
Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 105

Game Server Elastic-scaling

Development Guide

Product Documentation

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 105

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,

copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud

Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products

and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's

products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 105

Contents

Development Guide

Overall Process

Integrating Server with gRPC Framework

gRPC C++ Tutorial

gRPC C# Tutorial

gRPC Go Tutorial

gRPC Java Tutorial

gRPC Lua Tutorial

gRPC Node.js Tutorial

gRPC Unity Tutorial

Getting Server Address

TencentCloud API Calling Method

Creating Game Server Session

Placing Game Server Session

GSE Local

Latency Test Tool

Game Process Launch Configuration

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 4 of 105

Overall Flowchart

Integration Steps

Development Guide

Overall Process

Last updated：2020-09-08 15:27:29

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 5 of 105

Step 1. Integrate the server with the gRPC framework

The game server communicates with GSE over gRPC. The gRPC framework can be integrated with

the game server program in various programming languages to generate game server executable

files. For more information on how to integrate GSE with the server in different languages, please see

gRPC - C++ Tutorial, gRPC - C# Tutorial, gRPC - Go Tutorial, gRPC - Java Tutorial, gRPC - Lua Tutorial,

and gRPC - Node.js Tutorial. For other languages, please see the gRPC official documentation.

Step 2. Publish the program

1. Upload an asset package

An asset package contains the executable files, dependencies, and installation script of the game

server. You need to package them as a ZIP file before upload. For more information, please see

Creating Code Packages.

2. Create a server fleet

Deploy the uploaded asset package on the created server fleet and complete process

management, deployment configuration, scaling configuration, etc. For more information, please

see Creating Server Fleets.

Step 3. Call a TencentCloud API to get the server address (IP:port)

You can get the server address (IP:port) by creating or placing a game server session.

Method 1. Create a game server session

Call a TencentCloud API:

The client TencentCloud API call process varies by supporting mode of the game server session.

When a game server session only supports one game:

Create a game server session (CreateGameServerSession);

Join a game server session (JoinGameServerSession).

When a game server session supports multiple games or one service (such as login):

Query the game server session list (DescribeGameServerSessions) or search in the game server

session list (SearchGameServerSessions);

If there is a game server session, join it (JoinGameServerSession);

If there is no game server session, create one (CreateGameServerSession) and join it

(JoinGameServerSession).

For more information on how to call TencentCloud APIs, please see Creating Game Server Session.

Method 2. Place a game server session

Call a TencentCloud API:

https://intl.cloud.tencent.com/document/product/1055/37408
https://intl.cloud.tencent.com/document/product/1055/37409
https://intl.cloud.tencent.com/document/product/1055/37410
https://intl.cloud.tencent.com/document/product/1055/37411
https://intl.cloud.tencent.com/document/product/1055/37412
https://intl.cloud.tencent.com/document/product/1055/37413
http://doc.oschina.net/grpc
https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37131
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37416

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 6 of 105

Start placing a game server session (StartGameServerSessionPlacement);

Query game server session placement (DescribeGameServerSessionPlacement);

Stop placing a game server session (StopGameServerSessionPlacement).

For more information on how to call the TencentCloud APIs, please see Placing Game Server Session.

Step 4. The client uses the IP:port to access the server

The client can connect to the target server through the IP:port returned in step 3.

Workflow

https://intl.cloud.tencent.com/document/product/1055/37130
https://intl.cloud.tencent.com/document/product/1055/37137
https://intl.cloud.tencent.com/document/product/1055/37129
https://intl.cloud.tencent.com/document/product/1055/37417

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 7 of 105

Installing gRPC

1. Prerequisites: install CMake.

Linux

MAC OS

2. Install gRPC and Protocol Buffers locally.

Note

For more information on the installation process, see Installing CMake, Installing gRPC C++,

and Installing Protocol Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can directly download them with no need

to generate them by yourself.

Integrating Server with gRPC

Framework

gRPC C++ Tutorial

Last updated：2021-11-17 18:06:09

$ sudo apt install -y cmake

$ brew install cmake

https://cmake.org/install
https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 8 of 105

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

In the proto directory, run:

protoc --cpp_out=. *.proto

to generate the pb.cc and pb.h files.

protoc --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_cpp_plugin` *.proto

to generate the corresponding gRPC code.

Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 9 of 105

Game server callback API list

API Name API Description

OnHealthCheck Runs health check

OnStartGameServerSession Receives game server session

OnProcessTerminate Ends game process

Game server active API list

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 10 of 105

API Name API DescriptionAPI Name API Description

ProcessReady Gets process ready

ActivateGameServerSession Activates game server session

AcceptPlayerSession Receives player session

RemovePlayerSession Removes player session

DescribePlayerSessions Gets player session list

UpdatePlayerSessionCreationPolicy Updates player session creation policy

TerminateGameServerSession Ends game server session

ProcessEnding Ends process

ReportCustomData Reports custom data

Others

When the game process uses gRPC to call a game server active API, you need to add two fields to

 meta of the gRPC request.

Field Description Type

pid pid of the current game process string

requestId
 requestId of the current request, which is used to uniquely identify a

request
string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

Status GseManager::ProcessReady(std::vector<std::string> &logPath, int clientPort, int grp
cPort, GseResponse& reply)
{
ProcessReadyRequest request;
// Log path
for (auto iter = logPath.begin(); iter != logPath.end(); iter++)
{
request.add_logpathstoupload(*iter);
}

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 11 of 105

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the

game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::OnHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponse* reply)
{
reply->set_healthstatus(healthStatus);
return Status::OK;
}

3. Because the client calls the CreateGameServerSession API to create a game server session and

assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::OnStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponse* reply)
{
auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);
GseResponse processReadyReply;
Status status = GGseManager->ActivateGameServerSession(gameServerSession.gameserversessionid()
, gameServerSession.maxplayers(), processReadyReply);
// Determine whether the activation has succeeded based on `status` and `replay`

GConsoleLog->PrintOut(true, "ProcessReady clientPort is %d\n", clientPort);
GConsoleLog->PrintOut(true, "ProcessReady grpcPort is %d\n", grpcPort);

// Set the ports
request.set_clientport(clientPort);
request.set_grpcport(grpcPort);

ClientContext context;
AddMetadata(context);

// Ready to provide services
return stub_->ProcessReady(&context, request, &reply);
}

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 12 of 105

 return Status::OK;

}

4. After the game server receives onStartGameServerSession , you need to handle the logic or

resource allocation by yourself. After everything is ready, the game server will call the

 ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

Status GseManager::ActivateGameServerSession(std::string gameServerSessionId, int maxPlayers, Gse
Response& reply)
{
GConsoleLog->PrintOut(true, "ActivateGameServerSession gameServerSessionId is %s\n", gameServerSe
ssionId.c_str());
GConsoleLog->PrintOut(true, "ActivateGameServerSession maxPlayers is %d\n", maxPlayers);
ActivateGameServerSessionRequest request;
request.set_gameserversessionid(gameServerSessionId);
request.set_maxplayers(maxPlayers);

ClientContext context;
AddMetadata(context);

return stub_->ActivateGameServerSession(&context, request, &reply);
}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call

the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the

status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

Status GseManager::AcceptPlayerSession(std::string playerSessionId, GseResponse& reply)
{
AcceptPlayerSessionRequest request;
request.set_gameserversessionid(gameServerSession.gameserversessionid());
request.set_playersessionid(playerSessionId);
ClientContext context;
AddMetadata(context);

https://intl.cloud.tencent.com/document/product/1055/39130

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 13 of 105

 return stub_->AcceptPlayerSession(&context, request, &reply);

}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player slot

in the game server session.

Status GseManager::RemovePlayerSession(std::string playerSessionId, GseResponse& reply)
{
GConsoleLog->PrintOut(true, "RemovePlayerSession playerSessionId is %s\n", playerSessionId.c_str
());
RemovePlayerSessionRequest request;
request.set_gameserversessionid(gameServerSession.gameserversessionid());
request.set_playersessionid(playerSessionId);
ClientContext context;
AddMetadata(context);

return stub_->RemovePlayerSession(&context, request, &reply);
}

7. After a game server session (a game battle or a service) ends, the game server will call the

 TerminateGameServerSession API to end the GameServerSession and change its status to

 Terminated .

Status GseManager::TerminateGameServerSession(GseResponse& reply)
{
GConsoleLog->PrintOut(true, "start to TerminateGameServerSession\n");
TerminateGameServerSessionRequest request;
request.set_gameserversessionid(gameServerSession.gameserversessionid());
ClientContext context;
AddMetadata(context);

 return stub_->TerminateGameServerSession(&context, request, &reply);

}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the

game process. The reduction will be triggered according to the protection policy configured in the

GSE console.

https://intl.cloud.tencent.com/document/product/1055/36675

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 14 of 105

Status GameServerGrpcSdkServiceImpl::OnProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponse* reply)
{
auto terminationTime = request->terminationtime();
GGseManager->SetTerminationTime(terminationTime);
// If the following two APIs are called, the game server session will be ended immediately. We
recommend you call `ProcessEnding` to end the process only when there are no players or game s
erver sessions
// If the following two APIs are not called, `ProcessEnding` will be called to end the process
according to the protection policy. We recommend you configure time-period protection

//End the game server sessions

GseResponse terminateGameServerSessionReply;

GGseManager->TerminateGameServerSession(terminateGameServerSessionReply);

// End the processes

GseResponse processEndingReply;

GGseManager->ProcessEnding(processEndingReply);

 return Status::OK;

}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The `ProcessEnding` API will be active
ly called after the game battle ends
// Passive call: in case of reduction, process exception, or health check failure, the `Proces
sEnding` API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made
Status GseManager::ProcessEnding(GseResponse& reply)
{
GConsoleLog->PrintOut(true, "start to ProcessEnding\n");
ProcessEndingRequest request;
ClientContext context;
AddMetadata(context);

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 15 of 105

 return stub_->ProcessEnding(&context, request, &reply);

}

10. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

Status GseManager::DescribePlayerSessions(std::string gameServerSessionId, std::string playerId,
std::string playerSessionId,std::string playerSessionStatusFilter, std::string nextToken, int lim
it, DescribePlayerSessionsResponse& reply)
{
GConsoleLog->PrintOut(true, "start to DescribePlayerSessions\n");
DescribePlayerSessionsRequest request;
request.set_gameserversessionid(gameServerSessionId);
request.set_playerid(playerId);
request.set_playersessionid(playerSessionId);
request.set_playersessionstatusfilter(playerSessionStatusFilter);
request.set_nexttoken(nextToken);
request.set_limit(limit);
ClientContext context;
AddMetadata(context);

return stub_->DescribePlayerSessions(&context, request, &reply);
}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session

creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

Status GseManager::UpdatePlayerSessionCreationPolicy(std::string newpolicy, GseResponse& reply
)
{
GConsoleLog->PrintOut(true, "UpdatePlayerSessionCreationPolicy, newpolicy is %s\n", newpolicy.
c_str());
UpdatePlayerSessionCreationPolicyRequest request;
request.set_gameserversessionid(gameServerSession.gameserversessionid());
request.set_newplayersessioncreationpolicy(newpolicy);
ClientContext context;
AddMetadata(context);

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 16 of 105

 return stub_->UpdatePlayerSessionCreationPolicy(&context, request, &reply);

}

12. The game server calls the ReportCustomData API to notify GSE of the custom data that can be

viewed during game server session query (which is optional based on your actual business needs).

Status GseManager::ReportCustomData(int currentCustomCount, int maxCustomCount, GseResponse& repl
y)
{
GConsoleLog->PrintOut(true, "ReportCustomData, currentCustomCount is %d\n", currentCustomCount);
GConsoleLog->PrintOut(true, "ReportCustomData, maxCustomCount is %d\n", maxCustomCount);
ReportCustomDataRequest request;
request.set_currentcustomcount(currentCustomCount);
request.set_maxcustomcount(maxCustomCount);

ClientContext context;
AddMetadata(context);

return stub_->ReportCustomData(&context, request, &reply);
}

Launching Server for GSE to Call

Server running: launch GrpcServer .

GameServerGrpcSdkServiceImpl::GameServerGrpcSdkServiceImpl() : serverAddress("127.0.0.1:0"), heal
thStatus(true)
{
sem_init(&sem, 0, 0);
}
void GameServerGrpcSdkServiceImpl::StartGrpcServer()
{
ServerBuilder builder;
builder.AddListeningPort(serverAddress, grpc::InsecureServerCredentials(), &grpcPort);
builder.RegisterService(this);
std::unique_ptr<Server> server(builder.BuildAndStart());
sem_post(&sem);
server->Wait();
}

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 17 of 105

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

void GseManager::InitStub()
{
auto channel = grpc::CreateChannel("127.0.0.1:5758", grpc::InsecureChannelCredentials());
stub_ = GseGrpcSdkService::NewStub(channel);
}

Demo for C++

1. Click here to download the code of the Demo for C++.

2. Generate the gRPC code.

As the gRPC code has already been generated in the cpp-demo/source/grpcsdk directory of the

Demo for C++, you do not need to generate it again.

3. Launch the server for GSE to call.

Implement the server.

 grpcserver.cpp in the cpp-demo/source/api directory implements three server APIs.

Run the server.

 grpcserver.cpp in the cpp-demo/source/api directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.

