
eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 194

eKYC

Integration Guide

Product Documentation

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 194

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 194

Contents

Integration Guide
Getting Started
Integrating Liveness Detection and Face Comparison (Mobile HTML5)

 Integration Process
HTML5 Compatibility and Mode Switch Description

Integrating Liveness Detection and Face Comparison (App SDK)
Integration Process
SDK API Description

Android API Description
iOS API Description

SDK Custom Capabilities
Android Custom Capabilities
iOS Custom Capabilities

FAQs
Integrating Identity Verification (App SDK)

Integration Process
SDK API Description

APIs for Android
APIs for iOS

FAQs
Integrating Identity Verification (Mobile HTML5)

Integration Process
Liveness Detection and Face Comparison (Pure API)

Integration Process
Other Guide

Quick API Run
Connecting to TencentCloud API
Error Codes

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 194

Integration Guide
Getting Started
Last updated：2023-12-28 15:58:32

Integrate the Tencent Cloud eKYC service with your application in three stages: prepare, integration, and test.

The following sections describe the three stages in detail.

Prepare

Prepare for the integration in the following steps:

1. Plan your integration

Select appropriate products based on the features you need.

Subproduct Feature Overview Feature Details
Supported
Country/Region

Supported
Integration
Method

Liveness
detection
and face
comparison

Determines whether the
user in the video is a live
person and compares with
the photo provided by the
backend to determine
whether they are the same
person.

●Real-time face detection
●Liveness detection
(available modes: video-
based, motion-based,
reflection-based, and
blinking-and-reflection-
based)

All regions ●App SDK
●Mobile
HTML5
●Pure API

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 194

●Comparison with the
photo provided by the
backend

Identity
verification

Provides an automated
identity authentication
solution that prompts
users to take a photo of
their identity documents
and take video selfies, so
as to determine whether a
user is a live person and
whether the user is the
person shown in the
document.

●ID document OCR
●ID photo extraction
●Real-time face detection
●Liveness detection
(available modes: video-
based, motion-based,
reflection-based, and
blinking-and-reflection-
based)
●ID photo and selfie
comparison

●Hong Kong
(China)
●Malaysia
●The
Philippines
●Indonesia
●Singapore
(If you need to
support identity
verification in
other regions,
please contact
us.)

App SDK

Tencent Cloud eKYC provides four methods for you to integrate with different products as needed.

A. Liveness detection and face comparison

Liveness detection and face comparison (App SDK): Use this method if you want to integrate eKYC's liveness

detection and face comparison service with your mobile application (iOS/Android).
Liveness detection and face comparison (mobile HTML5): Use this method if you want to integrate eKYC's
liveness detection and face comparison service with a mobile web (HTML5) application or interact with it through a
modern mobile web browser.
Liveness detection and face comparison (pure API): Use this method if you want to integrate eKYC's liveness
detection and face comparison service with your server-side application via API.

B. Identity verification

Identity Verification (App SDK): Use this method if you want to integrate eKYC's identity verification service with
your mobile application (iOS/Android).

2. Set up your Tencent portal account

A. Sign up for a Tencent Cloud account
To use the eKYC service, sign up for a Tencent Cloud account as instructed in Signing Up and complete Enterprise
Identity Verification. (If you have already signed up, skip this step.)

B. Activate the eKYC service
Log in to the eKYC console using your Tencent Cloud account and activate the service.

3. Get API credentials ready

https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/10496
https://console.intl.cloud.tencent.com/faceid

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 194

Tencent Cloud uses SecretId and SecretKey to verify your identity and permissions. You can get the

Tencent Cloud API credentials in the following steps:
A. Go to the TencentCloud API key management page and select CAM > API Key Management on the left sidebar

to enter the API key management page.
B. Click Create Key to create a key and save the SecretId and SecretKey for subsequent API calls. You

can skip this step if you already have a Tencent Cloud key.

4. Integrate the Tencent Cloud API

Tencent Cloud APIs can be called on the online debugging page of API 3.0 Explorer. To view the input parameters
and responses of APIs, see [Quick API Run](https://intl.cloud.tencent.com/document/product/1061/37029!
4517d180223e7d6a5f03a5868ed28311). Before integrating Tencent Cloud API, you must integrate Tencent Cloud
SDK to simplify the API integration process as well as to ensure that both API requests and responses meet
expectations. For more information about integration, see Connecting to TencentCloud API.

Integration

eKYC provides different integration methods. Complete integration by following the instructions provided in the guide

corresponding to your integration method.
Integration guide:
Integrating Liveness Detection and Face Comparison (App SDK)
Integrating Liveness Detection and Face Comparison (Mobile HTML5)
Liveness Detection and Face Comparison (Pure API) APIs

Integrating Identity Verification (App SDK)

Test

After completing integration, you can verify it through testing. We strongly recommend you complete full testing before
use in the production environment. As Tencent Cloud does not provide a test environment, you can complete your

https://console.intl.cloud.tencent.com/cam/capi
https://intl.cloud.tencent.com/document/product/1061/54960
https://intl.cloud.tencent.com/document/product/1061/46853
https://intl.cloud.tencent.com/document/product/1061/55995
https://intl.cloud.tencent.com/document/product/1061/57805
https://intl.cloud.tencent.com/document/product/1061/55327

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 194

integration testing in a Tencent Cloud production environment.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 194

Integrating Liveness Detection and Face
Comparison (Mobile HTML5)
 Integration Process
Last updated：2024-01-25 10:37:31

This document introduces the overall integration process of eKYC liveness detection and face comparison (mobile
HTML5).

Preparations
Sign up for a Tencent Cloud account. For more information, see Signing Up.
Complete enterprise identity verification. For more information, see Enterprise Identity Verification Guide.
Log in to the eKYC console.

Overall Architecture
The following figure shows the architecture of eKYC liveness detection and face comparison (mobile HTML5).

https://intl.cloud.tencent.com/zh/document/product/378/17985
https://intl.cloud.tencent.com/zh/document/product/378/10496
https://console.intl.cloud.tencent.com/faceid

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 194

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 194

Overall Interaction Process
The following figure shows the overall interaction logic between a user and Tencent Cloud eKYC. The roles involved
are described as follows:
User: Mobile HTML5 client.

Merchant WebPage: Merchant's frontend page.
Merchant Server: Merchant's backend service.
eKYC WebPage: eKYC frontend page.
eKYC Server: eKYC backend service.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 194

The recommended detailed interaction process is as follows:

Phase 1

1. A user starts a business, which triggers the verification process.
2. The Merchant WebPage sends a request to the Merchant Server, informing it to initiate a verification process.

3. The Merchant Server calls the ApplyWebVerificationBizTokenIntl API, passing in relevant parameters. For more
information, see the description of step 1 in "Server-Side Integration".

https://intl.cloud.tencent.com/document/product/1061/56227

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 194

4. After receiving the request, the eKYC Server returns the BizToken and VerificationURL for the verification process
to the Merchant Server.
5. The Merchant Server stores the obtained BizToken and sends the VerificationURL to the Merchant WebPage.

Phase 2

6. The Merchant WebPage redirects to the VerificationURL to open the eKYC WebPage. For more information, see
the description of step 1 in "Client-Side Integration".
7. The user completes the verification process on the eKYC WebPage.
8. After the verification is completed, the eKYC Server sends the verification result to the eKYC WebPage, and the
Merchant WebPage displays the result page.

9. After the user taps "Next", the eKYC WebPage redirects back to the RedirectURL, with the token parameter added.
10. The Merchant WebPage obtains the token parameter for the current verification process from the URL. For more
information, see the description of step 2 in "Client-Side Integration".

Phase 3

11. The Merchant WebPage sends a request to the Merchant Server, informing it to obtain the verification result.
12. The Merchant Server calls the GetWebVerificationResultIntl API, passing in relevant parameters. For more
information, see the description of step 2 in "Server-Side Integration".

13. After receiving the request, the eKYC Server returns the detailed information of the verification process to the
Merchant Server.
14. The Merchant Server sends the result back to the Merchant WebPage, which then proceeds with the subsequent
business process based on the result.

Server-Side Integration

1. Generate the verification URL (corresponding to Phase 1)

https://intl.cloud.tencent.com/document/product/1061/56226

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 194

Call ApplyWebVerificationBizTokenIntl to obtain the values of BizToken and VerificationURL. This corresponds to
step 3 in the interaction process.
 CompareImageBase64: The Base64-encoded string (max 8 MB in size) of the photo to be compared.

 RedirectURL: Set this parameter to the web callback URL to redirect to after the verification is completed.
 RedirectURL should include the protocol, hostname, and path. An example value is

 https://intl.cloud.tencent.com/products/faceid . After the verification process is completed, the

 BizToken of this process will be added to the callback URL in the format of

 https://intl.cloud.tencent.com/products/faceid?token={BizToken} before redirect.

Extra: The passthrough parameter of the business, max 1,000 characters, which will be returned in
 GetWebVerificationResultIntl .

Config: Custom configuration for the verification page. This is optional.

The data structure of Config is as follows:

AutoSkip: When verification is successful, whether to skip the result display page and automatically redirect to

 RedirectURL . The default value is false .

Sample API call:

https://intl.cloud.tencent.com/document/product/1061/56227

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 194

package main

import (

 "fmt"

 "os"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common/profile"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common/regions"

 faceid "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/faceid/v

 "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/common/errors"

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 194

)

func ApplyWebVerificationBizTokenIntl(imageBase64 string) {

 // Set TencentCloud API access key

 credential := common.NewCredential(

 os.Getenv("TENCENTCLOUD_SECRET_ID"),

 os.Getenv("TENCENTCLOUD_SECRET_KEY"),

)

 cpf := profile.NewClientProfile()

 client, _ := faceid.NewClient(credential, regions.Singapore, cpf)

 request := faceid.NewApplyWebVerificationBizTokenIntlRequest()

 request.RedirectURL = common.StringPtr("https://intl.cloud.tencent.com/products/f

 // Pass in CompareImageBase64 and Extra

 request.CompareImageBase64 = common.StringPtr(imageBase64)

 request.Extra = common.StringPtr("ExtraString")

 response, err := client.ApplyWebVerificationBizTokenIntl(request)

 if _, ok := err.(*errors.TencentCloudSDKError); ok {

 fmt.Printf("An API error has returned: %s", err)

 return

 }

 if err != nil {

 panic(err)

 }

 // Obtain BizToken and VerificationURL

 bizToken := *response.Response.BizToken

 verificationURL := *response.Response.VerificationURL

 fmt.Printf("BizToken: %s, VerificationURL: %s", bizToken, verificationURL)

}

2. Check the verification result (corresponding to Phase 3)

After the verification process is completed, the merchant frontend requests the merchant server to obtain the

verification result. The merchant server then calls the GetWebVerificationResultIntl API to obtain the final result and
returns it to the frontend page. This corresponds to step 12 in the interaction process.
The final verification result is subject to the information returned by this API. When ErrorCode in the response is

0, it indicates that the verification is successful. In other cases, verification failed. For other error codes, see Liveness
Detection and Face Comparison (Mobile HTML5) Error Codes.
BizToken: The BizToken generated by the ApplyWebVerificationBizTokenIntl API, which is a unique

identifier for the current verification process.

Sample API call:

https://intl.cloud.tencent.com/document/product/1061/56226
https://intl.cloud.tencent.com/document/product/1061/55390?lang=en&pg=#8a960e1e-39c0-42cb-b181-b3164d77f81e

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 194

package main

import (

 "fmt"

 "os"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common/profile"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common/regions"

 faceid "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/faceid/v

 "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/common/errors"

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 194

)

func GetWebVerificationResult(bizToken string) {

 // Set TencentCloud API access key

 credential := common.NewCredential(

 os.Getenv("TENCENTCLOUD_SECRET_ID"),

 os.Getenv("TENCENTCLOUD_SECRET_KEY"),

)

 cpf := profile.NewClientProfile()

 client, _ := faceid.NewClient(credential, regions.Singapore, cpf)

 request := faceid.NewGetWebVerificationResultIntlRequest()

 // Pass in BizToken

 request.BizToken = common.StringPtr(bizToken)

 response, err := client.GetWebVerificationResultIntl(request)

 if _, ok := err.(*errors.TencentCloudSDKError); ok {

 fmt.Printf("An API error has returned: %s", err)

 return

 }

 if err != nil {

 panic(err)

 }

 if response.Response.ErrorCode == nil {

 fmt.Print("the verification is uncompleted.")

 return

 }

 errorCode := *response.Response.ErrorCode

 errorMsg := *response.Response.ErrorMsg

 if errorCode == 0 {

 // Verification succeeded

 fmt.Print("Success")

 }else{

 // Verification failed

 fmt.Printf("Fail: %s\\n", errorMsg)

 }

}

Client-Side Integration

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 194

1. Use VerificationURL to initiate verification (corresponding to
Phase 2)

The client frontend page redirects to the VerificationURL received from the server to initiate the verification process.
The user completes the liveness detection and face comparison process as prompted. This corresponds to step 6 in
the interaction process.

Sample code:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 194

// Obtain VerificationURL from the server

const VerificationURL = 'https://sg.faceid.qq.com/reflect/?token=*****';

// Redirect the frontend page

window.location.href = VerificationURL;

2. Obtain BizToken from the callback address and request the
verification result from the backend (corresponding to Phase 2)

After the verification is completed, the page is redirected to RedirectURL . The BizToken parameter for the

current process is added to the RedirectURL. By parsing the RedirectURL, you can obtain the BizToken parameter,

which is used to obtain the verification result. This corresponds to step 12 in the interaction process.

Sample code:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 194

// Obtain RedirectURL

const RedirectURL = "https://*?token={BizToken}";

// Parse RedirectURL to obtain the BizToken parameter, which is used to obtain the

const bizToken = getURLParameter(RedirectURL, "token");

if (bizToken) {

 // Use bizToken to obtain the verification result

}

/**

/ * Get URL parameters

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 194

/* @params url The URL to be queried

/* @params variable The parameter to be queried

*/

function getURLParameter(url, variable) {

 const query = url.split('?')[1] || '';

 const vars = query.split('&');

 for (let i = 0; i < vars.length; i++) {

 const pair = vars[i].split('=');

 if (pair[0] == variable) {

 return pair[1];

 }

 }

 return (false);

}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 194

HTML5 Compatibility and Mode Switch
Description
Last updated：2023-07-11 11:54:15

Compatibility description

The web real-time communication technology has the following compatibility requirements for browsers and mobile
operating systems:

Mobile
OS

Browser Compatibility Requirements

iOS

Browser built in WeChat iOS 14.3+ and WeChat 6.5+

Safari iOS 11.1.2+ and Safari 11+

Chrome iOS 14.3+

Android

Browser built in WeChat Supported

Built-in browsers

Android 7+, with great compatibility with the
built-in browsers of Huawei, OPPO, vivo,
MEIZU, Honor, and Samsung (80% supported)
and average compatibility with the built-in
browser of Xiaomi (30% supported)

Other browsers Android 7+, where Chrome is supported, but
QQ Browser and UC Browser are not

NOTE：

1. Due to H.264 copyright restrictions, Chrome and Chrome WebView-based browsers on Huawei devices don't
support the real-time communication technology.
2. Under circumstances where the real-time communication technology isn't supported, web face recognition will
switch from reflection-based liveness detection to video recording mode, so as to ensure that the user can properly
complete the identity verification process.

