServerSession™ API to end the ~GameServerSession™ and change its status to "Te
rminated".

Go
func (g gsemanager) TerminateGameServerSession() (grpcsdk.GseResponse, error) {
logger.Info("start to TerminateGameServerSession")

req := &grpcsdk.TerminateGameServerSessionRequest{

GameServerSessionld: g.gameServerSession. GameServerSessionld,

©2013-2019 Tencent Cloud. All rights reserved. Page 36 of 105

@Tencent Cloud Game Server Elastic-scaling

return g.rpcClient.TerminateGameServerSession(g.getContext(), req)

}

8. In case of health check failure or reduction, GSE will call the “OnProcessTerminate™ API to
end the game process. The reduction will be triggered according to the [protection policy](htt
ps://intl.cloud. tencent. com/document/product/1055/36675) configured in the GSE console.

Go

func _GameServerGrpcSdkService_OnProcessTerminate_Handler(srv interface{}, ctx
context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerinterceptor)
(interface{}, error) {

in := new(ProcessTerminateRequest)

if err := dec(in); err '= nil {

return nil, err

}
if interceptor == nil {

return srv. (GameServerGrpcSdkServiceServer).OnProcessTerminate(ctx, in)
}

info := &grpc.UnaryServerinfo{

Server: srv,
FullMethod: ”/tencentcloud. gse. grpcsdk. GameServerGrpcSdkService/OnProcessTerminate”,

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv. (GameServerGrpcSdkServiceServer).OnProcessTerminate(ctx, req. (¥ProcessTerminateRequ
est))

}

return interceptor(ctx, in, info, handler)

©2013-2019 Tencent Cloud. All rights reserved. Page 37 of 105

@Tencent Cloud Game Server Elastic-scaling

}
9. The game server calls the "ProcessEnding™ API to end the process immediately, change the se
rver process status to "Terminated”, and repossess the resources.

Go

// Active call: a game battle corresponds to a process. The ProcessEnding API will be actively
called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the ProcessEnding
APl will be called passively according to the protection policy. If a full protection or time-period
protection policy is configured, it is required to determine whether there are any players in the
game server session before the passive call can be made

func (g gsemanager) ProcessEnding() (grpcsdk.GseResponse, error) {

logger.Info("start to ProcessEnding")

req := &grpcsdk.ProcesseEndingRequest{

}

return g.rpcClient.ProcessEnding(g.getContext(), req)
}

10. The game server calls the “DescribePlayerSessions™ API to get the information of the playe
r in the game server session (which is optional based on your actual business needs).

Go

func (g gsemanager) DescribePlayerSessions(gameServerSessionld, playerld, playerSessionld,
playerSessionStatusFilter, nextToken string,limit int32) (grpcsdk.DescribePlayerSessionsResponse,
error) {

logger.Info("start to DescribePlayerSessions", zap.String("gameServerSessionid",
gameServerSessionld),

zap. String("playerId”’, playerId), zap.String("playerSessionId”, playerSessionld),
zap.String("playerSessionStatusFilter”, playerSessionStatusFilter), zap.String("nextToken”, ne
xtToken),

zap. Int32("Limit”, Llimit))

req := &grpcsdk.DescribePlayerSessionsRequest{

©2013-2019 Tencent Cloud. All rights reserved. Page 38 of 105

@Tencent Cloud Game Server Elastic-scaling

GameServerSessionld: gameServerSessionld,

PlayerId: playerld,

PlayerSessionld: playerSessionld,
PlayerSessionStatusFilter: playerSessionStatusFilter,
NextToken: nextToken,

Limit: Llimit,

return g.rpcClient.DescribePlayerSessions(g.getContext(), req)

}

11. The game server calls the “UpdatePlayerSessionCreationPolicy™ API to update the player ses
sion creation policy and set whether to accept new players, i.e., whether to allow new players
to join a game session (which is optional based on your actual business needs).

Go

func (g gsemanager) UpdatePlayerSessionCreationPolicy(newPolicy string) (grpcsdk.GseResponse,
error) {
logger.Info("start to UpdatePlayerSessionCreationPolicy", zap.String("newPolicy", newPolicy))

req := &grpcsdk.UpdatePlayerSessionCreationPolicyRequest{

GameServerSessionld: g.gameServerSession. GameServerSessionld,
NewP layerSessionCreationPolicy: newPolicy,

return g.rpcClient.UpdatePlayerSessionCreationPolicy(g.getContext(), req)
}

12. The game server calls the “ReportCustomData” API to notify GSE of the custom data (which i
s optional based on your actual business needs).

Go
func (g gsemanager) ReportCustomData(currentCustomCount, maxCustomCount int32)
(grpcsdk.GseResponse, error) {

logger.Info("start to UpdatePlayerSessionCreationPolicy", zap.Int32("currentCustomCount",

currentCustomCount),

©2013-2019 Tencent Cloud. All rights reserved. Page 39 of 105

@Tencent Cloud Game Server Elastic-scaling

zap. Int32("maxCustomCount”, maxCustomCount))

req := &grpcsdk.ReportCustombDataRequest{

CurrentCustomCount: currentCustomCount,
MaxCustomCount: maxCustomCount,

return g.rpcClient.ReportCustomData(g.getContext(), req)
}

#t# Launching Server for GSE to Call
Server running: launch “GrpcServer’.

Go
func (s *rpcService) StartGrpcServer() {
listen, err := net.Listen("tcp", "127.0.0.1:")

if err '=nil {

logger.Fatal("grpc fail to Llisten”, zap.Error(err))

addr := listen.Addr().String()
portStr := strings.Split(addr, ":")[1]
s.grpcPort, err = strconv.Atoi(portStr)

if err '=nil {

logger.Fatal("grpc fail to get port”, zap.Error(err))

logger.Info("grpc listen port is", zap.Int("port", s.grpcPort))

©2013-2019 Tencent Cloud. All rights reserved. Page 40 of 105

@Tencent Cloud Game Server Elastic-scaling

grpcServer := grpc.NewServer()
grpcsdk.RegisterGameServerGrpcSdkServiceServer(grpcServer, s)
logger.Info("start grpc server success")

go grpcServer.Serve(listen)

}

it Connecting Client to gRPC Server of GSE
Server connecting: create a gRPC channel, specify the host name and server port to connect to,
and use this channel to create a stub instance.

Go
const (

7127.0.0.17
5758

localhost
agentPort

)

type gsemanager struct {

pid string

gameServerSession *grpcsdk. GameServerSession
terminationTime int64

rpcClient grpcsdk. GseGrpcSdkServiceClient

Demo for Go

1. [Click here](https://gsegrpcdemo-1301007756. cos. ap—guangzhou. myqc Loud. com/go-demo. zip) to d
ownload the code of the Demo for Go.

2. Generate the gRPC code.

As the gRPC code has already been generated in the “go-demo/grpcsdk™ directory of the Demo for
Go, you do not need to generate it again.

3. Launch the server for GSE to call.

- Implement the server.

“grpcserver.go” in the “go-demo/api” directory implements three server APIs.

- Run the server,

“grpcserver.go” in the “go-demo/api” directory launches “GrpcServer .

4. Connect the client to the gRPC server of GSE.

- Implement the client.

“gsemanager.go in the “go-demo/gsemanager” directory implements nine client APIs.

- Connect to the server.

©2013-2019 Tencent Cloud. All rights reserved. Page 41 of 105

@Tencent Cloud Game Server Elastic-scaling

Create a gRPC channel, specify the host name and server port to connect to, and use this chann
el to create a stub instance.

5. Compile and run the project.
1. In the “go-demo™ directory, run

go mod vendor

to generate the vendor directory.

o Run the compile command:

go build -mod=vendor main.go

to generate the corresponding go-demo executable file main. go.

}. Package the executable file main.go as an [asset package]
(https://intl.cloud. tencent. com/document/product/1055/36674) and configure the launch path as
main with no launch parameter needed.
). [Create a server fleet](https://intl.cloud. tencent.com/document/product/1055/36675) and deploy the
asset package on it. After that, you can perform various operations such as [scaling]

(https://intl.cloud. tencent. com/document/product/1055/37445).

©2013-2019 Tencent Cloud. All rights reserved. Page 42 of 105

@Tencent Cloud Game Server Elastic-scaling

gRPC Java Tutorial

Last updated : 2021-11-17 18:06:09

Installing gRPC

1. gRPC Java does not require other tools except JDK.

2. Install the gRPC Java SNAPSHOT library locally, including the code generation plugin.

Note :

For more information on the installation process, please see Installing gRPC Java.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be
called remotely by using parameters and return types.

Note
We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and
server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the
server.

3. Methods for generating gRPC code:
o Method 1. Execute the script under java-demo/src/main/proto . You need to download protoc

and protoc-gen-grpc-java generation tools from the gRPC website:

sh gen pb. sh

©2013-2019 Tencent Cloud. All rights reserved. Page 43 of 105

https://github.com/grpc/grpc-java/blob/master/COMPILING.md
https://intl.cloud.tencent.com/document/product/1055/37419

&2 Tencent Cloud Game Server Elastic-scaling

protoc ——java out=../java ——proto path=. GameServerGrpcSdkService.proto

protoc ——plugin=protoc-gen-grpc—java="which protoc-gen-grpc-java’ --grpc-java out=../java —-
proto path=. GameServerGrpcSdkService.proto

protoc -—java out=../java —-proto path=. GseGrpcSdkService.proto

protoc ——plugin=protoc-gen-grpc—java="which protoc-gen-grpc-java" --grpc—java out=../java —-
proto path=. GseGrpcSdkService.proto

o Method 2. Use the Maven tool to generate gRPC code by adding a Maven plugin for compiling

gRPC code to Maven. For more information, please see here.

<bui ld>

<{extensions>

<{extension)

<groupid>kr, motd. maven</groupid>
Cartifactiddos-maven-plugin{/artifactid>
version>1.6.2</version>

<{/extension>

{/extensions>

<plugins>

<plugin>

<{groupid>org. xolstice.maven. plugins</groupid>
Cartifactiddprotobuf-maven-plugin</artifactid>
<version>0. 6. 1</version)>

<{configuration)

<{protocartifact>com. google.protobuf:protoc:3.12.0:exe:${os.detected. classifier}</protocartif
act>

<pluginid>grpc-java</pluginid>
<{pluginartifact>io.grpc:protoc-gen-grpc—java:1.30.2:exe:${os. detected.classifier}</pluginart
ifact)

{/configuration)

<{executions>

<{execution>

{goals>

<{goal>compile</goal>

<goal>compi le-custom</goal>

</goals>

<{/execution>

</executions)

</plugin>

</plugins>

</bui ld>

Game Process Integration Process

©2013-2019 Tencent Cloud. All rights reserved. Page 44 of 105

https://github.com/grpc/grpc-java

@ Tencent Cloud Game Server Elastic-scaling

Game Server
Client gRPC GSE
framework

ProcessReady

w

OnHealthCheck

e

CreateGameServersession |

-

| OnStartGameServerSession
4

L}

o : . ActivateGameServerSession
JoinGameServersession ¥
b
»

Return the "IP:port"or "domain name"

AcceptPlayerSession

-

RemavePlayerSession

lerminateGameServersession
1]

OnProcessTerminate

F 9

ProcessEnding

w

Destroy
“
Game server callback API list
APl Name API Description
OnHealthCheck Runs health check
OnStartGameServerSession Receives game server session
OnProcessTerminate Ends game process

Game server active API list

©2013-2019 Tencent Cloud. All rights reserved. Page 45 of 105

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

&2 Tencent Cloud

API Name

ProcessReady
ActivateGameServerSession
AcceptPlayerSession
RemovePlayerSession
DescribePlayerSessions
UpdatePlayerSessionCreationPolicy
TerminateGameServerSession
ProcessEnding

ReportCustomData

Others

Game Server Elastic-scaling

API Description

Gets process ready

Activates game server session
Receives player session

Removes player session

Gets player session list

Updates player session creation policy
Ends game server session

Ends process

Reports custom data

When the game process uses gRPC to call a game server active API, you need to add two fields to

meta of the gRPC request.