Implement the client.

 gsemanager.cpp in the cpp-demo/source/gsemanager directory implements nine client APIs.

Connect to the server.

Create a gRPC channel, specify the host name and server port to connect to, and use this

channel to create a stub instance.

5. Compile and run the project.

i. Install CMake.

ii. Install GCC v4.9 or above.

iii. Download the code and run the following command in the cpp-demo directory:

mkdir build
cmake ..
make

The corresponding cpp-demo executable file will be generated.

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/cpp-demo.zip

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 18 of 105

iv. Package the cpp-demo executable file as an asset package and configure the launch path as

 cpp-demo with no launch parameter needed.

v. Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 19 of 105

Installing gRPC

1. To use gRPC C#, you need to install .Net Core 3.1 SDK first. Taking CentOS as an example, the

version must be v7, v8 or above.

Add the signature key

sudo rpm -Uvh https://packages.microsoft.com/config/centos/7/packages-microsoft-prod.rpm

Install .NET Core SDK

sudo yum install dotnet-sdk-3.1

2. In addition, you can also use gRPC C# in the following runtime environments/IDEs:

Windows: .NET Framework 4.5 or higher, Visual Studio 2013 or higher, Visual Studio Code.

Linux: Mono 4 or higher, Visual Studio Code.

macOS X: Mono 4 or higher, Visual Studio Code, Visual Studio for Mac.

Note

For more information on the installation process, please see Installing gRPC C#.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note：

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

gRPC C# Tutorial

Last updated：2021-11-17 18:06:09

https://github.com/grpc/grpc/blob/v1.30.0/src/csharp/README.md#prerequisites
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 20 of 105

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

Download the code. In the csharp-demo directory, run

dotnet run

to automatically compile and run the service.

After the program is compiled and run correctly, the project's dependent libraries and binary

files, and the .cs files created by compiling the proto file will be generated in the csharp-

demo/obj/Debug/netcoreapp3.1 folder.

The proto file is imported in csharp-demo/csharpdemo.csproj :

<Protobuf Include="..\proto\csharp-demo\GameServerGrpcSdkService.proto" Link="GameServerGrpc
SdkService.proto"/>
<Protobuf Include="..\proto\csharp-demo\GseGrpcSdkService.proto" Link="GseGrpcSdkService.pro
to" />

The project relies on the two proto files GameServerGrpcSdkService.proto and

 GseGrpcSdkService.proto in the proto/csharp-demo folder.

Game Process Integration Process

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 21 of 105

Game server callback API list

API Name API Description

OnHealthCheck Runs health check

OnStartGameServerSession Receives game server session

OnProcessTerminate Ends game process

Game server active API list

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 22 of 105

API Name API DescriptionAPI Name API Description

ProcessReady Gets process ready

ActivateGameServerSession Activates game server session

AcceptPlayerSession Receives player session

RemovePlayerSession Removes player session

DescribePlayerSessions Gets player session list

UpdatePlayerSessionCreationPolicy Updates player session creation policy

TerminateGameServerSession Ends game server session

ProcessEnding Ends process

ReportCustomData Reports custom data

Others

When the game process uses gRPC to call a game server active API, you need to add two fields to

 meta of the gRPC request.

Field Description Type

pid pid of the current game process string

requestId
 requestId of the current request, which is used to uniquely identify a

request
string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

public static GseResponse ProcessReady(string[] logPath, int clientPort, int grpcPort)
{
logger.Println($"Getting process ready, LogPath: {logPath}, ClientPort: {clientPort}, GrpcPor
t: {grpcPort}");
// Set the ports
var req = new ProcessReadyRequest{
ClientPort = clientPort,
GrpcPort = grpcPort,
};

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 23 of 105

// Log path
req.LogPathsToUpload.Add(logPath); // After being parsed by `pb`, the `repeated` type is read-
only and needs to be added by running `Add`
// Ready to provide services
return GrpcClient.GseClient.ProcessReady(req, meta);
}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the

game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

public override Task<HealthCheckResponse> OnHealthCheck(HealthCheckRequest request, ServerCall
Context context)
{
logger.Println($"OnHealthCheck, HealthStatus: {GseManager.HealthStatus}");
return Task.FromResult(new HealthCheckResponse{
HealthStatus = GseManager.HealthStatus
});
}

3. Because the client calls the CreateGameServerSession API to create a game server session and

assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

public override Task<GseResponse> OnStartGameServerSession(StartGameServerSessionRequest reque
st, ServerCallContext context)
{
logger.Println($"OnStartGameServerSession, request: {request}");
GseManager.SetGameServerSession(request.GameServerSession);
var resp = GseManager.ActivateGameServerSession(request.GameServerSession.GameServerSessionId,
request.GameServerSession.MaxPlayers);
return Task.FromResult(resp);
}

4. After the game server receives onStartGameServerSession , you need to handle the logic or

resource allocation by yourself. After everything is ready, the game server will call the

 ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

public static GseResponse ActivateGameServerSession(string gameServerSessionId, int maxPlayer
s)

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 24 of 105

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call

the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the

status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player

slot in the game server session.

{
logger.Println($"Activating game server session, GameServerSessionId: {gameServerSessionId}, M
axPlayers: {maxPlayers}");
var req = new ActivateGameServerSessionRequest{
GameServerSessionId = gameServerSessionId,
MaxPlayers = maxPlayers,
};
return GrpcClient.GseClient.ActivateGameServerSession(req, meta);
}

public static GseResponse AcceptPlayerSession(string playerSessionId)
{
logger.Println($"Accepting player session, PlayerSessionId: {playerSessionId}");
var req = new AcceptPlayerSessionRequest{
GameServerSessionId = gameServerSession.GameServerSessionId,
PlayerSessionId = playerSessionId,
};
return GrpcClient.GseClient.AcceptPlayerSession(req, meta);
}

public static GseResponse RemovePlayerSession(string playerSessionId)
{
logger.Println($"Removing player session, PlayerSessionId: {playerSessionId}");
var req = new RemovePlayerSessionRequest{
GameServerSessionId = gameServerSession.GameServerSessionId,
PlayerSessionId = playerSessionId,
};
return GrpcClient.GseClient.RemovePlayerSession(req, meta);
}

https://intl.cloud.tencent.com/document/product/1055/39130

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 25 of 105

7. After a game server session (a game battle or a service) ends, the game server will call the

 TerminateGameServerSession API to end the GameServerSession and change its status to

 Terminated .

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the

game process. The reduction will be triggered according to the protection policy configured in the

GSE console.

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

public static GseResponse TerminateGameServerSession()
{
logger.Println($"Terminating game server session, GameServerSessionId: {gameServerSession.Game
ServerSessionId}");
var req = new TerminateGameServerSessionRequest{
GameServerSessionId = gameServerSession.GameServerSessionId
};
return GrpcClient.GseClient.TerminateGameServerSession(req, meta);
}

public override Task<gseresponse> OnProcessTerminate(ProcessTerminateRequest request, ServerCa
llContext context)
{
logger.Println($"OnProcessTerminate, request: {request}");
// Set the process termination time
GseManager.SetTerminationTime(request.TerminationTime);
// If the following two APIs are called, the game server session will be ended immediately. We
recommend you call `ProcessEnding` to end the process only when there are no players or game s
erver sessions
// If the following two APIs are not called, `ProcessEnding` will be called to end the process
according to the protection policy. We recommend you configure time-period protection
// Terminate game server sessions
GseManager.TerminateGameServerSession();
// Exit the process
GseManager.ProcessEnding();
return Task.FromResult(new GseResponse{
Status = GseResponse.Types.Status.Ok,
ResponseData = "SUCCESS",
});
}

https://intl.cloud.tencent.com/document/product/1055/36675

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 26 of 105

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session

creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

// Active call: a game battle corresponds to a process. The `ProcessEnding` API will be active
ly called after the game battle ends
// Passive call: in case of reduction, process exception, or health check failure, the `Proces
sEnding` API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made
public static GseResponse ProcessEnding()
{
logger.Println($"Process ending, pid: {pid}");
var req = new ProcessEndingRequest();
return GrpcClient.GseClient.ProcessEnding(req, meta);
}

public static DescribePlayerSessionsResponse DescribePlayerSessions(string gameServerSessionI
d, string playerId, string playerSessionId, string playerSessionStatusFilter, string nextToke
n, int limit)
{
logger.Println($"Describing player session, GameServerSessionId: {gameServerSessionId}, Player
Id: {playerId}, PlayerSessionId: {playerSessionId}, PlayerSessionStatusFilter: {playerSessionS
tatusFilter}, NextToken: {nextToken}, Limit: {limit}");
var req = new DescribePlayerSessionsRequest{
GameServerSessionId = gameServerSessionId,
PlayerId = playerId,
PlayerSessionId = playerSessionId,
PlayerSessionStatusFilter = playerSessionStatusFilter,
NextToken = nextToken,
Limit = limit,
};
return GrpcClient.GseClient.DescribePlayerSessions(req, meta);
}

public static GseResponse UpdatePlayerSessionCreationPolicy(string newPolicy)
{
logger.Println($"Updating player session creation policy, newPolicy: {newPolicy}");
var req = new UpdatePlayerSessionCreationPolicyRequest{
GameServerSessionId = gameServerSession.GameServerSessionId,

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 27 of 105

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

Launching Server for GSE to Call

Server running: launch GrpcServer .

NewPlayerSessionCreationPolicy = newPolicy,
};
return GrpcClient.GseClient.UpdatePlayerSessionCreationPolicy(req, meta);
}

public static GseResponse ReportCustomData(int currentCustomCount, int maxCustomCount)
{
logger.Println($"Reporting custom data, CurrentCustomCount: {currentCustomCount}, MaxCustomCou
nt: {maxCustomCount}");
var req = new ReportCustomDataRequest{
CurrentCustomCount = currentCustomCount,
MaxCustomCount = maxCustomCount,
};
return GrpcClient.GseClient.ReportCustomData(req, meta);
}

public class Program
{
public static int ClientPort = PortServer.GenerateRandomPort(2000, 6000);
public static int GrpcPort = PortServer.GenerateRandomPort(6001, 10000);

public static void Main(string[] args)
{
CreateHostBuilder(args).Build().Run();
}
public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureWebHostDefaults(webBuilder =>
{
webBuilder.ConfigureKestrel(options =>
{
// gRPC port (set the HTTP/2 endpoint without TLS certificate)
options.ListenAnyIP(GrpcPort, o => o.Protocols =
HttpProtocols.Http2);

// HTTP port

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 28 of 105

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

Demo for C#

1. Click here to download the code of the Demo for C#.

2. Generate the gRPC code.

As the gRPC code has already been generated in the proto/csharp-demo directory of the Demo for

C#, you do not need to generate it again.

3. Launch the server for GSE to call.

options.ListenAnyIP(ClientPort);
});

webBuilder.UseStartup<startup>();
});
}

public class GrpcClient
{
private static string agentAdress = "127.0.0.1:5758";
public static GameServerGrpcSdkService.GameServerGrpcSdkServiceClient GameServerClient
{
get
{
Channel channel = new Channel(agentAdress, ChannelCredentials.Insecure);
return new GameServerGrpcSdkService.GameServerGrpcSdkServiceClient(channel);
}
}
public static GseGrpcSdkService.GseGrpcSdkServiceClient GseClient
{
get
{
Channel channel = new Channel(agentAdress, ChannelCredentials.Insecure);
return new GseGrpcSdkService.GseGrpcSdkServiceClient(channel);
}
}
}

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/csharp-demo.zip

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 29 of 105

Implement the server.

 gameserversdk.cs in the csharp-demo/api directory implements three server APIs.

Run the server.

 Program.cs in the csharp-demo directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.

Implement the client.

 GseManager.cs in the csharp-demo/Models directory implements nine client APIs.

Connect to the server.

Create a gRPC channel, specify the host name and server port to connect to, and use this

channel to create a stub instance.

5. Compile and run the program.

i. Generate the executable file and dependencies

dotnet publish -c Release -r linux-x64 --self-contained true

The above operation will generate all the dependent files needed to generate and package the

asset package in the csharp-demo/bin/Release/netcoreapp3.1/linux-x64 directory, which contains

the executable file csharpdemo used to run the service.

Copy the pre-request script install.sh

chmod u+x install.sh
cp install.sh bin/Release/netcoreapp3.1/linux-x64

Package the GSE asset package

cd csharp-demo/bin/Release/netcoreapp3.1/linux-x64
zip -r csharpdemo.zip *

The packaged csharpdemo.zip is the asset package needed by GSE. Configure the launch path

as csharpdemo with no launch parameter needed.

Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 30 of 105

Installing gRPC

1. To use gRPC Go, you need to install the latest major release of Go first.

2. Install the protocol buffer compiler protoc3.

3. Install the Go plugin in the protocol buffer compiler.

Run the following command to install the protocol buffer compiler plugin for Go (protoc-gen-go):

$ export GO111MODULE=on # Enable module mode
$ go get github.com/golang/protobuf/protoc-gen-go

Update the path so that the protocol buffer compiler can find the Go plugin:

$ export PATH="$PATH:$(go env GOPATH)/bin"

Note

For more information on the installation process, see Installing Go and Installing Protocol Buffer

Compiler.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

gRPC Go Tutorial

Last updated：2021-11-17 18:06:09

https://github.com/grpc/grpc-go/tree/master/examples
https://www.grpc.io/docs/protoc-installation/
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 31 of 105

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

In the proto directory, run:

protoc --go_out=plugins=grpc:. *.proto

to automatically generate the go_package path that contains proto. You can modify the

 go_package path as needed but not the package.