Mode switch description

In the web face recognition process, reflection-based liveness detection mode will be used first. However, if the real-
time communication compatibility requirements cannot be met, the process will automatically switch to video-based
liveness detection mode. The service processes in the two modes are as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 194

Web face recognition process in reflection-based liveness detection mode:

Web face recognition process in video-based liveness detection mode:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 194

Camera access description for reflection-based liveness detection

When you call the web face recognition service, reflection-based liveness detection mode requires the user's camera
access. If the user denies the access request, the face recognition and access request process needs to be entered

again. Certain browsers cannot pull the access granting page; in this case, the user can try clearing the browser's
cache.

Returned Message Action

Unable to access your camera/mic. Please make sure that there is no
other app requesting access to them and try again.

Advise the user to check whether the
required camera is in use.

Mic and camera permissions of your device are required during the
whole verification. Please clear your browser cache and try again.

Advise the user to enter again and
grant the camera access.

Please check whether the camera/mic can be accessed normally and Advise the user to check whether the

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 194

try again required camera works properly.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 194

Integrating Liveness Detection and Face
Comparison (App SDK)
Integration Process
Last updated：2024-01-19 14:57:08

Integration Preparations

Sign up for a Tencent Cloud account. For more information, see Signing Up.
Complete enterprise identity verification. For more information, see Enterprise Identity Verification Guide.
Log in to the eKYC console and activate the service.

Contact us to obtain the latest SDK and license.

Overall Architecture Diagram

The following diagram shows the architecture of the liveness detection and face comparison SDK integration.

https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/10496
https://console.intl.cloud.tencent.com/faceid
https://intl.cloud.tencent.com/document/product/1061/52144

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 194

eKYC SDK integration includes two parts:
Client-side integration: Integrate the eKYC SDK into the customer's terminal service app.

Server-side integration: Expose the endpoint of your (merchant) application to your (merchant) server so that the
merchant application can interact with the merchant server and then access the eKYC SaaS API to obtain the
 SdkToken , which is used throughout the liveness detection and face comparison process and to pull the final

verification result.

Overall Interaction Process

You only need to pass in the token and start the corresponding eKYC SDK's liveness detection method to complete

liveness detection and return the result.
1. TencentCloud API for obtaining the token: GetFaceldTokenIntl
2. TencentCloud API for pulling the liveness detection result: GetFaceIdResultIntl
The following diagram shows the overall logic of interaction between the SDK, client, and server:

https://intl.cloud.tencent.com/document/product/1061/54556
https://intl.cloud.tencent.com/document/product/1061/54557

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 194

 The recommended detailed interaction process is as follows:
1. The customer triggers the merchant application on the terminal to call the liveness verification service scenario.

2. The merchant application sends a request to the merchant server to notify that the liveness detection service token
is required for starting liveness verification once.
3. The merchant server passes in relevant parameters to call the TencentCloud API GetFaceldTokenIntl.
4. After receiving the request for calling GetFaceldTokenIntl, the FaceID SaaS delivers the service token to the
merchant server.

5. The merchant server delivers the obtained service token to the customer's merchant application.

https://intl.cloud.tencent.com/document/product/1061/54556
https://intl.cloud.tencent.com/document/product/1061/54556

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 194

6. The merchant application calls the eKYC SDK's startup API startHuiYanAuth to pass in the token and
configuration information and starts liveness verification.
7. The eKYC SDK captures and uploads the required user data, including liveness data, to the eKYC SaaS.

8. The eKYC SaaS returns the verification result to the eKYC SDK after completing liveness verification (including the
liveness detection and face comparison).
9. The eKYC SDK actively triggers callback to notify the merchant application that the verification is complete and of
the verification status.
10. After receiving the callback, the merchant application sends a request to notify the merchant server to obtain the

verification result for confirmation.
11. The merchant server actively calls the eKYC SaaS API GetFaceIdResultIntl to pass in the relevant parameters
and service token and obtain the verification result.
12. After receiving the request for calling GetFaceIdResultIntl, the eKYC SaaS returns the verification result to the
merchant server.
13. After receiving the verification result, the merchant server delivers the required information to the merchant

application.
14. The merchant application displays the final result on the UI to notify the customer of the verification result.

Integration

Server Integration

1. Integration preparations

Before server integration, you need to activate the Tencent Cloud eKYC service and obtain TencentCloud API access
key SecretId and SecretKey by following the instructions in Getting API Key. In addition, you need to follow the
instructions in Connecting to TencentCloud API to import the SDK package with the programming language you are

familiar with to your server modules, to ensure that the TencentCloud API can be successfully called and API requests
and responses can be properly processed.

2. Integration process

To ensure that your (merchant) client application interacts with your (merchant) server, the merchant server needs to
call the API GetFaceIdTokenIntl provided by eKYC to obtain SDKToken , which is used throughout the liveness

detection and face comparison process and used by the API GetFaceIdResultIntl to obtain the liveness comparison

result. The merchant server also needs to provide the corresponding endpoint for the merchant client to call. The
following sample code with the Golang language is used as an example to show how to call TencentCloud API on the
server and obtain the correct response.
Note: This example only demonstrates the processing logic required for interaction between the merchant server and
TencentCloud API service. If necessary, you need to implement your own business logic, for example:

https://intl.cloud.tencent.com/document/product/1061/54557
https://intl.cloud.tencent.com/document/product/1061/54557
https://console.intl.cloud.tencent.com/cam/capi
https://intl.cloud.tencent.com/document/product/1061/54960
https://intl.cloud.tencent.com/document/product/1061/54556
https://intl.cloud.tencent.com/document/product/1061/54557

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 194

After you obtain the SDKToken using the API GetFaceIdTokenIntl, you can return other responses required by

the client application to the client along with the SDKToken .

After you obtain the liveness detection and face comparison result using the API GetFaceIdResultIntl, you can save

the returned photo with the best frame rate for later business logic.

var FaceIdClient *faceid.Client

func init() {

 // Instantiate a client configuration object. You can specify the timeout perio

 prof := profile.NewClientProfile()

 prof.HttpProfile.ReqTimeout = 60

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 194

 // TODO replace the SecretId and SecretKey string with the API SecretId and Sec

 credential := cloud.NewCredential("SecretId", "SecretKey")

 var err error

 // Instantiate the client object of the requested faceid

 FaceIdClient, err = faceid.NewClient(credential, "ap-singapore", prof)

 if nil != err {

 log.Fatal("FaceIdClient init error: ", err)

 }

}

// GetFaceIdToken get token

func GetFaceIdToken(w http.ResponseWriter, r *http.Request) {

 log.Println("get face id token")

 // Step 1: ... parse parameters

 _ = r.ParseForm()

 var SecureLevel = r.FormValue("SecureLevel")

 // Step 2: instantiate the request object and provide necessary parameters

 request := faceid.NewGetFaceIdTokenIntlRequest()

 request.SecureLevel = &SecureLevel

 // Step 3: call the Tencent Cloud API through FaceIdClient

 response, err := FaceIdClient.GetFaceIdTokenIntl(request)

 // Step 4: process the Tencent Cloud API response and construct the return obje

 if nil != err {

 _, _ = w.Write([]byte("error"))

 return

 }

 SdkToken := response.Response.SdkToken

 apiResp := struct {

 SdkToken *string

 }{SdkToken: SdkToken}

 b, _ := json.Marshal(apiResp)

 // ... more codes are omitted

 //Step 5: return the service response

 _, _ = w.Write(b)

}

// GetFaceIdResult get result

func GetFaceIdResult(w http.ResponseWriter, r *http.Request) {

 // Step 1: ... parse parameters

 _ = r.ParseForm()

 SdkToken := r.FormValue("SdkToken")

 // Step 2: instantiate the request object and provide necessary parameters

 request := faceid.NewGetFaceIdResultIntlRequest()

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 194

 request.SdkToken = &SdkToken

 // Step 3: call the Tencent Cloud API through FaceIdClient

 response, err := FaceIdClient.GetFaceIdResultIntl(request)

 // Step 4: process the Tencent Cloud API response and construct the return obje

 if nil != err {

 _, _ = w.Write([]byte("error"))

 return

 }

 result := response.Response.Result

 apiResp := struct {

 Result *string

 }{Result: result}

 b, _ := json.Marshal(apiResp)

 // ... more codes are omitted

 //Step 5: return the service response

 _, _ = w.Write(b)

}

func main() {

 // expose endpoints

 http.HandleFunc("/api/v1/get-token", GetFaceIdToken)

 http.HandleFunc("/api/v1/get-result", GetFaceIdResult)

 // listening port

 err := http.ListenAndServe(":8080", nil)

 if nil != err {

 log.Fatal("ListenAndServe error: ", err)

 }

}

3. API testing

After you complete the integration, you can test whether the current integration is correct by running the postman or
curl command. To be specific, access the API (http://ip:port/api/v1/get-token) to check whether SdkToken is

returned and access the API (http://ip:port/api/v1/get-result) to check whether the value of the Result field is 0.

Through these results, you can determine whether the server integration is successful. For details on responses, see
API introduction.

Integration with Android

1. Dependent environment

The current FaceID SDK for Android is supported by API 19 (Android 4.4) or later.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 194

2. SDK integration steps

1. Add the files huiyansdk_android_overseas_1.0.9.6_release.aar, tencent-ai-sdk-youtu-base-1.0.1.39-
release.aar, tencent-ai-sdk-common-1.1.36-release.aar, and tencent-ai-sdk-aicamera-1.0.22-release.aar (the
specific version numbers of the files downloaded from the official website shall prevail) to the libs directory of your

project.

2. Configure build.gradle in your project as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 194

// Set .so architecture filtering in NDK (using armeabi-v7a as an example)

ndk {

 abiFilters 'armeabi-v7a'

}

dependencies {

 // Import the FaceID SDK

 implementation files("libs/huiyansdk_android_overseas_1.0.9.5_release.aar")

 // FaceID general algorithm SDK

 implementation files("libs/tencent-ai-sdk-youtu-base-1.0.1.32-release.aar")

 // Common capability components

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 194

 implementation files("libs/tencent-ai-sdk-common-1.1.27-release.aar")

 implementation files("libs/tencent-ai-sdk-aicamera-1.0.18-release.aar")

 // Third-Party libraries that the FaceID SDK depends on

 // gson

 implementation 'com.google.code.gson:gson:2.8.5'

}

3. Make the necessary permission declaration in the AndroidManifest.xml file.

<!-- Camera permission -->

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 194

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature

 android:name="android.hardware.camera"

 android:required="true" />

<uses-feature android:name="android.hardware.camera.autofocus" />

<!-- Permissions required by the SDK -->

<uses-permission android:name="android.permission.INTERNET" />

<!-- Optional permissions for the SDK -->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 If your app needs to be compatible with Android 6.0 or later, in addition to declaring the above permissions in the
 AndroidManifest.xml file, you need to add the code Dynamically apply for permissions.

3. API initialization

This API is called during app initialization, which is mainly used to perform some initialization operations for the SDK.

We recommend you call this API in Application .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 194

@Override

public void onCreate() {

 super.onCreate();

 instance = this;

 // Initialize the SDK during app initialization

 HuiYanOsApi.init(getApp());

}

4. Start the liveness verification API

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 194

// HuiYanOs parameters

HuiYanOsConfig huiYanOsConfig = new HuiYanOsConfig();

// The license file is placed in `assets`.

huiYanOsConfig.setAuthLicense("YTFaceSDK.license");

if (compatCheckBox.isChecked()) {

 huiYanOsConfig.setPageColorStyle(PageColorStyle.Dark);

}

// Whether to return the best frame

if (needBestImageCB.isChecked()) {

 huiYanOsConfig.setNeedBestImage(true);

}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 194

// Start liveness verification. `currentToken` is the token distributed by the back

HuiYanOsApi.startHuiYanAuth(currentToken, huiYanOsConfig, new HuiYanOsAuthCallBack(

 @Override

 public void onSuccess(HuiYanOsAuthResult authResult) {

 showToast("Liveness verification passed.");

 if (!TextUtils.isEmpty(authResult.getBestImage())) {

 CommonUtils.decryptBestImgBase64(authResult.getBestImage(), false);

 }

 }

 @Override

 public void onFail(int errorCode, String errorMsg, String token) {

 String msg = "Liveness verification failed " + "code: " + errorCode + " msg

 Log.e(TAG, "onFail" + msg);

 showToast(msg);

 }

});

HuiYanOsAuthResult is the returned result of successful liveness verification. The final liveness verification result can
be obtained by accessing GetFaceldResultIntl through the token.
Note: You need to contact the customer service to apply for the "YTFaceSDK.license" file, and then place the

license file in the Assets Folder .

5. Release SDK resources

Before your app exits, you can call the API to release SDK resources.

https://intl.cloud.tencent.com/zh/document/product/1061/54964
https://intl.cloud.tencent.com/zh/document/product/1061/54557

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 194

@Override

protected void onDestroy() {

 super.onDestroy();

 // Release the resources upon exit

 HuiYanOsApi.release();

}

6. Configure obfuscation rules

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 194

 If the obfuscation feature is enabled for your app, add the following to your obfuscation file to ensure the normal
running of the SDK:

The following FaceID SDK obfuscation rules should be added:

-keep class com.tencent.could.huiyansdk.** {*;}

-keep class com.tencent.could.aicamare.** {*;}

-keep class com.tencent.could.component.** {*;}

-keep class com.tencent.youtu.** {*;}

-keep class com.tenpay.utils.SMUtils {*;}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 194

Integration with iOS

1. Dependent environment

1. Development environment: Xcode 11.0 or later
2. The eKYC SDK for iOS is only supported by iOS 9.0 or later.

2. SDK integration steps

Manual integration

1. Import libraries and files.

Click Link Binary With Libraries to add frameworks.

2. The SDK depends on the following libraries:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 194

├──HuiYanSDK.framework

└──YtSDKKitSilentLiveness.framework

├──YtSDKKitReflectLiveness.framework

├──YtSDKKitActionLiveness.framework

├──YtSDKKitFramework.framework

├──tnnliveness.framework

├──YTFaceAlignmentTinyLiveness.framework

├──YTFaceTrackerLiveness.framework

├──YTFaceDetectorLiveness.framework

├──YTPoseDetector.framework

├──YTCommonLiveness.framework

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 194

└──YTFaceLiveReflect.framework

3. Click Link Binary With Libraries to add system frameworks.

├── AVFoundation.framework

├── libc++.tbd

└── Accelerate.framework

4. Import the model in Copy Bundle Resources .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 194

└── face-tracker-v001.bundle

5. Import the resource file in Copy Bundle Resources .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 194

└── HuiYanSDKUI.bundle

Integration by using pod

1. Copy the CloudHuiYanSDK_FW folder to the directory at the same level as that of the integration project

 Podfile .

2. Set the following in Podfile :

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 194

target 'HuiYanAuthDemo' do

 use_frameworks!

 pod 'CloudHuiYanSDK_FW', :path => './CloudHuiYanSDK_FW'

end

3. Run pod install .

Note:
 For the file levels and specific settings, see the demo.
iOS demo

https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/faceid-iOS-example

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 194

 Build Phases settings

1. Click Other Linker Flags to add -ObjC.

2. Integrate ViewController.m and set the extension to .mm (for a Swift project, add the system library

 libc++.tbd).

Permission settings

As the SDK requires a mobile network and camera permission, include the following key-value pair in
 info.plist of the main project to add the corresponding permission declaration.