Field Description Type

pid pid of the current game process string
tId of th t t, which i t [ly i tif .

requestld reques of the current request, which is used to uniquely identify a string

request

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

public GseResponseBo processReady(ProcessReadyRequestBo request) {

logger. info("processReady request=" + new Gson(). toJson(request));

GseResponseBo responseBo = new GseResponseBo();

GseGrpcSdkServiceOuterClass. ProcessReadyRequest rpcRequest = GseGrpcSdkServiceQuterClass. Proce

ssReadyRequest
// Set the ports.

.newBuilder().setClientPort(request.getClientPort())

.setGrpcPort(request. getGrpcPort())

// Log path.

©2013-2019 Tencent Cloud. All rights reserved.

Page 46 of 105

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

@Tencent Cloud Game Server Elastic-scaling

.addAllLogPathsToUpload(request. getLogPathsToUploadList()).build();
GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient(). processReady(rpcRequest);
} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

// Ready to provide services.

logger. info("processReady response=" + rpcResponse. toString());
return createResponseBoByRpcResponse(rpcResponse);

}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the
game server every minute. If the health check fails three consecutive times, the process will be
considered to be unhealthy, and no game server sessions will be assigned to it.

public boolean onHealthCheck() {

// Add game server logic for health check.

boolean res = getGrpcServiceConfig().getGseGrpcSdkServiceClient(). isProcessHealth();
logger. info("onHealthCheck status=" + res);

return res;

}

3. Because the client calls the CreateGameServerSession API to create a game server session and
assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

public GseResponseBo onStartGameServerSession(GameServerSessionBo gameServerSessionBo) {
logger. info("onStartGameServerSession gameServerSession=" + new Gson(). toJson(gameServerSessio
nBo));

// Add the game server logic used to launch the game server session.

// Save the game server sessions

getGrpcServiceConfig().getGseGrpcSdkServiceClient(). onStartGameServerSession(gameServerSession
Bo);

// Activate the game server sessions

ActivateGameServerSessionRequestBo activateRequest = new ActivateGameServerSessionRequestBo();
activateRequest. setGameServerSessionld(gameServerSessionBo. getGameServerSessionId());
activateRequest. setMaxPlayers(gameServerSessionBo. getMaxPlayers());
getGrpcServiceConfig().getGseGrpcSdkServiceClient().activateGameServerSession(activateReques
t);

// Add the final logic here.

return createResponseBo(0, ”SUCCESS”);

}

©2013-2019 Tencent Cloud. All rights reserved. Page 47 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

4. After the game server receives onStartGameServerSession , you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the
ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

public GseResponseBo activateGameServerSession(ActivateGameServerSessionRequestBo request) {
logger. info("activateGameServerSession request=" + new Gson(). toJson(request));

if (gameServerSessionBo == null) {

return createResponseBo(Constants. gameServerSessionExpectCode, “no game server session found.”
)i

}

GseResponseBo responseBo = new GseResponseBo();

GseGrpcSdkServiceOuterClass. ActivateGameServerSessionRequest rpcRequest = GseGrpcSdkServiceOut
erClass.ActivateGameServerSessionRequest

.newBuilder (). setMaxPlayers(request. getMaxPlayers())
.setGameServerSessionId(gameServerSessionBo. getGameServerSessionId()).build();
GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient().activateGameServerSession(rpcRequest);

} catch (StatusRuntimeException e) {

logger. Log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFai ledResponseBo(e. getStatus());
}

logger. info("activateGameServerSession response=
return createResponseBoByRpcResponse(rpcResponse);

}

U

+ rpcResponse. toString());

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call
the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the
status of PlayerSession will be set to "Active". If the client receives no response within 60
seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

public GseResponseBo acceptPlayerSession(PlayerSessionRequestBo request) {

logger. info("acceptPlayerSession request=" + new Gson(). toJson(request));

if (gameServerSessionBo == null) {

return createResponseBo(Constants. gameServerSessionExpectCode, “no game server session found.”
)i

}

GseResponseBo responseBo = new GseResponseBo();

GseGrpcSdkServiceOuterClass. AcceptPlayerSessionRequest rpcRequest = GseGrpcSdkServiceOuterClas
s.AcceptPlayerSessionRequest

©2013-2019 Tencent Cloud. All rights reserved. Page 48 of 105

https://intl.cloud.tencent.com/document/product/1055/39130

@Tencent Cloud Game Server Elastic-scaling

.newBui lder().setGameServerSessionld(gameServerSessionBo. getGameServerSessionId())
.setPlayerSessionld(request.getPlayerSessionId()).build();
GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rocResponse = getGseGrpcSdkServiceClient().acceptPlayerSession(rpcRequest);
} catch (StatusRuntimeException e)

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFai ledResponseBo(e. getStatus());

}

logger. info("acceptPlayerSession response=" + rpcResponse. toString());
return createResponseBoByRpcResponse(rpcResponse);

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to
remove the player, change the status of playersession to "Completed", and reserve the player
slot in the game server session.

public GseResponseBo removePlayerSession(PlayerSessionRequestBo request) {

logger. info(”removePlayerSession request=" + new Gson(). toJson(request));

if (gameServerSessionBo == null) {

return createResponseBo(Constants. gameServerSessionExpectCode, “no game server session found.”
)i

}

GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass. RemoveP layerSessionRequest rpcRequest = GseGrpcSdkServiceOuterClas
s.RemovePlayerSessionRequest

.newBui lder().setGameServerSessionld(gameServerSessionBo. getGameServerSessionId())
.setPlayerSessionld(request.getPlayerSessionId()).build();

GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rocResponse = getGseGrpcSdkServiceClient(). removePlayerSession(rpcRequest);

} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, "RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

logger. info(”removePlayerSession response=" + rpcResponse. toString());

return createResponseBoByRpcResponse (rpcResponse);

}

7. After a game server session (a game battle or a service) ends, the game server will call the
TerminateGameServerSession API to end the GameServerSession and change its status to

Terminated .

©2013-2019 Tencent Cloud. All rights reserved. Page 49 of 105

@Tencent Cloud Game Server Elastic-scaling

public GseResponseBo terminateGameServerSession(String gameServerSessionId) {
logger. info("terminateGameServerSession request=" + gameServerSessionld);

if (StringUtils. isEmpty(gameServerSessionld) && gameServerSessionBo = null

&& !StringUtils. isEmpty(gameServerSessionBo. getGameServerSessionId())) {
gameServerSessionld = gameServerSessionBo. getGameServerSessionld();

}

if (StringUtils. isEmpty(gameServerSessionld)) {

return createResponseBo(Constants. gameServerSessionExpectCode, “no game server session found.”
)i

}

GseResponseBo responseBo = new GseResponseBo();

GseGrpcSdkServiceOuterClass. TerminateGameServerSessionRequest rpcRequest = GseGrpcSdkServiceOu
terClass. TerminateGameServerSessionRequest

.newBui Llder (). setGameServerSessionId(gameServerSessionId). build();
GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient(). terminateGameServerSession(rpcRequest);
} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

logger. info(”terminateGameServerSession response=" + rpcResponse. toString());
return createResponseBoByRpcResponse(rpcResponse);

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the
game process. The reduction will be triggered according to the protection policy configured in the
GSE console.

public GseResponseBo onProcessTerminate(long terminationTime) {
logger. info("onProcessTerminate terminationTime=" + terminationTime);
// It is possible to end the game server now.

return createResponseBo(0, ”SUCCESS”);

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The “ProcessEnding™ API will be active
ly called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the “Proces
sEnding™ API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are

©2013-2019 Tencent Cloud. All rights reserved. Page 50 of 105

https://intl.cloud.tencent.com/document/product/1055/36675

@Tencent Cloud Game Server Elastic-scaling

any players in the game server session before the passive call can be made
public GseResponseBo processEnding() {

logger. info("processEnding begin”);

GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceQuterClass. ProcessEndingRequest rpcRequest = GseGrpcSdkServiceOuterClass. Proc
essEndingRequest

.newBui lder (). build();

GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rocResponse = getGseGrpcSdkServiceClient().processEnding(rpcRequest);

} catch (StatusRuntimeException e) {

logger. Log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

logger. info("processEnding response=" + rpcResponse. toString());

return createResponseBoByRpcResponse (rpcResponse);

}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

public DescribePlayerSessionsResponseBo describePlayerSessions(DescribePlayerSessionsRequestBo
request) {

logger. info("describePlayerSessions request=" + new Gson(). toJson(request));

if (StringUtils. isEmpty(request.getGameServerSessionId()) &&

gameServerSessionBo != null && !StringUtils. isEmpty(gameServerSessionBo. getGameServerSessionld
0)) A

request. setGameServerSessionId(gameServerSessionBo. getGameServerSessionId());

}

GseGrpcSdkServiceOuterClass. DescribePlayerSessionsRequest rpcRequest = GseGrpcSdkServiceOuterC
lass.DescribePlayerSessionsRequest

.newBui lder (). setGameServerSessionld(request. getGameServerSessionld())
.setLimit(request.getLimit())

.setNextToken(request. getNextToken())

.setPlayerId(request. getPlayerId())

.setPlayerSessionld(request.getPlayerSessionld())
.setPlayerSessionStatusFilter(request.getPlayerSessionStatusFilter()).build();
GseGrpcSdkServiceQuterClass. DescribePlayerSessionsResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient(). describePlayerSessions(rpcRequest);

} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return null;

}

logger. info(”describePlayerSessions response=" + rpcResponse. toString());

©2013-2019 Tencent Cloud. All rights reserved. Page 51 of 105

@Tencent Cloud Game Server Elastic-scaling

return toPlayerSessionsResponseBo(rpcResponse);

}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session
creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

public GseResponseBo updatePlayerSessionCreationPolicy(UpdatePlayerSessionCreationPolicyReques
tBo request) {

logger. info("updatePlayerSessionCreationPolicy request=’
if (gameServerSessionBo == null) {

return createResponseBo(Constants. gameServerSessionExpectCode, “no game server session found.”
)i

}

GseResponseBo responseBo = new GseResponseBo();

GseGrpcSdkServiceOuterClass. UpdatePlayerSessionCreationPolicyRequest rpcRequest = GseGrpcSdkSe
rviceOuterClass. UpdatePlayerSessionCreationPolicyRequest

.newBui lder (). setGameServerSessionld(gameServerSessionBo. getGameServerSessionld())
.setNewPlayerSessionCreationPolicy(request. getNewPlayerSessionCreationPolicy()).build();
GseGrpcSdkServiceOuterClass, GseResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient().updatePlayerSessionCreationPolicy(rpcRequest);

} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

logger. info("updatePlayerSessionCreationPolicy response=" + rpcResponse. toString());

return createResponseBoByRpcResponse(rpcResponse);

}

+ new Gson(). todson(request));

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

public GseResponseBo reportCustomData(ReportCustomDataRequestBo request) {
logger. info("reportCustomData request=" + new Gson(). toJson(request));
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass. ReportCustomDataRequest rpcRequest = GseGrpcSdkServiceOuterClass. R
eportCustomDataRequest

.newBui Lder ()

.setCurrentCustomCount (request. getCurrentCustomCount())

. setMaxCustomCount (request. getMaxCustomCount()). build();
GseGrpcSdkServiceOuterClass. GseResponse rpcResponse;

try {

rpcResponse = getGseGrpcSdkServiceClient(). reportCustomData(rpcRequest);

©2013-2019 Tencent Cloud. All rights reserved. Page 52 of 105

@Tencent Cloud Game Server Elastic-scaling

} catch (StatusRuntimeException e) {

logger. log(Level. WARNING, ”"RPC failed: {0}”, e.getStatus());

return createRpcFailedResponseBo(e. getStatus());

}

logger. info(”reportCustomData response=" + rpcResponse. toString());
return createResponseBoByRpcResponse(rpcResponse);

}

Launching Server for GSE to Call
Server running: launch GrpcServer .