Game Process Integration Process

Game server callback API list
API Name	API Description
[OnHealthCheck](https://intl.cloud.tencent.com/document/product/1055/37422)	Runs health chec
k	
[OnStartGameServerSession](https://intl.cloud.tencent.com/document/product/1055/37423)	Recei
ves game server session	
[OnProcessTerminate](https://intl.cloud.tencent.com/document/product/1055/37424)	Ends game p
rocess |
Game server active API list
API Name	API Description
[ProcessReady](https://intl.cloud.tencent.com/document/product/1055/37426)	Gets process read
y	
[ActivateGameServerSession](https://intl.cloud.tencent.com/document/product/1055/37427)	Acti
vates game server session	
[AcceptPlayerSession](https://intl.cloud.tencent.com/document/product/1055/37428)	Receives p
layer session	
[RemovePlayerSession](https://intl.cloud.tencent.com/document/product/1055/37429)	Removes pl
ayer session	
[DescribePlayerSessions](https://intl.cloud.tencent.com/document/product/1055/37430)	Gets pl
ayer session list	
[UpdatePlayerSessionCreationPolicy](https://intl.cloud.tencent.com/document/product/1055/3743	
1)	Updates player session creation policy
[TerminateGameServerSession](https://intl.cloud.tencent.com/document/product/1055/37432)	End
s game server session	
[ProcessEnding](https://intl.cloud.tencent.com/document/product/1055/37434)	Ends process
[ReportCustomData](https://intl.cloud.tencent.com/document/product/1055/37435)	Reports custo

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 32 of 105

m data |
Others
When the game process uses gRPC to call a game server active API, you need to add two fields t
o `meta` of the gRPC request.
Field	Description	Type
pid	`pid` of the current game process	string
requestId	`requestId` of the current request, which is used to uniquely identify a request	
string		
1. Generally, after the server is initialized, the process will check itself to see whether it
can provide services, and the game server will call the `ProcessReady` API to notify GSE that
the process is ready to host a game server session. After receiving the notification, GSE will
change the status of the server instance to "Active".

Go

func (g *gsemanager) ProcessReady(logPath []string, clientPort int32, grpcPort int32) error {

logger.Info("start to processready", zap.Any("logPath", logPath), zap.Int32("clientPort", clientPort),

zap.Int32("grpcPort", grpcPort))

req := &grpcsdk.ProcessReadyRequest{

// Log path
LogPathsToUpload: logPath,
// Set the ports
ClientPort: clientPort,
GrpcPort: grpcPort,

}

_, err := g.rpcClient.ProcessReady(g.getContext(), req)

if err != nil {

logger.Info("ProcessReady fail", zap.Error(err))
return err

}

// Ready to provide services

logger.Info("ProcessReady success")

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 33 of 105

return nil

}

2. After the process is ready, GSE will call the `OnHealthCheck` API to perform a health check
on the game server every minute. If the health check fails three consecutive times, the proces
s will be considered to be unhealthy, and no game server sessions will be assigned to it.

Go

func _GameServerGrpcSdkService_OnHealthCheck_Handler(srv interface{}, ctx context.Context,

dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {

in := new(HealthCheckRequest)

if err := dec(in); err != nil {

return nil, err

}

if interceptor == nil {

return srv.(GameServerGrpcSdkServiceServer).OnHealthCheck(ctx, in)

}

info := &grpc.UnaryServerInfo{

Server: srv,
FullMethod: "/tencentcloud.gse.grpcsdk.GameServerGrpcSdkService/OnHealthCheck",

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv.(GameServerGrpcSdkServiceServer).OnHealthCheck(ctx, req.(*HealthCheckRequest))

}

return interceptor(ctx, in, info, handler)

}

3. Because the client calls the [CreateGameServerSession](https://intl.cloud.tencent.com/docum
ent/product/1055/37139) API to create a game server session and assigns it to a process, GSE w

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 34 of 105

ill be triggered to call the `onStartGameServerSession` API for the process and change the sta
tus of `GameServerSession` to "Activating".

Go

func _GameServerGrpcSdkService_OnStartGameServerSession_Handler(srv interface{}, ctx

context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor)

(interface{}, error) {

in := new(StartGameServerSessionRequest)

if err := dec(in); err != nil {

return nil, err

}

if interceptor == nil {

return srv.(GameServerGrpcSdkServiceServer).OnStartGameServerSession(ctx, in)

}

info := &grpc.UnaryServerInfo{

Server: srv,
FullMethod: "/tencentcloud.gse.grpcsdk.GameServerGrpcSdkService/OnStartGameServerSession",

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv.(GameServerGrpcSdkServiceServer).OnStartGameServerSession(ctx, req.(*StartGameServe
rSessionRequest))

}

return interceptor(ctx, in, info, handler)

}

4. After the game server receives `onStartGameServerSession`, you need to handle the logic or
resource allocation by yourself. After everything is ready, the game server will call the `Act
ivateGameServerSession` API to notify GSE that the game server session has been assigned to a
process and is ready to receive player requests and will change the server status to "Active".

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 35 of 105

Go

func (g *gsemanager) ActivateGameServerSession(gameServerSessionId string, maxPlayers int32)

error {

logger.Info("start to ActivateGameServerSession", zap.String("gameServerSessionId",

gameServerSessionId),

zap.Int32("maxPlayers", maxPlayers))

req := &grpcsdk.ActivateGameServerSessionRequest{

GameServerSessionId: gameServerSessionId,
MaxPlayers: maxPlayers,

}

_, err := g.rpcClient.ActivateGameServerSession(g.getContext(), req)

if err != nil {

logger.Error("ActivateGameServerSession fail", zap.Error(err))
return err

}

logger.Info("ActivateGameServerSession success")

return nil

}

5. After the client calls the [JoinGameServerSession](https://intl.cloud.tencent.com/document/
product/1055/39130) API for the player to join, the game server will call the `AcceptPlayerSes
sion` API to verify the validity of the player. If the connection is accepted, the status of `
PlayerSession` will be set to "Active". If the client receives no response within 60 seconds a
fter calling the `JoinGameServerSession` API, it will change the status of `PlayerSession` to
"Timeout" and then call `JoinGameServerSession` again.

func (g gsemanager) AcceptPlayerSession(playerSessionId string) (grpcsdk.GseResponse, error) {

logger.Info("start to AcceptPlayerSession", zap.String("playerSessionId", playerSessionId))

req := &grpcsdk.AcceptPlayerSessionRequest{

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 36 of 105

GameServerSessionId: g.gameServerSession.GameServerSessionId,
PlayerSessionId: playerSessionId,

}

return g.rpcClient.AcceptPlayerSession(g.getContext(), req)

}

6. After the game ends or the player exits, the game server will call the `RemovePlayerSession
` API to remove the player, change the status of `playersession` to "Completed", and reserve t
he player slot in the game server session.

Go

func (g gsemanager) RemovePlayerSession(playerSessionId string) (grpcsdk.GseResponse, error)

{

logger.Info("start to RemovePlayerSession", zap.String("playerSessionId", playerSessionId))

req := &grpcsdk.RemovePlayerSessionRequest{

GameServerSessionId: g.gameServerSession.GameServerSessionId,
PlayerSessionId: playerSessionId,

}

return g.rpcClient.RemovePlayerSession(g.getContext(), req)

}

7. After a game server session (a game battle or a service) ends, the game server will call th
e `TerminateGameServerSession` API to end the `GameServerSession` and change its status to `Te
rminated`.

Go

func (g gsemanager) TerminateGameServerSession() (grpcsdk.GseResponse, error) {

logger.Info("start to TerminateGameServerSession")

req := &grpcsdk.TerminateGameServerSessionRequest{

GameServerSessionId: g.gameServerSession.GameServerSessionId,

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 37 of 105

}

return g.rpcClient.TerminateGameServerSession(g.getContext(), req)

}

8. In case of health check failure or reduction, GSE will call the `OnProcessTerminate` API to
end the game process. The reduction will be triggered according to the [protection policy](htt
ps://intl.cloud.tencent.com/document/product/1055/36675) configured in the GSE console.

Go

func _GameServerGrpcSdkService_OnProcessTerminate_Handler(srv interface{}, ctx

context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor)

(interface{}, error) {

in := new(ProcessTerminateRequest)

if err := dec(in); err != nil {

return nil, err

}

if interceptor == nil {

return srv.(GameServerGrpcSdkServiceServer).OnProcessTerminate(ctx, in)

}

info := &grpc.UnaryServerInfo{

Server: srv,
FullMethod: "/tencentcloud.gse.grpcsdk.GameServerGrpcSdkService/OnProcessTerminate",

}

handler := func(ctx context.Context, req interface{}) (interface{}, error) {

return srv.(GameServerGrpcSdkServiceServer).OnProcessTerminate(ctx, req.(*ProcessTerminateRequ
est))

}

return interceptor(ctx, in, info, handler)

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 38 of 105

}

9. The game server calls the `ProcessEnding` API to end the process immediately, change the se
rver process status to "Terminated", and repossess the resources.

Go

// Active call: a game battle corresponds to a process. The ProcessEnding API will be actively

called after the game battle ends

// Passive call: in case of reduction, process exception, or health check failure, the ProcessEnding

API will be called passively according to the protection policy. If a full protection or time-period

protection policy is configured, it is required to determine whether there are any players in the

game server session before the passive call can be made

func (g gsemanager) ProcessEnding() (grpcsdk.GseResponse, error) {

logger.Info("start to ProcessEnding")

req := &grpcsdk.ProcessEndingRequest{

}

return g.rpcClient.ProcessEnding(g.getContext(), req)

}

10. The game server calls the `DescribePlayerSessions` API to get the information of the playe
r in the game server session (which is optional based on your actual business needs).

Go

func (g gsemanager) DescribePlayerSessions(gameServerSessionId, playerId, playerSessionId,

playerSessionStatusFilter, nextToken string,limit int32) (grpcsdk.DescribePlayerSessionsResponse,

error) {

logger.Info("start to DescribePlayerSessions", zap.String("gameServerSessionId",

gameServerSessionId),

zap.String("playerId", playerId), zap.String("playerSessionId", playerSessionId),
zap.String("playerSessionStatusFilter", playerSessionStatusFilter), zap.String("nextToken", ne
xtToken),
zap.Int32("limit", limit))

req := &grpcsdk.DescribePlayerSessionsRequest{

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 39 of 105

GameServerSessionId: gameServerSessionId,
PlayerId: playerId,
PlayerSessionId: playerSessionId,
PlayerSessionStatusFilter: playerSessionStatusFilter,
NextToken: nextToken,
Limit: limit,

}

return g.rpcClient.DescribePlayerSessions(g.getContext(), req)

}

11. The game server calls the `UpdatePlayerSessionCreationPolicy` API to update the player ses
sion creation policy and set whether to accept new players, i.e., whether to allow new players
to join a game session (which is optional based on your actual business needs).

Go

func (g gsemanager) UpdatePlayerSessionCreationPolicy(newPolicy string) (grpcsdk.GseResponse,

error) {

logger.Info("start to UpdatePlayerSessionCreationPolicy", zap.String("newPolicy", newPolicy))

req := &grpcsdk.UpdatePlayerSessionCreationPolicyRequest{

GameServerSessionId: g.gameServerSession.GameServerSessionId,
NewPlayerSessionCreationPolicy: newPolicy,

}

return g.rpcClient.UpdatePlayerSessionCreationPolicy(g.getContext(), req)

}

12. The game server calls the `ReportCustomData` API to notify GSE of the custom data (which i
s optional based on your actual business needs).

Go

func (g gsemanager) ReportCustomData(currentCustomCount, maxCustomCount int32)

(grpcsdk.GseResponse, error) {

logger.Info("start to UpdatePlayerSessionCreationPolicy", zap.Int32("currentCustomCount",

currentCustomCount),

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 40 of 105

zap.Int32("maxCustomCount", maxCustomCount))

req := &grpcsdk.ReportCustomDataRequest{

CurrentCustomCount: currentCustomCount,
MaxCustomCount: maxCustomCount,

}

return g.rpcClient.ReportCustomData(g.getContext(), req)

}

Launching Server for GSE to Call
Server running: launch `GrpcServer`.

Go

func (s *rpcService) StartGrpcServer() {

listen, err := net.Listen("tcp", "127.0.0.1:")

if err != nil {

logger.Fatal("grpc fail to listen", zap.Error(err))

}

addr := listen.Addr().String()

portStr := strings.Split(addr, ":")[1]

s.grpcPort, err = strconv.Atoi(portStr)

if err != nil {

logger.Fatal("grpc fail to get port",zap.Error(err))

}

logger.Info("grpc listen port is", zap.Int("port", s.grpcPort))

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 41 of 105

grpcServer := grpc.NewServer()

grpcsdk.RegisterGameServerGrpcSdkServiceServer(grpcServer, s)

logger.Info("start grpc server success")

go grpcServer.Serve(listen)

}

Connecting Client to gRPC Server of GSE
Server connecting: create a gRPC channel, specify the host name and server port to connect to,
and use this channel to create a stub instance.