<key>Privacy - Camera Usage Description</key>

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 194

<string>FaceID requires you to grant the camera permission for face recognition.</s

3. Start the liveness detection API

#import <HuiYanSDK/HuiYanOsApi.h>

#import <HuiYanSDK/HuiYanOSKit.h>

 // Get the token

 NSString *faceToken = self.tokenTextField.text;

 // Configure the SDK

 HuiYanOsConfig *config = [[HuiYanOsConfig alloc] init];

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 194

 // Set the license

 config.authLicense = [[NSBundle mainBundle] pathForResource:@"xxx.lic" ofType:@

 // Timeout configuration for the preparation stage

 config.prepareTimeoutMs = 20000;

 // Timeout configuration for the detection stage

 config.authTimeOutMs = 20000;

 config.isDeleteVideoCache = YES;

 config.languageType = EN;

 // config.userLanguageFileName = @"ko";

 // config.userLanguageBundleName = @"UseLanguageBundle";

 config.iShowTipsPage = YES;

 config.isGetBestImg = YES;

 [[HuiYanOSKit sharedInstance] startHuiYaneKYC:faceToken withConfig:config

 witSuccCallback:^(HuiYanOsAuthResult * _Nonnull a

 NSString *bestImg = authResult.bestImage;

 NSString *token = authResult.faceToken;

 } withFailCallback:^(int errCode, NSString * _Nonnull errMsg, id _Nullable res

 NSString *showMsg = [NSString stringWithFormat:@"err:%d:%@",errCode,errMsg]

 NSLog(@"err:%@",showMsg);

 }];

HuiYanOsAuthResult is the returned result of successful liveness verification. The final liveness verification result can
be obtained by accessing GetFaceldResultIntl through the token.
Note:
 Currently, you need to contact the customer service to apply for the "xxx.lic" file actively.

4. Release SDK resources

Before your app exits, you can call the API to release SDK resources.

https://intl.cloud.tencent.com/document/product/1061/54964
https://intl.cloud.tencent.com/document/product/1061/54557

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 194

// Release the resources before exit

- (void)dealloc {

 [HuiYanOsApi release];

}

//[iOS demo](https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/faceid-iO

[Android demo](https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/id-veri

iOS demo Android demo

https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/faceid-iOS-example
https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/id-verification-android-example

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 194

SDK API Description
Android API Description
Last updated：2023-06-13 11:24:06

API description

The eKYC SDK mainly involves the following classes: HuiYanOsApi (API class), HuiYanOsConfig

(parameter configuration class), and HuiYanOsAuthCallBack and HuiYanAuthEventCallBack (result

callback classes).

HuiYanOsApi

API Feature Description

init() Initializes the service.

release() Releases resources.

setAuthEventCallBack() Sets the key actions in the liveness detection and face comparison process.

startHuiYanAuth() Performs liveness detection and face comparison. This API can be called to
complete the entire process.

init()

Feature description:
This API is used to initialize the eKYC SDK.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 194

public static void init(Context context)

Input parameters:

Type Parameter Description

Context context App context information

release()

Feature description:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 194

This API is used to release eKYC SDK resources.

public static void release()

setAuthEventCallBack()

Feature description:
This API is used to set callback for the key actions in the liveness detection and face comparison process.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 194

public static void setAuthEventCallBack(HuiYanAuthEventCallBack authEventCallBack)

Input parameters:

Type Parameter Description

HuiYanAuthEventCallBack huiYanAuthEventCallBack Callback for key liveness detection and face
comparison actions

startHuiYanAuth()

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 194

Feature description:
This API is used for liveness detection and face comparison. It can be called to complete the entire process.

public static void startHuiYanAuth(final String startToken, final HuiYanOsConfig st

Input parameters:

Type Parameter Description

String startToken Business token requested from the server for starting liveness
detection and face comparison

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 194

HuiYanOsConfig startConfig Configuration parameter

HuiYanOsAuthCallBack authCallBack liveness detection and face comparison result

HuiYanOsConfig

 HuiYanOsConfig is the configuration entity class during eKYC SDK startup, which mainly contains the following

attributes:

Type Name Description Default Value

PageColorStyle pageColorStyle Color pattern used for liveness detection
and face comparison

PageColorStyle.Light

String authLicense
Name of the license file applied for by
client for liveness detection and face
comparison authorization

Empty

long authTimeOutMs Liveness detection and face comparison
timeout period

10000 ms (10s)

boolean isDeleteVideoCache
Whether to delete the local cache of the
liveness detection and face comparison
video

true

boolean isShowGuidePage Whether to open the guide page for
liveness detection and face comparison

true

boolean isNeedBestImage Whether to return the best frame false

LanguageStyle languageStyle Language type Auto

String languageCode
Language code (see Language codes
for Android), which is used together with
 languageStyle

Empty

String backUpIPs List of backup IPs Empty

String backUpHost Backup domain Empty

AuthUiConfig authUiConfig UI configuration items Empty

PageColorStyle

This is the enumeration class of default color patterns on the default liveness detection and face comparison UI.

Currently, two color patterns are supported: light and dark.

PageColorStyle Value Description

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 194

PageColorStyle.Light Light color pattern

PageColorStyle.Dark Dark color pattern

LanguageStyle

LanguageStyle Value Description

LanguageStyle.AUTO Auto

LanguageStyle.ENGLISH English

LanguageStyle.SIMPLIFIED_CHINESE Simplified Chinese

LanguageStyle.TRADITIONAL_CHINESE Traditional Chinese

LanguageStyle.CUSTOMIZE_LANGUAGE Custom language

AuthUiConfig

Parameter configuration of custom liveness detection and face comparison UI.

Type Name Description Default
Value

VideoSize videoSize Resolution during liveness detection and face comparison 480P

boolean isShowCountdown Whether to display the countdown control true

boolean isShowErrorDialog Whether to display the error dialog true

int authLayoutResId
Custom layout resID exported from FaceID, which is -1
by default if not adjusted.

-1

int feedBackErrorColor
Color of exception tips (format: 0xFFFFFFFF), which
is -1 by default if not adjusted.

-1

int feedBackTxtColor
Color of success tips (format: 0xFFFFFFFF), which is
-1 by default if not adjusted.

-1

int authCircleErrorColor
Color of background round frame for incorrect action
(format: 0xFFFFFFFF), which is -1 by default if not
adjusted.

-1

int authCircleCorrectColor Color of background round frame of correct action (format:
0xFFFFFFFF), which is -1 by default if not adjusted.

-1

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 194

int authLayoutBgColor Color of liveness detection and face comparison UI
background (format: 0xFFFFFFFF), which is -1 by default
if not adjusted.

-1

VideoSize

Enumerated values of resolutions supported by eKYC.

VideoSize Value Description

VideoSize.SIZE_480P 480P

VideoSize.SIZE_720P 720P

HuiYanOsAuthResult

The result type corresponding to the callback for successful liveness detection and face comparison.

Type Name Description Default
Value

String token The token used in the current liveness detection and face comparison
process.

Empty

String bestImage Base64-encoded data of the best frame image for liveness detection and
face comparison.

Empty

You will need to use the token to call the GetFaceldResultIntl API to pull the liveness detection and face comparison

result.

HuiYanOsAuthCallBack

This is the callback API for the liveness detection and face comparison process.

https://todo/

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 194

/**

 * Result callback

 *

 * @author jerrydong

 * @since 2022/6/10

 */

public interface HuiYanOsAuthCallBack {

 /**

 * Successful liveness detection and face comparison

 *

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 194

 * @param authResult Result

 */

 void onSuccess(HuiYanOsAuthResult authResult);

 /**

 * Failed liveness detection and face comparison

 *

 * @param errorCode Error code

 * @param errorMsg Error message

 * @param token Token used in this liveness detection and face comparison proce

 */

 void onFail(int errorCode, String errorMsg, String token);

}

HuiYanAuthEventCallBack

This callback is used to listen for key events during liveness detection and face comparison. You can use the UI with
custom layout to bind events (see the document about custom capabilities).

https://iwiki.woa.com/pages/viewpage.action?pageId=4007948338

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 194

/**

 * Callback for liveness detection and face comparison event in FaceID SDK

 */

public interface HuiYanAuthEventCallBack {

 /**

 * Callback for event notification when liveness detection and face comparison

 *

 * @param tipsEvent Key `tips` event

 */

 void onAuthTipsEvent(HuiYanAuthTipsEvent tipsEvent);

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 194

 /**

 * Liveness detection and face comparison event

 *

 * @param authEvent authEvent

 */

 void onAuthEvent(HuiYanAuthEvent authEvent);

 /**

 * Callback for the creation of the authenticated main view

 *

 * @param authView

 */

 void onMainViewCreate(View authView);

 /**

 * Callback for UI repossession

 */

 void onMainViewDestroy();

}

Error Codes

Below are the error codes in the eKYC SDK (global edition) in failure callbacks and their meaning:

Error Codes Error
Code

Error Description

HY_NETWORK_ERROR 210 Network request exception.

HY_LOCAL_REF_FAILED_ERROR 211
Check failed during local SDK initialization.
The common exceptions are license file
nonexistence or license expiration.

HY_USER_CANCEL_ERROR 212 The user actively cancels the liveness
detection and face comparison process.

HY_INNER_ERROR_CODE 213
An internal exception of the SDK occurred,
causing the liveness detection and face
comparison process to be stopped.

HY_DO_NOT_CHANGE_ERROR 214
Applications are switched during liveness
detection and face comparison, causing the
process to be stopped.

HY_CAMERA_PERMISSION_ERROR 215 An exception occurred while getting the

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 194

camera.

HY_INIT_SDK_ERROR 216
The liveness detection and face comparison
method is directly called before the "init()"
method is called.

HY_VERIFY_LOCAL_ERROR 217 Local face detection failed.

HY_PERMISSION_CHECK_ERROR 218 The permissions required by the local SDK are
insufficient.

HY_APP_STOP_ERROR 219

If reflectSequence of
 startAuthByLightData is null , you
stopped the liveness detection and face
comparison process.

HY_CHECK_LIVE_DATA_ERROR 220 Failed to verify the light sequence parameter.

HY_INITIALIZATION_PARAMETER_EXCEPTION 221
An exception occurred while directly calling the
method for setting light sequence parameters
without getting the device configuration.

HY_VERIFY_LOCAL_TIME_OUT 222 Local motion detection timed out.

HY_PREPARE_TIME_OUT 223 Preparation timed out (between camera launch
and the first detection of face).

HY_CHECK_PERMISSION_ERROR 224 Failed to apply for the camera permission
inside the SDK.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 194

iOS API Description
Last updated：2023-06-13 11:25:50

API description

Integration with the eKYC SDK mainly involves the following classes: HuiYanOSKit (API class),

 HuiYanOsConfig (configuration parameter class), and HuiYanOKitSuccCallback and

 HuiYanOKitFailCallback (result and callback classes).

HuiYanOSKit

API Feature Description

startHuiYaneKYC() Starts the liveness detection and face comparison process in the FaceID SDK.

release() Releases FaceID SDK resources.

release()

Feature description:
This API is used to release eKYC SDK resources.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 194

+ (void)release;

startHuiYaneKYC

Feature description:

This API is used to start and configure the liveness detection and face comparison SDK and call back the result or
error.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 194

/// Start the liveness detection and face comparison process

/// @param faceToken token

/// @param kitConfig SDK configuration

/// @param succCallback Callback for successful liveness detection and face compari

/// @param failCallback Callback for failed liveness detection and face comparison

- (void)startHuiYaneKYC:(NSString *)faceToken withConfig:(HuiYanOsConfig *)kitConfi

 witSuccCallback:(HuiYanOKitSuccCallback)succCallback

 withFailCallback:(HuiYanOKitFailCallback)failCallback;

Input parameters:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 194

Type Parameter Description

NSSting faceToken Liveness detection and face comparison process token

HuiYanOsConfig kitConfig SDK configuration class

HuiYanOKitSuccCallback succCallback Callback for successful liveness detection and face comparison

HuiYanOKitFailCallback failCallback Callback for failed liveness detection and face comparison

HuiYanOsAuthResult

Type Parameter Description

NSSting faceToken Liveness detection and face comparison process token

NSSting bestImage Base64-encoded best frame image returned upon success if best frame return is
enabled

You will need to use the token to call the GetFaceldResultIntl API to pull the liveness detection and face comparison
result.

HuiYanOsConfig

 HuiYanOsConfig is the configuration entity class during eKYC SDK startup, which mainly contains the following

attributes:

Type Name Description Default Value

NSString authLicense

Name of the license file
applied for by client for
liveness detection and face
comparison authorization

Empty

long authTimeOutMs Liveness detection and face
comparison timeout period

10000 ms (10s)

long prepareTimeoutMs Detection timeout period in
the preparation stage

0

HYShowTimeOutMode showTimeOutMode Stage in which the
countdown is displayed

HYShowTimeOutMod

BOOL isDeleteVideoCache

Whether to delete the local
cache of the liveness
detection and face
comparison video

YES

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 194

BOOL iShowTipsPage Whether to display the guide
page

No

NSString userUIBundleName

Custom UI bundle filename;
for example, set
 UserUIBundle for
 UserUIBundle.bundle

nil

NSString userLanguageFileName

Custom languageBundle
name; for example,

set UseLanguage for
 UseLanguage.bundle`.

nil

NSString userLanguageBundleName

Custom local file name for
internationalization; for
example, set en for
 en.lproj .

nil

LanguageType languageType Text language settings inside
the SDK

DEFAULT

BOOL isGetBestImg Whether to get the best
frame image

No

NSString setLanguageFileName

Language file directory name
added in
 HuiYanSDKUI.bundle
has the highest priority by
default

nil

HuiYanOKitSuccCallback

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 194

/**

 * Callback for successful liveness detection and face comparison

 *

 * @param authResult Liveness detection and face comparison result

 * @param reserved Reserved

 */

typedef void (^HuiYanOKitSuccCallback)(HuiYanOsAuthResult * _Nonnull authResult, id

HuiYanOKitFailCallback

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 194

/**

 * Callback for failed liveness detection and face comparison

 *

 * @param errCode Error code

 * @param errMsg Error message

 * @param reserved Reserved

 */

typedef void (^HuiYanOKitFailCallback)(int errCode, NSString * _Nonnull errMsg ,id

LanguageType

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 194

Internationalization strings included in the SDK

typedef enum : NSUInteger {

 DEFAULT = 0,//Auto

 ZH_HANS,//Simplified Chinese

 ZH_HANT,//Traditional Chinese

 ZH_HK,//Traditional Chinese (Hong Kong)

 ZH_TW,//Traditional Chinese (Taiwan)

 EN,//English

 MS,//Malaysian

 RU,//Russian

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 194

 JA,//Japanese

 CUSTOMIZE_LANGUAGE, //Custom language

} LanguageType;

HYShowTimeOutMode

typedef NS_OPTIONS(int, HYShowTimeOutMode) {

 HYShowTimeOutMode_TIMEOUT_HIDDEN = 1 << 0,// Hide the countdown in all stages

 HYShowTimeOutMode_PREPARE = 1 << 1,// Preparation stage countdown

 HYShowTimeOutMode_ACTION = 1 << 3,// Action stage countdown

};

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 194

SDK Error Codes (iOS)

Error Codes Error
Code

Error Description

HY_SUCCESS 0 Successful

HY_INITIALIZATION_PARAMETER_EXCEPTION 210 Parameter initialization exception

HY_BUNDLE_CONFIGURATION_EXCEPTION 211 Bundle configuration exception

HY_YTSDK_CONFIGURATION_EXCEPTION 212 YouTu configuration exception

HY_PLEASE_CALL_FIRST_INIT_API 213 Call the API for initialization first

HY_SDK_AUTH_FAILED 214 SDK authorization failure

HY_USER_VOLUNTARILY_CANCELED 215 Manually canceled by user

HY_YTSDK_LOCAL_AUTH_FAILED 216 Local face detection failure of SDK

HY_CAMERA_OPEN_FAIL 217 Failed to enable the camera

HY_DONOT_SWITCH_APPS 218 Do not switch the application during liveness
detection and face comparison

HY_CAMEREA_PERMISSION_EXCEPTION 219 Camera permission exception

HY_SDK_VEDIO_CUT_EXCEPTION 220 Failed to clip the video

HY_LIGHT_DATA_FORMAT_EXCEPTION 221 Incorrect light data format

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 194

SDK Custom Capabilities
Android Custom Capabilities
Last updated：2023-06-13 11:27:15

This document introduces the custom capabilities of the eKYC SDK (global edition).