@Bean(name = "grpcService”, initMethod = "startup”, destroyMethod = ”shutdown”)
public GrpcService getGrpcService() {

GrpcServiceConfig grpcServiceConfig = new GrpcServiceConfig();
grpcServiceConfig. setGseGrpcSdkServiceClient (gseGrpcSdkServiceClient);
grpcServiceConfig. setGameServerGrpcPort (gameServerGrpcPort);

grpcServiceConfig. setGameServerToClientPort(gameServerToClientPort);
grpcServiceConfig. setTargetAddress(targetAddress);

grpcServiceConfig. setGameServerUploadLogPath(gameServerUp loadLogPath);
GrpcService grpcService = new GrpcService(grpcServiceConfig);

return grpcService;

}

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and
use this channel to create a stub instance.

public GseGrpcSdkServiceGrpc. GseGrpeSdkServiceBlockingStub getGseGrpcSdkServiceGlient() {

// The “channel” here is a channel instead of a “ManagedChannel ; therefore, it is not the respon
sibility of the code to shut it down.

// Pass the channel to the code to make it easier for the code to test and reuse the channel.
if (blockingStub == null) {

managedChannel = getGrpcChannel(targetAddress);

blockingStub = GseGrpcSdkServiceGrpc. newBlockingStub(managedChannel);

}

if (managedChannel. isShutdown() || managedChannel. isTerminated()) {
managedChanne L. shutdownNow() ;

managedChannel = getGrpcChannel(targetAddress);

blockingStub = GseGrpcSdkServiceGrpc. newBlockingStub(managedChannel);

©2013-2019 Tencent Cloud. All rights reserved. Page 53 of 105

@Tencent Cloud Game Server Elastic-scaling

}
return blockingStub;

}

Demo for Java

1. Click here to download the code of the Demo for Java.

2. Generate the gRPC code.
As the gRPC code has already been generated in the java-demo/src/main/java/tencentcloud
directory of the Demo for Java, you do not need to generate it again.

3. Launch the server for GSE to call.
o Implement the server.

GameServerGrpcCallbackImpl. java in the java-
demo/src/main/java/com/tencentcloud/gse/gameserver/service/gamelogic/impl directory implements
three server APIs.

o Run the server.

GameServerConfig. java in the java-demo/src/main/java/com/tencentcloud/gse/gameserver/config
directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.
o Implement the client.

GseGrpcSdkServiceClientImpl, java in the java-
demo/src/main/java/com/tencentcloud/gse/gameserver/service/gsegrpc/impl directory implements
nine client APIs.

o Connect to the server.
Create a gRPC channel, specify the host name and server port to connect to, and use this
channel to create a stub instance.
5. Compile and run the project.

i. Java v1.8 or above is required. You can use yum to install openjdk on Linux:
yum install -y java-1.8.0-openjdk

o Download the code, use Maven to build and generate gse-gameserver-demo. jar inthe java-

demo directory, and run the following command to launch it:
java -jar gse-gameserver-demo, jar

o Package the executable file gse-gameserver-demo. jar as an asset package and configure the

launch path as java and the launch parameter as jar gse-gameserver-demo. jar .

©2013-2019 Tencent Cloud. All rights reserved. Page 54 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/java-demo.zip
https://intl.cloud.tencent.com/document/product/1055/36674

&2 Tencent Cloud Game Server Elastic-scaling

o Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

©2013-2019 Tencent Cloud. All rights reserved. Page 55 of 105

https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

@Tencent Cloud Game Server Elastic-scaling

gRPC Lua Tutorial

Last updated : 2021-11-17 18:06:10

Installing gRPC

1. Install gRPC. The installation will generate an executable program grpc_cpp_plugin , which will be
needed for generating gRPC code.
2. Install protocol buffers.

Note
For more information on the installation process, see Installing gRPC Lua and Installing Protocol

Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note
We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and
server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the
server.

3. Steps for generating gRPC code:
The Demo for Lua relies on the C++ framework. Just like with the Demo for C++, in the proto

directory, run:

©2013-2019 Tencent Cloud. All rights reserved. Page 56 of 105

https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

&2 Tencent Cloud Game Server Elastic-scaling

protoc ——cpp out=. *,proto
to generate the pb.cc and pb.h files.
protoc -—grpc_out=. —--plugin=protoc-gen-grpc="which grpc cpp plugin” *.proto

to generate the corresponding gRPC code.

Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

©2013-2019 Tencent Cloud. All rights reserved. Page 57 of 105

@ Tencent Cloud Game Server Elastic-scaling

Game Server
Client gRPC GSE
framework

ProcessReady

w

OnHealthCheck

F 9

CreateGameServersession |

-

OnStartGameServerSession

L}

o : . ActivateGameServerSession
JoinGameServersession ¥
b

Return the "IP:port"or "domain name" ‘
‘_ ___

AcceptPlayerSession

k
r

RemavePlayerSession

lerminateGameServersession
1]

OnProcessTerminate

F 9

ProcessEnding

w

Destroy
“
Game server callback API list
APl Name API Description
OnHealthCheck runs health check
OnStartGameServerSession Receives game server session
OnProcessTerminate Ends game process

Game server callback API list

©2013-2019 Tencent Cloud. All rights reserved. Page 58 of 105

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

&2 Tencent Cloud

API Name

ProcessReady
ActivateGameServerSession
AcceptPlayerSession
RemovePlayerSession
DescribePlayerSessions
UpdatePlayerSessionCreationPolicy
TerminateGameServerSession
ProcessEnding

ReportCustomData

Others

Game Server Elastic-scaling

API Description

Gets process ready

Activates game server session
Receives player session

Removes player session

Gets player session list

Updates player session creation policy
Ends game server session

Ends process

Reports custom data

When the game process uses gRPC to call a game server active API, you need to add two fields to

meta of the gRPC request.

Field Description Type

pid pid of the current game process string
tId of th t t, which i t [ly i tif .

requestld reques of the current request, which is used to uniquely identify a string

request

1. Generally, after the server is initialized, the process will check itself to see whether it can provide
services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

static bool luaProcessReady(std::vector <std::string)> &logPath, int clientPort, int grpcPort)

{

GseResponse reply;
// Log path. Set the ports.

Status status = GGseManager->ProcessReady(logPath, clientPort, grpcPort, reply);

// Ready to provide services
GSESDK()->setReplyStatus(status);
if (Istatus.ok()) {

return false;

©2013-2019 Tencent Cloud. All rights reserved.

Page 59 of 105

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

@Tencent Cloud Game Server Elastic-scaling

}

return true;

}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the
game server every minute. If the health check fails three consecutive times, the process will be
considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::OnHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponsex reply)

{

healthStatus = GSESDK()->exec(”return OnHealthCheck()”);

std::cout << "healthStatus=" << healthStatus << std::endl;

reply->set healthstatus(healthStatus);

return Status::0K;

}

3. Because the client calls the CreateGameServerSession API to create a game server session and
assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the
process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::0nStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponsex reply)

{

auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);

std::ostringstream o;

o << "return OnStartGameServerSession(
gameServerSession. maxplayers() << ”)”;
std::string luaCmd = o.str();

bool res = GSESDK()->exec(luaCmd);
return Status::0K;

}

r»

<< gameServerSession. gameserversessionid() << 77,7 K

4. After the game server receives onStartGameServerSession , you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the
ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

static bool luaActivateGameServerSession(const std::string &gameServerSessionld, int maxPlayer

s) {

©2013-2019 Tencent Cloud. All rights reserved. Page 60 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

GseResponse reply;

Status status = GGseManager->ActivateGameServerSession(gameServerSessionId, maxPlayers, repl
y);

GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call
the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the
status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to
"Timeout" and then call JoinGameServerSession again.

static bool luaAcceptPlayerSession(const std::string &gameServerSessionld, const std::string &
playerSessionld) {

GseResponse reply;

Status status = GGseManager->AcceptPlayerSession(gameServerSessionld, playerSessionld, reply);
GSESDK()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player
slot in the game server session.

static bool luaRemovePlayerSession(const std::string &gameServerSessionld, const std::string &
playerSessionId) {

GseResponse reply;

Status status = GGseManager->RemovePlayerSession(gameServerSessionld, playerSessionld, reply);
GSESDK()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

©2013-2019 Tencent Cloud. All rights reserved. Page 61 of 105

https://intl.cloud.tencent.com/document/product/1055/39130

@Tencent Cloud Game Server Elastic-scaling

7. After a game server session (a game battle or a service) ends, the game server will call the
TerminateGameServerSession APl to end the GameServerSession and change its status to

Terminated .

static bool luaTerminateGameServerSession(const std::string &gameServerSessionld) {
GseResponse reply;

Status status = GGseManager->TerminateGameServerSession(gameServerSessionId, reply);
GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate APl to end the

game process. The reduction will be triggered according to the protection policy configured in the
GSE console.

Status GameServerGrpcSdkServiceImpl::OnProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponsex reply)

{

auto terminationTime = request->terminationtime();

std::to string(terminationTime));

std::ostringstream o;

0 << "0OnProcessTerminate(” << terminationTime << ”)”;

std::string luaCmd = o.str();

GSESDK ()->execWithNi LResult(luaCmd);

return Status::0K;

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The “ProcessEnding™ API will be active
ly called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the “Proces
sEnding™ API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are

any players in the game server session before the passive call can be made

static bool luaProcessEnding() {

GseResponse reply;

Status status = GGseManager->ProcessEnding(reply);

GSESDK()->setReplyStatus(status);

©2013-2019 Tencent Cloud. All rights reserved. Page 62 of 105

https://intl.cloud.tencent.com/document/product/1055/36675

@Tencent Cloud Game Server Elastic-scaling

if (Istatus.ok()) {
return false;

}

return true;

}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

static bool luaDescribePlayerSessions(const std::string &gameServerSessionld,
const std::string &playerlId,

const std::string &playerSessionld,

const std::string &playerSessionStatusFilter, const std::string &nextToken,
int Limit) {

DescribePlayerSessionsResponse reply;

Status status = GGseManager->DescribePlayerSessions(gameServerSessionld, playerId, playerSessio
nld, playerSessionStatusFilter, nextToken, Llimit, reply);

GSESDK ()->setDescribePlayerSessionsResponse(reply);

if (Istatus.ok()) {

return false;

}

return true;

}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session
creation policy and set whether to accept new players, i.e., whether to allow new players to join a
game session (which is optional based on your actual business needs).

static bool luaUpdatePlayerSessionCreationPolicy(const std::string &newpolicy) {
GseResponse reply;

Status status = GGseManager->UpdatePlayerSessionCreationPolicy(newpolicy, reply);
GSESDK()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

©2013-2019 Tencent Cloud. All rights reserved. Page 63 of 105

@Tencent Cloud Game Server Elastic-scaling

static bool luaReportCustomData(int currentCustomCount, int maxCustomCount) {
GseResponse reply;

Status status = GGseManager->ReportCustomData(currentCustomCount, maxCustomCount, reply);
GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

Launching Server for GSE to Call

Server running: launch GrpcServer .

// Launch the gRPC server

std::thread tGrpc(&GameServerGrpcSdkServiceImpl::StartGrpcServer, GGameServerGrpcSdkService);
sem wait(&(GGameServerGrpcSdkService->sem));

auto grpcPort = GGameServerGrpcSdkService->GetGrpcPort();

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and
use this channel to create a stub instance.

void GseManager::InitStub() {

auto channel = grpc::CreateChannel(”127.0.0.1:5758”, grpc::InsecureChannelCredentials());
stub = GseGrpcSdkService: :NewStub(channel);

}

Demo for Lua

1. Click here to download the code of the Demo for Lua.

2. Generate the gRPC code.
The Demo for Lua relies on the C++ framework, with gRPC code generated in the cpp-
demo/source/grpcsdk directory, so there is no need to generate it again.