Go

const (

localhost = "127.0.0.1"
agentPort = 5758

)

type gsemanager struct {

pid string
gameServerSession *grpcsdk.GameServerSession
terminationTime int64
rpcClient grpcsdk.GseGrpcSdkServiceClient

}

Demo for Go
1. [Click here](https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/go-demo.zip) to d
ownload the code of the Demo for Go.
2. Generate the gRPC code.
As the gRPC code has already been generated in the `go-demo/grpcsdk` directory of the Demo for
Go, you do not need to generate it again.
3. Launch the server for GSE to call.
- Implement the server.
`grpcserver.go` in the `go-demo/api` directory implements three server APIs.
- Run the server.
`grpcserver.go` in the `go-demo/api` directory launches `GrpcServer`.
4. Connect the client to the gRPC server of GSE.
- Implement the client.
`gsemanager.go` in the `go-demo/gsemanager` directory implements nine client APIs.
- Connect to the server.

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 42 of 105

Create a gRPC channel, specify the host name and server port to connect to, and use this chann
el to create a stub instance.
5. Compile and run the project.
1. In the `go-demo` directory, run

go mod vendor

to generate the vendor directory.

Run the compile command:

go build -mod=vendor main.go

to generate the corresponding go-demo executable file main.go.

4. Package the executable file main.go as an [asset package]

(https://intl.cloud.tencent.com/document/product/1055/36674) and configure the launch path as

 main with no launch parameter needed.

5. [Create a server fleet](https://intl.cloud.tencent.com/document/product/1055/36675) and deploy the

asset package on it. After that, you can perform various operations such as [scaling]

(https://intl.cloud.tencent.com/document/product/1055/37445).

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 43 of 105

Installing gRPC

1. gRPC Java does not require other tools except JDK.

2. Install the gRPC Java SNAPSHOT library locally, including the code generation plugin.

Note：

For more information on the installation process, please see Installing gRPC Java.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be

called remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Methods for generating gRPC code:

Method 1. Execute the script under java-demo/src/main/proto . You need to download protoc

and protoc-gen-grpc-java generation tools from the gRPC website:

sh gen_pb.sh

gRPC Java Tutorial

Last updated：2021-11-17 18:06:09

https://github.com/grpc/grpc-java/blob/master/COMPILING.md
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 44 of 105

protoc --java_out=../java --proto_path=. GameServerGrpcSdkService.proto
protoc --plugin=protoc-gen-grpc-java=`which protoc-gen-grpc-java` --grpc-java_out=../java --
proto_path=. GameServerGrpcSdkService.proto
protoc --java_out=../java --proto_path=. GseGrpcSdkService.proto
protoc --plugin=protoc-gen-grpc-java=`which protoc-gen-grpc-java` --grpc-java_out=../java --
proto_path=. GseGrpcSdkService.proto

Method 2. Use the Maven tool to generate gRPC code by adding a Maven plugin for compiling

gRPC code to Maven. For more information, please see here.

Game Process Integration Process

<build>
<extensions>
<extension>
<groupid>kr.motd.maven</groupid>
<artifactid>os-maven-plugin</artifactid>
<version>1.6.2</version>
</extension>
</extensions>
<plugins>
<plugin>
<groupid>org.xolstice.maven.plugins</groupid>
<artifactid>protobuf-maven-plugin</artifactid>
<version>0.6.1</version>
<configuration>
<protocartifact>com.google.protobuf:protoc:3.12.0:exe:${os.detected.classifier}</protocartif
act>
<pluginid>grpc-java</pluginid>
<pluginartifact>io.grpc:protoc-gen-grpc-java:1.30.2:exe:${os.detected.classifier}</pluginart
ifact>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>compile-custom</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

https://github.com/grpc/grpc-java

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 45 of 105

Game server callback API list

API Name API Description

OnHealthCheck Runs health check

OnStartGameServerSession Receives game server session

OnProcessTerminate Ends game process

Game server active API list

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 46 of 105

API Name API DescriptionAPI Name API Description

ProcessReady Gets process ready

ActivateGameServerSession Activates game server session

AcceptPlayerSession Receives player session

RemovePlayerSession Removes player session

DescribePlayerSessions Gets player session list

UpdatePlayerSessionCreationPolicy Updates player session creation policy

TerminateGameServerSession Ends game server session

ProcessEnding Ends process

ReportCustomData Reports custom data

Others

When the game process uses gRPC to call a game server active API, you need to add two fields to

 meta of the gRPC request.

Field Description Type

pid pid of the current game process string

requestId
 requestId of the current request, which is used to uniquely identify a

request
string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

public GseResponseBo processReady(ProcessReadyRequestBo request) {
logger.info("processReady request=" + new Gson().toJson(request));
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.ProcessReadyRequest rpcRequest = GseGrpcSdkServiceOuterClass.Proce
ssReadyRequest
// Set the ports.
.newBuilder().setClientPort(request.getClientPort())
.setGrpcPort(request.getGrpcPort())
// Log path.

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 47 of 105

.addAllLogPathsToUpload(request.getLogPathsToUploadList()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().processReady(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
// Ready to provide services.
logger.info("processReady response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the

game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

public boolean onHealthCheck() {
// Add game server logic for health check.
boolean res = getGrpcServiceConfig().getGseGrpcSdkServiceClient().isProcessHealth();
logger.info("onHealthCheck status=" + res);
return res;
}

3. Because the client calls the CreateGameServerSession API to create a game server session and

assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

public GseResponseBo onStartGameServerSession(GameServerSessionBo gameServerSessionBo) {
logger.info("onStartGameServerSession gameServerSession=" + new Gson().toJson(gameServerSessio
nBo));
// Add the game server logic used to launch the game server session.
// Save the game server sessions
getGrpcServiceConfig().getGseGrpcSdkServiceClient().onStartGameServerSession(gameServerSession
Bo);
// Activate the game server sessions
ActivateGameServerSessionRequestBo activateRequest = new ActivateGameServerSessionRequestBo();
activateRequest.setGameServerSessionId(gameServerSessionBo.getGameServerSessionId());
activateRequest.setMaxPlayers(gameServerSessionBo.getMaxPlayers());
getGrpcServiceConfig().getGseGrpcSdkServiceClient().activateGameServerSession(activateReques
t);
// Add the final logic here.
return createResponseBo(0, "SUCCESS");
}

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 48 of 105

4. After the game server receives onStartGameServerSession , you need to handle the logic or

resource allocation by yourself. After everything is ready, the game server will call the

 ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

public GseResponseBo activateGameServerSession(ActivateGameServerSessionRequestBo request) {
logger.info("activateGameServerSession request=" + new Gson().toJson(request));
if (gameServerSessionBo == null) {
return createResponseBo(Constants.gameServerSessionExpectCode, "no game server session found."
);
}
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.ActivateGameServerSessionRequest rpcRequest = GseGrpcSdkServiceOut
erClass.ActivateGameServerSessionRequest
.newBuilder().setMaxPlayers(request.getMaxPlayers())
.setGameServerSessionId(gameServerSessionBo.getGameServerSessionId()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().activateGameServerSession(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("activateGameServerSession response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call

the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the

status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

public GseResponseBo acceptPlayerSession(PlayerSessionRequestBo request) {
logger.info("acceptPlayerSession request=" + new Gson().toJson(request));
if (gameServerSessionBo == null) {
return createResponseBo(Constants.gameServerSessionExpectCode, "no game server session found."
);
}
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.AcceptPlayerSessionRequest rpcRequest = GseGrpcSdkServiceOuterClas
s.AcceptPlayerSessionRequest

https://intl.cloud.tencent.com/document/product/1055/39130

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 49 of 105

.newBuilder().setGameServerSessionId(gameServerSessionBo.getGameServerSessionId())

.setPlayerSessionId(request.getPlayerSessionId()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().acceptPlayerSession(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("acceptPlayerSession response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player

slot in the game server session.

public GseResponseBo removePlayerSession(PlayerSessionRequestBo request) {
logger.info("removePlayerSession request=" + new Gson().toJson(request));
if (gameServerSessionBo == null) {
return createResponseBo(Constants.gameServerSessionExpectCode, "no game server session found."
);
}
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.RemovePlayerSessionRequest rpcRequest = GseGrpcSdkServiceOuterClas
s.RemovePlayerSessionRequest
.newBuilder().setGameServerSessionId(gameServerSessionBo.getGameServerSessionId())
.setPlayerSessionId(request.getPlayerSessionId()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().removePlayerSession(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("removePlayerSession response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

7. After a game server session (a game battle or a service) ends, the game server will call the

 TerminateGameServerSession API to end the GameServerSession and change its status to

 Terminated .

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 50 of 105

public GseResponseBo terminateGameServerSession(String gameServerSessionId) {
logger.info("terminateGameServerSession request=" + gameServerSessionId);
if (StringUtils.isEmpty(gameServerSessionId) && gameServerSessionBo != null
&& !StringUtils.isEmpty(gameServerSessionBo.getGameServerSessionId())) {
gameServerSessionId = gameServerSessionBo.getGameServerSessionId();
}
if (StringUtils.isEmpty(gameServerSessionId)) {
return createResponseBo(Constants.gameServerSessionExpectCode, "no game server session found."
);
}
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.TerminateGameServerSessionRequest rpcRequest = GseGrpcSdkServiceOu
terClass.TerminateGameServerSessionRequest
.newBuilder().setGameServerSessionId(gameServerSessionId).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().terminateGameServerSession(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("terminateGameServerSession response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the

game process. The reduction will be triggered according to the protection policy configured in the

GSE console.

public GseResponseBo onProcessTerminate(long terminationTime) {
logger.info("onProcessTerminate terminationTime=" + terminationTime);
// It is possible to end the game server now.
return createResponseBo(0, "SUCCESS");
}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The `ProcessEnding` API will be active
ly called after the game battle ends
// Passive call: in case of reduction, process exception, or health check failure, the `Proces
sEnding` API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are

https://intl.cloud.tencent.com/document/product/1055/36675

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 51 of 105

any players in the game server session before the passive call can be made
public GseResponseBo processEnding() {
logger.info("processEnding begin");
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.ProcessEndingRequest rpcRequest = GseGrpcSdkServiceOuterClass.Proc
essEndingRequest
.newBuilder().build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().processEnding(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("processEnding response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

public DescribePlayerSessionsResponseBo describePlayerSessions(DescribePlayerSessionsRequestBo
request) {
logger.info("describePlayerSessions request=" + new Gson().toJson(request));
if (StringUtils.isEmpty(request.getGameServerSessionId()) &&
gameServerSessionBo != null && !StringUtils.isEmpty(gameServerSessionBo.getGameServerSessionId
())) {
request.setGameServerSessionId(gameServerSessionBo.getGameServerSessionId());
}
GseGrpcSdkServiceOuterClass.DescribePlayerSessionsRequest rpcRequest = GseGrpcSdkServiceOuterC
lass.DescribePlayerSessionsRequest
.newBuilder().setGameServerSessionId(request.getGameServerSessionId())
.setLimit(request.getLimit())
.setNextToken(request.getNextToken())
.setPlayerId(request.getPlayerId())
.setPlayerSessionId(request.getPlayerSessionId())
.setPlayerSessionStatusFilter(request.getPlayerSessionStatusFilter()).build();
GseGrpcSdkServiceOuterClass.DescribePlayerSessionsResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().describePlayerSessions(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return null;
}
logger.info("describePlayerSessions response=" + rpcResponse.toString());

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 52 of 105

return toPlayerSessionsResponseBo(rpcResponse);
}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session

creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

public GseResponseBo updatePlayerSessionCreationPolicy(UpdatePlayerSessionCreationPolicyReques
tBo request) {
logger.info("updatePlayerSessionCreationPolicy request=" + new Gson().toJson(request));
if (gameServerSessionBo == null) {
return createResponseBo(Constants.gameServerSessionExpectCode, "no game server session found."
);
}
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.UpdatePlayerSessionCreationPolicyRequest rpcRequest = GseGrpcSdkSe
rviceOuterClass.UpdatePlayerSessionCreationPolicyRequest
.newBuilder().setGameServerSessionId(gameServerSessionBo.getGameServerSessionId())
.setNewPlayerSessionCreationPolicy(request.getNewPlayerSessionCreationPolicy()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().updatePlayerSessionCreationPolicy(rpcRequest);
} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("updatePlayerSessionCreationPolicy response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

public GseResponseBo reportCustomData(ReportCustomDataRequestBo request) {
logger.info("reportCustomData request=" + new Gson().toJson(request));
GseResponseBo responseBo = new GseResponseBo();
GseGrpcSdkServiceOuterClass.ReportCustomDataRequest rpcRequest = GseGrpcSdkServiceOuterClass.R
eportCustomDataRequest
.newBuilder()
.setCurrentCustomCount(request.getCurrentCustomCount())
.setMaxCustomCount(request.getMaxCustomCount()).build();
GseGrpcSdkServiceOuterClass.GseResponse rpcResponse;
try {
rpcResponse = getGseGrpcSdkServiceClient().reportCustomData(rpcRequest);

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 53 of 105

} catch (StatusRuntimeException e) {
logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
return createRpcFailedResponseBo(e.getStatus());
}
logger.info("reportCustomData response=" + rpcResponse.toString());
return createResponseBoByRpcResponse(rpcResponse);
}

Launching Server for GSE to Call

Server running: launch GrpcServer .