I. Custom UI

Customizing layout

The eKYC SDK supports custom UI by using AuthUiConfig (see the API description document) or passing in

 Layout resId .

The usage is as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 194

AuthUiConfig authConfig = new AuthUiConfig();

authUiConfig.setAuthLayoutResId(R.layout.demo_huiyan_fragment_authing);

authUiConfig.setAuthCircleCorrectColor(resources.getColor(R.color.demo_blue));

huiYanOsConfig.setAuthUiConfig(authUiConfig);

The following figure shows the default layout:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 194

The default layout is as shown above, where the positions of all controls can be adjusted by modifying the
 Layout.xml file. For more information, see the demo's demo_huiyan_fragment_authing.xml file.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 194

Note:
The View type and the corresponding android:id in demo_huiyan_fragment_authing.xml are

involved in UI event binding, so do not modify them.

The default layout provided here is as follows:

<?xml version="1.0" encoding="utf-8"?>

<com.tencent.could.huiyansdk.view.HuiYanReflectLayout xmlns:android="http://schemas

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/txy_auth_layout_bg"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 194

 <!-- Cancel button -->

 <TextView

 android:id="@+id/txy_cancel_txt_btn"

 android:text="@string/txy_cancel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 android:textColor="@color/txy_black"

 android:textSize="16sp"

 android:layout_marginTop="@dimen/txy_title_margin_top"

 android:layout_marginStart="@dimen/txy_protocol_margin_size"

 />

 <!-- Countdown display control -->

 <TextView

 android:id="@+id/txy_count_down_txt_view"

 android:text="@string/txy_count_down_txt"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:textSize="16sp"

 android:textColor="@color/txy_black"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="@dimen/txy_title_margin_top"

 android:layout_marginRight="@dimen/txy_protocol_margin_size"

 android:visibility="gone"

 />

 <!-- Camera preview frame (if it is 720p, the height in the code will be automa

 <com.tencent.could.huiyansdk.view.CameraDateGatherView

 android:id="@+id/txy_camera_gather_view"

 android:layout_width="@dimen/txy_auth_head_size"

 android:layout_height="258dp"

 android:background="@android:color/transparent"

 android:layout_marginBottom="@dimen/txy_auth_view_move"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <!-- General background, which is a ring with vertical lines -->

 <com.tencent.could.huiyansdk.view.CommonAuthBackView

 android:id="@+id/txy_auth_common_background_views"

 android:layout_width="230dp"

 android:layout_height="230dp"

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 194

 android:layout_marginBottom="@dimen/txy_auth_view_move"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 />

 <!-- Profile photo to display -->

 <ImageView

 android:id="@+id/txy_camera_prepare_img"

 app:srcCompat="@drawable/txy_prepare_face_head_white"

 android:layout_width="@dimen/txy_auth_head_size"

 android:layout_height="@dimen/txy_auth_head_size"

 android:layout_marginBottom="@dimen/txy_auth_view_move"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent" />

 <!-- Frontend animation view -->

 <com.tencent.could.huiyansdk.view.LoadingFrontAnimatorView

 android:id="@+id/txy_auth_loading_front_animator_view"

 android:visibility="gone"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 android:layout_marginBottom="@dimen/txy_auth_view_move"

 android:layout_width="@dimen/txy_auth_head_size"

 android:layout_height="@dimen/txy_auth_head_size"

 />

 <!-- Prompt display page -->

 <TextView

 android:id="@+id/txy_auth_feed_back_txt"

 app:layout_constraintTop_toBottomOf="@id/txy_auth_common_background_views"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:textColor="@color/txy_black"

 android:layout_marginTop="@dimen/txy_protocol_line_space"

 android:text="@string/txy_face_preparing3"

 android:textSize="18sp"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <!-- Prompt control for additional warning message -->

 <TextView

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 194

 android:id="@+id/txy_auth_feed_back_extra_tip_txt"

 android:textSize="14sp"

 android:textColor="@color/txy_black"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_marginTop="20dp"

 app:layout_constraintTop_toBottomOf="@id/txy_auth_feed_back_txt"

 />

 <!-- Content prompt for liveness detection and face comparison -->

 <TextView

 android:id="@+id/txy_auth_tips_txt"

 android:textSize="14sp"

 android:textColor="@color/txy_black"

 android:paddingHorizontal="25dp"

 android:layout_marginHorizontal="25dp"

 android:layout_marginBottom="35dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

</com.tencent.could.huiyansdk.view.HuiYanReflectLayout>

Binding events for custom layout

The previous section describes how to customize the UI layout. This section describes how to bind events to the
controls added to the custom UI layout to meet your specific needs.
When the liveness detection and face comparison UI is created, onMainViewCreate(View authView) of

 HuiYanAuthEventCallBack will be called. When the liveness detection and face comparison UI is to be

terminated, the onMainViewDestroy() method will be called back, and you can customize the processing logic

in the corresponding lifecycle.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 194

// Set a callback listener for key events in FaceID

HuiYanOsApi.setAuthEventCallBack(new HuiYanAuthEventCallBack() {

 @Override

 public void onAuthTipsEvent(HuiYanAuthTipsEvent tipsEvent) {

 Log.e(TAG, "current is : " + tipsEvent);

 }

 @Override

 public void onMainViewCreate(View authView) {

 if (authView == null) {

 return;

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 194

 }

 // Get the added controls and register custom events

 Button findBtn = authView.findViewById(R.id.add_view_offer_button);

 if (findBtn != null) {

 findBtn.setOnClickListener(view -> {

 Log.e(TAG, "click test button!");

 });

 }

 }

 @Override

 public void onMainViewDestroy() {

 Log.e(TAG, "onMainViewDestroy");

 }

});

Based on the callback of onMainViewCreate and the callback method of onMainViewDestroy , you can

bind events to the added UI controls to achieve the desired effect.

II. Custom Prompt and Language

Customizing prompt

If you want to modify a prompt or add a language file, follow the instructions below. The eKYC SDK provides a
translation file hy_customer_string.xml , which contains all the configuration text that can be modified.
1. Open the project in the main module (which integrates the eKYC SDK).
2. Add the hy_customer_string.xml file to the corresponding language folder.

3. Modify the text content that needs to be customized.
4. After being packaged, the modified content will automatically overwrite the original content.

Adding a language

To add a language, perform the following steps:

1. Add the corresponding language folder to the project in the main module (which integrates the eKYC SDK).
2. Copy the hy_customer_string.xml file to the language folder and modify the value content.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 194

3. Specify the target language code in the code (with Thai as an example).

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 194

huiYanOsConfig.setLanguageStyle(LanguageStyle.CUSTOMIZE_LANGUAGE);

huiYanOsConfig.setLanguageCode("th-TH");

Language codes for Android

Some language codes for Android are provided for reference.

Language Code Language - Country/Region

af-ZA Afrikaans - South Africa

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 194

sq-AL Albanian - Albania

ar-DZ Arabic - Algeria

ar-BH Arabic - Bahrain

ar-EG Arabic - Egypt

ar-IQ Arabic - Iraq

ar-JO Arabic - Jordan

ar-KW Arabic - Kuwait

ar-LB Arabic - Lebanon

ar-LY Arabic - Libya

ar-MA Arabic - Morocco

ar-OM Arabic - Oman

ar-QA Arabic - Qatar

eu-ES Basque - Basque

be-BY Belarusian - Belarus

bg-BG Bulgarian - Bulgaria

ca-ES Catalan - Catalonia

zh-HK Chinese - Hong Kong (China)

zh-MO Chinese - Macao (China)

zh-CN Chinese - China

zh-SG Chinese - Singapore

zh-TW Chinese - Taiwan (China)

zh-CHS Simplified Chinese

zh-CHT Traditional Chinese

hr-HR Croatian - Croatia

cs-CZ Czech - Czech Republic

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 194

da-DK Danish - Denmark

div-MV Dhivehi - Maldives

nl-BE Dutch - Belgium

nl-NL Dutch - Netherlands

en-AU English - Australia

en-CA English - Canada

en-ZA English - South Africa

en-PH English - Philippines

en-NZ English - New Zealand

en-GB English - UK

en-US English - US

fa-IR Persian - Iran

fi-FI Finnish - Finland

fr-FR French - France

fr-BE French - Belgium

fr-MC French - Monaco

fr-CH French - Switzerland

gl-ES Galician - Galicia

ka-GE Georgian - Georgia

de-DE German - Germany

de-LU German - Luxembourg

de-CH German - Switzerland

el-GR Greek - Greece

gu-IN Gujarati - India

he-IL Hebrew - Israel

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 194

hi-IN Hindi - India

hu-HU Hungarian - Hungary

is-IS Icelandic - Iceland

it-IT Italian - Italy

ja-JP Japanese - Japan

kk-KZ Kazakh - Kazakhstan

kn-IN Kannada - India

ko-KR Korean - South Korea

lv-LV Latvian - Latvia

lt-LT Lithuanian - Lithuania

ms-BN Malay - Brunei

ms-MY Malay - Malaysia

mr-IN Marathi - India

mn-MN Mongolian - Mongolia

nn-NO Nynorsk - Norway

pl-PL Polish - Poland

pt-BR Portuguese - Brazil

pt-PT Portuguese - Portugal

ro-RO Romanian - Romania

sa-IN Sanskrit - India

ru-RU Russian - Russia

sk-SK Slovak - Slovakia

es-AR Spanish - Argentina

es-ES Spanish - Spain

sv-SE Swedish - Sweden

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 194

th-TH Thai - Thailand

tr-TR Turkish - Türkiye

uk-UA Ukrainian - Ukraine

ur-PK Urdu - Pakistan

vi-VN Vietnamese - Vietnam

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 194

iOS Custom Capabilities
Last updated：2023-06-13 11:27:57

This document introduces the custom capabilities of the eKYC SDK (global edition).

I. Custom UI

This section describes how to use the custom UI to customize the recognition page and icons.

Building bundle

1. Decompress the SDK package, go to the demo directory, and open the HuiYanODemo project.

2. Switch the building scheme to UserUIBundle , and run command+B to build artifacts.

3. After bundle is built, right-click it to view the package content. Open info.plist , and delete the

 Executable file field. If this field is not deleted, artifacts cannot be published at AppStore, which causes an

IPA upload error. You can also directly delete the info.plist file.

4. Directly replace UserUIBundle.bundle in the root directory (that is, SDK directory) with artifacts, and add all

 lib and bundle in this directory to your project. (Note: If the bundle content is not modified, you can

directly use bundle in this directory without replacement.)

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 194

Customizing content

1. Icon: You can replace Icon to the following list, with the name unchanged.

2. xib layout adjustment: For the TXYOsAuthingViewController recognition page, you can modify control layout in xib
by adding static components, but not deleting components. The logic of this page is implemented by the internal .m file
of SDK. You are allowed to modify the layout and add non-logical components only. (For example, add a background
image.)

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 194

3. You can add settings to SDK by setting the userUIBundleName field.

 After this setting, the UI bundle file with custom packaging will be used, and the

 TXYOsAuthingViewController layout file in it will be loaded.

 If this layout file is not found, the default layout will be loaded.

II. Custom language

Adding a custom language

1. In the Demo, the UserUIBundle folder contains Localizable . As shown in the following figure, you can

set supported languages on the right, and corresponding subfiles are displayed on the left. In the subfiles, multi-
language mapping is done for the existing key character strings.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 194

2. If there is no target language on the right, you can first add the corresponding language to the project settings, and
then repeat step 1.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 194

3. Perform translation mapping on the target file. The following example shows the mapping of simplified Chinese. To
add mapping for other languages, keep key on the left unchanged and add translation on the right.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 194

4. Settings in the SDK are as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 194

 customerConfig.userLanguageBundleName = @"UserUIBundle";

 customerConfig.userLanguageFileName = @"en.lproj";

 userLanguageFileName can be used to view the corresponding filename in the compiled bundle file.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 194

Setting a custom SDK language

1. Add the custom UseLanguage.bundle to the project (Copy Bundle Resources).

2. Configure the settings as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 194

HuiYanOsConfig *config = [[HuiYanOsConfig alloc] init];

config.languageType = CUSTOMIZE_LANGUAGE;

config.userLanguageFileName = @"ko";//For example, set `ko.lproj`

config.userLanguageBundleName = @"UseLanguage";//Custom bundle name, such as `UseLa

If config.languageType = DEFAULT; is set, the system will find the language file for the current region in the

custom bundle, and if it cannot be found, the language will be en by default.

Maintenance method

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 194

Take the Demo project as a custom UI project. Modify the bundle source file in the Demo project, and build

 bundle to access your project. You need to maintain the Demo project by yourself.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 194

FAQs
Last updated：2023-05-09 11:22:11

This document describes FAQs related to the liveness detection and face comparison SDK and provides solutions.

Client

Android

1. What should I do if I receive the Invoke-customs are only supported starting with Android O (--min-api 26)
error after integrating FaceID?

Add the following configuration to the build.gradle file:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 194

 // Java 1.8 is supported

 compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

2. If the integrator uses the obfuscation tool AndResGuard, you can add the following obfuscation configuration:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 194

// for HuiYanSDK

"R.string.ocr_*",

"R.string.rst_*",

"R.string.net_*",

"R.string.msg_*",

"R.string.fl_*",

3. If Android X reports android.content.res.Resources$NotFoundException:from xml type xml resource ID
#0x7f0800c3 on devices with an earlier version of system, you can add dependent vector diagrams.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 194

 // Vector diagrams for earlier versions

 implementation 'androidx.vectordrawable:vectordrawable:1.1.0'

4. If Android Support reports the following errors on devices with an earlier version (v6.0 or earlier) of system:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 194

android.content.res.Resources$NotFoundException: File res/drawable/$txy_face_id_log

 at android.content.res.Resources.loadColorStateListForCookie(Resources.jav

 at android.content.res.Resources.loadColorStateList(Resources.java:2749)

 at android.content.res.TypedArray.getColor(TypedArray.java:441)

 at android.content.res.XResources$XTypedArray.getColor(XResources.java:128

 at android.support.v4.content.res.TypedArrayUtils.getNamedColor(TypedArray

 at android.support.graphics.drawable.VectorDrawableCompat$VFullPath.update

 at android.support.graphics.drawable.VectorDrawableCompat$VFullPath.inflat

 at android.support.graphics.drawable.VectorDrawableCompat.inflateInternal(

 at android.support.graphics.drawable.VectorDrawableCompat.inflate(VectorDr

 at android.support.graphics.drawable.VectorDrawableCompat.createFromXmlInn

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 194

 at android.support.v7.widget.AppCompatDrawableManager$VdcInflateDelegate.c

You need to update the support dependencies to the latest version (v28.0.0):

implementation 'com.android.support:appcompat-v7:28.0.0'

// A component library compatible with vector diagrams for earlier versions

implementation 'com.android.support:support-vector-drawable:28.0.0'

implementation 'com.android.support:animated-vector-drawable:28.0.0'

iOS

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 194

1. What should I do if the SDK crashes and the following log is printed when I enter the SDK: "reason: '* -
[__NSDictionaryM setObject:forKey:]: key cannot be nil'**"? Solution: Add -ObjC in Build Settings > Other Linker
Flags.