3. Launch the server for GSE to call.

©2013-2019 Tencent Cloud. All rights reserved. Page 64 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/lua-demo.zip

@Tencent Cloud Game Server Elastic-scaling

o Implement the server.
grpcserver.cpp in the Llua-demo/source/api directory implements three server APIs.
o Run the server.
main.cpp in the lua-demo directory launches GrpcServer .
4. Connect the client to the gRPC server of GSE.
o Implement the client.
GSESdkHand LeWrapper.cpp in the Llua-demo/source/lua directory implements nine client APIs.
o Connect to the server.
Create a gRPC channel, specify the host name and server port to connect to, and use this
channel to create a stub instance.
5. Compile and run the project.
i. Install CMake.
Install GCC v4.9 or above.

Install the LuajIT and Boost development kits:

[o]

o

yum install -y luajit-devel
yum install -y boost-devel
yum install -y cmake

[e]

Download the code and run the following command in the Llua-demo directory:

mkdir build

cd bui ld

cmake ..

make

cp ../source/lua/gse. lua .

The corresponding lua-demo executable file will be generated. Run ./lua-demo to launch it.
o Package the executable file lua-demo.cpp as an asset package and configure the launch path
as lua-demo with no launch parameter needed.
o Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

©2013-2019 Tencent Cloud. All rights reserved. Page 65 of 105

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

@Tencent Cloud Game Server Elastic-scaling

gRPC Node.js Tutorial

Last updated : 2022-01-21 11:48:44

Installing gRPC

1. Install gRPC. The installation will generate an executable program grpc _cpp plugin , which will be
needed for generating gRPC code.
2. Install protocol buffers.

Note
For more information on the installation process, see Installing gRPC Lua and Installing Protocol

Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note
We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

©2013-2019 Tencent Cloud. All rights reserved. Page 66 of 105

https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

&2 Tencent Cloud Game Server Elastic-scaling

i. The Demo for Lua relies on the C++ framework. Just like with the Demo for C++, in the proto

directory, run:

protoc ——cpp out=. *,proto

ii. Generate the pb.cc and pb.h files.

protoc —-—grpc out=. --plugin=protoc-gen-grpc="which grpc cpp plugin’ *, proto

iii. Generate the corresponding gRPC code.

iv. Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

©2013-2019 Tencent Cloud. All rights reserved. Page 67 of 105

@ Tencent Cloud Game Server Elastic-scaling

Game Server
Client gRPC GSE
framework

ProcessReady

w

OnHealthCheck

F 9

CreateGameServersession |

-

OnStartGameServerSession

L}

o : . ActivateGameServerSession
JoinGameServersession ¥
b

Return the "IP:port"or "domain name" ‘
‘_ ___

AcceptPlayerSession

k
r

RemavePlayerSession

lerminateGameServersession
1]

OnProcessTerminate

F 9

ProcessEnding

w

Destroy
“
Game server callback API list
APl Name API Description
OnHealthCheck Runs health check
OnStartGameServerSession Receives game server session
OnProcessTerminate Ends game process

Game server active API list

©2013-2019 Tencent Cloud. All rights reserved. Page 68 of 105

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

&2 Tencent Cloud

API Name

ProcessReady
ActivateGameServerSession
AcceptPlayerSession
RemovePlayerSession
DescribePlayerSessions
UpdatePlayerSessionCreationPolicy
TerminateGameServerSession
ProcessEnding

ReportCustomData

Others

Game Server Elastic-scaling

API Description

Gets process ready

Activates game server session
Receives player session

Removes player session

Gets player session list

Updates player session creation policy
Ends game server session

Ends process

Reports custom data

When the game process uses gRPC to call a game server active API, you need to add two fields to

meta of the gRPC request.

Field Description Type

pid pid of the current game process string
tId of th t t, which i t [ly i tif .

requestld reques of the current request, which is used to uniquely identify a string

request

1. Generally, after the server is initialized, the process will check itself to see whether it can provide
services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

static bool luaProcessReady(std::vector <std::string> &logPath, int clientPort, int grpcPort)

{

GseResponse reply;
// Log path. Set the ports.

Status status = GGseManager->ProcessReady(logPath, clientPort, grpcPort, reply);

// Ready to provide services
GSESDK()->setReplyStatus(status);
if (Istatus.ok()) {

return false;

©2013-2019 Tencent Cloud. All rights reserved.

Page 69 of 105

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

@Tencent Cloud Game Server Elastic-scaling

}

return true;

}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the
game server every minute. If the health check fails three consecutive times, the process will be
considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::0nHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponsex reply)

{

healthStatus = GSESDK()->exec(”return OnHealthCheck()”);

std::cout << "healthStatus=" << healthStatus << std::endl;

reply->set healthstatus(healthStatus);

return Status::0K;

}

3. Because the client calls the CreateGameServerSession API to create a game server session and
assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the
process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::0OnStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponsex reply)

{

auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);

std::ostringstream o;

o << "return OnStartGameServerSession(
gameServerSession. maxplayers() << ”)”;
std::string luaCmd = o.str();

bool res = GSESDK()->exec(luaCmd);
return Status::0K;

}

r»

<< gameServerSession. gameserversessionid() << 77,7 K

4. After the game server receives onStartGameServerSession , you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the
ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

static bool luaActivateGameServerSession(const std::string &gameServerSessionId, int maxPlayer

s) {

©2013-2019 Tencent Cloud. All rights reserved. Page 70 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

GseResponse reply;

Status status = GGseManager->ActivateGameServerSession(gameServerSessionId, maxPlayers, repl
y);

GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call
the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the
status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to
"Timeout" and then call JoinGameServerSession again.

static bool LluaAcceptPlayerSession(const std::string &gameServerSessionld, const std::string &
playerSessionld) {

GseResponse reply;

Status status = GGseManager->AcceptPlayerSession(gameServerSessionld, playerSessionld, reply);
GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player
slot in the game server session.

static bool LluaRemovePlayerSession(const std::string &gameServerSessionld, const std::string &
playerSessionId) {

GseResponse reply;

Status status = GGseManager->RemovePlayerSession(gameServerSessionld, playerSessionld, reply);
GSESDK()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

©2013-2019 Tencent Cloud. All rights reserved. Page 71 of 105

https://intl.cloud.tencent.com/document/product/1055/39130

@Tencent Cloud Game Server Elastic-scaling

7. After a game server session (a game battle or a service) ends, the game server will call the
TerminateGameServerSession APl to end the GameServerSession and change its status to

Terminated .

static bool luaTerminateGameServerSession(const std::string &gameServerSessionld) {
GseResponse reply;

Status status = GGseManager->TerminateGameServerSession(gameServerSessionId, reply);
GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate APIto end the

game process. The reduction will be triggered according to the protection policy configured in the
GSE console.

Status GameServerGrpcSdkServiceImpl::0nProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponsex reply)

{

auto terminationTime = request->terminationtime();

std::to string(terminationTime));

std::ostringstream o;

0 << "0OnProcessTerminate(” << terminationTime << ”)”;

std::string luaCmd = o.str();

GSESDK ()—>execWithNi LResult(luaCmd);

return Status::0K;

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The “ProcessEnding™ API will be active
ly called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the “Proces
sEnding™ API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made

static bool luaProcessEnding() {

GseResponse reply;

Status status = GGseManager->ProcessEnding(reply);

GSESDK()->setReplyStatus(status);

©2013-2019 Tencent Cloud. All rights reserved. Page 72 of 105

https://intl.cloud.tencent.com/document/product/1055/36675

&2 Tencent Cloud Game Server Elastic-scaling

if (Istatus.ok()) {
return false;

}

return true;

}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

static bool LuaDescribePlayerSessions(const std::string &gameServerSessionld,
const std::string &playerlId,

const std::string &playerSessionld,

const std::string &playerSessionStatusFilter, const std::string &nextToken,
int Limit) {

DescribePlayerSessionsResponse reply;

Status status = GGseManager->DescribePlayerSessions(gameServerSessionld, playerId, playerSessio
nld, playerSessionStatusFilter, nextToken, Llimit, reply);

GSESDK ()->setDescribePlayerSessionsResponse(reply);

if (Istatus.ok()) {

return false;

}

return true;

}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session
creation policy and set whether to accept new players, i.e., whether to allow new players to join a
game session (which is optional based on your actual business needs).

static bool LluaUpdatePlayerSessionCreationPolicy(const std::string &newpolicy) {
GseResponse reply;

Status status = GGseManager->UpdatePlayerSessionCreationPolicy(newpolicy, reply);
GSESDK ()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

©2013-2019 Tencent Cloud. All rights reserved. Page 73 of 105

@Tencent Cloud Game Server Elastic-scaling

static bool luaReportCustomData(int currentCustomCount, int maxCustomCount) {
GseResponse reply;

Status status = GGseManager—>ReportCustomData(currentCustomCount, maxCustomCount, reply);
GSESDK()->setReplyStatus(status);

if (Istatus.ok()) {

return false;

}

return true;

}

Launching Server for GSE to Call

Server running: launch GrpcServer .

// Launch the gRPC server

std::thread tGrpc(&GameServerGrpcSdkServiceImpl::StartGrpcServer, GGameServerGrpcSdkService);
sem wait(&(GGameServerGrpcSdkService->sem));

auto grpcPort = GGameServerGrpcSdkService->GetGrpcPort();

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

void GseManager::InitStub() {

auto channel = grpc::CreateChannel(”127.0.0.1:5758”, grpc::InsecureChannelCredentials());
stub = GseGrpcSdkService: :NewStub(channel);

}

Demo for Lua

1. Click here to download the code of the Demo for Lua.

2. Generate the gRPC code.
The Demo for Lua relies on the C++ framework, with gRPC code generated in the cpp-
demo/source/grpcsdk directory, so there is no need to generate it again.

3. Launch the server for GSE to call.

©2013-2019 Tencent Cloud. All rights reserved. Page 74 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/lua-demo.zip

@Tencent Cloud Game Server Elastic-scaling

o Implement the server.
grpcserver.cpp in the Llua-demo/source/api directory implements three server APIs.
o Run the server.
main.cpp in the lua-demo directory launches GrpcServer .
4. Connect the client to the gRPC server of GSE.
o Implement the client.
GSESdkHand LeWrapper.cpp in the Llua-demo/source/lua directory implements nine client APIs.
o Connect to the server.
Create a gRPC channel, specify the host name and server port to connect to, and use this
channel to create a stub instance.
5. Compile and run the project.
i. Install CMake.
Install GCC v4.9 or above.

Install the LuajIT and Boost development kits:

[o]

o

yum install -y luajit-devel
yum install -y boost-devel
yum install -y cmake

[o]

Download the code and run the following command in the Llua-demo directory:

mkdir build

cd bui ld

cmake ..

make

cp ../source/lua/gse. lua .

The corresponding lua-demo executable file will be generated. Run ./lua-demo to launch it.
o Package the executable file lua-demo.cpp as an asset package and configure the launch path
as lua-demo with no launch parameter needed.
o Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

©2013-2019 Tencent Cloud. All rights reserved. Page 75 of 105

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

@Tencent Cloud Game Server Elastic-scaling

gRPC Unity Tutorial

Last updated : 2021-08-30 15:52:50

This document describes how to integrate Unity with GSE SDK. The overall process mainly consists of

two tasks:

1. Integrating Unity with gRPC
2. Integrating Unity with GSE SDK

Prerequisites

You have already installed Unity Hub and Unity IDE.

Note :
This document uses 2018.3.5f1 or 2019.4.9f1 Unity engine and MacOS as an example.

Integrating Unity with gRPC

gRPC has experimental support for Unity. For more information, see README. Perform the following

steps to integrate Unity with gRPC:

Step 1: create a Unity project

Because gRPC APIs are only available for .NET 4.5+ , it is necessary to create a Unity project
equivalentto .NET 4.x at Edit > Project Setting > Player > Configuration > Scripting

©2013-2019 Tencent Cloud. All rights reserved. Page 76 of 105

https://github.com/grpc/grpc/tree/master/src/csharp/experimental

&2 Tencent Cloud

Runtime Version.

£} Project Settings

Audio

Editor

Graphics

Input

Physics

Physics 2D
Player

Preset Manager
Quality

Script Execution Order
Tags and Layers
TextMesh Pro
Time

VFX

Player

Settings for PC, Mac & Linux Standalone

Icon
Resolution and Presentation
Splash Image

Other Settings

Rendering

Color Space*

Auto Graphics APl for Windows

Auto Graphics APl for Mac
Auto Graphics APl for Linux
Color Gamut For Mac*

sRGB

Metal Editor Support*

Metal API Validation*
Metal Write-Only Backbuffer
Memoryless Depth
Static Batching
Dynamic Batching
GPU Skinning™
Graphics Jobs (Experimental)
Lightmap Encoding
Lightmap Streaming Enabled

Streaming Priority

Vulkan Settings
SRGB Write Mode*

Mac App Store Options
Bundle Identifier

Build

Category

Mac App Store Validation

Configuration

Scripting Runtime Version*
Scripting Backend

Api Compatibility Level*

Disable HW Statistics*
Scripting Define Symbols

Allow 'unsafe' Code
Active Input Handling*

Step 2: download grpc_unity package

Download the latest development version of grpc_unity package.VERSION. zip here

to redirect to the download page.

©2013-2019 Tencent Cloud. All rights reserved.

3

Game Server Elastic-scaling

Gamma

v
v
v

v
v

Unused

v

v

High Quality

v
0

com.Company.ProductName
0
public.app-category.games

.NET 4.x Equivalent
Mono

NET 4.x

Input Manager

. Click Buidld ID

Page 77 of 105

https://packages.grpc.io/

&2 Tencent Cloud

Game Server Elastic-scaling

gRPC Packages

Official gRPC Releases

Commits corresponding to official gRPC release points and release candidates are tagged on GitHub.

To maximize usability, gRPC supports the standard way of adding dependencies in your language of choice (if there is one). In most languages,
the gRPC runtime comes in form of a package available in your language's package manager.

For instructions on how to use the language-specific gRPC runtime in your project, please refer to the following:

C++: follow the instructions under the src/cpp directory
C#: NuGet package Grpc

Dart: pub package grpc

Go: go get google.golang.org/grpc

Java: Use JARs from gRPC Maven Central Repository
Kotlin: Use JARs from gRPC Maven Central Repository
Node: npm install grpe

Objective-C: Add grec-protorec dependency to podspec
PHP: pecl install grpc

Python: pip install grpcio

Ruby: gem install grpc
* WebJS: follow the instructions in grpc-web repository

Daily Builds of master Branch

gRPC packages are built on a daily basis at the ueap of the master branch and are archived here.

The current document (view source) is an XML feed pointing to the packages as they get built and uploaded. You can subscribe to this feed and
fetch, deploy, and test the precompiled packages with your continuous integration infrastructure.

For stable release packages, please consult the above section and the common package manager for your language.

Timestamp Commit

Build ID

2020-09-28T05:23:42-0700 80c98971dda8c944b9d5bb2afec8e6dcde408421

0d426dde-91b4-4c25-b5bf-e3da7b7433cd

2020-09-26T05:15:16-0700 80c98971dda8c944b9d5bb2afacB8e6dc4e408421

21292080-db55-4c89-a409-646366b94363

2020-09-25T05:01:26-0700 303ce9ea3d9dd68bedd86cf62167565cefc27e65

a8c9edab-99ab-4171-ad2b-ec2478a348F4

2020-09-24T05:26:42-0700 5604d4d4414a76b83249b75c9278f fa65dba80b4

50ba2730-082-4822-b6c9-6b2f9F5b4367

2020-09-18T05:01:46-0700 1f964e3b24f32b57255ced1e864d3386b98b8Ic2

ledbad667-d461-4d79-957f-117bd615a53¢

2020-09-17T05:

134-0700 alle4dfo82b6c72ff6a791d20f00ada3f34338be

2f15b256-1994-43dc-954c-5d822b518544

2020-09-16T05:10:42-0700 ©834d0b34b43745b0839b6205e04c fbla5924c3a

0334328e-2982-4a3a-8919-27957d52c97e

2020-09-15T05:34:27-0700 58b0233aebc7eaB94799c532cF5356de461900cc

221124d2-¢0052-4902-2d67-67£679170C

Click to download grpc_unity package.VERSION.zip under the c# directory.

Build: 0d426dde-91b4-4c25-b5bf-e3da7b7433cd [invocation]
Timestamp: 2020-09-28T05:23:42-0700

Branch: master

Commit: 80c98971dda8c944b9d5bb2af@c8e6dc4e408421

gRPC protoc Plugins

grpc-protoc_linux_x64-1.33.0-dev.tar.gz

c4b4a354363613bf@11e85a4635ed6a193f710f849df8c109c093d7c022d572

grpc—protoc_linux_x86-1.33.0-dev.tar.gz

1fa6c3f6afb5ccade5a70ff920324184b33302a48d61a259cf796434e34deaea

grpc-protoc_macos_x64-1.33.0-dev.tar.gz

€527428c70a8cd@81ce515c6bbd@45b787c61750c55e7d21e9555c0a181819fa

grpc-protoc_macos_x86-1.33.0-dev.tar.gz

fal3b3a80b5a0ab8966cd8020314529470f41788f7db18508005a01132578306

grpc-protoc_windows_x64-1.33.0-dev.zip

8dcdcb9563dd8dd0762c24aefabab56e197725edal81c3e2551df30d2e9d0eaa

grpc—protoc_windows_x86-1.33.0-dev.zip

9calelf8e557545f4a873b791fd1e70d403add85fa2571fd666109c6da66cb02

C#

grpc_unity_package.z.33.0—dev.zip]

18b5313758b2b7451e41d37bfc12992e6b61b055017a11b33b7a953b7e58b1a8

Grpc.2.33.0-dev202009281202.nupkg

01ca8739a97fbab5536036f16f2e30f17a0c1d9b409ee719b2991d58b6b929ac

Grpc.Auth.2.33.0-dev202009281202. nupkg

8d0b7294a82b093739f470cfab636bbfe@8e62ed3177d463033acc75420793e4

Grpc.Core.2.33.0-dev202009281202. nupkg

57739eac5f4b995e16a570b202b45e10c315a9e851036882b8c8a47294ce1409

Grpc.Core.Api.2.33.0-dev202009281202.nupkg

95ae31673348685bcfal1005123fd68fe33ee5428224c209014f407187ee8597

Grpc.Core.NativeDebug.2.33.0-dev202009281202. nupkg

824e20d42d3066e3ceaal7b3240f5ef8a605eac3258dff2c42f3ba6619489260

Grpc.Core.Testing.2.33.0-dev202009281202.nupkg

3bb4565eee60f6bc433107e62df5beff6442eafdbla2d5742e46b9597cc898f1

Grpc.HealthCheck.2.33.0-dev202009281202. nupkg

546ac6a534496e67 f0eac49a583feff0389fbb74225af93d88fc13d0256dab21

Grpc.Reflection.2.33.0-dev202009281202.nupkg

5f6f7ba895elda7e6ddce@2340d95bce@ce@133853b9ff28c5636733b20ff 87

Grpc.Tools.2.33.0-dev202009281202.nupkg

4a70f6bbf67a8b3926470aa%02ff2d424dee893b11a602a83a964d1de367443d

©2013-2019 Tencent Cloud. All rights reserved.

Page 78 of 105

&2 Tencent Cloud Game Server Elastic-scaling

Step 3: decompress the package

Decompress the downloaded .zip package to the Assets directory of the Unity project, as shown

below:

®F Assets
®F Plugins
™ Google.Protobuf
® Grpc.Core

Grpc.Core.Api

System.Memory

®9 System.Buffers
® System.Runtime.CompilerServices.Unsafe

Step 4: test the package

Unity Editor will fetch files and automatically add them to the project for your use of gRPC and

Protobuf in codes. If Unity Editor prompts an error, see FAQs for troubleshooting.

Integrating Unity with GSE SDK

Complete the following steps to integrate Unity with GSE SDK:

Step 1: obtain the GSE SDK Protobuf files

Obtain the GameServerGrpcSdkService.proto and GseGrpcSdkService.proto files of GSE SDK Protobuf.

For more information, see proto File

Step 2: generate C# codes based on Protobuf

1. Access the grpc_unity package.VERSION.zip page again to download the gRPC protoc Plugin

package compatible with your operating system.

©2013-2019 Tencent Cloud. All rights reserved. Page 79 of 105

https://intl.cloud.tencent.com/document/product/1055/39059
https://intl.cloud.tencent.com/document/product/1055/37419

@Tencent Cloud Game Server Elastic-scaling

Build: edd8lac6-e3d1-461la—-a263-2b06ae913c3f [invocation]
Timestamp: 2019-12-02T03:56:08-0800

Branch: master

Commit: a@2d6b9be81cbadbb@eed88b3b44498ba27bcba9

gRPC protoc Plugins

grpc—protoc_linux_x64-1.26.0@-dev.tar.gz 5340301048c54b6d1c4788a7694a92fdellb36f1ef6386fe71fbcSeabbe73117
grpc—protoc_linux_x86-1.26.0-dev.tar.gz 8bel8206322¢c8702fb3d3fd631f9a5218495bee856a7f65cb2693923175d550d
grpc-protoc_macos_x64-1.26.0-dev.tar.gz 5lalf7ba55dacd7 f9ee7ddd5b445433b4d9f fIcadl66a08299573827a379165e
grpc-protoc_macos_x86-1.26.08-dev.tar.gz ac3419deal589e367e6245¢c fd68489890928d6250de15b3d5917f48d3edaeche
grpc-protoc_windows_x64-1.26.0-dev.zip 8a76893e05a8d838572c6c4ff@beB77029F50b6ccIde93cc3e9b045040784Fdd
grpc—-protoc_windows_x86-1.26.0-dev.zip 2b552¢652d97ceel3bd7356a38c642c8578b4c26444c20c@9cd9cBe37faech51
C#
grpc_unity_package.2.26.0-dev.zip 589af7278e725cc6a291d354365db930ealbcd6fe53bd96dc88cb33ed1c3e797
Grpc.2.26.0-dev201912021138. nupkg Sac6efa2a6dbbl7f15073abfc986764218872437f0f357c6al7abfcd3aaf2ef7
Grpc.Auth.2.26.0-dev281912021138.nupkg dPe2bb6538478ced3319d962dd1ac4519f@ab93ee7bl16b87cafc983cebbdadce3
Grpc.Core.2.26.0-dev201912821138. nupkg 5efd93d@519ec9cch91f@4dea6fadf7c596fc7babfe2f1506785c5deddsdelfb
Grpc.Core.Api.2.26.0-dev201912021138.nupkg 822baa7faef5caabbB4666f8bd926c3d316e245749601351887034dT4a53541
Grpc.Core.NativeDebug.2.26.0-dev201912021138. nupkg 1211e8bd5336b612c866d84dc85bb32257a7907796da49b@f827080a7bbdd73e
Grpc.Core.Testing.2.26.0-dev201912021138.nupkg 4e5faa7laf895c476418376fab48c48f65ac73d469049d490ec5dd4674201a91
Grpc.HealthCheck.2.26.0-dev201912821138. nupkg ad7b5e1399fcf8dcf94b@cad0f96bfdf84d582d69a7ddd@3ec81lbaar9c460ef3
Grpc.Reflection.2.26.0-dev201912021138.nupkg 823c4dbece?6be83a210c778b95bfad7e43d0ad439851d67a247cbd048cead@dc
Grpc.Tools.2.26.0-dev201912021138. nupkg adb0@38ceac8b82072875d66118775a42b208557h9albb77 fef3535a80cc56bb5e

©2013-2019 Tencent Cloud. All rights reserved. Page 80 of 105

&2 Tencent Cloud Game Server Elastic-scaling

2. Decompress the package to obtain the protoc and grpc csharp plugin executable programs.

@ o grpc-protoc_macos_x64-1.26.0-dev
< =M= =y f#v Q
- grpc_cpp_plugin grpc_csharp_plug grpc_node_plugin grpc_objective_c_ grpc_php_plugin
in plugin
grpc_python_plug grpc_ruby_plugin protoc
in

3. Copy protoc and grpc csharp plugin executable programs to the same directory as the Protobuf

file. Run the following two commands according to the operating system to generate C# codes:

o For MAC and Linux OS:
= protoc -I ./ --csharp out=. GseGrpcSdkService.proto -—grpc out=. --plugin=protoc-gen-
grpc=grpc_csharp plugin
= protoc -I ./ —-—csharp out=. GameServerGrpcSdkService.proto ——grpc out=. —--plugin=protoc-gen-
grpc=grpc_csharp plugin
o For Windows OS:
= . /protoc -I ./ --csharp out=. GseGrpcSdkService.proto ——grpc out=. --plugin=protoc-gen-
grpc=grpc_csharp plugin. exe
= ./protoc -I ./ --csharp out=. GameServerGrpcSdkService.proto ——grpc out=. --plugin=protoc-

gen-grpc=grpc_csharp plugin. exe

©2013-2019 Tencent Cloud. All rights reserved. Page 81 of 105

@Tencent Cloud Game Server Elastic-scaling

Four .cs code files are generated as shown in the following figure.

XK) " GrpeSdk
il = (00 &2 TR v
EBlsv = & Q
.CS €S .CS .CS
GameServerGrpc GameServerGrpc GseGrpcSdkServi GseGrpceSdkServi | grpc_csharp_plug
[| SdkService.cs SdkServ...Grpc.cs ce.cs ceGrpc.cs in
[|
" L L
[
| protoc GameServerGrpc GseGrpcSdkServi
SdkService.proto ce.proto
|
EEREF] —
. .y — |

Step 3: develop and use GSE SDK on the Unity server

Copy the four .cs files generated in the Step 2 to the Unity project (to a separate folder under the

Assets/Scripts/ directory) and use GSE SDK for the development. For more information, see Unity
DEMO.

1. Implement the OnHealthCheck , OnStartGameServerSession and OnProcessTerminate APIs defined by

gameserver grpcsdk service.proto .

public class GrpcServer : GameServerGrpcSdkService. GameServerGrpcSdkServiceBase
{
private static Logs logger

{
get

©2013-2019 Tencent Cloud. All rights reserved. Page 82 of 105

&2 Tencent Cloud Game Server Elastic-scaling

{

return new Logs();

}

}

// Health checks

public override Task<HealthCheckResponse> OnHealthCheck(HealthCheckRequest request, ServerCall
Context context)

{

logger.Println($”0nHealthCheck, HealthStatus: {GseManager.HealthStatus}”);
logger.Println($”0nHealthCheck, GameServerSession: {GseManager.GetGameServerSession()}”);
return Task.FromResult(new HealthCheckResponse

{

HealthStatus = GseManager.HealthStatus

};

}

// Receive game sessions

public override Task<GseResponse> OnStartGameServerSession(StartGameServerSessionRequest reque
st, ServerCallContext context)

{

logger.Println($”0nStartGameServerSession, request: {request}”);

GseManager. SetGameServerSession(request. GameServerSession);

var resp = GseManager.ActivateGameServerSession(request. GameServerSession, GameServerSessionld,
request. GameServerSession. MaxPlayers);

logger.Println($”0nStartGameServerSession, resp: {resp}”);

return Task.FromResult(resp);

}

// End the game process

public override Task<GseResponse> OnProcessTerminate(ProcessTerminateRequest request, ServerCa
[LContext context)

{

logger.Println($”0nProcessTerminate, request: {request}”);

// Set the process termination time

GseManager. SetTerminationTime(request. TerminationTime);

// Terminate game server sessions

GseManager. TerminateGameServerSession();

// Exit the process

GseManager. ProcessEnding();

return Task.FromResult(new GseResponse());

}

}

2. Develop Unity server programs (taking ChatServer as an example).

public static void StartChatServer(int clientPort)

{
RegisterHandlers();

©2013-2019 Tencent Cloud. All rights reserved. Page 83 of 105

&2 Tencent Cloud Game Server Elastic-scaling

”

logger.Println("ChatServer Listen at ” + clientPort);

NetworkServer.Listen(clientPort);

}

3. Develop the gRPC server.

public static void StartGrpcServer(int clientPort, int grpcPort, string logPath)
{

try

{

Server server = new Server

{

Services = { GameServerGrpcSdkService.BindService(new GrpcServer()) },

Ports = { new ServerPort(”127.0.0.1”, grpcPort, ServerCredentials. Insecure) },
};

server.Start();

logger.PrintIn("GrpcServer Start On localhost:” + grpcPort);

GseManager. ProcessReady(new string[] { logPath }, clientPort, grpcPort);

}

catch (System.Exception e)

{

logger.Println("error: ” + e.Message);

}

}

”

4. Launch the implemented server and the gRPC server.

public class StartServers : MonoBehaviour

{

private int grpcPort = PortServer.GenerateRandomPort (2000, 6000);
private int chatPort = PortServer. GenerateRandomPort (6001, 10000);

private const string logPath = ”./log/log. txt”;
// Start is called before the first frame update
[Obsolete]

void Start()

{

// Start ChatServer By UNet’s NetWorkServer, Listen on UDP protocol
MyChatServer.StartChatServer (chatPort);

// Start GrpcServer By Grpc, Listen on TCP protocol
MyGrpcServer.StartGrpcServer (chatPort, grpcPort, logPath);

}

[Obsolete]

void OnGUI()

{

©2013-2019 Tencent Cloud. All rights reserved. Page 84 of 105

@Tencent Cloud Game Server Elastic-scaling

Unity DEMO

1. Click here to download the code of the Demo for Unity.
2. Import grpc unity package.
Decompress grpc_unity package in the Step 2 to the unity-demo/Assets directory of the Demo
project.
3. Generate C# codes based on the Protobuf file.
4. Launch the server for GSE to call.
o Implement the server: implement the three server APIs in the GrpcServer.cs file under the
unity-demo/Assets/Scripts/Api directory.
o Run the server: create gRPC Server and StartServers.cs in the MyGrpcServer.cs file under the
unity-demo/Assets/Scripts directory to launch gRPC Server .
5. Connect the client to the gRPC server of GSE.
o Implement the client: implement the nine client APIs in the Gsemanager.cs file under the unity-
demo/Assets/Scripts/Gsemanager directory.
o Connect to the server: create a gRPC channel, specify the host name and server port to connect
to, and use this channel to create a stub instance.
6. Compile and run the program
Use Unity Editor to encapsulate the executable program of the target system into an asset

package, and configure the actual name of the executable program at the launch path.

©2013-2019 Tencent Cloud. All rights reserved. Page 85 of 105

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/unity-demo.zip

@Tencent Cloud Game Server Elastic-scaling

Getting Server Address
TencentCloud API Calling Method

Last updated : 2021-03-30 10:13:29

A client API is provided as a TencentCloud APl and can be called in the following ways:

1. SDK Call

You can use Tencent Cloud Software Development Kit (SDK) v3.0 to call a client TencentCloud API.
The SDK supports various programming languages such as PHP, Python, Java, Go, .NET, Node.js, and
C++.

(G Note :

Currently, GSE supports SDK v3.0. For detailed directions, please see the SDK overview.

2. Online Debugging

You can use API Explorer to call a client TencentCloud API. This tool provides various capabilities such

as online call, signature verification, SDK code generation, and quick API search.

(@ Note :

In API 3.0 Explorer, select "GSE" and then select a TencentCloud API under "Console APIs" or
"Service Management APIs" for online debugging.

3. Direct Encapsulation

You can use the HTTP request method of a domain name or an APl name to call a client TencentCloud
API.

(@ Note :

TencentCloud APIs of GSE have been upgraded to v3.0. For detailed directions, please see
TencentCloud API calling methods.

©2013-2019 Tencent Cloud. All rights reserved. Page 86 of 105

https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=DeleteScalingPolicy&SignVersion=
https://intl.cloud.tencent.com/document/product/1055/37122

@Tencent Cloud Game Server Elastic-scaling

Creating Game Server Session

Last updated : 2020-07-27 10:26:38

Overview

» You can use a client TencentCloud API to create a game server session in the following two ways:
o Create in a server fleet to implement auto scaling and health check.
o Create through an alias to implement zero downtime update.

« One game server session is placed in one server process, but the client API calling process varies

by supporting mode of the game server session.

Client API Calling Process

One game server session supports one game

If one game server session supports only one game, you can call a client API in the following steps:

1. Create a game server session through a server fleet or alias. For detailed directions, please see
the APl document CreateGameServerSession.

(G Note :

The following sample code is based on Java:

public class CreateGameServerSession

{

public static void main(String [] args) {
try{

Credential cred = new Credential(””, ””);

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint(”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

”»

GseClient client = new GseClient(cred, ””, clientProfile);

©2013-2019 Tencent Cloud. All rights reserved. Page 87 of 105

https://intl.cloud.tencent.com/document/product/1055/37139

@Tencent Cloud Game Server Elastic-scaling

” .,

String params = "{}”;
CreateGameServerSessionRequest req = CreateGameServerSessionRequest. fromJsonString(params, Cre
ateGameServerSessionRequest. class);

CreateGameServerSessionResponse resp = client.CreateGameServerSession(req);

System. out. println(CreateGameServerSessionRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {

System. out.println(e. toString());

}

}

}

2. Join the created game server session. For detailed directions, please see the APl document

JoinGameServerSession.

public class JoinGameServerSession

{

public static void main(String [] args) {
try{

Credential cred = new Credential(””, ””);

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint (”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile. setHttpProfile(httpProfile);

GseClient client = new GseClient(cred,

”n

, clientProfile);

String params = "{}”;

JoinGameServerSessionRequest req = JoinGameServerSessionRequest. fromJsonString(params, JoinGameSe
rverSessionRequest.class);

JoinGameServerSessionResponse resp = client.JoinGameServerSession(req);

System. out. print ln(JoinGameServerSessionRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {
System. out. println(e. toString());

}
}
}

©2013-2019 Tencent Cloud. All rights reserved. Page 88 of 105

https://intl.cloud.tencent.com/document/product/1055/37132

@Tencent Cloud Game Server Elastic-scaling

One game server session supports multiple games or one service

If one game server session supports multiple games or one service (such as login), you can all a

client APl in the following steps:

1. Query the game server session list to check whether there is any game server session. For

detailed directions, please see the APl document DescribeGameServerSessions.

public class DescribeGameServerSessions

{
public static void main(String [] args) {
try{

Credential cred = new Credential(””, ””);

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint(”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile. setHttpProfile(httpProfile);

”n

GseClient client = new GseClient(cred, ””, clientProfile);

String params = "{}”;
DescribeGameServerSessionsRequest req = DescribeGameServerSessionsRequest. fromJsonString(param
s, DescribeGameServerSessionsRequest.class);

DescribeGameServerSessionsResponse resp = client.DescribeGameServerSessions(req);

System. out. println(DescribeGameServerSessionsRequest, toJsonString(resp));
} catch (TencentCloudSDKException e) {

System. out.println(e. toString());

}

}

}

You can also search for existing sessions in the game server session list. For detailed directions,

please see the APl document SearchGameServerSessions.

public class SearchGameServerSessions

{
public static void main(String [] args) {
try{

Credential cred = new Credential(””, ””);

©2013-2019 Tencent Cloud. All rights reserved. Page 89 of 105

https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37131

@Tencent Cloud Game Server Elastic-scaling

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint(”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

”n

GseClient client = new GseClient(cred, ””, clientProfile);

”,

String params = "{}”;
SearchGameServerSessionsRequest req = SearchGameServerSessionsRequest. fromJsonString(params, S
earchGameServerSessionsRequest. class);

SearchGameServerSessionsResponse resp = client.SearchGameServerSessions(req);

System. out.println(SearchGameServerSessionsRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {

System. out.println(e. toString());

}

}

}

2. If a game server session exists, you can directly join it. For detailed directions, please see the API

document JoinGameServerSession or the sample code in this document.

3. If no game server sessions exist, you need to create one first. For detailed directions, please see
the APl document CreateGameServerSession or the sample code in this document. Then, join the
created session. For detailed directions, please see the APl document JoinGameServerSession or

the sample code in this document.

(G Note :

You can use API 3.0 Explorer for online debugging. You can select TencentCloud APIs under
"Game Server Engine" > "Service Management APIs" on the left sidebar and perform

operations such as "Code Generation" and "Online Call".

©2013-2019 Tencent Cloud. All rights reserved. Page 90 of 105

https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=CreateGameServerSession&SignVersion=

@Tencent Cloud Game Server Elastic-scaling

Placing Game Server Session

Last updated : 2021-04-20 15:06:54

Overview

You can use a client TencentCloud API to place a game server session, that is, you can implement

nearby resource scheduling and cross-region disaster recovery through a game server queue.

Client API Calling Process

1. First, check whether a game server session has been placed in a process. For detailed directions,
please see the APl document DescribeGameServerSessionPlacement.

(G Note :

The following sample code is based on Java:

public class DescribeGameServerSessionPlacement

{
public static void main(String [] args) {

try{
Credential cred = new Credential(””, ””);

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint(”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile. setHttpProfile(httpProfile);

79

GseClient client = new GseClient(cred, ””, clientProfile);

String params = "{}”;
DescribeGameServerSessionPlacementRequest req = DescribeGameServerSessionPlacementRequest. fromJso
nString(params, DescribeGameServerSessionPlacementRequest. class);

DescribeGameServerSessionPlacementResponse resp = client.DescribeGameServerSessionPlacement(req);

System. out. print ln(DescribeGameServerSessionPlacementRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {

©2013-2019 Tencent Cloud. All rights reserved. Page 91 of 105

https://intl.cloud.tencent.com/document/product/1055/37137

@Tencent Cloud Game Server Elastic-scaling

System.out.println(e. toString());
}
}
}

2. Start placing the game server session. For detailed directions, please see the APl document

StartGameServerSessionPlacement.

public class StartGameServerSessionPlacement

{
public static void main(String [] args) {

try{
Credential cred = new Credential(””, ””);

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint(”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

”n»

GseClient client = new GseClient(cred, ””, clientProfile);

String params = "{}”;
StartGameServerSessionPlacementRequest req = StartGameServerSessionPlacementRequest. fromJsonStrin
g(params, StartGameServerSessionPlacementRequest. class);

StartGameServerSessionPlacementResponse resp = client.StartGameServerSessionPlacement(req);

System. out.println(StartGameServerSessionPlacementRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {

System. out.println(e. toString());

}

}

}

3. Stop placing the game server session. For detailed directions, please see the APl document

StopGameServerSessionPlacement.

public class StopGameServerSessionPlacement

{
public static void main(String [] args) {
try{

Credential cred = new Credential(””, ””);

©2013-2019 Tencent Cloud. All rights reserved. Page 92 of 105

https://intl.cloud.tencent.com/document/product/1055/37130
https://intl.cloud.tencent.com/document/product/1055/37129

@Tencent Cloud Game Server Elastic-scaling

HttpProfile httpProfile = new HttpProfile();
httpProfile. setEndpoint (”gse. tencentcloudapi.com”);

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

”n

GseClient client = new GseClient(cred, ””, clientProfile);

String params = "{}”;
StopGameServerSessionPlacementRequest req = StopGameServerSessionPlacementRequest. fromJsonString(
params, StopGameServerSessionPlacementRequest. class);

StopGameServerSessionPlacementResponse resp = client. StopGameServerSessionPlacement(req);

System. out.println(StopGameServerSessionPlacementRequest. toJsonString(resp));
} catch (TencentCloudSDKException e) {

System.out.println(e. toString());

}

}

}

(@ Note :

You can use API 3.0 Explorer for online debugging. You can select TencentCloud APIs under
"Game Server Elastic-scaling" > "Service Management APIs" on the left sidebar, and perform
operations such as "Code Generation" and "Online Call".

©2013-2019 Tencent Cloud. All rights reserved. Page 93 of 105

https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=DescribeGameServerSessionPlacement&SignVersion=

@Tencent Cloud Game Server Elastic-scaling

GSE Local

Last updated : 2021-06-28 10:09:36

GSE Local

GSE Local is a command line tool that can independently launch the game server hosting service
GSE. This tool also provides runtime logs including the server initialization, health check, and API
calls and responses.

GSE Local is limited to launch GSE hosting services and test your game integration on a local device,
which will shorten the debugging time and improve efficiency at the iterative development of games.
Otherwise, you have to upload each new game package to GSE and configure the server fleet to host

games.
With GSE Local, you can test that:

« Your game server correctly integrates the GSE server development kit, properly communicates
with GSE service, and is able to launch new game sessions, accept new players and report the
running status.

» Your game client correctly integrates the GSE-related TencentCloud APIs to retrieve existing game

sessions, launch new game sessions, and allow players to join and connect to the game session.

Setting Up GSE Local

GSE Local can run on Windows, Linux and Mac in any GSE-supported languages. You can download

the installation package according to the operating system:

e GSE Local for Windows
e GSE Local for Linux
e GSE Local for Mac

Note :
The following sample code is applicable to Linux and MacOS. For Windows, we recommend to

use the gitbash command line tool to run curl command.

©2013-2019 Tencent Cloud. All rights reserved. Page 94 of 105

https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-windows-amd64.exe
https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-linux-amd64
https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-darwin-amd64

@Tencent Cloud Game Server Elastic-scaling

Testing Game Server

If you only need to test your game server, directly use curl to simulate the game client calls to

GSE Local and verify that your game server can complete the following operations as expected:

1. During launch, the game server will call the ProcessReady API to inform GSE that the server is
ready to host a game server session.

2. During runtime, the game server will use the onHealthCheck callback to send its running status to
GSE every minute.

3. The game server will respond to requests and trigger the onStartGameServerSession callback (call

the activateGameServerSession API in this process) to launch a new game session.

Step 1: launch GSE Local

Open the command prompt window, navigate to the directory of gselocal windows , gselocal_Llinux
or gselocal mac , and run the program. This document uses the Mac program ./gselocal _mac as an
example. After the program is launched, it will automatically connect to GSE Local.

Enter the following command in a terminal window:

./gselocal mac

If the following information appears in the command prompt window, the launch is successful:

{”level”:”info”,”ts”:72020-10-20T09:16:09. 364+0800”, "msg”:"start grpc v3 server success”’}

Step 2: launch the game server

Launch the game process in a programming tool or command line tool. The game process then will

call the ProcessReady API to prepare for hosting a session and print the following logs:

Getting process ready, LogPath: System.String[], ClientPort: 3237, GrpcPort: 6224
Process ready succeed, resp: { }
Server Start On Locolhost:6224

After receiving the ProcessReady request, GSE Local will also print logs and start the health check:

{"level”:”info”, "ts”:”2020-10-20709:27:03. 172+0800”, "msg” : "ProcessReady Info is”,”pid”:"41688”, " r
equestId”:”3b38495b38bc4ef8ab9ae8xx*xxa8256d”, " info”:"clientPort:3237 grpcPort:6224 "}
{"level”:”info”, "ts”:”2020-10-20T709:27:03. 172+0800”, "msg” : "set runner success”,”pid”:”41688”, pro
cessUUID”:”527bf89b-d128-4b5d-bfea—**x*x3d22ede7”}
{"level”:”info”,”ts”:”2020-10-20T09:28:03. 276+0800”, "msg” : "onHea l thCheck received”,”pid”:”41688”,
"health”:true}

©2013-2019 Tencent Cloud. All rights reserved. Page 95 of 105

@Tencent Cloud Game Server Elastic-scaling

{"level”:”info”, ”ts”:72020-10-20T09:29:03. 256+0800”, "msg” : "onHea l thCheck received”,”pid”:”41688”,
“health”:true}
{"level”:”info”, "ts”:72020-10-20T09:30:03. 261+0800”, "msg” : "onHea l thCheck received”,”pid”:”41688”,
"health”:true}

Step 3: use curl to create a game server session and a player session

Use curl to simulate the client calls. For specific parameters, see APIs.

Create a game server session

Run the following command to configure the Fleetld parameter. You can set it to any valid strings
("fleet-¥S+) in GSE Local.

L]

curl -d " {"Action”:”"CreateGameServerSession”, "FleetId”:”fleet-1235", ”MaximumPlayerSessionCount”
:5}’ http://127.0.0.1:8080/capi

The following log message displayed in the command prompt window indicates that GSE Local has
sent the onStartGameServerSession callback to your game server. If a game server session is
successfully created, your game server will call the ActivateGameServerSession API to respond to the

callback. The logs are as follows:

{"level”:”info”,”ts”:72020-10-20T09:37:08. 580+0800”, "msg” : "API to use: GSE.CreateGameServerSessio
n, with input”,”req”:”FleetId:<value:¥’fleet-1235¥" > MaximumPlayerSessionCount:<value:5 > "}
{"level”:”info”,”ts”:”2020-10-20T09:37:08. 580+0800”, "msg” : "Reserved process: 41688 for GameServer
Session: qcs::gse: local::gameserversession/fleet-1235/gssess-c648654a-293b-4f1f-b71f—*xxxx6a09bff
e

{”level”:”info”,”ts”:72020-10-20T09:37:08. 580+0800”, "msg” : "start to call StartGameSessionByGrpc t
o game server”,”gameServerSessionld”:”qcs::gse: local::gameserversession/fleet-1235/gssess-c648654
a-293b-4f1f-b71f-**xx6a09bffe”}
{"level”:”info”,”ts”:”2020-10-20T09:37:08. 597+0800”, "msg” : "onGameSessionActivate received”,”pid”:
" 4xxxx” , "gameServerSessionId”:”qcs::gse: local::gameserversession/fleet-1235/gssess-c648654a-293b-
4f1f-b71f—*xxxx6a09bffe”, "requestId”:”de1a678dea364db4b487f f84adk*xx31"}

{7 level”:”info”,”ts”:72020-10-20T09:37:08. 598+0800”, "msg”:"call StartGameSessionByGrpc to game se
rver success”, "gameServerSessionld”:”qcs::gse: local::gameserversession/fleet-1235/gssess-c648654a
-293b-4f1f-b71f-**xx6a09bffe”}

Querying a game server session

GSE Local uses curl to pass the game server session ID and object. Please note that the status of a
new server session will change from “Activating” to “Active” after the game server calls the
ActivateGameServerSession API. To view the status, run the following curl command to call the

DescribeGameServerSessions API:

©2013-2019 Tencent Cloud. All rights reserved. Page 96 of 105

https://intl.cloud.tencent.com/document/product/1055/37120

@Tencent Cloud Game Server Elastic-scaling

curl -d " {"Action”:"DescribeGameServerSessions”, "FleetId”:”fleet-1235"}" http://127.0.0.1:8080/¢c
api

The output is as shown below:

{”Response”: {"GameServerSessions” :[{"Avai labi lityStatus”:”Enable”, "CreationTime” :”2020-10-20T01:3
7:082”,"CreatorId”:””,”CurrentCustomCount”:0, "CurrentPlayerSessionCount”:0, "DnsName”:””, "F leetId”
:"fleet-1235", "GameProperties”:[], "GameServerSessionData”:””, "GameServerSessionId”:”qcs: :gse: loca
L::gameserversession/fleet-1235/gssess-c648654a-293b-4f1f-b71f-2fab6a09bffe”, "InstanceType”:” loca
Lhost”, "IpAddress”:”127.0.0. 1", "MatchmakerData”:””, "MaxCustomCount” :0, "Max imumP lLayerSessionCount”
:5, "Name”:””, ”PlayerSessionCreationPolicy”:”ACCEPT ALL”,”Port”:3237,”Status”:”ACTIVE”, "StatusReas

on”:””,"TerminationTime”:null, "Weight”:0}], "NextToken”:””, "RequestId”’:”s1603158295201357000"}}

Testing Game Server and Client

Prerequisites

You have completed the game server tests.

Step 1: add players

Run the following command to add players. The GameServerSessionld parameter is obtained in the

response of the APl used in creating a game server session

” ” . "

curl -d " {"Action”:”JoinGameServerSession”, ”“GameServerSessionld’:”qcs::gse:local::gameserversess
ion/fleet-1235/gssess—c648654a-293b-4f1f-b71f-xxxx6a09bffe”, "PlayerId”:"kxsxx111"}" http://127.
0.0.1:8080/capi

The GSE Local Command Prompt displays the following logs, indicating that the game server has

sent the AcceptPlayerSession request to verify a new player connection.

{"level”:”info”, ”ts”:72020-10-20T10:03:43. 096+0800”, "msg” : "API to use: GSE.JoinGameServerSession,
with input”,”req”:”GameServerSessionId:¥ qcs::gse: local::gameserversession/f leet—#*¥%/gssess—c648
654a-293b-4f1f-b71f-*xxx6a09bffe¥” PlayerId:¥ kakskkx11¥” 7}
{”level”:”info”,”ts”:72020-10-20T10:03:43. 096+0800”, "msg”:"Creating player session with id: kadin
111 for gameServersessionld: qcs::gse:local::gameserversession/fleet—k*xxx/gssess-c648654a-293b-4f
1f-b71f-**k*xx6209bffe”}

{"level”:”info”,”ts”:72020-10-20T10:03:43. 096+0800”, "msg”:"Created player session with PlayerId:

kadin111 and PlayerSessionId: psess-56dd6f48-08d4-4a11-9330-*xxx09784977"}

Step 2: query a player session

©2013-2019 Tencent Cloud. All rights reserved. Page 97 of 105

@Tencent Cloud Game Server Elastic-scaling

Call the DescribePlayerSessions to query a player session. The initial status of the player session is

“Reserved”:

o If the client successfully connects to the game server within 1 minute, the player session status
will become “Active”.

« If the client fails to connect to the game server within 1 minute, the player session status will
become “TIMEDOUT".

” . ” _»

curl -d " {"Action”:"DescribePlayerSessions”, ”GameServerSessionId”’:”qcs::gse: local::gameserverses
sion/fleet-1235/gssess-c648654a-293b-4f1f-b71f-2fab56a09bffe”, "PlayerId”’:”kadin111”}’ http://127.
0.0.1:8080/capi

The output is as shown below:

{”Response”: {"NextToken”:””, ”PlayerSessions” :[{"CreationTime”:”2020-10-20T02:03:43Z”, "DnsName” :””
,"FleetId”:”fleet—sxxx”, "GameServerSessionIld”:”qcs::gse: local::gameserversession/fleet-1235/gsses
s—-c648654a-293b-4f1f-b71f-**xxx6a09bffe”, "IpAddress”:”127. %.%.1”, "PlayerData”’:””, "PlayerId” : "kakx

%*11”, "PlayerSessionId” :”"psess-56dd6f48-08d4-4a11-9330-*xxx09784977”, "Port” :3237, "Status”: "TIMEDOU
T”,”TerminationTime”:”1970-01-01T00:00:00Z”}], "RequestId”:”s16031596094xxxx2000"}} ¥

Step 3: connect the client player to the server

After creating a game session and player session, you can directly use localhost : port to join a

client player to the game session.

The GSE Local Command Prompt will display logs, indicating that the game server has sent the
AcceptPlayerSession request to verify the new player connection. If you use curl to call the
DescribePlayerSessions API, the player session status should be changed from “Reserved” to

“Active”.

Step 4: send the test report to GSE

To verify that your game server sends the game and player statuses to GSE, ensure your game
server always send these statuses to GSE Local to help GSE Local manage player needs and
correctly report metrics. GSE Local will record the following actions. You may also need curl to

track the status change.

« A player disconnects from the game session
The GSE Local logs should display that the game server called the RemovePlayerSession API. The
status in the response of the DescribePlayerSessions() API changed from “Active” to “Completed”.
You can also call the DescribeGameServerSessions API to check that the current number of players

in the game session has decreased by one.

©2013-2019 Tencent Cloud. All rights reserved. Page 98 of 105

@Tencent Cloud Game Server Elastic-scaling

- The game session ends
The GSL Local logs should display that the game server called the TerminateGameServerSession API.
The status in the response of the DescribeGameServerSessions API changed from “Active” to
“Terminated” or “Terminating”.

« The server process stops

The GSE Local logs should display that the game server called the ProcessEnding API.

Testing Game Client Calls to GSE

All game session and player session APIs used in game server tests and game server and client tests

use curl to call GSE Local. You can use codes to call the following APIs in the game service to verify

whether your game server is running properly. For the local debugging, you need to call
http://127.0.0.1:8080/capi .

CreateGameServerSession

DescribeGameServerSessions

JoinGameServerSession

JoinGameServerSessionBatch

DescribePlayerSessions

The GSE Local Command Prompt only displays the logs of the CreateGameServerSession API calls. As
shown in the log message, GSE Local prompts the time when your game server launches a game
session (using the onStartGameServerSession callback). After your game server uses the callback,
GSE Local will obtain the ActivateGameServerSession response. You can use curl to view the calling
of other APIs.

Notes

Take notice of the following points when using GSE Local:

1. Different from the GSE Web service, GSE Local does not track the running status or the
onProcessTerminate callback triggering of the server. GSE Local only records the runtime report of
the game server.
2. The Fleetld will not be verified during the calling of Tencent Cloud development kid, because this
parameter can be set to any valid strings ("fleet-¥S+) .
3. The game session created using GSE Local has a distinct ID structure, which contains local as

shown below:

©2013-2019 Tencent Cloud. All rights reserved. Page 99 of 105

https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/39130
https://intl.cloud.tencent.com/document/product/1055/37135

&2 Tencent Cloud Game Server Elastic-scaling

arn:gse: local::gamesession/fleet—*x*x*x/gsess-56961f8e-db9c-4173-97e7-**xxx82f0daab

©2013-2019 Tencent Cloud. All rights reserved. Page 100 of 105

Game Server Elastic-scaling

&2 Tencent Cloud

Latency Test Tool

Last updated : 2021-04-12 14:22:16

This document provides the addresses and examples for latency test in different regions. Both HTTPS

and UDP addresses are supported.

HTTPS and UDP addresses for latency test in regions

Region HTTPS Address UDP Address
https: -

Beijing ps /lap ap-beijing.speed.tencentgse.com
beijing.speed.tencentgse.com

Shanghai https://ap- ap- .
shanghai.speed.tencentgse.com shanghai.speed.tencentgse.com

Hong Kong https://ap- ap-

(China) hongkong.speed.tencentgse.com hongkong.speed.tencentgse.com

Guangzhou https://ap- ap-
guangzhou.speed.tencentgse.com guangzhou.speed.tencentgse.com

Chengdu https://ap- ap-chengdu.speed.tencentgse.com
chengdu.speed.tencentgse.com

Singapore h_ttps://ap- a.p-
singapore.speed.tencentgse.com singapore.speed.tencentgse.com
https: -

Mumbai ps://ap ap-mumbai.speed.tencentgse.com

Silicon Valley

mumbai.speed.tencentgse.com

https://na-
siliconvalley.speed.tencentgse.com

na-
siliconvalley.speed.tencentgse.com

N https: -

Virginia ps://na na-ashburn.speed.tencentgse.com
ashburn.speed.tencentgse.com
https: -

Frankfurt ps://eu eu-frankfurt.speed.tencentgse.com
frankfurt.speed.tencentgse.com

Seoul https://ap-seoul.speed.tencentgse.com ap-seoul.speed.tencentgse.com

Tokyo https://ap-tokyo.speed.tencentgse.com ap-tokyo.speed.tencentgse.com

Example

©2013-2019 Tencent Cloud. All rights reserved.

Page 101 of 105

&2 Tencent Cloud Game Server Elastic-scaling

Let’'s take Guangzhou as an example.

« HTTPS

ping ap-guangzhou. speed. tencentgse. com
curl https://ap-guangzhou. speed. tencentgse. com/v1/ping

- UDP

Domain name + PORT (8888)
ap-guangzhou. speed. tencentgse. com + PORT (8888)

©2013-2019 Tencent Cloud. All rights reserved. Page 102 of 105

@Tencent Cloud Game Server Elastic-scaling

Game Process Launch Configuration

Last updated : 2021-04-12 14:22:16

Launching game process as a root user or user 00 in Linux
environment

In Linux environment, the game process should be launched by a root user by default. If you want to

launch the game process as a non-root user, please do the following:

1. Add the file gse.yaml to the root directory of the game’s asset package, which means the

decompressed file path will be /local/game/gse.yaml on the game server fleet instance;

2. The content of the file gse.yaml is shown below, indicating that user_00 is added to the users

user group. You cannot configure other users and user groups currently;

User: user 00:users

When the file gse.yaml is added to the asset package, GSE will launch the game process with
user_00:users and set the users and user groups of all files under /local/game as

user 00:users .

©2013-2019 Tencent Cloud. All rights reserved. Page 103 of 105

&2 Tencent Cloud Game Server Elastic-scaling

See below for the example:

[root@VM-0-200—centos locall# tree -u —g

[user_00 users |
[user_00 users] gse.yaml
[user_00 users |
L [user_0@ users 1
[user_00 users]
L— [user_00 users |
[user_00 users log_2810. txt
[user_00 users log_2822.txt
[user_00 users log_2841.txt
[user_0@ users log_2862. txt

[user_00 users log_2876. txt
[user_00 users
[user_00 users]

4 directories, 9 files

[root@/M-0-200-centos locall# ps —-ef |grep perfasset

user_0o 2810 2754 19:43 7 00:00:00 /local/game/tarke/linux/linux/linux/
user_00 2822 2754 19:43 7 00:00:00 /local/game/tarke/linux/linux/linux/
user_00 2841 2754 19:43 7 00:00:00 /local/game/tarke/1linux/linux/linux/
user_0o 2862 2754 19:43 7 00:00:00 /local/game/tarke/1linux/linux/linux/
user_00 2876 2754 19:43 00:00:00 /local/game/tarke/linux/linux/1linux/
root 4035 3220 19:49 00:00:00 grep ——color=auto

Executing install.sh before launching game process in
Linux environment

Before a game process is launched, you may need to install some software or configure some

environment variables on the CVM instance with the following steps:

1. Create the install.sh script and write the operations to be conducted before launching the game
process in this script;
2. Add the file install.sh under the root directory of the game’s asset package, which means the

decompressed path will be /local/game/install.sh on the game server fleet instance.

Launch configuration for Java game process

In Linux environment, a command like java -jar XXXX. jar can be used to launch Java programs.

The following configurations are required to ensure the Java game process is successfully launched:

1. Write the install.sh script

©2013-2019 Tencent Cloud. All rights reserved. Page 104 of 105

&2 Tencent Cloud Game Server Elastic-scaling

yum install java-1.8.0-openjdk.x86 64 -y

ln -s /usr/bin/java /local/game/java

2. Put install.sh script under the root directory of the game’s asset package, which means the

decompressed path will be /local/game/install.sh on the game server fleet instance.

3. When creating the game server fleet, enter /local/game/java as the launch path, and enter -jar

jar package specified by user as the launch parameter.

Process Management
Launch Path /local/game/ java Launch Parameter -jar gse-gameserver-demo.jar Concurrent processes allowed | 1

Add Launch Path

4. After the game process is successfully launched, the content of the path /local/game is shown

below:

[root@/M-8-206-centos gamel# 11

total 77032

—-rw—r—r— 1 root root 41270086 Jan 21 15:35
-rw—r——r— 1 root root 37599574 Jan 21 23:31

—rwxr=xr-x 1 root root 70 Jan 21 15:35
lrwxrwxrwx 1 root root 13 Jan 21 15:35 java —
drwxr-xr-x 2 root root 4096 Jan 25 00:00

©2013-2019 Tencent Cloud. All rights reserved. Page 105 of 105