@Bean(name = "grpcService", initMethod = "startup", destroyMethod = "shutdown")
public GrpcService getGrpcService() {
GrpcServiceConfig grpcServiceConfig = new GrpcServiceConfig();
grpcServiceConfig.setGseGrpcSdkServiceClient(gseGrpcSdkServiceClient);
grpcServiceConfig.setGameServerGrpcPort(gameServerGrpcPort);
grpcServiceConfig.setGameServerToClientPort(gameServerToClientPort);
grpcServiceConfig.setTargetAddress(targetAddress);
grpcServiceConfig.setGameServerUploadLogPath(gameServerUploadLogPath);
GrpcService grpcService = new GrpcService(grpcServiceConfig);
return grpcService;
}

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

public GseGrpcSdkServiceGrpc.GseGrpcSdkServiceBlockingStub getGseGrpcSdkServiceClient() {
// The "channel" here is a channel instead of a `ManagedChannel`; therefore, it is not the respon
sibility of the code to shut it down.
// Pass the channel to the code to make it easier for the code to test and reuse the channel.
if (blockingStub == null) {
managedChannel = getGrpcChannel(targetAddress);
blockingStub = GseGrpcSdkServiceGrpc.newBlockingStub(managedChannel);
}
if (managedChannel.isShutdown() || managedChannel.isTerminated()) {
managedChannel.shutdownNow();
managedChannel = getGrpcChannel(targetAddress);
blockingStub = GseGrpcSdkServiceGrpc.newBlockingStub(managedChannel);

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 54 of 105

}
return blockingStub;
}

Demo for Java

1. Click here to download the code of the Demo for Java.

2. Generate the gRPC code.

As the gRPC code has already been generated in the java-demo/src/main/java/tencentcloud

directory of the Demo for Java, you do not need to generate it again.

3. Launch the server for GSE to call.

Implement the server.

 GameServerGrpcCallbackImpl.java in the java-

demo/src/main/java/com/tencentcloud/gse/gameserver/service/gamelogic/impl directory implements

three server APIs.

Run the server.

 GameServerConfig.java in the java-demo/src/main/java/com/tencentcloud/gse/gameserver/config

directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.

Implement the client.

 GseGrpcSdkServiceClientImpl.java in the java-

demo/src/main/java/com/tencentcloud/gse/gameserver/service/gsegrpc/impl directory implements

nine client APIs.

Connect to the server.

Create a gRPC channel, specify the host name and server port to connect to, and use this

channel to create a stub instance.

5. Compile and run the project.

i. Java v1.8 or above is required. You can use yum to install openjdk on Linux:

yum install -y java-1.8.0-openjdk

Download the code, use Maven to build and generate gse-gameserver-demo.jar in the java-

demo directory, and run the following command to launch it:

java -jar gse-gameserver-demo.jar

Package the executable file gse-gameserver-demo.jar as an asset package and configure the

launch path as java and the launch parameter as jar gse-gameserver-demo.jar .

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/java-demo.zip
https://intl.cloud.tencent.com/document/product/1055/36674

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 55 of 105

Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 56 of 105

Installing gRPC

1. Install gRPC. The installation will generate an executable program grpc_cpp_plugin , which will be

needed for generating gRPC code.

2. Install protocol buffers.

Note

For more information on the installation process, see Installing gRPC Lua and Installing Protocol

Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

The Demo for Lua relies on the C++ framework. Just like with the Demo for C++, in the proto

directory, run:

gRPC Lua Tutorial

Last updated：2021-11-17 18:06:10

https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 57 of 105

protoc --cpp_out=. *.proto

to generate the pb.cc and pb.h files.

protoc --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_cpp_plugin` *.proto

to generate the corresponding gRPC code.

Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 58 of 105

Game server callback API list

API Name API Description

OnHealthCheck runs health check

OnStartGameServerSession Receives game server session

OnProcessTerminate Ends game process

Game server callback API list

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 59 of 105

API Name API DescriptionAPI Name API Description

ProcessReady Gets process ready

ActivateGameServerSession Activates game server session

AcceptPlayerSession Receives player session

RemovePlayerSession Removes player session

DescribePlayerSessions Gets player session list

UpdatePlayerSessionCreationPolicy Updates player session creation policy

TerminateGameServerSession Ends game server session

ProcessEnding Ends process

ReportCustomData Reports custom data

Others

When the game process uses gRPC to call a game server active API, you need to add two fields to

 meta of the gRPC request.

Field Description Type

pid pid of the current game process string

requestId
 requestId of the current request, which is used to uniquely identify a

request
string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

static bool luaProcessReady(std::vector <std::string> &logPath, int clientPort, int grpcPort)
{
GseResponse reply;
// Log path. Set the ports.
Status status = GGseManager->ProcessReady(logPath, clientPort, grpcPort, reply);
// Ready to provide services
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 60 of 105

}
return true;
}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the

game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::OnHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponse* reply)
{
healthStatus = GSESDK()->exec("return OnHealthCheck()");
std::cout << "healthStatus=" << healthStatus << std::endl;
reply->set_healthstatus(healthStatus);
return Status::OK;
}

3. Because the client calls the CreateGameServerSession API to create a game server session and

assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::OnStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponse* reply)
{
auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);
std::ostringstream o;
o << "return OnStartGameServerSession('" << gameServerSession.gameserversessionid() << "'," <<
gameServerSession.maxplayers() << ")";
std::string luaCmd = o.str();
bool res = GSESDK()->exec(luaCmd);
return Status::OK;
}

4. After the game server receives onStartGameServerSession , you need to handle the logic or

resource allocation by yourself. After everything is ready, the game server will call the

 ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

static bool luaActivateGameServerSession(const std::string &gameServerSessionId, int maxPlayer
s) {

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 61 of 105

GseResponse reply;
Status status = GGseManager->ActivateGameServerSession(gameServerSessionId, maxPlayers, repl
y);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call

the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the

status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

static bool luaAcceptPlayerSession(const std::string &gameServerSessionId, const std::string &
playerSessionId) {
GseResponse reply;
Status status = GGseManager->AcceptPlayerSession(gameServerSessionId, playerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player

slot in the game server session.

static bool luaRemovePlayerSession(const std::string &gameServerSessionId, const std::string &
playerSessionId) {
GseResponse reply;
Status status = GGseManager->RemovePlayerSession(gameServerSessionId, playerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

https://intl.cloud.tencent.com/document/product/1055/39130

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 62 of 105

7. After a game server session (a game battle or a service) ends, the game server will call the

 TerminateGameServerSession API to end the GameServerSession and change its status to

 Terminated .

static bool luaTerminateGameServerSession(const std::string &gameServerSessionId) {
GseResponse reply;
Status status = GGseManager->TerminateGameServerSession(gameServerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the

game process. The reduction will be triggered according to the protection policy configured in the

GSE console.

Status GameServerGrpcSdkServiceImpl::OnProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponse* reply)
{
auto terminationTime = request->terminationtime();
std::to_string(terminationTime));
std::ostringstream o;
o << "OnProcessTerminate(" << terminationTime << ")";
std::string luaCmd = o.str();
GSESDK()->execWithNilResult(luaCmd);
return Status::OK;
}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The `ProcessEnding` API will be active
ly called after the game battle ends
// Passive call: in case of reduction, process exception, or health check failure, the `Proces
sEnding` API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made
static bool luaProcessEnding() {
GseResponse reply;
Status status = GGseManager->ProcessEnding(reply);
GSESDK()->setReplyStatus(status);

https://intl.cloud.tencent.com/document/product/1055/36675

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 63 of 105

if (!status.ok()) {
return false;
}
return true;
}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

static bool luaDescribePlayerSessions(const std::string &gameServerSessionId,
const std::string &playerId,
const std::string &playerSessionId,
const std::string &playerSessionStatusFilter, const std::string &nextToken,
int limit) {
DescribePlayerSessionsResponse reply;
Status status = GGseManager->DescribePlayerSessions(gameServerSessionId,playerId, playerSessio
nId, playerSessionStatusFilter, nextToken, limit, reply);
GSESDK()->setDescribePlayerSessionsResponse(reply);
if (!status.ok()) {
return false;
}
return true;
}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session

creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

static bool luaUpdatePlayerSessionCreationPolicy(const std::string &newpolicy) {
GseResponse reply;
Status status = GGseManager->UpdatePlayerSessionCreationPolicy(newpolicy, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 64 of 105

static bool luaReportCustomData(int currentCustomCount, int maxCustomCount) {
GseResponse reply;
Status status = GGseManager->ReportCustomData(currentCustomCount, maxCustomCount, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

Launching Server for GSE to Call

Server running: launch GrpcServer .

// Launch the gRPC server
std::thread tGrpc(&GameServerGrpcSdkServiceImpl::StartGrpcServer, GGameServerGrpcSdkService);
sem_wait(&(GGameServerGrpcSdkService->sem));
auto grpcPort = GGameServerGrpcSdkService->GetGrpcPort();

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

void GseManager::InitStub() {
auto channel = grpc::CreateChannel("127.0.0.1:5758", grpc::InsecureChannelCredentials());
stub_ = GseGrpcSdkService::NewStub(channel);
}

Demo for Lua

1. Click here to download the code of the Demo for Lua.

2. Generate the gRPC code.

The Demo for Lua relies on the C++ framework, with gRPC code generated in the cpp-

demo/source/grpcsdk directory, so there is no need to generate it again.

3. Launch the server for GSE to call.

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/lua-demo.zip

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 65 of 105

Implement the server.

 grpcserver.cpp in the lua-demo/source/api directory implements three server APIs.

Run the server.

 main.cpp in the lua-demo directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.

Implement the client.

 GSESdkHandleWrapper.cpp in the lua-demo/source/lua directory implements nine client APIs.

Connect to the server.

Create a gRPC channel, specify the host name and server port to connect to, and use this

channel to create a stub instance.

5. Compile and run the project.

i. Install CMake.

Install GCC v4.9 or above.

Install the LuaJIT and Boost development kits:

yum install -y luajit-devel
yum install -y boost-devel
yum install -y cmake

Download the code and run the following command in the lua-demo directory:

mkdir build
cd build
cmake ..
make
cp ../source/lua/gse.lua .

The corresponding lua-demo executable file will be generated. Run ./lua-demo to launch it.

Package the executable file lua-demo.cpp as an asset package and configure the launch path

as lua-demo with no launch parameter needed.

Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 66 of 105

Installing gRPC

1. Install gRPC. The installation will generate an executable program grpc_cpp_plugin , which will be

needed for generating gRPC code.

2. Install protocol buffers.

Note

For more information on the installation process, see Installing gRPC Lua and Installing Protocol

Buffers.

Defining Service

gRPC uses Protocol Buffers to define a service: an RPC service specifies methods that can be called

remotely by using parameters and return types.

Note

We provide the .proto files for service definition. You can click here to directly download them

with no need to generate them by yourself.

Generating gRPC Code

1. After defining the service, you can use protoc (protocol buffer compiler) to generate the client and

server code (in any language supported by gRPC).

2. The generated code includes the client stub and the abstract APIs to be implemented by the

server.

3. Steps for generating gRPC code:

gRPC Node.js Tutorial

Last updated：2022-01-21 11:48:44

https://github.com/grpc/grpc/blob/master/BUILDING.md
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 67 of 105

i. The Demo for Lua relies on the C++ framework. Just like with the Demo for C++, in the proto

directory, run:

protoc --cpp_out=. *.proto

ii. Generate the pb.cc and pb.h files.

protoc --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_cpp_plugin` *.proto

iii. Generate the corresponding gRPC code.

iv. Move the eight generated files to an appropriate location in the project.

Game Process Integration Process

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 68 of 105

Game server callback API list

API Name API Description

OnHealthCheck Runs health check

OnStartGameServerSession Receives game server session

OnProcessTerminate Ends game process

Game server active API list

https://intl.cloud.tencent.com/document/product/1055/37422
https://intl.cloud.tencent.com/document/product/1055/37423
https://intl.cloud.tencent.com/document/product/1055/37424

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 69 of 105

API Name API DescriptionAPI Name API Description

ProcessReady Gets process ready

ActivateGameServerSession Activates game server session

AcceptPlayerSession Receives player session

RemovePlayerSession Removes player session

DescribePlayerSessions Gets player session list

UpdatePlayerSessionCreationPolicy Updates player session creation policy

TerminateGameServerSession Ends game server session

ProcessEnding Ends process

ReportCustomData Reports custom data

Others

When the game process uses gRPC to call a game server active API, you need to add two fields to

 meta of the gRPC request.

Field Description Type

pid pid of the current game process string

requestId
 requestId of the current request, which is used to uniquely identify a

request
string

1. Generally, after the server is initialized, the process will check itself to see whether it can provide

services, and the game server will call the ProcessReady API to notify GSE that the process is

ready to host a game server session. After receiving the notification, GSE will change the status of

the server instance to "Active".

static bool luaProcessReady(std::vector <std::string> &logPath, int clientPort, int grpcPort)
{
GseResponse reply;
// Log path. Set the ports.
Status status = GGseManager->ProcessReady(logPath, clientPort, grpcPort, reply);
// Ready to provide services
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;

https://intl.cloud.tencent.com/document/product/1055/37426
https://intl.cloud.tencent.com/document/product/1055/37427
https://intl.cloud.tencent.com/document/product/1055/37428
https://intl.cloud.tencent.com/document/product/1055/37429
https://intl.cloud.tencent.com/document/product/1055/37430
https://intl.cloud.tencent.com/document/product/1055/37431
https://intl.cloud.tencent.com/document/product/1055/37432
https://intl.cloud.tencent.com/document/product/1055/37434
https://intl.cloud.tencent.com/document/product/1055/37435

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 70 of 105

}
return true;
}

2. After the process is ready, GSE will call the OnHealthCheck API to perform a health check on the

game server every minute. If the health check fails three consecutive times, the process will be

considered to be unhealthy, and no game server sessions will be assigned to it.