2. What should I do if the following information is displayed during compilation:
Undefined symbol: _vImageConvert_Planar16FtoPlanarF
Undefined symbol: _vImageConvert_PlanarFtoPlanar16F
 Solution: Add the system library Accelerate.framework .

3. What should I do if "face-tracker-v001 bundle path is nil" or "HuiYanSDKUI bundle path is nil" is prompted?

Solution: Add the two prompted resource files to Copy Bundle Resources .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 194

Integrating Identity Verification (App SDK)
Integration Process
Last updated：2024-01-19 14:57:50

This document describes the process of integrating the Identity Verification (App SDK).

Preparations

Sign up for a Tencent Cloud account. For more information, see Signing Up.
Complete enterprise identity verification. For more information, see Enterprise Identity Verification Guide.

Log in to the eKYC console and activate the service.
Contact us to obtain the latest SDK and license.

Overall Architecture

The following figure shows the architecture for integrating the Identity Verification (App SDK) of Tencent Cloud eKYC.

https://intl.cloud.tencent.com/zh/document/product/378/17985
https://intl.cloud.tencent.com/zh/document/product/378/10496
https://console.intl.cloud.tencent.com/faceid
https://intl.cloud.tencent.com/zh/document/product/1061/52144

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 194

The SDK integration includes two parts:
A. Client-side integration: Integrate the SDK into the customer's client app.
B. Server-side integration: Expose the endpoint of your (merchant) application to your (merchant) server so that the

merchant application can interact with the merchant server and then access the server API to obtain SdkToken ,

which is used throughout the liveness detection and face comparison process and to pull the final verification result.

Overall Interaction Process

The integrator only needs to pass in the token and start the Identity Verification (App SDK) to achieve user identity
verification, which includes ID document OCR, liveness detection, and face comparison. After the end user completes
the verification, the integrator can obtain the verification result using an API.

API for getting the token: ApplySdkVerificationToken
API for pulling the identity verification result: GetSdkVerificationResult
The following diagram shows the overall logic of interaction between the following modules:
End User
Identity Verification (App SDK): The SDK obtained during the preparation stage.
Merchant Application: The customer business app that uses and is integrated with the Identity Verification (App SDK).

Merchant Server: The customer server.
Identity Verification Server: Tencent Cloud Identity Verification backend service API.

https://intl.cloud.tencent.com/document/product/1061/49954
https://intl.cloud.tencent.com/document/product/1061/49951

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 194

The recommended detailed interaction process is as follows:
1. An end user triggers the merchant application on the terminal to call the identity verification service scenario.

2. The merchant application sends a request to the merchant server to notify that the liveness detection service token
is required for starting identity verification once.
3. The merchant server passes in relevant parameters to call the TencentCloud API ApplySdkVerificationToken.
4. After receiving the request for calling ApplySdkVerificationToken, the identity verification server delivers the token
to the merchant server.

5. The merchant server delivers the obtained service token to the customer's merchant application.
6. The merchant application calls the Identity Verification (App SDK)'s startup API startHuiYanAuth to pass in the
token and configuration information and starts identity verification.
7. The Identity Verification (App SDK) starts OCR by uploading the document photo to the identity verification server
to recognize the user's document information.
8. The identity verification server returns the result to the Identity Verification (App SDK).

https://intl.cloud.tencent.com/document/product/1061/49954
https://intl.cloud.tencent.com/document/product/1061/49954

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 194

9. The Identity Verification (App SDK) captures and uploads the required user data, including liveness data, to the
identity verification server.
10. After completing liveness detection and face comparison, the identity verification server returns the result to the

Identity Verification (App SDK).
11. The Identity Verification (App SDK) actively triggers callback to notify the merchant application that the verification
is complete and of the verification status.
12. After receiving the callback, the merchant application sends a request to notify the merchant server to obtain the
verification result for confirmation.

13. The merchant server actively calls the identity verification server API GetSdkVerificationResult with relevant
parameters and the service token passed in to obtain the verification result.
14. After receiving the request for calling GetSdkVerificationResult, the identity verification server returns the
verification result to the merchant server.
15. After receiving the verification result, the merchant server delivers the required information to the merchant
application.

16. The merchant application displays the final result on the UI to notify the user of the verification result.

Integration Process

Server-side integration

1. Preparations

Before server-side integration, you need to activate the Tencent Cloud eKYC service and obtain TencentCloud API
access key SecretId and SecretKey by following the instructions in Getting API Key. In addition, you need to follow the
instructions in [Connecting to TencentCloud API]
(https://intl.cloud.tencent.com/document/product/1061/54960!398ac9c1781426f85199f8704c2ae268) to import the

SDK package with the programming language you are familiar with to your server modules, to ensure that the
TencentCloud API can be successfully called and API requests and responses can be properly processed.

2. Integration

To ensure that your (merchant) client application interacts with your (merchant) server, the merchant server needs to
call the API ApplySdkVerificationToken provided by eKYC to obtain SDKToken , which is used throughout the

identity verification process and used by the API [GetSdkVerificationResult]

(https://intl.cloud.tencent.com/document/product/1061/49951!f60fbe65c5f7cb4584259d37c8176b67 to obtain the
verification result. The merchant server also needs to provide the corresponding endpoint for the merchant client to
call. The following sample code with the Golang language is used as an example to show how to call TencentCloud
API on the server and obtain the correct response.

https://intl.cloud.tencent.com/document/product/1061/49951
https://intl.cloud.tencent.com/document/product/1061/49951
https://console.intl.cloud.tencent.com/cam/capi
https://intl.cloud.tencent.com/document/product/1061/49954

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 194

Note: This example only demonstrates the processing logic required for interaction between the merchant server and
TencentCloud API service. If necessary, you need to implement your own business logic, for example:
After you obtain the SDKToken using the ApplySdkVerificationToken API, you can return other responses

required by the client application to the client along with the SDKToken .

After you obtain the identity verification result using the GetSdkVerificationResult API, you can save the returned
photo with the best frame rate for later business logic.

var FaceIdClient *faceid.Client

func init() {

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 194

 // Instantiate a client configuration object. You can specify the timeout p

 prof := profile.NewClientProfile()

 prof.HttpProfile.ReqTimeout = 60

 // TODO replace the SecretId and SecretKey string with the API SecretId and

 credential := cloud.NewCredential("SecretId", "SecretKey")

 var err error

 // Instantiate the client object of the requested faceid

 FaceIdClient, err = faceid.NewClient(credential, "ap-singapore", prof)

 if nil != err {

 log.Fatal("FaceIdClient init error: ", err)

 }

}

// ApplySdkVerificationToken get token

func ApplySdkVerificationToken(w http.ResponseWriter, r *http.Request) {

 log.Println("get face id token")

 // Step 1: ... parse parameters

 _ = r.ParseForm()

 var IdCardType = r.FormValue("IdCardType")

 var NeedVerifyIdCard = false

 // Step 2: instantiate the request object and provide necessary parameters

 request := faceid.NewApplySdkVerificationTokenRequest()

 request.IdCardType = &IdCardType

 request.NeedVerifyIdCard = &NeedVerifyIdCard

 // Step 3: call the Tencent Cloud API through FaceIdClient

 response, err := FaceIdClient.ApplySdkVerificationToken(request)

 // Step 4: process the Tencent Cloud API response and construct the return

 if nil != err {

 log.Println("error: ", err)

 _, _ = w.Write([]byte("error"))

 return

 }

 SdkToken := response.Response.SdkToken

 apiResp := struct {

 SdkToken *string

 }{SdkToken: SdkToken}

 b, _ := json.Marshal(apiResp)

 // ... more codes are omitted

 //Step 5: return the service response

 _, _ = w.Write(b)

}

// GetSdkVerificationResult get result

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 194

func GetSdkVerificationResult(w http.ResponseWriter, r *http.Request) {

 // Step 1: ... parse parameters

 _ = r.ParseForm()

 SdkToken := r.FormValue("SdkToken")

 // Step 2: instantiate the request object and provide necessary parameters

 request := faceid.NewGetSdkVerificationResultRequest()

 request.SdkToken = &SdkToken

 // Step 3: call the Tencent Cloud API through FaceIdClient

 response, err := FaceIdClient.GetSdkVerificationResult(request)

 // Step 4: process the Tencent Cloud API response and construct the return

 if nil != err {

 _, _ = w.Write([]byte("error"))

 return

 }

 result := response.Response.Result

 apiResp := struct {

 Result *string

 }{Result: result}

 b, _ := json.Marshal(apiResp)

 // ... more codes are omitted

 //Step 5: return the service response

 _, _ = w.Write(b)

}

func main() {

 // expose endpoints

 http.HandleFunc("/api/v1/get-token", ApplySdkVerificationToken)

 http.HandleFunc("/api/v1/get-result", GetSdkVerificationResult)

 // listening port

 err := http.ListenAndServe(":8080", nil)

 if nil != err {

 log.Fatal("ListenAndServe error: ", err)

 }

Note: For the full code example, see faceid-server-demo.

3. API testing

After you complete the integration, you can test whether the current integration is correct by running the postman or
curl command. To be specific, access the API (http://ip:port/api/v1/get-token) to check whether SdkToken is

returned and access the API (http://ip:port/api/v1/get-result) to check whether the value of the Result field is 0.

https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/faceid-server-example-go

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 194

Through these results, you can determine whether the server-side integration is successful. For details on responses,
see API description.

Integration with Android

1. Dependent environment

The current SDK for Android is applicable to API 19 (Android 4.4) and later.

2. SDK integration steps

1. Add the following files to the libs directory of your project: ekyc_android_1.0.x.x_release.aar,
huiyansdk_android_1.0.x.x_release.aar, OcrSDK-private-v1.0.x.x-release.aar, OcrSDK-common-model-
v1.0.x.x-release.aar, tencent-ai-sdk-youtu-base-v1.0.x.x-release.aar, tencent-ai-sdk-common-v1.0.x.x-
release.aar, and tencent-ai-sdk-aicamera-v1.0.x.x-release.aar (the version numbers of the files downloaded from
the official website apply).

2. Configure build.gradle in your project as follows:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 194

// Set .so architecture filtering in NDK (using armeabi-v7a as an example)

ndk {

 abiFilters 'armeabi-v7a'

}

dependencies {

 // Identity Verification (App SDK) version

 implementation files("libs/ekyc_android_1.0.x.x_release.aar")

 // Identity verification components

 implementation files("libs/huiyansdk_android_1.0.x.x_release.aar")

 // OCR components

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 194

 implementation files("libs/OcrSDK-common-model-v1.x.x-release.aar")

 implementation files("libs/OcrSDK-private-v2.x.x-release.aar")

 // Common capability components

 implementation files("libs/tencent-ai-sdk-youtu-base-1.0.x.x-release.aar")

 implementation files("libs/tencent-ai-sdk-common-1.x.x-release.aar")

 implementation files("libs/tencent-ai-sdk-aicamera-1.x.x-release.aar")

 // Import a `gson` library

 implementation 'com.google.code.gson:gson:2.8.5'

}

3. You also need to make the necessary permission declaration in the AndroidManifest.xml file.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 194

<!-- Camera permission -->

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature

 android:name="android.hardware.camera"

 android:required="true" />

<uses-feature android:name="android.hardware.camera.autofocus" />

<!-- Permissions required by the SDK -->

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<!-- Permissions optional for the SDK -->

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

If your app needs to be compatible with Android 6.0 or later, in addition to declaring the above permissions in the
 AndroidManifest.xml file, you need to add the code Dynamically apply for permissions.

3. API initialization

This API is called during app initialization, which is mainly used to perform some initialization operations for the SDK.
We recommend you call this API in Application .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 194

@Override

public void onCreate() {

 super.onCreate();

 EkycHySdk.init(this);

}

4. Starting the identity verification process

When you need to start the identity verification process, call the function EkycHySdk.startEkycCheck(), and pass in
the sdkToken required for this process, configuration information, and the callback for listening for the result.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 194

// Set startup configurations

EkycHyConfig ekycHyConfig = new EkycHyConfig();

// Set the license name

ekycHyConfig.setLicenseName("ekycLicense.license");

ekycHyConfig.setOcrType(OcrRegionType.HK);

// Customize UI configurations

OcrUiConfig config = new OcrUiConfig();

ekycHyConfig.setOcrUiConfig(config);

// Set specific startup verification logic

// `sdkToken` is the unique credential obtained from the server for this process

EkycHySdk.startEkycCheck(sdkToken, ekycHyConfig, new EkycHyCallBack() {

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 194

 @Override

 public void onSuccess(EkycHyResult result) {

 Log.e(TAG, "result: " + result.toString());

 showToast ("Identity verification succeeded:" + result.toString());

 }

 @Override

 public void onFail(int errorCode, String errorMsg, String ekycToken) {

 Log.e(TAG, "code: " + errorCode + " msg: " + errorMsg + " token: " + ekycToken)

 showToast ("Identity verification failed:" + "code: " + errorCode + " msg: " +

 }

});

sdkToken is the unique credential obtained from the server for this identity verification process.
Note: ekycLicense.license is the license file obtained from the sales rep or customer service, and you need to place
it in the assets folder.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 194

└── src

 └── main

 ├── assets

 │ └── ekycLicense.license

5. Releasing SDK resources

Before your app exits, you can call the SDK resource release API.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 194

@Override

protected void onDestroy() {

 EkycHySdk.release();

 super.onDestroy();

}

6. Configuring obfuscation rules

If the obfuscation feature is enabled for your app, add the following part to your obfuscation file to ensure the normal
use of the SDK.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 194

Objects to be obfuscated

-keep class com.google.gson.** {*;}

-keep class com.tencent.could.** {*;}

-keep class com.tencent.youtu.** {*;}

-keep class com.tencent.cloud.ocr.** {*;}

-keep class com.tencent.cloud.ekyc.** {*;}

Note: For the full code example for Android, see Android demo.

Integration with iOS

https://intl.cloud.tencent.com/document/product/1061/46853#

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 194

1. Dependent environment

1. Xcode 12.0 or later is required. We recommend you use the latest version.
2. The SDK for iOS is only supported by iOS 11.0 or later.

2. SDK integration steps

Manual integration

1. Import the relevant libraries and files.
Import relevant frameworks in Link Binary With Libraries .

2. The SDK depends on the following libraries:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 194

├── HuiYanEKYCVerification.framework

├── tnn.framework

├── tnnliveness.framework

├── YTCommonLiveness.framework

├── YTFaceAlignmentTinyLiveness.framework

├── YTFaceDetectorLiveness.framework

├── YTFaceLiveReflect.framework

├── YTFaceTrackerLiveness.framework

├── YTPoseDetector.framework

├── YtSDKKitActionLiveness.framework

├── YtSDKKitFramework.framework

├── YtSDKKitOcrVideoIdent.framework

├── YtSDKKitReflectLiveness.framework

├── YtSDKKitSilentLiveness.framework

├── HKOCRSDK.framework

├── tiny_opencv2.framework

├── HuiYanOverseasSDK.framework

├── IdVerification.framework

├── OcrSDKKit.framework

├── TXYCommonDevice.framework

├── TXYCommonNetworking.framework

├── TXYCommonUtils.framework

├── YTCv.framework

├── YTImageRefiner.framework

├── YtSDKKitFrameworkTool.framework

└── YTSm.framework

In Link Binary With Libraries , import the system framework.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 194

├── AVFoundation.framework

├── libc++.tbd

├── Accelerate.framework

└── CoreML.framework

Import the resource file in Copy Bundle Resources .

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 194

├── face-tracker-v003.bundle

├── huiyan_verification.bundle

├── HuiYanSDKUI.bundle

├── idverificationres.bundle

├── ocr-v001.bundle

├── OcrSDK.bundle

└── ytsdkviidres.bundle

 Build Phases settings

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 194

1. In Other Linker Flags , add -ObjC .

2. Integrate ViewController.m and set the extension to .mm (for a Swift project, add the system library

 libc++.tbd).

Permission settings

As the SDK requires a mobile network and camera permission, add the corresponding permission declarations and
add the following key-value to the project's info.plist configuration.

<key>Privacy - Camera Usage Description</key>

 <string>The SDK needs to access your camera</string>

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 194

<key>Privacy - Photo Library Usage Description</key>

 <string>The SDK needs to access your album</string>

3. Starting the identity verification process

1. Initialize
This API is called when you initialize your app. It is mainly used for some SDK initialization operations.

#import <HuiYanEKYCVerification/VerificationKit.h>

- (void)viewDidLoad {

 [[VerificationKit sharedInstance] initWithViewController:self];

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 194

}

2. Start the identity verification process
To start the identity verification process, you just need to call the startVerifiWithConfig method with

 ekycToken and some other custom fields set.

VerificationConfig *config = [[VerificationConfig alloc] init];

config.licPath = [[NSBundle mainBundle] pathForResource:@"" ofType:nil];

config.languageType = HY_EKYC_EN;

config.verAutoTimeOut = 30000;// Set the verification timeout period

config.hyFaceTimeOut = 15000;// Set the timeout period of a single face authenticat

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 194

config.ekycToken = @"";

[[VerificationKit sharedInstance] startVerifiWithConfig:config withSuccCallback:^(i

 NSLog(@"ErrCode:%d msg:%@",errorCode,resultInfo);

} withFialCallback:^(int errorCode, NSString * _Nonnull errorMsg, id _Nullable res

 NSLog(@"ErrCode:%d msg:%@ extra:%@",errorCode,errorMsg,reserved);

}];

ekycToken is the unique credential obtained from the server for this eKYC process.
Note: "eKYC_license.lic" is the license file obtained from the sales rep or customer service, and you need to place it
in Copy Bundle Resources .

4. Releasing SDK resources

You can call the SDK resource release API after you finish operations and no longer need the SDK.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 194

- (void)dealloc {

 [VerificationKit clearInstance];

}

Note: For the complete code example for iOS, see iOS demo.

https://github.com/TencentCloud/huiyan-faceid-demo/tree/main/faceid-iOS-example

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 194

SDK API Description
APIs for Android
Last updated：2023-08-16 15:38:28

The main API classes used in the Identity Verification (App SDK) for Android are EkycHySdk , EkycHyConfig ,

and EkycHyCallBack . Specific APIs in these classes are described as below.

EkycHySdk

 EkycHySdk is a class of external APIs for the Identity Verification (App SDK). The main logic is completed with this

class.

API Feature Description

init() Initializes the SDK.

release() Releases resources.

startEkycCheck() Starts the identity verification process.

init()

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 194

public static void init(Context context)

Feature description:

This API is used to initialize the Identity Verification (App SDK).
Input parameters:

Type Parameter Description

Context context App context information

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 194

release()

public static void release()

Feature description:

This API is used to release Identity Verification (App SDK) resources.

startEkycCheck()

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 194

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 194

public static void startEkycCheck(final String ekycToken, EkycHyConfig ekycHyConfig

 EkycHyCallBack ekycHyCallBack)

Feature description:
This API is used to start the identity verification process.
Input parameters:

Type Parameter Description

String ekycToken Token requested from the server, which is used as the
unique business credential for this process

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 194

EkycHyConfig ekycHyConfig Configuration information for starting this identity
verification process

EkycHyCallBack ekycHyCallBack API used to receive the verification result callback

EkycHyConfig

 EkycHyConfig is the configuration entity class used during the Identity Verification (App SDK) startup, which

mainly covers the following attributes:

Type Name Description Default Value

String licenseName Name of the license file applied
for by client for user authorization

Empty

int verAutoTimeOut Timeout period for card or
certificate verification

20000 milliseconds (20 seconds)

int ocrAutoTimeout

Timeout period (milliseconds) for
automatic capture in
OCR_DETECT_AUTO_MANUAL
mode. (Set this parameter to at
least 5 seconds, and the upper
limit is 30 seconds.)

20000 milliseconds (20 seconds)

LanguageStyle languageStyle Language setting for this process LanguageStyle.AUTO

OcrModeType ocrModeType OCR mode, which can be manual,
auto, or auto+manual

OcrModeType.OCR_DETECT_MA

OcrRegionType ocrType Card type null

OcrRegionType

Type of the document to recognize

Enumerated Value Description

HK Hong Kong (China) identity card

ML Malaysian identity card

PhilippinesDrivingLicense Philippine driver's license

PhilippinesVoteID Philippine voters ID card

PhilippinesTinID Philippine TIN ID card

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 194

PhilippinesSSSID Philippines SSS ID card

PhilippinesUMID Philippines UMID card

IndonesiaIDCard Indonesian identity card

MLIDPassport Passport

LanguageStyle

Language configuration for the default identity verification page

LanguageStyle Value Description

LanguageStyle.AUTO Auto

LanguageStyle.ENGLISH English

LanguageStyle.SIMPLIFIED_CHINESE Simplified Chinese

LanguageStyle.TRADITIONAL_CHINESE Traditional Chinese

OcrModeType

OCR mode

OcrModeType Value Description

OCR_DETECT_MANUAL Manual mode

OCR_DETECT_AUTO Auto mode

OCR_DETECT_AUTO_MANUAL Auto+Manual mode

EkycHyCallBack

 EkycHyCallBack is a listener class used to receive the result of the identity verification process.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 194

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 194

/**

 * Identity verification result callback class

 */

public interface EkycHyCallBack {

 /**

 * Result information on successful recognition

 *

 * @param result: Result data

 */

 void onSuccess(EkycHyResult result);

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 194

 /**

 * Information on failed identity verification

 *

 * @param errorCode: Error code

 @param errorMsg: Error message

 * @param ekycToken: The token of this process

 */

 void onFail(int errorCode, String errorMsg, String ekycToken);

}

Here, EkycHyResult is the result object returned after a successful process.

EkycHyResult

 EkycHyResult is the result object returned after the identity verification process succeeds.

Type Name Description Default
Value

String ekycToken The token of this identity verification process, which can be used
to pull key data of the process from the server

Empty

Error codes and descriptions

Error Code Description

12000 The user actively canceled the operation

12001 The network request failed

12002 Error caused by OCR exception

12003 Exception caused by local face detection failure

12004 Invalid token

12005 Failed to perform local card or certificate verification

12006 Failed to initialize the Identity Verification (App SDK)

12007 Failed to start parameter verification

12008 Failed to return the identity verification result

12009 Failed to perform the local identity verification

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 194

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 194

APIs for iOS
Last updated：2023-08-10 15:02:45

API description

The main API classes used in the Identity Verification (App SDK) for iOS are VerificationKit ,

 VerificationConfig , and VerifiCommDef . Specific APIs in these classes are described as below.

1.VerificationKit

 VerificationKit is a class of external APIs for the Identity Verification (App SDK). The main logic is completed

with this class.

API Feature Description

initWithViewController Initializes the SDK.

clearInstance Releases resources.

startVerifiWithConfig Starts the identity verification process.

1.1. initWithViewController

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 194

// Initialization method

- (void)initWithViewController:(UIViewController *)viewController;

Feature description:
This API is used to initialize the Identity Verification SDK.
Input parameters:

Type Parameter Description

UIViewController viewController Calls the viewController object of the current SDK page

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 194

1.2 clearInstance

/// Clear SDK resources

+ (void)clearInstance;

Feature description:
This API is used to release SDK resources.

1.3 startVerifiWithConfig:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 194

/// Start verification

- (void)startVerifiWithConfig:(VerificationConfig *)verifiConfig

 withSuccCallback:(TXYVerifiKitProcessSucceedBlock)succCallback

 withFialCallback:(TXYVerifiKitProcessFailedBlock)failCallback;

Feature description:

This API is used to start the identity verification process.
Input parameters:

Type Parameter Description

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 194

VerificationConfig verifiConfig Configuration information for starting this identity
verification process

TXYVerifiKitProcessSucceedBlock succCallback Callback for successful SDK detection

TXYVerifiKitProcessFailedBlock failCallback Callback for failed SDK detection

1.4 TXYVerifiKitProcessSucceedBlock

Callback for successful SDK detection

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 194

/// Callback API for successful detection with the SDKKIt

/// @param errorCode: Error code

/// @param resultInfo: Information returned by the callback

/// @param reserved: Reserved

typedef void (^TXYVerifiKitProcessSucceedBlock)(int errorCode,id _Nonnull resultInf

1.5 TXYVerifiKitProcessFailedBlock

Callback for failed SDK detection

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 194

/// Callback API for detection failure with the SDKKIt

/// @param errorCode: Error code

/// @param errorMsg: Error message

/// @param reserved: Reserved

typedef void (^TXYVerifiKitProcessFailedBlock)(int errorCode, NSString *_Nonnull er

2.VerificationConfig

 VerificationConfig is the configuration entity class used during the SDK startup, which mainly covers the

following attributes:

Type Name Description Default Value

NSString ekycToken

Token requested from
the server, which is
used as the unique
business credential for
this identity verification
process

Empty

NSString licPath
Path of the license file
applied for by client for
user authorization

Empty

long hyFaceTimeOut
Timeout period for a
single action of identity
verification

10000 ms (10s)

BOOL isHiddenAlbum Whether to hide the
OCR album button

No

BOOL isHiddenFlash Whether to hide the
OCR flashlight button

No

HYEkycLanguageType languageType Language setting for
this process

DEFAULT (0)

OCRRegionType ocrRegionType Type of document to
recognize

0

NSString userUIBundleName Custom UI bundle
name

Nil

NSString userLanguageBundleName Custom language
bundle name

nil

NSString userLanguageFileName Custom language nil

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 194

filename

3.VerifiCommDef

3.1 HYEkycLanguageType

This API provides the language configuration information of the default SDK page.

Type Description

HY_EKYC_DEFAULT = 0 Auto

HY_EKYC_ZH_HANS Simplified Chinese

HY_EKYC_ZH_HANT Traditional Chinese

HY_EKYC_EN English

HY_EKYC_CUSTOMIZE_LANGUAGE
Custom language. The set custom language bundle
(userLanguageBundleName) is used.

3.2 OCRRegionType

Type of document to recognize

Enumerated Value Description

OCR_TYPE_DEFULT = 0 Left empty by default

OCR_TYPE_HK Hong Kong (China) identity card

OCR_TYPE_ML Malaysian identity card

OCR_TYPE_PV_ID Philippine driver's license

OCR_TYPE_PDL Philippine voters ID card

OCR_TYPE_INDONESIA Indonesian identity card

OCR_TYPE_SINGAPORE Singapore identity card

OCR_TYPE_PH_TINID Philippine TIN ID card

OCR_TYPE_PH_SSSID Philippines SSS ID card

OCR_TYPE_PH_UMID Philippines UMID card

OCR_TYPE_MLID_PASSPORT Passport

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 194

4. Error codes and descriptions

Error Error Code Error Description

HY_SUCCESS 0 Success

HY_VERIFI_FAIL -1 Detection failure

HY_VERIFI_OCR_FAIL -2 Document recognition failed

HY_SDK_INNER_ERR -4 Internal error

HY_INITIALIZATION_PARAMETER_EXCEPTION 310 Parameter initialization exception

HY_BUNDLE_CONFIGURATION_EXCEPTION 311 Bundle configuration exception

HY_YTSDK_CONFIGURATION_EXCEPTION 312 YouTu configuration exception

HY_PLEASE_CALL_FIRST_INIT_API 313 Call the initialization API first

HY_SDK_AUTH_FAILED 314 SDK authorization failure

HY_USER_VOLUNTARILY_CANCELED 315 It is manually canceled by user

HY_YTSDK_LOCAL_AUTH_FAILED 316 Local face detection failure of SDK

HY_CAMERA_OPEN_FAIL 317 Failed to enable the camera

HY_DONOT_SWITCH_APPS 318 Do not switch the application during
identity verification

HY_CAMEREA_PERMISSION_EXCEPTION 319 Camera permission exception

HY_SDK_VEDIO_CUT_EXCEPTION 320 Failed to clip the video

HY_LIGHT_DATA_FORMAT_EXCEPTION 321 Invalid reflection data format

HY_GET_REMOTE_DATA_EXCEPTION 322 Error in getting remote data

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 194

FAQs
Last updated：2023-06-12 15:32:39

This document describes FAQs related to the Identity Verification (App SDK) and provides solutions.

Client

Android

1. What should I do if I receive the Invoke-customs are only supported starting with Android O (--min-api 26)
error after integrating eKYC? Add the following configuration to the build.gradle file:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 194

// Java 1.8 is supported

 compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

2. If the integrator uses the obfuscation tool AndResGuard, you can add the following obfuscation configuration:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 194

// for HuiYanSDK

"R.string.ocr_*",

"R.string.rst_*",

"R.string.net_*",

"R.string.msg_*",

"R.string.fl_*",

3. If Android X reports android.content.res.Resources$NotFoundException:from xml type xml resource ID
#0x7f0800c3 on devices with an earlier version of system, you can add dependent vector diagrams.

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 194

// Vector diagrams for earlier versions

 implementation

 'androidx.vectordrawable:vectordrawable:1.1.0'

4. If Android Support reports the following errors on devices with an earlier version (v6.0 or earlier) of system:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 157 of 194

android.content.res.Resources$NotFoundException: File

res/drawable/$txy_face_id_logo__0.xml from color state list resource ID #0x7f070001

 at android.content.res.Resources.loadColorStateListForCookie(Resources.jav

 at android.content.res.Resources.loadColorStateList(Resources.java:2749)

 at android.content.res.TypedArray.getColor(TypedArray.java:441)

 at android.content.res.XResources$XTypedArray.getColor(XResources.java:128

 at android.support.v4.content.res.TypedArrayUtils.getNamedColor(TypedArray

 at android.support.graphics.drawable.VectorDrawableCompat$VFullPath.update

 at android.support.graphics.drawable.VectorDrawableCompat$VFullPath.inflat

 at android.support.graphics.drawable.VectorDrawableCompat.inflateInternal(

 at android.support.graphics.drawable.VectorDrawableCompat.inflate(VectorDr

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 158 of 194

 at android.support.graphics.drawable.VectorDrawableCompat.createFromXmlInn

 at android.support.v7.widget.AppCompatDrawableManager$VdcInflateDelegate.c

You need to update the support dependencies to the latest version (v28.0.0):

implementation 'com.android.support:appcompat-v7:28.0.0'

// A component library compatible with vector diagrams for earlier versions

implementation 'com.android.support:support-vector-drawable:28.0.0'

implementation 'com.android.support:animated-vector-drawable:28.0.0'

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 159 of 194

iOS

1. What should I do if the SDK crashes and the following log is printed when I enter the SDK: "reason: '*** -
[__NSDictionaryM setObject:forKey:]: key cannot be nil'"? Solution: Add -ObjC in "Build Settings" > "Other
Linker Flags".

2. What should I do if the following information is displayed during compilation:
Undefined symbol: _vImageConvert_Planar16FtoPlanarF
Undefined symbol: _vImageConvert_PlanarFtoPlanar16F
Solution: Add the system library "Accelerate.framework".

3. What should I do if "face-tracker-v001 bundle path is nil" or HuiYanSDKUI bundle path is nil is reported?
Solution: Add the two prompted resource files to "Copy Bundle Resources".

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 160 of 194

Integrating Identity Verification (Mobile
HTML5)
Integration Process
Last updated：2024-01-25 10:41:01

This document introduces the overall integration process of eKYC liveness detection and face comparison (mobile
HTML5).

Preparations

Sign up for a Tencent Cloud account. For more information, see Signing Up.

Complete enterprise identity verification. For more information, see Enterprise Identity Verification Guide.
Log in to the eKYC console.

Overall Architecture

The following figure shows the architecture of eKYC liveness detection and face comparison (mobile HTML5).

https://intl.cloud.tencent.com/zh/document/product/378/17985
https://intl.cloud.tencent.com/zh/document/product/378/10496
https://console.intl.cloud.tencent.com/faceid

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 161 of 194

Overall Interaction Flow

The following diagram shows the overall interaction logic between customers and Tencent Cloud eKYC. Role
descriptions are as follows:

User: H5 users on mobile
Merchant WebPage: customer’s frontend page
Merchant Server: customer’s backend server
eKYC WebPage: the eKYC frontend page
eKYC Server: the eKYC backend server

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 162 of 194

The specific recommended interaction flow is as follows:

Phase 1

1. The client service triggers a verification process.

2. Merchant WebPage sends a request to Merchant Server for initiating a verification process.
3. Merchant Server passes in relevant parameters and calls the ApplyWebVerificationBizTokenIntl. Refer to Step 1 of
Server Integration.
4. After receiving the request, eKYC Server returns BizToken and VerificationURL of this verification process to
Merchant Server.

5. Merchant Server keeps the BizToken and sends VerificationURL to Merchant WebPage.

Phase 2

1. Merchant WebPage redirects to VerificationURL to open eKYC WebPage. Refer to Step 1 of Frontend Integration.
2. The user performs the license OCR and verification process on eKYC WebPage.

https://intl.cloud.tencent.com/zh/document/product/1061/56227

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 163 of 194

3. After verification completed, eKYC Server sends the result to eKYC WebPage, and Merchant WebPage displays
the result.
4. After the user clicks Next, eKYC WebPage will redirect to RedirectURL and splice the token parameter on the URL.

5. Merchant WebPage obtains token parameter of the current verification process through the address. Refer to Step
2 of Frontend Integration.

Phase 3

1. Merchant WebPage sends a request to Merchant Server for obtaining verification result information.
2. Merchant Server passes in relevant parameters and calls the GetWebVerificationResultIntl. Refer to Step 2 of
Server Integration.

3. After receiving the request, eKYC Server returns details of this verification process to Merchant Server.
4. Merchant Server returns the result to Merchant WebPage which will perform subsequent business processes
according to the result.

Server Integration

1. Call the interface ApplyWebVerificationBizTokenIntl to generate verification URL
(corresponding to Stage 1)

Call ApplyWebVerificationBizTokenIntl to obtain BizToken and VerificationURL, corresponding to No.3 of the flow
diagram.
 RedirectURL: the Web address redirected after verification, including protocol header, hostname, and path, e.g.,

 https://intl.cloud.tencent.com/products/faceid . After the verification process completed, the

redirect address will be spliced to BizToken of the current process in the format as follows:
 https://intl.cloud.tencent.com/products/faceid? token={BizToken} .

Extra: the service pass-through parameter, up to 1000 characters. It will be returned in the
GetWebVerificationResultIntl interface. It can be omitted if it is not necessary.

Config: the relevant configuration of custom verification page.
AutoSkip: whether to skip the result page and automatically jump to RedirectURL when verification succeeds. The
default is false.
CheckMode: the detection mode. This parameter is required. Parameter values are as follows: 1: OCR+ liveness
detection + face comparison.

IDCardType: the license type that supports identification. This parameter is required. The license supported currently
are as follows:
HKIDCard: Hong Kong (China) ID Card
MLIDCard: Malaysian ID Card
IndonesiaIDCard: Indonesian ID Card
PhilippinesVoteID: Philippine Voter Card

https://intl.cloud.tencent.com/zh/document/product/1061/56226
https://intl.cloud.tencent.com/document/product/1061/56227

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 164 of 194

PhilippinesDrivingLicense: Philippines Driving License
PhilippinesTinID: Philippines TinID
Philippines SSSID: Philippines SSSID

PhilippinesUMID: Philippines UMID
InternationalID Passport: Passport of Hong Kong, Macao, Taiwan (China), and other countries
IndonesiaDrivingLicense: Indonesian Driving License
ThailandIDCard: Thailand ID Card
ThailandDrivingLicense: Thailand Driving License

MLDrivingLicense: Malaysia Driving License
SingaporeIDCard: Singapore ID Card
SingaporeDrivingLicense: Singapore Driving License
Japanese ID Card: Japanese ID Card
Japanese Driving License
PhilippinesIDCard: Universal Philippine ID Card

DisableCheckOcrWarnings: whether to disable license alarms. The default is false (alarm detection is enabled). When
enabled, the identity authentication process will be intercepted according to the license alarm. If you need to use
license authentication function, please Contact Us.

Code example of calling interfaces:

https://intl.cloud.tencent.com/zh/contact-us

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 165 of 194

import com.tencentcloudapi.common.Credential;

import com.tencentcloudapi.common.profile.ClientProfile;

import com.tencentcloudapi.common.profile.HttpProfile;

import com.tencentcloudapi.common.exception.TencentCloudSDKException;

import com.tencentcloudapi.faceid.v20180301.FaceidClient;

import com.tencentcloudapi.faceid.v20180301.models.*;;

public class ApplyWebVerificationBizTokenIntl

{

 public static void main(String [] args) {

 try{

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 166 of 194

 // Instantiate an authentication object. The secretId and secretKey of

 // Obtain the key at https://console.intl.cloud.tencent.com/cam/capi

 Credential cred = new Credential(

 "TENCENTCLOUD_SECRET_ID",

 "TENCENTCLOUD_SECRET_KEY"

);

 // Instantiate an http option, optional. Skip this if there are no spec

 HttpProfile httpProfile = new HttpProfile();

 httpProfile.setEndpoint("faceid.ap-guangzhou.tencentcloudapi.woa.com");

 // Instantiate a client option, optional. Skip this if there are no spe

 ClientProfile clientProfile = new ClientProfile();

 clientProfile.setHttpProfile(httpProfile);

 // Instantiate the client object of the product to be requested. The cl

 FaceidClient client = new FaceidClient(cred, "ap-singapore", clientProf

 // Instantiate a request object, one for each interface.

 ApplyWebVerificationBizTokenIntlRequest req = new ApplyWebVerificationB

 req.setRedirectURL("https://intl.cloud.tencent.com/products/faceid");

 WebVerificationConfigIntl webVerificationConfigIntl = new WebVerificati

 webVerificationConfigIntl.setCheckMode(1L);

 webVerificationConfigIntl.setIDCardType("HKIDCard");

 req.setConfig(webVerificationConfigIntl);

 // The “resp” returned is an instance of ApplyWebVerificationBizTokenIn

 ApplyWebVerificationBizTokenIntlResponse resp = client.ApplyWebVerifica

 // The string response package output in json format.

 System.out.println(ApplyWebVerificationBizTokenIntlResponse.toJsonStrin

 String bizToken = resp.getBizToken();

 String verificationURL = resp.getVerificationURL();

 System.out.printf("BizToken: %s, VerificationURL: %s", bizToken, verifi

 } catch (TencentCloudSDKException e) {

 System.out.println(e.toString());

 }

 }

}

2. Confirm results of the current verification process (corresponding to Stage 3)

After the verification completed, Merchant Frontend notifies Merchant Server to obtain the result of this verification.
Merchant Server calls the GetWebVerificationResultIntl to return the result to frontend page, corresponding to No.12
of the flow diagram.
The license OCR result of this verification can be obtained from the responsive “OCRResult” field. The license OCR

process can be regarded as success if the “OCRResult” field is not null, and the information of the corresponding
certificate can be obtained. In other cases, it can be regarded as failure. For more information about the “OCRResult”
field, refer to OCRResult documentation.
The result of this verification shall be based on the information returned by this interface. When the responsive
“ErrorCode” field is 0, this verification process is deemed to have passed. In other cases, it is deemed to have failed.

https://intl.cloud.tencent.com/zh/document/product/1061/56226
https://intl.cloud.tencent.com/zh/document/api/1061/49423#ocrresult

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 167 of 194

For error code list, refer to Liveness Detection and Face Comparison (Mobile HTML5) Error Codes.
BizToken: the BizToken generated by the ApplyWebVerificationBizTokenIntl, a unique identifier of the current
verification process.

Code example of calling interfaces:

import com.tencentcloudapi.common.Credential;

import com.tencentcloudapi.common.profile.ClientProfile;

import com.tencentcloudapi.common.profile.HttpProfile;

import com.tencentcloudapi.common.exception.TencentCloudSDKException;

import com.tencentcloudapi.faceid.v20180301.FaceidClient;

https://intl.cloud.tencent.com/document/product/1061/55390?lang=en&pg=#8a960e1e-39c0-42cb-b181-b3164d77f81e

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 168 of 194

import com.tencentcloudapi.faceid.v20180301.models.*;

import java.util.Arrays;

public class GetWebVerificationResultIntl {

 public static void main(String [] args) {

 try{

 // Instantiate an authentication object. The secretId and secretKey of

 // Obtain the key at https://console.intl.cloud.tencent.com/cam/capi

 Credential cred = new Credential(

 "TENCENTCLOUD_SECRET_ID",

 "TENCENTCLOUD_SECRET_KEY"

);

 // Instantiate an http option, optional. Skip this if there are no spec

 HttpProfile httpProfile = new HttpProfile();

 httpProfile.setEndpoint("faceid.ap-guangzhou.tencentcloudapi.woa.com");

 // Instantiate a client option, optional. Skip this if there are no spe

 ClientProfile clientProfile = new ClientProfile();

 clientProfile.setHttpProfile(httpProfile);

 // Instantiate the client object of the product to be requested. The cl

 FaceidClient client = new FaceidClient(cred, "ap-singapore", clientProf

 // Instantiate a request object, one for each interface.

 GetWebVerificationResultIntlRequest req = new GetWebVerificationResultI

 req.setBizToken("xxx"); // Enter the BizToken returned from ApplyWebVer

 // The “resp” returned is an instance of GetWebVerificationResultIntlRe

 GetWebVerificationResultIntlResponse resp = client.GetWebVerificationRe

 // The string response package output in json format.

 System.out.println(GetWebVerificationResultIntlResponse.toJsonString(re

 Long errorCode = resp.getErrorCode();

 String errorMsg = resp.getErrorMsg();

 // For details of the “OCRResult” field, please refer to OCRResult rela

 OCRResult[] ocrResult = resp.getOCRResult();

 if (errorCode == 0) {

 // Verification passed.

 System.out.println("Success");

 System.out.printf("OCRResult:%s", Arrays.toString(ocrResult));

 }else {

 // Verification failed.

 System.out.printf("Fail: %s\\n", errorMsg);

 }

 } catch (TencentCloudSDKException e) {

 System.out.println(e.toString());

 }

 }

}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 169 of 194

Frontend Integration

1. Obtain VerificationURL and redirect to initiate the verification process (corresponding to
Stage 2)

The client frontend page obtains the VerificationURL requested by the server and redirects to enter the verification
process. The user completes liveness comparison process according to the prompt, corresponding to No.6 of the flow
diagram.

Code example:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 170 of 194

// Obtain VerificationURL from server.

const VerificationURL = 'https://sg.faceid.qq.com/reflect/? token=*****';

// Redirect from frontend page.

window.location.href = VerificationURL;

2. Obtain BizToken from callback address, and request verification result from backend
(corresponding to Stage 2)

After verification, the page will jump to RedirectURL which will splice BizToken parameters of the current process.
The BizToken parameters can be obtained by parsing RedirectURL to pull the result information of this liveness
comparison, corresponding to No.12 of the flow diagram.

Code example:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 171 of 194

// Obtain RedirectURL

const RedirectURL = "https://*****? token={BizToken}";

// Parse to obtain BizToken parameter of RedirectURL, which is used to pull result

const bizToken = getURLParameter(RedirectURL, "token");

if (bizToken) {

 // Use bizToken to pull result information of this liveness comparison.

}

/**

/ * Parse url parameters

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 172 of 194

/* @params url To query url

/* @params variable To query parameters

*/

function getURLParameter(url, variable) {

 const query = url.split('? ')[1] || '';

 const vars = query.split('&');

 for (let i = 0; i < vars.length; i++) {

 const pair = vars[i].split('=');

 if (pair[0] == variable) {

 return pair[1];

 }

 }

 return (false);

}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 173 of 194

Liveness Detection and Face Comparison
(Pure API)
Integration Process
Last updated：2023-11-29 16:00:14

This article describes the overall access process of liveness face comparison in API mode. You can integrate it using
any language you are familiar with because this API is language independent. However, before using API to integrate
liveness face comparison services, you'd better be able to read and understand Connecting to Tencent Cloud API,

which tells you how to use Tencent Cloud SDK to simplify the API access process. In this article, we only demonstrate
how to integrate our APIs using Java API SDK.

Preparing for Access

Register a Tencent Cloud enterprise account. Refer to Signing Up.
Complete the enterprise identity verification. Refer to Enterprise Identity Verification Guide.
Log in to FaceID console to Open Service.

Obtain API access key.

Introducing Tencent Cloud API SDK

https://intl.cloud.tencent.com/document/product/1061/54960
https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/10496
https://intl.cloud.tencent.com/account/login?s_url=https%3A%2F%2Fconsole.tencentcloud.com%2Ffaceid
https://console.intl.cloud.tencent.com/cam/capi

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 174 of 194

<dependency>

 <groupId>com.tencentcloudapi</groupId>

 <artifactId>tencentcloud-sdk-java-intl-en</artifactId>

 <version>3.0.798</version>

</dependency>

Initializing and Configuring API SDK Client

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 175 of 194

// Instantiate an authentication object. The Tencent Cloud account `secretId` and `

Credential cred = new Credential("secretId", "secretKey");

// Instantiate the client object of the requested product

ClientProfile clientProfile = new ClientProfile();

clientProfile.setSignMethod(ClientProfile.SIGN_TC3_256);

FaceidClient client = new FaceidClient(cred, "ap-singapore", clientProfile);

Calling the CompareFaceLiveness API

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 176 of 194

// Step 1: Instantiate the request object and provide necessary parameters

CompareFaceLivenessRequest request = new CompareFaceLivenessRequest();

request.setLivenessType("SILENT");

request.setImageBase64(getBase64(cmd.getOptionValue(IMAGE_PATH)));

request.setVideoBase64(getBase64(cmd.getOptionValue(VIDEO_PATH)));

// Step 2: Call the Tencent Cloud API through FaceIdClient

CompareFaceLivenessResponse response = client.CompareFaceLiveness(request);

// Step 3: Process the Tencent Cloud API response and construct the return object

System.out.println(CompareFaceLivenessResponse.toJsonString(response));

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 177 of 194

Usage Example

You can view full sample source code at GitHub repository:

CompareFaceLiveness

API Documentation

You can view full API documentation on Tencent Cloud official website:
CompareFaceLiveness

https://github.com/TencentCloud/huiyan-faceid-demo/blob/main/faceid-api-example-java/src/main/java/com/tencent/CompareFaceLiveness.java
https://intl.cloud.tencent.com/zh/document/product/1061/57416

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 178 of 194

Other Guide
Quick API Run
Last updated：2023-06-06 16:21:21

Overview

This document describes how to call Tencent Cloud eKYC APIs through API 3.0 Explorer and integrate SDKs in the
corresponding programming language into your project after you purchase the eKYC service. You can access eKYC
APIs quickly in the following steps.

Prerequisites

You have entered the API 3.0 Explorer page.

Directions

The following steps use the calling of the ApplySdkVerificationToken API as an example.

Step 1.

On the API 3.0 Explorer page, select ApplySdkVerificationToken from the left sidebar, enter required

parameters, initiate the call, and get the response.

https://console.intl.cloud.tencent.com/api/explorer?Product=faceid&Version=2018-03-01&Action=ApplySdkVerificationToken
https://intl.cloud.tencent.com/zh/document/product/1061/49954
https://console.intl.cloud.tencent.com/api/explorer?Product=faceid&Version=2018-03-01&Action=ApplySdkVerificationToken

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 179 of 194

 Region : This is a required parameter that specifies the region information in the domain name and determines the

access point. For example, ap-hongkong means accessing the Hong Kong access point. APIs may support

different regions. For details, see the "Region List" section in the API document of the API you are calling. For
example, for ApplySdkVerificationToken, see the "Region List" section in Common Params.

https://intl.cloud.tencent.com/zh/document/product/1061/49954
https://intl.cloud.tencent.com/document/api/1061/36934#.E5.9C.B0.E5.9F.9F.E5.88.97.E8.A1.A8

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 180 of 194

 NeedVerifyIdCard : This is a required parameter that specifies whether to perform identity card authentication. If

this parameter is not selected, only document OCR will be performed. You can select this parameter only when the

value of IdCardType is HK .

Step 2.

Select the corresponding backend language, generate the code, and integrate it into your project. Take Java as an
example.
1. To integrate the code into your project, you need to import the SDK dependencies (see Java in the top right corner
of the figure below), get key information, and enter the SecretId and SecretKey in the code for successful

calling.
2. Part of the field information in the generated code is subject to the entered content. To adjust an input parameter,
modify its value on the left and generate the code again.

https://intl.cloud.tencent.com/zh/document/product/494/7245

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 181 of 194

Notes

To generate a SecretId and a SecretKey, visit https://console.intl.cloud.tencent.com/cam/capi.
To upload Base64-encoded images or videos for input parameters, remove the data:image/jpg;base64,

prefix and the \\n line break.

If the following information is returned, manually configure the signature type:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 182 of 194

[TencentCloudSDKException]message:AuthFailure.SignatureFailure-The provided credent

could not be validated because of exceeding request size limit, please use new sign

method `TC3-HMAC-SHA256`. requestId:719970d4-5814-4dd9-9757-a3f11ecc9b20

 Configuring signature type:

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 183 of 194

 `clientProfile.setSignMethod("TC3-HMAC-SHA256"); // Specify the signature algorith

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 184 of 194

Connecting to TencentCloud API
Last updated：2023-06-06 16:21:50

TencentCloud API 3.0 integrates SDKs for multiple programming languages, making it easier for you to call APIs. It
supports nearby access, and the domain name for nearby access is faceid.tencentcloudapi.com . It also

supports access using a domain name with a specified region, for example, the domain name for the Singapore region

is faceid.ap-singapore. tencentcloudapi.com .

We recommend that you use the domain name for nearby access. When you call an API, the request is automatically
resolved to a server in the region nearest to the location where the API is called. For example, if a request is made in
Singapore, it will be automatically resolved to a server in Singapore, which has the same effect as specifying
 faceid.ap-singaporef.tencentcloudapi.com .

Note:
1. For latency-sensitive businesses, we recommend that you specify the region in the domain name.
2. A domain name is an API access point and does not represent the region where the product or API
actually provides services. For the list of regions supported by the product, see the call method/common
parameter document. For the regions supported by the API, see the input parameters part in the API
document.

You can select the language you are familiar with for coding. This section uses the Go language as an example to
show how to integrate the Tencent Cloud SDK into your server.
Tencent Cloud SDK 3.0 for Python
Tencent Cloud SDK 3.0 for Java
Tencent Cloud SDK 3.0 for PHP

Tencent Cloud SDK 3.0 for Go
Tencent Cloud SDK 3.0 for NodeJS
Tencent Cloud SDK 3.0 for .NET
Tencent Cloud SDK 3.0 for C++

Environmental dependency

1. Go 1.9 or above, with the necessary environment variables such as GOPATH set properly

2. Activate the eKYC product by following the process guide
3. Obtain SecretId and SecretKey by following the guide to getting the secret key

Installation

Installing through go get (recommended)

We recommend you install the SDK by using the tool that comes with the language.

https://github.com/TencentCloud/tencentcloud-sdk-python-intl-en/blob/master/tencentcloud/faceid/v20180301/faceid_client.py
https://github.com/TencentCloud/tencentcloud-sdk-java-intl-en/blob/master/src/main/java/com/tencentcloudapi/faceid/v20180301/FaceidClient.java
https://github.com/TencentCloud/tencentcloud-sdk-php-intl-en/blob/master/src/TencentCloud/Faceid/V20180301/FaceidClient.php
https://github.com/TencentCloud/tencentcloud-sdk-go-intl-en/blob/master/tencentcloud/faceid/v20180301/client.go
https://github.com/TencentCloud/tencentcloud-sdk-nodejs-intl-en/blob/master/tencentcloud/faceid/v20180301/faceid_client.js
https://github.com/TencentCloud/tencentcloud-sdk-dotnet-intl-en/blob/master/TencentCloud/Faceid/V20180301/FaceidClient.cs
https://github.com/TencentCloud/tencentcloud-sdk-cpp-intl-en/blob/master/faceid/src/v20180301/FaceidClient.cpp
https://intl.cloud.tencent.com/document/product/1061/37028?lang=en&pg=
https://console.intl.cloud.tencent.com/cam/capi

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 185 of 194

go get -u github.com/tencentcloud/tencentcloud-sdk-go-intl-en

Installing through source code

Go to the GitHub page to download the latest code, and decompress it to

 $GOPATH/src/github.com/tencentcloud .

Integrating into the server

https://github.com/tencentcloud/tencentcloud-sdk-go-intl-en

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 186 of 194

After the Tencent Cloud SDK is installed, you can use the import command to integrate the SDK into the server. The
sample code is as follows:

package main

import (

 "fmt"

 cloud "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common"

 "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/common/profile

 faceid "github.com/tencentcloud/tencentcloud-sdk-go-intl-en/tencentcloud/faceid/

)

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 187 of 194

func main() {

 // Instantiate a client configuration object. You can specify the timeout period

 prof := profile.NewClientProfile()

 prof.HttpProfile.ReqTimeout = 60

 // TODO replace the SecretId and SecretKey string with the API SecretId and Secr

 credential := cloud.NewCredential("SecretId", "SecretKey")

 // Instantiate the client object of the requested faceid

 FaceIdClient, _ := faceid.NewClient(credential, "ap-singapore", prof)

 // Instantiate the request object and provide necessary parameters

 request := faceid.NewGetFaceIdTokenIntlRequest()

 var SecureLevel = "4"

 request.SecureLevel = &SecureLevel

 // Call the Tencent Cloud API through FaceIdClient

 response, _ := FaceIdClient.GetFaceIdTokenIntl(request)

 // Process the Tencent Cloud API response

 fmt.Println("response: ", *response.Response.SdkToken)

}

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 188 of 194

Error Codes
Last updated：2023-07-04 16:31:45

This document describes all error codes of the eKYC product and whether a request is billed ("N" for no and "Y" for
yes) in the case of an error code.

Common Error Codes (for All Services)

Error Code Description Billed

InvalidParameter Invalid parameter N

InvalidParameterValue.BizTokenIllegal Invalid BizToken N

InvalidParameterValue.BizTokenExpired BizToken expired N

UnauthorizedOperation.Nonactivated The service has not been activated. N

UnauthorizedOperation.Activating The service is being activated N

UnauthorizedOperation.ActivateError The service has not been activated N

UnauthorizedOperation.Arrears The account has overdue payments N

OperationDenied Operation denied N

UnauthorizedOperation.NonAuthorize Identity verification has not been completed for the
account.

N

UnauthorizedOperation Unauthorized operation N

FailedOperation.ImageSizeTooLarge Image size too large N

InternalError Internal error N

The following tables list the error codes of the eKYC subproducts:

Liveness Detection and Face Comparison (Mobile HTML5) Error
Codes

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 189 of 194

Error Code Description Billed

0 Success Y

1 Invalid parameter N

2 Incorrect parameter value N

3 Bad request N

4 Internal service error N

8 Internal service error N

9 Internal service error N

10 Internal service error N

11 Internal service error N

14 Verification has been completed N

15 Token expired N

16 Retry limit has been reached N

202 Failed to get video N

1001 Failed to call the liveness engine N

1002 Suspected spoofed recording. N

1003 Real person detection failed N

1004 Face detection failed N

1005 Liveness detection failed N

1101 No sound is detected N

1102 The face is not fully exposed N

1103 Speech recognition failed N

1104 The video format is incorrect N

1105 Failed to pull the video. Please try again N

1106 The volume of the video is too low N

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 190 of 194

1107 The video is empty or its size is inappropriate. The recording duration should be
about 6 seconds

N

1108 The video definition is too low N

1109 The lip movement range is too small N

1201 The lighting is too dim N

1202 The lighting is too strong N

1203 The face is too close to the screen N

1204 The face is too far right from the screen N

1205 The face is too far from the screen N

1206 The face is too far left from the screen N

1207 No motions of eye closing are detected N

1208 The first motion is not detected N

1209 No motions of mouth opening are detected N

1210 Failed to detect a full face N

1301 Real person detection failed N

1302 Real person detection did not reach the passing standard N

1303 The video is too short. Please capture a video longer than 2 seconds N

2001 Error calling the comparison engine N

2004 The image passed in is too large or too small N

2010 Multiple faces are detected N

2011 Real person comparison failed N

2012 Failed to detect a full face N

2013 No faces are detected N

2014 The resolution of the image passed in is too low. Please upload a new one N

2015 Comparison failed N

2016 The comparison similarity did not reach the passing standard Y

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 191 of 194

1401 face reflect liveness detect failed N

Liveness Detection and Face Comparison (App SDK) Error Codes

Error Code Description Billed

0 Succeeded Y

1001 System error N

1004 Liveness detection and face comparison failed N

2004 The image passed in is too large or too small N

2012 Several faces were detected N

2013 No face was detected, or the face detected was incomplete N

2014 The image resolution is too low or the quality does not meet the requirements N

2015 Face comparison failed N

2016 The similarity did not reach the standard passing threshold Y

-999 The verification process wasn't finished N

Liveness Detection and Face Comparison (Pure API) Error Codes

Error Code Description Billed

Success Success Y

FailedOperation.CompareLowSimilarity The comparison similarity did not reach the passing
standard.

Y

FailedOperation.ActionCloseEye No motions of eye closing are detected. N

FailedOperation.ActionFaceClose The face is too close to the screen. N

FailedOperation.ActionFaceFar The face is too far from the screen. N

FailedOperation.ActionFaceLeft The face is too far left from the screen. N

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 192 of 194

FailedOperation.ActionFaceRight The face is too far right from the screen. N

FailedOperation.ActionFirstAction No movement is detected. N

FailedOperation.ActionLightDark The lighting is too dim. N

FailedOperation.ActionLightStrong The lighting is too strong. N

FailedOperation.ActionNodetectFace Failed to detect a full face. N

FailedOperation.ActionOpenMouth No motions of mouth opening are detected. N

FailedOperation.CompareFail Comparison failed. N

FailedOperation.CompareSystemError Error calling the comparison engine API. N

FailedOperation.DownLoadError File download failed. N

FailedOperation.DownLoadTimeoutError File download timed out. N

FailedOperation.LifePhotoDetectFaces Multiple faces are detected. N

FailedOperation.LifePhotoDetectFake Real person comparison failed. N

FailedOperation.LifePhotoDetectNoFaces Failed to detect a full face. N

FailedOperation.LifePhotoPoorQuality The resolution of the image passed in is too low.
Please upload a new one.

N

FailedOperation.LifePhotoSizeError The image passed in is too large or too small. N

FailedOperation.LipFaceIncomplete The face is not fully exposed. N

FailedOperation.LipMoveSmall The lip movement range is too small. N

FailedOperation.LipNetFailed Failed to pull the video. Please try again. N

FailedOperation.LipSizeError The video is empty or its size is inappropriate. The
recording duration should be about 6 seconds.

N

FailedOperation.LipVideoInvalid The video format is incorrect. N

FailedOperation.LipVideoQuaility The video definition is too low. N

FailedOperation.LipVoiceDetect No sound is detected. N

FailedOperation.LipVoiceLow The volume of the video is too low. N

FailedOperation.LipVoiceRecognize Speech recognition failed. N

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 193 of 194

FailedOperation.LivessBestFrameError Face detection failed. Unable to extract the photo
for comparison.

N

FailedOperation.LivessDetectFail Liveness detection failed. N

FailedOperation.LivessDetectFake Suspected spoofed recording. N

FailedOperation.LivessSystemError Error calling the liveness engine API. N

FailedOperation.LivessUnknownError Video-based real person detection failed. N

FailedOperation.SilentDetectFail Real person detection failed. N

FailedOperation.SilentEyeLiveFail Eye detection failed. N

FailedOperation.SilentFaceDetectFail No face is detected in the video. N

FailedOperation.SilentFaceQualityFail Low face quality. N

FailedOperation.SilentFaceWithMaskFail A face mask is detected. N

FailedOperation.SilentMouthLiveFail Mouth detection failed. N

FailedOperation.SilentMultiFaceFail Multiple faces are detected in the video. N

FailedOperation.SilentPictureLiveFail The video might be spoofed. N

FailedOperation.SilentThreshold Real person detection did not reach the passing
standard.

N

FailedOperation.SilentTooShort The video is too short. Please capture a video
longer than 2 seconds.

N

FailedOperation.UnKnown Unknown internal error. N

InvalidParameter Invalid parameter. N

InvalidParameterValue Incorrect parameter value. N

UnauthorizedOperation Unauthorized operation. N

UnauthorizedOperation.Arrears The account has overdue payments N

UnauthorizedOperation.NonAuthorize Identity verification has not been completed for the
account.

N

UnauthorizedOperation.Nonactivated The service has not been activated. N

UnsupportedOperation Unsupported operation. N

eKYC

©2013-2022 Tencent Cloud. All rights reserved. Page 194 of 194

Identity Verification (App SDK) Error Codes

Error Code Description Billed

0 Success Y

1001 Failed to call the liveness engine Y

1004 Face detection failed Y

2004 The image passed in is too large or too small Y

2012 Failed to detect a full face Y

2013 No faces are detected Y

2014 The resolution of the image passed in is too low. Please upload a new one Y

2015 Comparison failed Y

2016 The comparison similarity did not reach the passing standard Y