Status GameServerGrpcSdkServiceImpl::OnHealthCheck(ServerContext* context, const HealthCheckRe
quest* request, HealthCheckResponse* reply)
{
healthStatus = GSESDK()->exec("return OnHealthCheck()");
std::cout << "healthStatus=" << healthStatus << std::endl;
reply->set_healthstatus(healthStatus);
return Status::OK;
}

3. Because the client calls the CreateGameServerSession API to create a game server session and

assigns it to a process, GSE will be triggered to call the onStartGameServerSession API for the

process and change the status of GameServerSession to "Activating".

Status GameServerGrpcSdkServiceImpl::OnStartGameServerSession(ServerContext* context, const St
artGameServerSessionRequest* request, GseResponse* reply)
{
auto gameServerSession = request->gameserversession();
GGseManager->SetGameServerSession(gameServerSession);
std::ostringstream o;
o << "return OnStartGameServerSession('" << gameServerSession.gameserversessionid() << "'," <<
gameServerSession.maxplayers() << ")";
std::string luaCmd = o.str();
bool res = GSESDK()->exec(luaCmd);
return Status::OK;
}

4. After the game server receives onStartGameServerSession , you need to handle the logic or

resource allocation by yourself. After everything is ready, the game server will call the

 ActivateGameServerSession API to notify GSE that the game server session has been assigned to a

process and is ready to receive player requests and will change the server status to "Active".

static bool luaActivateGameServerSession(const std::string &gameServerSessionId, int maxPlayer
s) {

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 71 of 105

GseResponse reply;
Status status = GGseManager->ActivateGameServerSession(gameServerSessionId, maxPlayers, repl
y);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

5. After the client calls the JoinGameServerSession API for the player to join, the game server will call

the AcceptPlayerSession API to verify the validity of the player. If the connection is accepted, the

status of PlayerSession will be set to "Active". If the client receives no response within 60

seconds after calling the JoinGameServerSession API, it will change the status of PlayerSession to

"Timeout" and then call JoinGameServerSession again.

static bool luaAcceptPlayerSession(const std::string &gameServerSessionId, const std::string &
playerSessionId) {
GseResponse reply;
Status status = GGseManager->AcceptPlayerSession(gameServerSessionId, playerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

6. After the game ends or the player exits, the game server will call the RemovePlayerSession API to

remove the player, change the status of playersession to "Completed", and reserve the player

slot in the game server session.

static bool luaRemovePlayerSession(const std::string &gameServerSessionId, const std::string &
playerSessionId) {
GseResponse reply;
Status status = GGseManager->RemovePlayerSession(gameServerSessionId, playerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

https://intl.cloud.tencent.com/document/product/1055/39130

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 72 of 105

7. After a game server session (a game battle or a service) ends, the game server will call the

 TerminateGameServerSession API to end the GameServerSession and change its status to

 Terminated .

static bool luaTerminateGameServerSession(const std::string &gameServerSessionId) {
GseResponse reply;
Status status = GGseManager->TerminateGameServerSession(gameServerSessionId, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

8. In case of health check failure or reduction, GSE will call the OnProcessTerminate API to end the

game process. The reduction will be triggered according to the protection policy configured in the

GSE console.

Status GameServerGrpcSdkServiceImpl::OnProcessTerminate(ServerContext* context, const ProcessT
erminateRequest* request, GseResponse* reply)
{
auto terminationTime = request->terminationtime();
std::to_string(terminationTime));
std::ostringstream o;
o << "OnProcessTerminate(" << terminationTime << ")";
std::string luaCmd = o.str();
GSESDK()->execWithNilResult(luaCmd);
return Status::OK;
}

9. The game server calls the ProcessEnding API to end the process immediately, change the server

process status to "Terminated", and repossess the resources.

// Active call: a game battle corresponds to a process. The `ProcessEnding` API will be active
ly called after the game battle ends
// Passive call: in case of reduction, process exception, or health check failure, the `Proces
sEnding` API will be called passively according to the protection policy. If a full protection
or time-period protection policy is configured, it is required to determine whether there are
any players in the game server session before the passive call can be made
static bool luaProcessEnding() {
GseResponse reply;
Status status = GGseManager->ProcessEnding(reply);
GSESDK()->setReplyStatus(status);

https://intl.cloud.tencent.com/document/product/1055/36675

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 73 of 105

if (!status.ok()) {
return false;
}
return true;
}

0. The game server calls the DescribePlayerSessions API to get the information of the player in the

game server session (which is optional based on your actual business needs).

static bool luaDescribePlayerSessions(const std::string &gameServerSessionId,
const std::string &playerId,
const std::string &playerSessionId,
const std::string &playerSessionStatusFilter, const std::string &nextToken,
int limit) {
DescribePlayerSessionsResponse reply;
Status status = GGseManager->DescribePlayerSessions(gameServerSessionId,playerId, playerSessio
nId, playerSessionStatusFilter, nextToken, limit, reply);
GSESDK()->setDescribePlayerSessionsResponse(reply);
if (!status.ok()) {
return false;
}
return true;
}

1. The game server calls the UpdatePlayerSessionCreationPolicy API to update the player session

creation policy and set whether to accept new players, i.e., whether to allow new players to join a

game session (which is optional based on your actual business needs).

static bool luaUpdatePlayerSessionCreationPolicy(const std::string &newpolicy) {
GseResponse reply;
Status status = GGseManager->UpdatePlayerSessionCreationPolicy(newpolicy, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

2. The game server calls the ReportCustomData API to notify GSE of the custom data (which is

optional based on your actual business needs).

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 74 of 105

static bool luaReportCustomData(int currentCustomCount, int maxCustomCount) {
GseResponse reply;
Status status = GGseManager->ReportCustomData(currentCustomCount, maxCustomCount, reply);
GSESDK()->setReplyStatus(status);
if (!status.ok()) {
return false;
}
return true;
}

Launching Server for GSE to Call

Server running: launch GrpcServer .

// Launch the gRPC server
std::thread tGrpc(&GameServerGrpcSdkServiceImpl::StartGrpcServer, GGameServerGrpcSdkService);
sem_wait(&(GGameServerGrpcSdkService->sem));
auto grpcPort = GGameServerGrpcSdkService->GetGrpcPort();

Connecting Client to gRPC Server of GSE

Server connecting: create a gRPC channel, specify the host name and server port to connect to, and

use this channel to create a stub instance.

void GseManager::InitStub() {
auto channel = grpc::CreateChannel("127.0.0.1:5758", grpc::InsecureChannelCredentials());
stub_ = GseGrpcSdkService::NewStub(channel);
}

Demo for Lua

1. Click here to download the code of the Demo for Lua.

2. Generate the gRPC code.

The Demo for Lua relies on the C++ framework, with gRPC code generated in the cpp-

demo/source/grpcsdk directory, so there is no need to generate it again.

3. Launch the server for GSE to call.

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/lua-demo.zip

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 75 of 105

Implement the server.

 grpcserver.cpp in the lua-demo/source/api directory implements three server APIs.

Run the server.

 main.cpp in the lua-demo directory launches GrpcServer .

4. Connect the client to the gRPC server of GSE.

Implement the client.

 GSESdkHandleWrapper.cpp in the lua-demo/source/lua directory implements nine client APIs.

Connect to the server.

Create a gRPC channel, specify the host name and server port to connect to, and use this

channel to create a stub instance.

5. Compile and run the project.

i. Install CMake.

Install GCC v4.9 or above.

Install the LuaJIT and Boost development kits:

yum install -y luajit-devel
yum install -y boost-devel
yum install -y cmake

Download the code and run the following command in the lua-demo directory:

mkdir build
cd build
cmake ..
make
cp ../source/lua/gse.lua .

The corresponding lua-demo executable file will be generated. Run ./lua-demo to launch it.

Package the executable file lua-demo.cpp as an asset package and configure the launch path

as lua-demo with no launch parameter needed.

Create a server fleet and deploy the asset package on it. After that, you can perform various

operations such as scaling.

https://intl.cloud.tencent.com/document/product/1055/36674
https://intl.cloud.tencent.com/document/product/1055/36675
https://intl.cloud.tencent.com/document/product/1055/37445

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 76 of 105

This document describes how to integrate Unity with GSE SDK. The overall process mainly consists of

two tasks:

1. Integrating Unity with gRPC

2. Integrating Unity with GSE SDK

Prerequisites

You have already installed Unity Hub and Unity IDE.

Note：

This document uses 2018.3.5f1 or 2019.4.9f1 Unity engine and MacOS as an example.

Integrating Unity with gRPC

gRPC has experimental support for Unity. For more information, see README. Perform the following

steps to integrate Unity with gRPC:

Step 1: create a Unity project

Because gRPC APIs are only available for .NET 4.5+ , it is necessary to create a Unity project

equivalent to .NET 4.x at Edit > Project Setting > Player > Configuration > Scripting

gRPC Unity Tutorial

Last updated：2021-08-30 15:52:50

https://github.com/grpc/grpc/tree/master/src/csharp/experimental

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 77 of 105

Runtime Version.

Step 2: download grpc_unity_package

Download the latest development version of grpc_unity_package.VERSION.zip here. Click Buidld ID

to redirect to the download page.

https://packages.grpc.io/

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 78 of 105

Click to download grpc_unity_package.VERSION.zip under the c# directory.

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 79 of 105

Step 3: decompress the package

Decompress the downloaded .zip package to the Assets directory of the Unity project, as shown

below:

Step 4: test the package

Unity Editor will fetch files and automatically add them to the project for your use of gRPC and

Protobuf in codes. If Unity Editor prompts an error, see FAQs for troubleshooting.

Integrating Unity with GSE SDK

Complete the following steps to integrate Unity with GSE SDK:

Step 1: obtain the GSE SDK Protobuf files

Obtain the GameServerGrpcSdkService.proto and GseGrpcSdkService.proto files of GSE SDK Protobuf.

For more information, see proto File

Step 2: generate C# codes based on Protobuf

1. Access the grpc_unity_package.VERSION.zip page again to download the gRPC protoc Plugin

package compatible with your operating system.

https://intl.cloud.tencent.com/document/product/1055/39059
https://intl.cloud.tencent.com/document/product/1055/37419

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 80 of 105

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 81 of 105

2. Decompress the package to obtain the protoc and grpc_csharp_plugin executable programs.

3. Copy protoc and grpc_csharp_plugin executable programs to the same directory as the Protobuf

file. Run the following two commands according to the operating system to generate C# codes:

For MAC and Linux OS:

 protoc -I ./ --csharp_out=. GseGrpcSdkService.proto --grpc_out=. --plugin=protoc-gen-

grpc=grpc_csharp_plugin

 protoc -I ./ --csharp_out=. GameServerGrpcSdkService.proto --grpc_out=. --plugin=protoc-gen-

grpc=grpc_csharp_plugin

For Windows OS:

 ./protoc -I ./ --csharp_out=. GseGrpcSdkService.proto --grpc_out=. --plugin=protoc-gen-

grpc=grpc_csharp_plugin.exe

 ./protoc -I ./ --csharp_out=. GameServerGrpcSdkService.proto --grpc_out=. --plugin=protoc-

gen-grpc=grpc_csharp_plugin.exe

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 82 of 105

Four .cs code files are generated as shown in the following figure.

Step 3: develop and use GSE SDK on the Unity server

Copy the four .cs files generated in the Step 2 to the Unity project (to a separate folder under the

 Assets/Scripts/ directory) and use GSE SDK for the development. For more information, see Unity

DEMO.

1. Implement the OnHealthCheck , OnStartGameServerSession and OnProcessTerminate APIs defined by

 gameserver_grpcsdk_service.proto .

public class GrpcServer : GameServerGrpcSdkService.GameServerGrpcSdkServiceBase
{
private static Logs logger
{
get

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 83 of 105

{
return new Logs();
}
}
// Health checks
public override Task<HealthCheckResponse> OnHealthCheck(HealthCheckRequest request, ServerCall
Context context)
{
logger.Println($"OnHealthCheck, HealthStatus: {GseManager.HealthStatus}");
logger.Println($"OnHealthCheck, GameServerSession: {GseManager.GetGameServerSession()}");
return Task.FromResult(new HealthCheckResponse
{
HealthStatus = GseManager.HealthStatus
});
}
// Receive game sessions
public override Task<GseResponse> OnStartGameServerSession(StartGameServerSessionRequest reque
st, ServerCallContext context)
{
logger.Println($"OnStartGameServerSession, request: {request}");
GseManager.SetGameServerSession(request.GameServerSession);
var resp = GseManager.ActivateGameServerSession(request.GameServerSession.GameServerSessionId,
request.GameServerSession.MaxPlayers);
logger.Println($"OnStartGameServerSession, resp: {resp}");
return Task.FromResult(resp);
}
// End the game process
public override Task<GseResponse> OnProcessTerminate(ProcessTerminateRequest request, ServerCa
llContext context)
{
logger.Println($"OnProcessTerminate, request: {request}");
// Set the process termination time
GseManager.SetTerminationTime(request.TerminationTime);
// Terminate game server sessions
GseManager.TerminateGameServerSession();
// Exit the process
GseManager.ProcessEnding();
return Task.FromResult(new GseResponse());
}
}

2. Develop Unity server programs (taking ChatServer as an example).

public static void StartChatServer(int clientPort)
{
RegisterHandlers();

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 84 of 105

logger.Println("ChatServer Listen at " + clientPort);
NetworkServer.Listen(clientPort);
}

3. Develop the gRPC server.

public static void StartGrpcServer(int clientPort, int grpcPort, string logPath)
{
try
{
Server server = new Server
{
Services = { GameServerGrpcSdkService.BindService(new GrpcServer()) },
Ports = { new ServerPort("127.0.0.1", grpcPort, ServerCredentials.Insecure) },
};
server.Start();
logger.Println("GrpcServer Start On localhost:" + grpcPort);
GseManager.ProcessReady(new string[] { logPath }, clientPort, grpcPort);
}
catch (System.Exception e)
{
logger.Println("error: " + e.Message);
}
}

4. Launch the implemented server and the gRPC server.

public class StartServers : MonoBehaviour
{
private int grpcPort = PortServer.GenerateRandomPort(2000, 6000);
private int chatPort = PortServer.GenerateRandomPort(6001, 10000);
private const string logPath = "./log/log.txt";
// Start is called before the first frame update
[Obsolete]
void Start()
{
// Start ChatServer By UNet's NetWorkServer, Listen on UDP protocol
MyChatServer.StartChatServer(chatPort);
// Start GrpcServer By Grpc, Listen on TCP protocol
MyGrpcServer.StartGrpcServer(chatPort, grpcPort, logPath);
}
[Obsolete]
void OnGUI()
{

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 85 of 105

}
}

Unity DEMO

1. Click here to download the code of the Demo for Unity.

2. Import grpc unity package.

Decompress grpc_unity_package in the Step 2 to the unity-demo/Assets directory of the Demo

project.

3. Generate C# codes based on the Protobuf file.

4. Launch the server for GSE to call.

Implement the server: implement the three server APIs in the GrpcServer.cs file under the

 unity-demo/Assets/Scripts/Api directory.

Run the server: create gRPC Server and StartServers.cs in the MyGrpcServer.cs file under the

 unity-demo/Assets/Scripts directory to launch gRPC Server .

5. Connect the client to the gRPC server of GSE.

Implement the client: implement the nine client APIs in the Gsemanager.cs file under the unity-

demo/Assets/Scripts/Gsemanager directory.

Connect to the server: create a gRPC channel, specify the host name and server port to connect

to, and use this channel to create a stub instance.

6. Compile and run the program

Use Unity Editor to encapsulate the executable program of the target system into an asset

package, and configure the actual name of the executable program at the launch path.

https://gsegrpcdemo-1301007756.cos.ap-guangzhou.myqcloud.com/unity-demo.zip

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 86 of 105

A client API is provided as a TencentCloud API and can be called in the following ways:

1. SDK Call

You can use Tencent Cloud Software Development Kit (SDK) v3.0 to call a client TencentCloud API.

The SDK supports various programming languages such as PHP, Python, Java, Go, .NET, Node.js, and

C++.

2. Online Debugging

You can use API Explorer to call a client TencentCloud API. This tool provides various capabilities such

as online call, signature verification, SDK code generation, and quick API search.

3. Direct Encapsulation

You can use the HTTP request method of a domain name or an API name to call a client TencentCloud

API.

Getting Server Address

TencentCloud API Calling Method

Last updated：2021-03-30 10:13:29

Note：

Currently, GSE supports SDK v3.0. For detailed directions, please see the SDK overview.

Note：

In API 3.0 Explorer, select "GSE" and then select a TencentCloud API under "Console APIs" or

"Service Management APIs" for online debugging.

Note：

TencentCloud APIs of GSE have been upgraded to v3.0. For detailed directions, please see

TencentCloud API calling methods.

https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=DeleteScalingPolicy&SignVersion=
https://intl.cloud.tencent.com/document/product/1055/37122

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 87 of 105

Overview

You can use a client TencentCloud API to create a game server session in the following two ways:

Create in a server fleet to implement auto scaling and health check.

Create through an alias to implement zero downtime update.

One game server session is placed in one server process, but the client API calling process varies

by supporting mode of the game server session.

Client API Calling Process

One game server session supports one game

If one game server session supports only one game, you can call a client API in the following steps:

1. Create a game server session through a server fleet or alias. For detailed directions, please see

the API document CreateGameServerSession.

public class CreateGameServerSession
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

Creating Game Server Session

Last updated：2020-07-27 10:26:38

Note：

The following sample code is based on Java:

https://intl.cloud.tencent.com/document/product/1055/37139

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 88 of 105

String params = "{}";
CreateGameServerSessionRequest req = CreateGameServerSessionRequest.fromJsonString(params, Cre
ateGameServerSessionRequest.class);

CreateGameServerSessionResponse resp = client.CreateGameServerSession(req);

System.out.println(CreateGameServerSessionRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

2. Join the created game server session. For detailed directions, please see the API document

JoinGameServerSession.

public class JoinGameServerSession
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
JoinGameServerSessionRequest req = JoinGameServerSessionRequest.fromJsonString(params, JoinGameSe
rverSessionRequest.class);

JoinGameServerSessionResponse resp = client.JoinGameServerSession(req);

System.out.println(JoinGameServerSessionRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

https://intl.cloud.tencent.com/document/product/1055/37132

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 89 of 105

One game server session supports multiple games or one service

If one game server session supports multiple games or one service (such as login), you can all a

client API in the following steps:

1. Query the game server session list to check whether there is any game server session. For

detailed directions, please see the API document DescribeGameServerSessions.

public class DescribeGameServerSessions
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
DescribeGameServerSessionsRequest req = DescribeGameServerSessionsRequest.fromJsonString(param
s, DescribeGameServerSessionsRequest.class);

DescribeGameServerSessionsResponse resp = client.DescribeGameServerSessions(req);

System.out.println(DescribeGameServerSessionsRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

You can also search for existing sessions in the game server session list. For detailed directions,

please see the API document SearchGameServerSessions.

public class SearchGameServerSessions
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37131

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 90 of 105

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
SearchGameServerSessionsRequest req = SearchGameServerSessionsRequest.fromJsonString(params, S
earchGameServerSessionsRequest.class);

SearchGameServerSessionsResponse resp = client.SearchGameServerSessions(req);

System.out.println(SearchGameServerSessionsRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

2. If a game server session exists, you can directly join it. For detailed directions, please see the API

document JoinGameServerSession or the sample code in this document.

3. If no game server sessions exist, you need to create one first. For detailed directions, please see

the API document CreateGameServerSession or the sample code in this document. Then, join the

created session. For detailed directions, please see the API document JoinGameServerSession or

the sample code in this document.

Note：

You can use API 3.0 Explorer for online debugging. You can select TencentCloud APIs under

"Game Server Engine" > "Service Management APIs" on the left sidebar and perform

operations such as "Code Generation" and "Online Call".

https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37132
https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=CreateGameServerSession&SignVersion=

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 91 of 105

Overview

You can use a client TencentCloud API to place a game server session, that is, you can implement

nearby resource scheduling and cross-region disaster recovery through a game server queue.

Client API Calling Process

1. First, check whether a game server session has been placed in a process. For detailed directions,

please see the API document DescribeGameServerSessionPlacement.

public class DescribeGameServerSessionPlacement
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
DescribeGameServerSessionPlacementRequest req = DescribeGameServerSessionPlacementRequest.fromJso
nString(params, DescribeGameServerSessionPlacementRequest.class);

DescribeGameServerSessionPlacementResponse resp = client.DescribeGameServerSessionPlacement(req);

System.out.println(DescribeGameServerSessionPlacementRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {

Placing Game Server Session

Last updated：2021-04-20 15:06:54

Note：

The following sample code is based on Java:

https://intl.cloud.tencent.com/document/product/1055/37137

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 92 of 105

System.out.println(e.toString());
}
}
}

2. Start placing the game server session. For detailed directions, please see the API document

StartGameServerSessionPlacement.

public class StartGameServerSessionPlacement
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
StartGameServerSessionPlacementRequest req = StartGameServerSessionPlacementRequest.fromJsonStrin
g(params, StartGameServerSessionPlacementRequest.class);

StartGameServerSessionPlacementResponse resp = client.StartGameServerSessionPlacement(req);

System.out.println(StartGameServerSessionPlacementRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

3. Stop placing the game server session. For detailed directions, please see the API document

StopGameServerSessionPlacement.

public class StopGameServerSessionPlacement
{
public static void main(String [] args) {
try{

Credential cred = new Credential("", "");

https://intl.cloud.tencent.com/document/product/1055/37130
https://intl.cloud.tencent.com/document/product/1055/37129

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 93 of 105

HttpProfile httpProfile = new HttpProfile();
httpProfile.setEndpoint("gse.tencentcloudapi.com");

ClientProfile clientProfile = new ClientProfile();
clientProfile.setHttpProfile(httpProfile);

GseClient client = new GseClient(cred, "", clientProfile);

String params = "{}";
StopGameServerSessionPlacementRequest req = StopGameServerSessionPlacementRequest.fromJsonString(
params, StopGameServerSessionPlacementRequest.class);

StopGameServerSessionPlacementResponse resp = client.StopGameServerSessionPlacement(req);

System.out.println(StopGameServerSessionPlacementRequest.toJsonString(resp));
} catch (TencentCloudSDKException e) {
System.out.println(e.toString());
}
}
}

Note：

You can use API 3.0 Explorer for online debugging. You can select TencentCloud APIs under

"Game Server Elastic-scaling" > "Service Management APIs" on the left sidebar, and perform

operations such as "Code Generation" and "Online Call".

https://console.cloud.tencent.com/api/explorer?Product=gse&Version=2019-11-12&Action=DescribeGameServerSessionPlacement&SignVersion=

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 94 of 105

GSE Local

GSE Local is a command line tool that can independently launch the game server hosting service

GSE. This tool also provides runtime logs including the server initialization, health check, and API

calls and responses.

GSE Local is limited to launch GSE hosting services and test your game integration on a local device,

which will shorten the debugging time and improve efficiency at the iterative development of games.

Otherwise, you have to upload each new game package to GSE and configure the server fleet to host

games.

With GSE Local, you can test that:

Your game server correctly integrates the GSE server development kit, properly communicates

with GSE service, and is able to launch new game sessions, accept new players and report the

running status.

Your game client correctly integrates the GSE-related TencentCloud APIs to retrieve existing game

sessions, launch new game sessions, and allow players to join and connect to the game session.

Setting Up GSE Local

GSE Local can run on Windows, Linux and Mac in any GSE-supported languages. You can download

the installation package according to the operating system:

GSE Local for Windows

GSE Local for Linux

GSE Local for Mac

Note：

The following sample code is applicable to Linux and MacOS. For Windows, we recommend to

use the gitbash command line tool to run curl command.

GSE Local

Last updated：2021-06-28 10:09:36

https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-windows-amd64.exe
https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-linux-amd64
https://gselocal-1301007756.cos.ap-nanjing.myqcloud.com/gse-local/gselocal-master-darwin-amd64

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 95 of 105

Testing Game Server

If you only need to test your game server, directly use curl to simulate the game client calls to

GSE Local and verify that your game server can complete the following operations as expected:

1. During launch, the game server will call the ProcessReady API to inform GSE that the server is

ready to host a game server session.

2. During runtime, the game server will use the onHealthCheck callback to send its running status to

GSE every minute.

3. The game server will respond to requests and trigger the onStartGameServerSession callback (call

the activateGameServerSession API in this process) to launch a new game session.

Step 1: launch GSE Local

Open the command prompt window, navigate to the directory of gselocal_windows , gselocal_linux

or gselocal_mac , and run the program. This document uses the Mac program ./gselocal_mac as an

example. After the program is launched, it will automatically connect to GSE Local.

Enter the following command in a terminal window:

./gselocal_mac

If the following information appears in the command prompt window, the launch is successful:

{"level":"info","ts":"2020-10-20T09:16:09.364+0800","msg":"start grpc v3 server success"}

Step 2: launch the game server

Launch the game process in a programming tool or command line tool. The game process then will

call the ProcessReady API to prepare for hosting a session and print the following logs:

Getting process ready, LogPath: System.String[], ClientPort: 3237, GrpcPort: 6224
Process ready succeed, resp: { }
Server Start On Locolhost:6224

After receiving the ProcessReady request, GSE Local will also print logs and start the health check:

{"level":"info","ts":"2020-10-20T09:27:03.172+0800","msg":"ProcessReady Info is","pid":"41688","r
equestId":"3b38495b38bc4ef8a59ae8****a8256d","info":"clientPort:3237 grpcPort:6224 "}
{"level":"info","ts":"2020-10-20T09:27:03.172+0800","msg":"set runner success","pid":"41688","pro
cessUUID":"527bf89b-d128-4b5d-bfea-****3d22ede7"}
{"level":"info","ts":"2020-10-20T09:28:03.276+0800","msg":"onHealthCheck received","pid":"41688",
"health":true}

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 96 of 105

{"level":"info","ts":"2020-10-20T09:29:03.256+0800","msg":"onHealthCheck received","pid":"41688",
"health":true}
{"level":"info","ts":"2020-10-20T09:30:03.261+0800","msg":"onHealthCheck received","pid":"41688",
"health":true}

Step 3: use curl to create a game server session and a player session

Use curl to simulate the client calls. For specific parameters, see APIs.

Create a game server session

Run the following command to configure the FleetId parameter. You can set it to any valid strings

 (^fleet-\S+) in GSE Local.

curl -d '{"Action":"CreateGameServerSession", "FleetId":"fleet-1235", "MaximumPlayerSessionCount"
:5}' http://127.0.0.1:8080/capi

The following log message displayed in the command prompt window indicates that GSE Local has

sent the onStartGameServerSession callback to your game server. If a game server session is

successfully created, your game server will call the ActivateGameServerSession API to respond to the

callback. The logs are as follows:

{"level":"info","ts":"2020-10-20T09:37:08.580+0800","msg":"API to use: GSE.CreateGameServerSessio
n, with input","req":"FleetId:<value:\"fleet-1235\" > MaximumPlayerSessionCount:<value:5 > "}
{"level":"info","ts":"2020-10-20T09:37:08.580+0800","msg":"Reserved process: 41688 for GameServer
Session: qcs::gse:local::gameserversession/fleet-1235/gssess-c648654a-293b-4f1f-b71f-****6a09bff
e"}
{"level":"info","ts":"2020-10-20T09:37:08.580+0800","msg":"start to call StartGameSessionByGrpc t
o game server","gameServerSessionId":"qcs::gse:local::gameserversession/fleet-1235/gssess-c648654
a-293b-4f1f-b71f-****6a09bffe"}
{"level":"info","ts":"2020-10-20T09:37:08.597+0800","msg":"onGameSessionActivate received","pid":
"4****","gameServerSessionId":"qcs::gse:local::gameserversession/fleet-1235/gssess-c648654a-293b-
4f1f-b71f-****6a09bffe","requestId":"de1a678dea364db4b487ff84ad****31"}
{"level":"info","ts":"2020-10-20T09:37:08.598+0800","msg":"call StartGameSessionByGrpc to game se
rver success","gameServerSessionId":"qcs::gse:local::gameserversession/fleet-1235/gssess-c648654a
-293b-4f1f-b71f-****6a09bffe"}

Querying a game server session

GSE Local uses curl to pass the game server session ID and object. Please note that the status of a

new server session will change from “Activating” to “Active” after the game server calls the

 ActivateGameServerSession API. To view the status, run the following curl command to call the

 DescribeGameServerSessions API:

https://intl.cloud.tencent.com/document/product/1055/37120

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 97 of 105

curl -d '{"Action":"DescribeGameServerSessions", "FleetId":"fleet-1235"}' http://127.0.0.1:8080/c
api

The output is as shown below:

{"Response":{"GameServerSessions":[{"AvailabilityStatus":"Enable","CreationTime":"2020-10-20T01:3
7:08Z","CreatorId":"","CurrentCustomCount":0,"CurrentPlayerSessionCount":0,"DnsName":"","FleetId"
:"fleet-1235","GameProperties":[],"GameServerSessionData":"","GameServerSessionId":"qcs::gse:loca
l::gameserversession/fleet-1235/gssess-c648654a-293b-4f1f-b71f-2fa56a09bffe","InstanceType":"loca
lhost","IpAddress":"127.0.0.1","MatchmakerData":"","MaxCustomCount":0,"MaximumPlayerSessionCount"
:5,"Name":"","PlayerSessionCreationPolicy":"ACCEPT_ALL","Port":3237,"Status":"ACTIVE","StatusReas
on":"","TerminationTime":null,"Weight":0}],"NextToken":"","RequestId":"s1603158295201357000"}}

Testing Game Server and Client

Prerequisites

You have completed the game server tests.

Step 1: add players

Run the following command to add players. The GameServerSessionId parameter is obtained in the

response of the API used in creating a game server session

curl -d '{"Action":"JoinGameServerSession", "GameServerSessionId":"qcs::gse:local::gameserversess
ion/fleet-1235/gssess-c648654a-293b-4f1f-b71f-****6a09bffe", "PlayerId":"k****111"}' http://127.
0.0.1:8080/capi

The GSE Local Command Prompt displays the following logs, indicating that the game server has

sent the AcceptPlayerSession request to verify a new player connection.

{"level":"info","ts":"2020-10-20T10:03:43.096+0800","msg":"API to use: GSE.JoinGameServerSession,
with input","req":"GameServerSessionId:\"qcs::gse:local::gameserversession/fleet-****/gssess-c648
654a-293b-4f1f-b71f-****6a09bffe\" PlayerId:\"ka****11\" "}
{"level":"info","ts":"2020-10-20T10:03:43.096+0800","msg":"Creating player session with id: kadin
111 for gameServersessionId: qcs::gse:local::gameserversession/fleet-****/gssess-c648654a-293b-4f
1f-b71f-****6a09bffe"}
{"level":"info","ts":"2020-10-20T10:03:43.096+0800","msg":"Created player session with PlayerId:
kadin111 and PlayerSessionId: psess-56dd6f48-08d4-4a11-9330-****09784977"}

Step 2: query a player session

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 98 of 105

Call the DescribePlayerSessions to query a player session. The initial status of the player session is

“Reserved”:

If the client successfully connects to the game server within 1 minute, the player session status

will become “Active”.

If the client fails to connect to the game server within 1 minute, the player session status will

become “TIMEDOUT”.

curl -d '{"Action":"DescribePlayerSessions", "GameServerSessionId":"qcs::gse:local::gameserverses
sion/fleet-1235/gssess-c648654a-293b-4f1f-b71f-2fa56a09bffe", "PlayerId":"kadin111"}' http://127.
0.0.1:8080/capi

The output is as shown below:

{"Response":{"NextToken":"","PlayerSessions":[{"CreationTime":"2020-10-20T02:03:43Z","DnsName":""
,"FleetId":"fleet-****","GameServerSessionId":"qcs::gse:local::gameserversession/fleet-1235/gsses
s-c648654a-293b-4f1f-b71f-****6a09bffe","IpAddress":"127.*.*.1","PlayerData":"","PlayerId":"ka***
*11","PlayerSessionId":"psess-56dd6f48-08d4-4a11-9330-****09784977","Port":3237,"Status":"TIMEDOU
T","TerminationTime":"1970-01-01T00:00:00Z"}],"RequestId":"s16031596094****2000"}}%

Step 3: connect the client player to the server

After creating a game session and player session, you can directly use localhost：port to join a

client player to the game session.

The GSE Local Command Prompt will display logs, indicating that the game server has sent the

AcceptPlayerSession request to verify the new player connection. If you use curl to call the

 DescribePlayerSessions API, the player session status should be changed from “Reserved” to

“Active”.

Step 4: send the test report to GSE

To verify that your game server sends the game and player statuses to GSE, ensure your game

server always send these statuses to GSE Local to help GSE Local manage player needs and

correctly report metrics. GSE Local will record the following actions. You may also need curl to

track the status change.

A player disconnects from the game session

The GSE Local logs should display that the game server called the RemovePlayerSession API. The

status in the response of the DescribePlayerSessions() API changed from “Active” to “Completed”.

You can also call the DescribeGameServerSessions API to check that the current number of players

in the game session has decreased by one.

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 99 of 105

The game session ends

The GSL Local logs should display that the game server called the TerminateGameServerSession API.

The status in the response of the DescribeGameServerSessions API changed from “Active” to

“Terminated” or “Terminating”.

The server process stops

The GSE Local logs should display that the game server called the ProcessEnding API.

Testing Game Client Calls to GSE

All game session and player session APIs used in game server tests and game server and client tests

use curl to call GSE Local. You can use codes to call the following APIs in the game service to verify

whether your game server is running properly. For the local debugging, you need to call

 http://127.0.0.1:8080/capi .

CreateGameServerSession

DescribeGameServerSessions

JoinGameServerSession

JoinGameServerSessionBatch

DescribePlayerSessions

The GSE Local Command Prompt only displays the logs of the CreateGameServerSession API calls. As

shown in the log message, GSE Local prompts the time when your game server launches a game

session (using the onStartGameServerSession callback). After your game server uses the callback,

GSE Local will obtain the ActivateGameServerSession response. You can use curl to view the calling

of other APIs.

Notes

Take notice of the following points when using GSE Local:

1. Different from the GSE Web service, GSE Local does not track the running status or the

 onProcessTerminate callback triggering of the server. GSE Local only records the runtime report of

the game server.

2. The FleetId will not be verified during the calling of Tencent Cloud development kid, because this

parameter can be set to any valid strings (^fleet-\S+) .

3. The game session created using GSE Local has a distinct ID structure, which contains local as

shown below:

https://intl.cloud.tencent.com/document/product/1055/37139
https://intl.cloud.tencent.com/document/product/1055/37136
https://intl.cloud.tencent.com/document/product/1055/37132
https://intl.cloud.tencent.com/document/product/1055/39130
https://intl.cloud.tencent.com/document/product/1055/37135

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 100 of 105

arn:gse:local::gamesession/fleet-****/gsess-56961f8e-db9c-4173-97e7-****82f0daa6

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 101 of 105

This document provides the addresses and examples for latency test in different regions. Both HTTPS

and UDP addresses are supported.

HTTPS and UDP addresses for latency test in regions

Region HTTPS Address UDP Address

Beijing
https://ap-

beijing.speed.tencentgse.com
ap-beijing.speed.tencentgse.com

Shanghai
https://ap-

shanghai.speed.tencentgse.com

ap-

shanghai.speed.tencentgse.com

Hong Kong

(China)

https://ap-

hongkong.speed.tencentgse.com

ap-

hongkong.speed.tencentgse.com

Guangzhou
https://ap-

guangzhou.speed.tencentgse.com

ap-

guangzhou.speed.tencentgse.com

Chengdu
https://ap-

chengdu.speed.tencentgse.com
ap-chengdu.speed.tencentgse.com

Singapore
https://ap-

singapore.speed.tencentgse.com

ap-

singapore.speed.tencentgse.com

Mumbai
https://ap-

mumbai.speed.tencentgse.com
ap-mumbai.speed.tencentgse.com

Silicon Valley
https://na-

siliconvalley.speed.tencentgse.com

na-

siliconvalley.speed.tencentgse.com

Virginia
https://na-

ashburn.speed.tencentgse.com
na-ashburn.speed.tencentgse.com

Frankfurt
https://eu-

frankfurt.speed.tencentgse.com
eu-frankfurt.speed.tencentgse.com

Seoul https://ap-seoul.speed.tencentgse.com ap-seoul.speed.tencentgse.com

Tokyo https://ap-tokyo.speed.tencentgse.com ap-tokyo.speed.tencentgse.com

Example

Latency Test Tool

Last updated：2021-04-12 14:22:16

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 102 of 105

Let’s take Guangzhou as an example.

HTTPS

ping ap-guangzhou.speed.tencentgse.com
curl https://ap-guangzhou.speed.tencentgse.com/v1/ping

UDP

Domain name + PORT (8888)
ap-guangzhou.speed.tencentgse.com + PORT (8888)

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 103 of 105

Launching game process as a root user or user_00 in Linux

environment

In Linux environment, the game process should be launched by a root user by default. If you want to

launch the game process as a non-root user, please do the following:

1. Add the file gse.yaml to the root directory of the game’s asset package, which means the

decompressed file path will be /local/game/gse.yaml on the game server fleet instance;

2. The content of the file gse.yaml is shown below, indicating that user_00 is added to the users

user group. You cannot configure other users and user groups currently;

User: user_00:users

When the file gse.yaml is added to the asset package, GSE will launch the game process with

 user_00:users and set the users and user groups of all files under /local/game as

 user_00:users .

Game Process Launch Configuration

Last updated：2021-04-12 14:22:16

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 104 of 105

See below for the example:

Executing install.sh before launching game process in

Linux environment

Before a game process is launched, you may need to install some software or configure some

environment variables on the CVM instance with the following steps:

1. Create the install.sh script and write the operations to be conducted before launching the game

process in this script;

2. Add the file install.sh under the root directory of the game’s asset package, which means the

decompressed path will be /local/game/install.sh on the game server fleet instance.

Launch configuration for Java game process

In Linux environment, a command like java -jar XXXX.jar can be used to launch Java programs.

The following configurations are required to ensure the Java game process is successfully launched:

1. Write the install.sh script

#!/bin/bash

Game Server Elastic-scaling

©2013-2019 Tencent Cloud. All rights reserved. Page 105 of 105

Install the JDK 1.8 environment - y indicates answer yes for all questions
yum install java-1.8.0-openjdk.x86_64 -y
Put the java command under `/local/game` with a soft link
ln -s /usr/bin/java /local/game/java

2. Put install.sh script under the root directory of the game’s asset package, which means the

decompressed path will be /local/game/install.sh on the game server fleet instance.

3. When creating the game server fleet, enter /local/game/java as the launch path, and enter -jar

jar package specified by user as the launch parameter.

4. After the game process is successfully launched, the content of the path /local/game is shown

below:

