
Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 61

Mobile Live Video Broadcasting

Basic Features

Product Documentation



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 61

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,

copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud

Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products

and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's

products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 61

Contents

Basic Features

SDK Integration

iOS

Android

Camera Push

iOS

Android

Live Pull

iOS

Android

Co-anchoring

RTC

iOS & Android



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 4 of 61

Basics

This document introduces the live playback feature of the Video Cloud SDK.

Live streaming and video on demand

In live streaming, the video streams published by hosts in real time are the source of streaming.

When hosts stop publishing streams, the video at the playback end stops. Since video is streamed

in real time, players do not have progress bars when they play live streaming URLs.

In video on demand (VOD), video files in the cloud are the source of streaming. Videos can be

played at any time as long as they are not deleted from the cloud, and the playback progress can

be adjusted using the progress bar. Video streaming websites such as Tencent Video and Youku

Tudou are typical applications of VOD.

Supported protocols

The table below lists the common protocols used for live streaming. We recommend FLV URLs (which

start with  http  and end with  flv ) for LVB and WebRTC for LEB. For more information, please see

Playback (LEB).

Protocol Pro Con
Playback

Latency

FLV
Mature, well adapted to high-

concurrency scenarios
SDK integration is required. 2-3s

RTMP Relatively low latency
Poor performance in high-

concurrency scenarios
1-3s

HLS

(M3U8)

Well supported on mobile

browsers
High latency 10-30s

WebRTC Lowest latency SDK integration is required. < 1s

Basic Features

SDK Integration

iOS

Last updated：2021-08-13 20:36:48

https://intl.cloud.tencent.com/zh/document/product/1071/39888


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 5 of 61

Note：

LVB and LEB are priced differently. For details, please see LVB Billing Overview and LEB Billing

Overview.

Notes

The Video Cloud SDK does not impose any limit on the sources of playback URLs, which

means you can use it to play both Tencent Cloud and non-Tencent Cloud URLs. However, the player

of the SDK supports only live streaming URLs in FLV, RTMP, HLS (M3U8), and WebRTC formats and

VOD URLs in MP4, HLS (M3U8), and FLV formats.

Integration

Step 1. Create a player object

The  V2TXLivePlayer  module in the Video Cloud SDK offers live playback capabilities.

V2TXLivePlayer *_txLivePlayer = [[V2TXLivePlayer alloc] init]; 

Step 2. Create a rendering view

In iOS, a view is used as a basic rendering unit. Therefore, you need to configure a view, whose size

and position you can adjust, for the player to display video images on.

// Use setRenderView to bind a rendering view to the player 
[_txLivePlayer setRenderView:_myView]; 

Technically, the player does not render video images directly on the view (  _myView  in the sample

code) you provide. Instead, it creates a subview for OpenGL rendering over the view.

You can adjust the size of video images by changing the size and position of the view. The SDK will

make changes to the video images accordingly.

How can I make animations?

You are allowed great flexibility in view animation, but note that you need to modify the  transform 

rather than  frame  attribute of the view.

[UIView animateWithDuration:0.5 animations:^{ 
_myView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3 

https://intl.cloud.tencent.com/document/product/267/2818
https://intl.cloud.tencent.com/document/product/267/39969


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 6 of 61

}]; 

Step 3. Start playback

NSString* url = @"http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv"; 
[_txLivePlayer startPlay:url]; 

Step 4. Change the fill mode

setRenderFillMode: aspect fill or aspect fit

Value Description

V2TXLiveFillModeFill

Images are scaled to fill the entire screen, and the parts that don’t fit

are cropped. There are no black bars in this mode, but images may not

be displayed in whole.

V2TXLiveFillModeFit

Images are scaled as large as the longer dimension can go. Neither

dimension exceeds the screen after scaling. The images are centered,

and there may be black bars.

setRenderRotation: clockwise rotation of video

Value Description

V2TXLiveRotation0 Original

V2TXLiveRotation90 Rotate 90 degrees clockwise

V2TXLiveRotation180 Rotate 180 degrees clockwise

V2TXLiveRotation270 Rotate 270 degrees clockwise

Step 5. Pause playback

Technically speaking, you cannot pause a live playback. In this document, by pausing playback, we

mean freezing video and disabling audio. In the meantime, new video streams continue to be

sent to the cloud. When you resume playback, the playback starts from the time of resumption. This

is in contrast to VOD. With VOD, when you pause and resume playback, the player behaves the

same way as it does when you pause and resume a local video file.

// Pause playback 
[_txLivePlayer pauseAudio]; 
[_txLivePlayer pauseVideo]; 
// Resume playback 



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 7 of 61

[_txLivePlayer resumeAudio]; 
[_txLivePlayer resumeVideo]; 

Step 6. Stop playback

// Stop playback 
[_txLivePlayer stopPlay]; 

Step 7. Take a screenshot

Call snapshot to take a screenshot of the live video streamed. You can get the screenshot taken in

the onSnapshotComplete callback of  V2TXLivePlayerObserver . This method captures a frame of the

streamed video. To capture the UI, use the iOS system API.

... 
[_txLivePlayer setObserver:self]; 
[_txLivePlayer snapshot]; 
... 
- (void)onSnapshotComplete:(id<V2TXLivePlayer>)player image:(TXImage *)image { 
if (image != nil) { 
dispatch_async(dispatch_get_main_queue(), ^{ 
[self handle:image]; 
}); 
} 
} 

Latency Control

The live playback feature of the SDK is not based on FFmpeg, but Tencent Cloud’s proprietary

playback engine, which is why the SDK offers better latency control than open-source players do. We

provide three latency control modes, which can be used for showrooms, game streaming, and hybrid

scenarios.

Comparison of the three modes

Mode Stutter
Average

Latency
Scenario Remarks

Speedy

More likely

than the

speedy

mode

2-3s

Live

showroom

(Chongding

Dahui)

The mode delivers low latency and is

suitable for latency-sensitive scenarios.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayerObserver__ios.html#a5754eb816b91fd0d0ac1559dd7884dad


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 8 of 61

Smooth Least

likely of

the three

&dxgt;=

5s

Game

streaming

(Penguin

Esports)

Playback is least likely to stutter in this

mode, which makes it suitable for ultra-

high-bitrate streaming of games such as

PUBG.

Auto

Self-

adaptive

to network

conditions

2-8s Hybrid
The better network conditions at the

audience end, the lower the latency.

Code to integrate the three modes

// Auto mode 
[_txLivePlayer setCacheParams:1 maxTime:5]; 
// Speedy mode 
[_txLivePlayer setCacheParams:1 maxTime:1]; 
// Smooth mode 
[_txLivePlayer setCacheParams:5 maxTime:5]; 
// Start playback after configuration

Note：

For more information on stuttering and latency control, please see Video Stutter

Listening for SDK Events

You can bind a V2TXLivePlayerObserver to your  V2TXLivePlayer  object to receive callback

notifications about the player status, playback volume, first audio/video frame, statistics, warning

and error messages, etc.

Periodically triggered notifications

The onStatisticsUpdate callback notification is triggered every 2 seconds to update you on the

player’s status in real time. Like a car’s dashboard, the callback gives you information about

network conditions, video parameters, etc.

Parameter Description

appCpu CPU usage (%) of the app

systemCpu CPU usage (%) of the system

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayerObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusherObserver__ios.html#ae93683da9240a752e7b6d70d8e940cbc


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 9 of 61

width Video width

height Video height

fps Frame rate (FPS)

audioBitrate Audio bitrate (Kbps)

videoBitrate Video bitrate (Kbps)

The onPlayoutVolumeUpdate callback, which notifies you of the player’s volume, works only after

you call enableVolumeEvaluation to enable the volume reminder. You can set the interval of the

callback by specifying the  intervalMs  parameter when calling  enableVolumeEvaluation .

Event-triggered notifications

Other callbacks are triggered when specific events occur.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayerObserver__ios.html#a5439ba0397be3943c6ebfb6083c27664
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayer__ios.html#aeed74080dd72e52b15475a54ca5fd86b


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 10 of 61

This document describes how to quickly integrate Tencent Cloud LiteAVSDK for Android into your

project.

Environment Requirements

Android Studio 2.0 or above

Android 4.1 (SDK API level 16) or above

Integrating the SDK (AAR)

You can use Gradle to automatically load the AAR file or manually download the AAR file and import

it into your project.

Method 1: automatic loading (AAR)

Since JCenter has been deprecated, you can configure a Maven Central repository in Gradle to

automatically download and update LiteAVSDK.

Open your project with Android Studio and modify the  build.gradle  file as described below to

Android

Last updated：2021-08-13 20:33:14



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 11 of 61

complete the integration.

1. Add the LiteAVSDK dependency to  dependencies .

Or

2. In  defaultConfig , specify the CPU architecture to be used by the application. Currently, LiteAVSDK

supports armeabi, armeabi-v7a, and arm64-v8a.

dependencies {
implementation 'com.tencent.liteavsdk:LiteAVSDK_Professional:latest.release'
}

dependencies {
implementation 'com.tencent.liteavsdk:LiteAVSDK_Professional:latest.release@aar'
}

defaultConfig {
ndk {
abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 12 of 61

3. Click the Sync Now button  to sync the SDK. If you have no problem accessing Maven Central,

the SDK will be downloaded and integrated into your project automatically.

Method 2: manual download (AAR)

If you have problem accessing Maven Central, you can manually download the SDK and integrate it

into your project.

1. Download LiveAVSDK and decompress the file.

2. Copy the AAR file in the SDK directory to the app/libs directory of your project.

3. Add flatDir to  build.gradle  under the project’s root directory and specify a local path for the

repository.

https://intl.cloud.tencent.com/document/product/1071/38150


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 13 of 61

4. Add the LiteAVSDK dependency and, in  app/build.gradle , add code that references the AAR file.

implementation(name:'LiteAVSDK_Professional_8.7.10102', ext:'aar') 

5. In  defaultConfig  of  app/build.gradle , specify the CPU architecture to be used by the application.

Currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a.

defaultConfig { 
ndk { 
abiFilters "armeabi", "armeabi-v7a", "arm64-v8a" 
} 
} 

6. Click Sync Now to complete the integration of LiteAVSDK.

Integrating the SDK (JAR)

If you do not want to import the AAR library, you can also integrate LiteAVSDK by importing JAR and

SO libraries.

1. Download LiveAVSDK and decompress the file. In the SDK directory, find  LiteAVSDK_Smart_xxx.zip 

(  xxx  indicates the version number of LiteAVSDK).

https://intl.cloud.tencent.com/document/product/1071/38150


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 14 of 61

Decompress the file, and you will find a  libs  directory that contains a JAR file and several SO

folders, as shown below:

2. Copy the JAR file and  armeabi ,  armeabi-v7a , and  arm64-v8a  folders to the  app/libs  directory.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 15 of 61

3. Add code that references the JAR library in  app/build.gradle .

4. Add flatDir to  build.gradle  under the project’s root directory and specify a local path for the

repository.

dependencies {
implementation fileTree(dir:'libs',include:['*.jar'])
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 16 of 61



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 17 of 61

5. In  app/build.gradle , add code that references the SO libraries.

6. In  defaultConfig  of  app/build.gradle , specify the CPU architecture to be used by the application.

Currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a.

7. Click Sync Now to complete the integration.

Setting Packaging Parameters

defaultConfig {
ndk {
abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 18 of 61

Configuring Permissions

Configure permissions for your application in  AndroidManifest.xml . LiteAVSDK needs the following

permissions:

<uses-permission android:name="android.permission.INTERNET" /> 
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> 
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" /> 
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" /> 
<uses-permission android:name="android.permission.RECORD_AUDIO" /> 
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" /> 
<uses-permission android:name="android.permission.BLUETOOTH" /> 
<uses-permission android:name="android.permission.CAMERA" /> 
<uses-permission android:name="android.permission.READ_PHONE_STATE" /> 

packagingOptions {
pickFirst '**/libc++_shared.so'
doNotStrip "*/armeabi/libYTCommon.so"
doNotStrip "*/armeabi-v7a/libYTCommon.so"
doNotStrip "*/x86/libYTCommon.so"
doNotStrip "*/arm64-v8a/libYTCommon.so"
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 19 of 61

<uses-feature android:name="android.hardware.Camera"/> 
<uses-feature android:name="android.hardware.camera.autofocus" /> 

Configuring License

Click Get License to obtain a trial license. For more information, please see Applying for a Trial

License. You will get two strings: a license URL and a decryption key.

Before you use the features of the Enterprise Edition SDK in your application, complete the following

configurations (preferably in the application class).

Configuring Obfuscation Rules

In the  proguard-rules.pro  file, add LiteAVSDK-related classes to the "do not obfuscate" list.

-keep class com.tencent.** { *; } 

public class MApplication extends Application {

@Override
public void onCreate() {
super.onCreate();
String licenceURL = ""; // The license URL obtained
String licenceKey = ""; // The license key obtained
TXLiveBase.getInstance().setLicence(this, licenceURL, licenceKey);
}
}

https://console.cloud.tencent.com/live/license
https://intl.cloud.tencent.com/document/product/1071/38546


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 20 of 61

Feature

Camera push refers to the process of collecting images from the camera of the mobile phone and

voice from the microphone, encoding the video and audio data, and pushing the data to the

livestreaming cloud platform. Tencent Cloud LiteAVSDK calls the V2TXLivePusher API to provide the

camera push capability. The figure below shows the interfaces for camera push operations

demonstrated in the LiteAVSDK demo.

Camera Push

iOS

Last updated：2020-12-09 11:10:06



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 21 of 61

Notes

x86 simulator debugging

The SDK uses a lot of audio and video APIs of the iOS system. These APIs often cannot be used on

the x86 simulator that comes with the Mac server. Therefore, if conditions allow, we recommend

that you use the real Mac server for debugging.

Feature Interfacing

1. Download the SDK

Download the SDK and follow the instructions in the SDK integration guide to embed the SDK in your

application project.

2. Configure a license for the SDK

Click Apply for a License to obtain the license for testing. You will receive two strings. One is the

license URL, and the other is the decryption key.

Before you call the LiteAVSDK features in your app, we recommend that you complete the following

configurations in  - [AppDelegate application:didFinishLaunchingWithOptions:] :

@import TXLiteAVSDK_Professional; 
@implementation AppDelegate 
- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)la
unchOptions { 
NSString * const licenceURL = @"<Obtained license URL>"; 
NSString * const licenceKey = @"<Obtained key>"; 
 
//TXLiveBase is located in the "TXLiveBase.h" header file. 
[TXLiveBase setLicenceURL:licenceURL key:licenceKey];  
NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]); 
} 
@end

3. Initialize the V2TXLivePusher component

First, create a  V2TXLivePusher  instance. Later, this instance can be used to implement all the

following push-related capabilities, including starting or stopping stream push, starting or stopping

data collection from the camera, starting or stopping data collection from the microphone, starting

or stopping headphone monitoring, setting the voice quality, and setting the image quality.

https://liteavsdk-1252463788.cosgz.myqcloud.com/TXLiteAVSDK_International_iOS_lastest.zip
https://intl.cloud.tencent.com/document/product/1071/38155
https://console.cloud.tencent.com/live/license


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 22 of 61

V2TXLivePusher *_pusher = [[V2TXLivePusher alloc] init]; 
[_pusher setObserver:self];

4. Enable camera preview

You can call the  setRenderView  API in  V2TXLivePusher  to enable the camera preview for the mobile

phone. You must provide a view object for previewing images for the  setRenderView  API.

// Create a view object and insert it into the current interface.
UIView *localView = [[UIView alloc] initWithFrame:self.view.bounds]; 
[self.view insertSubview:localView atIndex:0]; 
localView.center = self.view.center; 
 
// Enable the local camera preview. 
[_pusher setRenderView:localView];

[UIView animateWithDuration:0.5 animations:^{ 
_localView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3 
}];

5. Start and stop stream push

If you have called the  setRenderView  API to enable camera preview, you can call the  startPush  API

of V2TXLivePusher to start pushing streams.

// Start pushing streams.
NSString* rtmpUrl = @"rtmp://test.com/live/xxxxxx"; // Enter your RTMP URL for stream push. 
[_pusher startPush:rtmpUrl]; 
[_pusher startCamera]; // Start collecting data from the camera. 
[_pusher startMicrophone]; // Start collecting data from the microphone.

After you complete stream push, you can call the  stopPush  API of V2TXLivePusher to stop stream

push.

// Stop pushing streams. 
[_pusher setObserver:nil]; 

Note：

To add the animation effect for a view, you must modify the  transform  attribute of the view,

instead of the  frame  attribute.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 23 of 61

[_pusher stopCamera]; 
[_pusher stopMicrophone]; 
[_pusher stopPush];

How can I obtain a valid push URL?

After you activate the LVB service, you can choose LVB console > Auxiliary tools > URL generator to

generate a push URL. For more information, see Push/Pull URL.

Why is “V2TXLIVE_ERROR_INVALID_LICENSE” returned?

If the  startPush  API returns “V2TXLIVE_ERROR_INVALID_LICENSE”, license verification has failed.

In this case, check whether any problem occurred in Step 2. Configure a license for the SDK.

6. Push pure audio streams

If you only need to push pure audio streams, perform the following operations:

// Start pushing streams.
NSString* rtmpUrl = @"rtmp://test.com/live/xxxxxx"; // Enter your RTMP URL for stream push. 
[_pusher startPush:rtmpUrl]; 
[_pusher startMicrophone]; // Start collecting data from the microphone.

7. Set the video resolution

You can call the  setVideoQuality:resolutionMode:  API of V2TXLivePusher to set the video resolution,

aspect ratio, and portrait or landscape mode for the audience.

// Select the portrait mode and set the aspect ratio to 1280x720. The first parameter is the vide
o resolution, and the second parameter is the portrait or landscape mode. 

https://console.cloud.tencent.com/live/addrgenerator/addrgenerator
https://intl.cloud.tencent.com/document/product/267/31059


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 24 of 61

[_pusher setVideoQuality:V2TXLiveVideoResolution_1280x720 resolutionMode:V2TXLiveVideoResolutionM
ode_Portrait];

8. Set the beauty filter, whitening, and rosy skin effects.

The beauty filter SDK’s TCBeautyPanel.framework can be introduced to pass in the  V2TXLivePusher 

instance and display the beauty panel (TCBeautyPanel) on the interface. This allows users to set

diversified beauty effects.

NSUInteger controlHeight = [TCBeautyPanel getHeight]; 
CGRect frame = CGRectMake(0, 0, self.view.frame.size.width, controlHeight); 
_beautyPanel = [TCBeautyPanel beautyPanelWithFrame:frame 
SDKObject:_livePusher]; 
[ThemeConfigurator configBeautyPanelTheme:_beautyPanel]; 
_beautyPanel.pituDelegate = self; // Proxy method that is used to set and implement the beauty fi
lter effects. 
[_beautyPanel resetAndApplyValues]; 
 
#pragma mark - BeautyLoadPituDelegate 
 
- (void)onLoadPituStart { 
dispatch_async(dispatch_get_main_queue(), ^{ 
[self showInProgressText:@"Start loading resources"]; 
}); 
} 
 
- (void)onLoadPituProgress:(CGFloat)progress { 
dispatch_async(dispatch_get_main_queue(), ^{ 
[self showInProgressText:[NSString stringWithFormat:@"Loading resources %d %%",(int)(progress * 1
00)]]; 
}); 
} 
 
- (void)onLoadPituFinished { 
dispatch_async(dispatch_get_main_queue(), ^{ 
[self showText:@"Successfully loaded resources"]; 
}); 
} 
 
- (void)onLoadPituFailed { 
dispatch_async(dispatch_get_main_queue(), ^{ 
[self showText:@"Failed to load resources"]; 
}); 
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 25 of 61

9. Control camera behaviors

V2TXLivePusher provides an API to obtain the video device manager, TXVideoDeviceManager, which

is used to control camera behaviors.

API Function Description Remarks

switchCamera

Switch between the

front and rear

cameras.

The corresponding function on the Mac

platform is  selectCamera .

enableCameraFlash
Enable or disable the

flash.

This function is valid only when the

current camera is a rear camera.

setCameraZoomRatio Adjust the zoom ratio.
The valid range of the zoom ratio is 1 - 5.

Default: 1.

setCameraFocusPosition Set the focus position.

To use this setting,

enableCameraAutoFocus must be used to

disable auto focus.

10. Set the mirror effect on the audience side

You can call the  setEncoderMirror  API of V2TXLivePusher to set the mirror effect on the audience

side. This mirror effect is different from that on the host side. When the host uses the front camera

for livestreaming, the view seen by the host is inverted by the SDK by default. Therefore, the host’s

display is like looking in a mirror.  setEncoderMirror  only affects the mirror effect on the audience

side.

11. Set the audio quality

// Pay attention to the calling sequence: 
[_pusher setAudioQuality: V2TXLiveAudioQuality_Music]; // You must set the audio quality before p
ushing streams. Otherwise, the audio quality setting does not take effect. 
[_pusher startPush]; // 2

12. Set the logo watermark

You can call the  setWatermark:position:scale:  API of V2TXLivePusher to allow the SDK to add a

watermark to the pushed video stream. The watermark position is determined by the  position 

parameter.

The SDK requires that the watermark image be in png format, instead of jpg, because the png

format provides the transparency information and allows the SDK to better address the image

aliasing issue. If a jpg image is modified in the Windows system, its extension does not take effect.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 26 of 61

 position  is the normalized coordinates of the watermark image relative to the resolution of the

pushed video. If the resolution of the pushed video is 540 × 960, and  position  is set to (0.1, 0.1,

0.1, 0.0), the actual pixel coordinates of the watermark are: 540 × 0.1, 960 × 0.1, Watermark

width × 0.1, Automatically calculated watermark height.

UIImage *image = value?[UIImage imageNamed:@"watermark"]:nil; 
CGPoint pos = value?CGPointMake(10, 10):CGPointZero; 
[_pusher setWatermark:image position:pos scale:1.0];

Event Handling

1. Event listening

The SDK uses the  V2TXLivePusherObserver  proxy to set the pusher callback. By setting the callback,

you can monitor some callback events of V2TXLivePusher, including the player status, volume

callback, statistics, warnings, and error messages.

2. Normal events

The table below lists the events you will be notified of upon each successful push. If “0” is received,

the related event is called successfully.

Event ID Value Description

V2TXLIVE_OK 0 Successfully called the push event.

3. Error notifications

The push cannot continue because the SDK detected a critical problem. For example, when the user

revokes the camera permission for the app, the camera cannot be started.

Event ID Value Description

V2TXLIVE_ERROR_FAILED -1 Failed.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 Invalid parameter.

V2TXLIVE_ERROR_REFUSED -3 Refused.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 Not supported.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Invalid license.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 27 of 61

4. Warning events

The SDK detects some warning events. These events can trigger tentative protection logic or

restoration logic. Warnings can often be recovered from.

Event ID Value Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101

Poor network connection. Data

upload is blocked because the

upstream bandwidth is too low.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Video lag occurs.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301

Failed to start the camera. This

can occur because the camera

configuration program (driver)

on a Windows or Mac device is

abnormal. To solve this

problem, disable and then

enable the device again,

restart the device, or update

the configuration program.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1308
Camera occupied. In this case,

try to enable another camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No permission to access the

camera. This error often occurs

on a mobile device when the

permission is revoked by the

user.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302

Failed to start the microphone.

This can occur because the

microphone configuration

program (driver) on a Windows

or Mac device is abnormal. To

solve this problem, disable and

then enable the device again,

restart the device, or update

the configuration program.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319 Microphone occupied. For

example, if a mobile device

has an ongoing call, the

attempt to start the

microphone will fail.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 28 of 61

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No permission to access the

microphone. This error often

occurs on a mobile device

when the permission is

revoked by the user.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 29 of 61

Feature

Camera push refers to the process of collecting images from the camera of the mobile phone and

voice from the microphone, encoding the video and audio data, and pushing the data to the

livestreaming cloud platform. Tencent Cloud LiteAVSDK calls the  V2TXLivePusher  API to provide the

camera push capability. The figure below shows the interfaces for camera push operations

demonstrated in the LiteAVSDK demo.

Feature Interfacing

Android

Last updated：2020-12-09 11:14:33



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 30 of 61

1. Download the SDK

Download the SDK and follow the instructions in the SDK integration guide to embed the SDK in your

application project.

2. Configure a license for the SDK

Click Apply for a License to obtain the license for testing. You will receive two strings. One is the

license URL, and the other is the decryption key.

Before you call the LiteAVSDK features in your app, we recommend that you complete the following

configurations in  Application :

public class MApplication extends Application { 
 
@Override 
public void onCreate() { 
super.onCreate(); 
String licenceURL = ""; // Obtained licence URL
String licenceKey = ""; // Obtained licence key
TXLiveBase.getInstance().setLicence(this, licenceURL, licenceKey); 
} 
}

3. Initialize the V2TXLivePusher component

First, create a  V2TXLivePusher  instance. Later, this instance can be used to implement all the

following push-related capabilities, including starting or stopping stream push, starting or stopping

data collection from the camera, starting or stopping data collection from the microphone, starting

or stopping headphone monitoring, setting the voice quality, and setting the image quality.

V2TXLivePusher txLivePusher = new V2TXLivePusherImpl(mContext);

4. Enable camera preview

You can call the  setRenderView  API in  V2TXLivePusher  to enable the camera preview for the mobile

phone. You must provide a view object for previewing images for the  setRenderView  API.

<com.tencent.rtmp.ui.TXCloudVideoView  
android:id="@+id/video_view"  
android:layout_width="match_parent"  
android:layout_height="match_parent" />

Set render view:

https://liteavsdk-1252463788.cosgz.myqcloud.com/TXLiteAVSDK_International_Android_lastest.zip
https://intl.cloud.tencent.com/document/product/1071/38156
https://console.cloud.tencent.com/live/license


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 31 of 61

TXCloudVideoView videoView = (TXCloudVideoView) findViewById(R.id.video_view); 
txLivePusher.setRenderView(videoView);

5. Start and stop stream push

If you have called the  setRenderView  API to enable camera preview, you can call the  startPush  API

of  V2TXLivePusher  to start pushing streams.

// Enter your RTMP URL for stream push. 
String rtmpURL = "rtmp://test.com/live/xxxxxx";  
// Start collecting data from the camera. 
txLivePusher.startCamera(); 
// Start collecting data from the microphone. 
txLivePusher.startMicrophone(); 
// Start push streams. 
txLivePusher.startPush(rtmpURL);

After you complete stream push, you can call the  stopPush  API of  V2TXLivePusher  to stop stream

push.

// Stop pushing streams 
txLivePusher.stopPush();

How can I obtain a valid push URL？

After you activate the LVB service, you can choose LVB console > Auxiliary tools > URL generator to

generate a push URL. For more information, see Push/Pull URL.

https://console.cloud.tencent.com/live/addrgenerator/addrgenerator
https://intl.cloud.tencent.com/document/product/267/31059


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 32 of 61

Why is “-5” returned?

If the  startPush  API returns “-5”, license verification has failed. In this case, check whether any

problem occurred in Step 2. Configure a license for the SDK.

6. Push pure audio streams

If you only need to push pure audio streams, perform the following operations:

String rtmpURL = "rtmp://test.com/live/xxxxxx"; // Enter your RTMP URL for stream push.
// Start collecting data from the microphone. 
txLivePusher.startMicrophone(); 
// Start push streams. 
txLivePusher.startPush(rtmpURL);

7. Set the video resolution

You can call the  setVideoQuality  API of  TXLivePusherV2  to set the video resolution, aspect ratio, and

portrait or landscape mode for the audience.

// Select the portrait mode and set the aspect ratio to 1280x720. The first parameter is the vide
o resolution, and the second parameter is the portrait or landscape mode. 
txLivePusher.setVideoQuality(V2TXLiveVideoResolution_1280x720, V2TXLiveVideoResolutionMode_Portra
it];

8. Set the beauty filter, whitening, and rosy skin effects.

/*  
* With the beauty manager, you can use the following features: 
* - Set the following cosmetic effects: beauty style, whitening, ruddy, big eyes, slim face, V-sh
ape face, chin, short face, small nose, bright eyes, white teeth, remove eye bags, remove wrinkle
s, remove laugh lines. 
* - Adjust the hairline, eye spacing, eye corners, mouth shape, nose wings, nose position, lip th
ickness, and face shape. 
* - Set animated effects such as face widgets (materials). 
* - Add makeup effects. 
* - Recognize gestures. 
*/ 
TXBeautyManager beautyManager = txLivePusher.getBeautyManager(); 
beautyManager.setBeautyLevel(6);

9. Control camera behaviors

 TXLivePusherV2  provides an API to obtain the video device manager,  TXVideoDeviceManager , which is

used to control camera behaviors.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 33 of 61

API Function Description Remarks

switchCamera

Switch between the

front and rear

cameras.

enableCameraFlash
Enable or disable the

flash.

This function is valid only when the

current camera is a rear camera.

getCameraZoomMaxRatio Get max zoom ratio.

setCameraZoomRatio Adjust the zoom ratio.
The valid range of the zoom ratio is 1 -

 getCameraZoomMaxRatio . Default: 1.

setCameraFocusPosition Set the focus position.

To use this setting,

 enableCameraAutoFocus  must be used to

disable auto focus.

10. Set the mirror effect on the audience side

You can call the  setEncoderMirror  API of  V2TXLivePusher  to set the mirror effect on the audience

side. This mirror effect is different from that on the host side. When the host uses the front camera

for livestreaming, the view seen by the host is inverted by the SDK by default. Therefore, the host’s

display is like looking in a mirror.  setEncoderMirror  only affects the mirror effect on the audience

side.

11. Set the audio quality

// Pay attention to the calling sequence：
// You must set the audio quality before pushing streams. Otherwise, the audio quality setting do
es not take effect. 
txLivePusher.setAudioQuality(V2TXLiveDef.V2TXLiveAudioQuality.V2TXLiveAudiOQuality_Music); 
txLivePusher.startPush();

12. Set the background music (BGM), voice changing effect, and reverb effect.

/**  
* With the audio effect manager, you can use the following features: 
* - Adjust the volume of human voice collected by the microphone. 
* - Set the reverb and voice changing effects. 
* - Start the headphone monitor, and set the volume of the headphone monitor. 
* - Add the BGM, and adjust the playback effect of BGM. 
*/ 
TXAudioEffectManager manager = txLivePusher.getAudioEffectManager();



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 34 of 61

13. Set the logo watermark

You can call the  setWatermark  API of  V2TXLivePusher  to allow the SDK to add a watermark to the

pushed video stream.

The SDK requires that the watermark image be in png format, instead of jpg, because the png

format provides the transparency information and allows the SDK to better address the image

aliasing issue. If a jpg image is modified in the Windows system, its extension does not take effect.

 x,y  is the normalized coordinates of the watermark image relative to the resolution of the

pushed video. If the resolution of the pushed video is 540 × 960, and set to (0.1, 0.1, 0.1, 0.0), the

actual pixel coordinates of the watermark are: 540 × 0.1, 960 × 0.1, Watermark width × 0.1,

Automatically calculated watermark height.

Bitmap bitmap = decodeResource(getResources(), R.drawable.filter_water); 
txLivePusher.setWatermark(bitmap, 0.1f, 0.1f, 0.1f);

Event Handling

1. Event listening

The SDK uses the  V2TXLivePusherObserver proxy to set the pusher callback. By setting the callback,

you can monitor some callback events of  V2TXLivePusher , including the player status, volume

callback, statistics, warnings, and error messages.

txLivePusher.setObserver(new V2TXLivePusherObserver());

2. Normal events

The table below lists the events you will be notified of upon each successful push. If “0” is received,

the related event is called successfully.

Event ID Value Description

V2TXLIVE_OK 0 Successfully called the push event.

3. Error events

The push cannot continue because the SDK detected a critical problem. For example, when the user

revokes the camera permission for the app, the camera cannot be started.

Error ID Value Description



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 35 of 61

V2TXLIVE_ERROR_FAILED -1 Failed.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 Invalid parameter.

V2TXLIVE_ERROR_REFUSED -3 Refused.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 Not supported.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Invalid license.

@Override 
public void onError(int code, String msg, Bundle extraInfo) { 
// doSomething 
}

4. Warning events

The SDK detects some warning events. These events can trigger tentative protection logic or

restoration logic. Warnings can often be recovered from.

Warning ID Value Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101

Poor network connection. Data

upload is blocked because the

upstream bandwidth is too low.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Video lag occurs.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to start the camera.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 Camera occupied.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No permission to access the

camera. This error often occurs

on a mobile device when the

permission is revoked by the

user.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to start the microphone.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

Microphone occupied. For

example, if a mobile device

has an ongoing call, the

attempt to start the

microphone will fail.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 36 of 61

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317 No permission to access the

microphone. This error often

occurs on a mobile device

when the permission is

revoked by the user.

@Override 
public void onWarning(int code, String msg, Bundle extraInfo) { 
// doSomething 
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 37 of 61

Basics

This document introduces the livestream playback function of Video Cloud SDK.

Livestreaming

The livestreaming video source is pushed by the host in real time. When the host stops pushing,

the video view on the player stops. In addition, the video is broadcast in real time, and no progress

bar is displayed when the player is playing the livestreaming URL.

Supported protocols

Common livestreaming protocols are listed below. We recommend that you use an FLV-based

livestreaming URL that starts with "http" and ends with ".flv" on apps.

Livestreaming

Protocol
Advantage Disadvantage

Playback

Delay

FLV
High maturity, high

concurrency, and no pressure

The video can be played only

after the SDK is integrated.
2s - 3s

RTMP
Lowest theoretical delay when

using high-quality lines

The performance is poor in the

case of high concurrency.
1s - 3s

Notes

Are there any restrictions?

The Tencent Video Cloud SDK does not impose any limits on the source of the playback URL,

which means it is available for both Tencent Cloud and non-Tencent Cloud playback URLs.

However, the player in the Tencent Video Cloud SDK only supports livestreaming URLs in FLV and

RTMP formats.

Interfacing

Live Pull

iOS

Last updated：2020-10-30 16:53:30



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 38 of 61

Step 1: create a player

The V2TXLivePlayer module in the Tencent Video Cloud SDK implements the livestream playback

feature.

V2TXLivePlayer *txLivePlayer = [[V2TXLivePlayer alloc] init];

Step 2: render a view

Find a place to display the video images in the player. In the iOS system, a view is used as the basic

rendering unit. Therefore, you simply need to prepare a view and configure the layout.

[txLivePlayer setRenderView:_myView];

Technically, the player does not directly render the video image to the view (_myView in the sample

code) you provide. Instead, it creates a subView used for OpenGL rendering on top of the view.

You can adjust the size of the rendered image simply by adjusting the size and position of the view.

The SDK will automatically adapt the video images to the size and position of the view.

How can I make animations?

You can add animation effects for a view as desired. But note that you must modify the  transform 

attribute of the view, instead of the  frame  attribute.

[UIView animateWithDuration:0.5 animations:^{ 
_myView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3 
}];

Step 3: start livestream playback

NSString* flvUrl = @"http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv"; 
[txLivePlayer startPlay:flvUrl];

Step 4: adjust the view

view: size and position

You can modify the size and position of the view by adjusting the size and position of the

parameter  view  of setupVideoWidget. The SDK will automatically adjust the size and position of

the view based on your configuration.

setRenderFillMode: Fill or Fit



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 39 of 61

Option Description

V2TXLiveFillMode_Fill

Fill the image on the screen without leaving any black edges. If the

aspect ratio of the view is different from that of the screen, part of the

view content will be cropped.

V2TXLiveFillMode_Fit
Make the view fit the screen without cropping. If the aspect ratio of the

view is different from that of the screen, black edges will appear.

setRenderRotation: view rotation

Option Description

V2TXLiveRotation_0 Do not rotate the view.

V2TXLiveRotation_90 Rotate 90 degrees clockwise.

V2TXLiveRotation_180 Rotate 180 degrees clockwise.

V2TXLiveRotation_270 Rotate 270 degrees clockwise.

Step 5: pause playback

Strictly speaking, you cannot pause livestream playback. Here, pausing livestream playback actually

means freezing the image and turning off the sound, but the video source keeps updating on

the cloud. When you resume the playback, the video is resumed from the latest time. This is the

biggest difference between livestreaming and VOD. In the VOD service, the video is paused and

resumed in the same way as a local video file.

// Pause the audio. 
[txLivePlayer pauseAudio]; 
// Resume the audio. 
[txLivePlayer resumeAudio]; 
 
// Pause the video. 
[txLivePlayer pauseVideo]; 
// Resume the video. 
[txLivePlayer resumeVideo];

Step 6: stop livestream playback

Call stopPlay to stop livestream playback.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 40 of 61

// Stop playback. 
[txLivePlayer stopPlay];

Step 7: take snapshots

You can capture the current image as a frame by calling snapshot. This feature can only capture

frames from the current livestreaming video. To capture the entire UI, you must call the API of the

iOS system.

// Callback notification of the Tencent Cloud video call feature 
- (V2TXLiveCode)snapshot:(id<V2TXLiveSnapshotObserver>)observer; 
 
// Snapshot callback
@protocol V2TXLiveSnapshotObserver <NSObject> 
@optional 
- (void)onSnapshotComplete:(TXImage *)image; 
@end

Delay Adjustment

The LVB feature of the Tencent Cloud SDK, equipped with the self-developed playback engine, is not

developed based on ffmpeg. Compared with open-source players, LVB delivers better performance in

delay control. We provide three delay adjustment modes for live show, game, and hybrid scenarios,

respectively.

Performance comparison among the three modes

Control

Mode
Lag Rate

Average

Delay

Applicable

Scenario
Principle

Speedy

mode

High

(relatively

smooth)

2s - 3s
Live show

(online quiz)

It has an advantage in delay control and

is suitable for delay-sensitive scenarios.

Smooth

mode
Lowest >= 5s

Livestreaming

game (Penguin

e-Sports)

It is suitable for ultra-high-bitrate

livestreaming games, such as

PlayerUnknown's Battlegrounds.

Auto

mode

Network

adaption
2s - 8s

Hybrid

scenario

The better the audience's network

condition, the shorter the delay, and

vice versa.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 41 of 61

Interfacing codes of the three modes

#define CACHE_TIME_FAST 1.0f
#define CACHE_TIME_SMOOTH 5.0f 
 
// Speedy mode 
[_player setCacheParams:CACHE_TIME_FAST maxTime:CACHE_TIME_FAST]; 
 
// Smooth mode 
[_player setCacheParams:CACHE_TIME_SMOOTH maxTime:CACHE_TIME_SMOOTH]; 
 
// Auto mode 
[_player setCacheParams:CACHE_TIME_FAST maxTime:CACHE_TIME_SMOOTH];

Listening to SDK Events

You can bind a V2TXLivePlayerObserver to the V2TXLivePlayer object. After that, you will be

notified of SDK internal status information through onPlayBegin, onLoading,

onConnectionBroken and onStatisticsUpdate.

Connection status update callback

/** 
* @brief Callback notification for the start of playback by the live player. 
*/ 
- (void)onPlayBegin:(id<V2TXLivePlayer>)player; 
 
/** 
* @brief Callback notification for the loading of the live player. 
*/ 
- (void)onLoading:(id<V2TXLivePlayer>)player; 
 
/** 
* @brief Callback notification for the disconnected live player. 
* 
* @param player Player object that calls back this notification 
* @param reason Disconnection reason. 0: normal disconnection 
*/ 
- (void)onConnectionBroken:(id<V2TXLivePlayer>)player 
reason:(NSInteger)reason;

Warning event callback



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 42 of 61

- (void)onWarning:(id<V2TXLivePlayer>)player 
code:(V2TXLiveCode)code 
message:(NSString *)msg 
extraInfo:(NSDictionary *)extraInfo;

Warning codes

Warning Code ID Value Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Data upload was jammed because the

upstream bandwidth was too low.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Lagging occurred during video playback.

Error event callback

- (void)onError:(id<V2TXLivePlayer>)player 
code:(V2TXLiveCode)code 
message:(NSString *)msg 
extraInfo:(NSDictionary *)extraInfo;

Error codes

Error Code ID Value Description

V2TXLIVE_ERROR_FAILED -1 Unclassified error.

V2TXLIVE_ERROR_INVALID_PARAMETER -2
An invalid parameter was input during the

API call.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The current API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5
Failed to call the API because the license

was invalid.

Obtaining the video resolution

Through the onVideoResolutionChanged callback, you can obtain the aspect ratio of the current

video. This is the quickest way to obtain the video resolution, which takes about 100 ms to 200 ms

after playback starts.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 43 of 61

- (void)onVideoResolutionChanged:(id<V2TXLivePlayer>)player 
width:(NSInteger)width
height:(NSInteger)height;

Parameter Description Value

width Video width Resolution value, such as 1920

height Video height Resolution value, such as 1080

Periodically Triggered Status Notification

The onStatisticsUpdate notification is triggered every second to provide real-time feedback on the

current status of the pusher. Like a car dashboard, it can inform you of what is happening inside the

SDK so that you can see the current network conditions and video information.

- (void)onStatisticsUpdate:(id<V2TXLivePlayer>)player 
statistics:(V2TXLivePlayerStatistics *)statistics;

Evaluation Parameter Description

appCpu CPU utilization of the current app as a percentage (%)

systemCpu int

width Video width

height Video height

fps Frame rate in fps

videoBitrate Video bitrate in Kbps

audioBitrate Audio bitrate in Kbps



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 44 of 61

Basics

This document introduces the livestream playback function of Video Cloud SDK.

Livestreaming

The livestreaming video source is pushed by the host in real time. When the host stops pushing,

the video view on the player stops. In addition, the video is broadcast in real time, and no progress

bar is displayed when the player is playing the livestreaming URL.

Supported protocols

Common livestreaming protocols are listed below. We recommend that you use an FLV-based

livestreaming URL that starts with "http" and ends with ".flv" on apps.

Livestreaming

Protocol
Advantage Disadvantage

Playback

Delay

FLV
High maturity, high

concurrency, and no pressure

The video can be played only

after the SDK is integrated.
2s - 3s

RTMP
Lowest theoretical delay when

using high-quality lines

The performance is poor in the

case of high concurrency.
1s - 3s

HLS (m3u8)
Good support by mobile

browsers
There is a long delay.

10s -

30s

Notes

Are there any restrictions?

The Tencent Video Cloud SDK does not impose any limits on the source of the playback URL,

which means it is available for both Tencent Cloud and non-Tencent Cloud playback URLs.

However, the player in the Tencent Video Cloud SDK only supports livestreaming URLs in FLV and

RTMP formats.

Interfacing

Android

Last updated：2020-10-30 16:53:37



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 45 of 61

step1: setup a view

<com.tencent.rtmp.ui.TXCloudVideoView 
android:id="@+id/video_video" 
android:layout_width="match_parent" 
android:layout_height="match_parent" />

step2: create a player

The  V2TXLivePlayer  module in the Tencent Video Cloud SDK implements the livestream playback

feature, and using  setRenderView  to bind view.

TXCloudVideoView videoView = (TXCloudVideoView) view.findViewById(R.id.video_view); 
V2TXLivePlayer txLivePlayer = new V2TXLivePlayerImpl(mContext); 
txLivePlayer.setRenderView(videoView);

step3: start livestream playback

String flvUrl = "http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv"; 
txLivePlayer.startPlay(flvUrl);

step4: adjust the view

setRenderFillMode: Fill or Fit

Option Description

V2TXLiveFillMode_Fill

Fill the image on the screen without leaving any black edges. If the

aspect ratio of the view is different from that of the screen, part of the

view content will be cropped.

V2TXLiveFillMode_Fit
Make the view fit the screen without cropping. If the aspect ratio of the

view is different from that of the screen, black edges will appear.

setRenderRotation: view rotation

Option Description

V2TXLiveRotation_0 Do not rotate the view.

V2TXLiveRotation_90 Rotate 90 degrees clockwise.

V2TXLiveRotation_180 Rotate 180 degrees clockwise.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 46 of 61

V2TXLiveRotation_270 Rotate 270 degrees clockwise.

txLivePlayer.setRenderRotation(V2TXLiveDef.V2TXLiveRotation.V2TXLiveRotation_0); 
txLivePlayer.setRenderFillMode(V2TXLiveDef.V2TXLiveFillMode.V2TXLiveFillMode_Fit);

step5: pause playback

Strictly speaking, you cannot pause livestream playback. Here, pausing livestream playback actually

means freezing the image and turning off the sound, but the video source keeps updating on

the cloud. When you resume the playback, the video is resumed from the latest time. This is the

biggest difference between livestreaming and VOD. In the VOD service, the video is paused and

resumed in the same way as a local video file.

// Pause the audio. 
txLivePlayer.pauseAudio(); 
// Resume the audio. 



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 47 of 61

txLivePlayer.resumeAudio(); 
 
// Pause the video. 
txLivePlayer.pauseVideo(); 
// Resume the video. 
txLivePlayer.resumeVideo();

step6: stop livestream playback

Call stopPlay to stop livestream playback.

// Stop playback. 
txLivePlayer.stopPlay();

step7: take snapshots

You can capture the current image as a frame by calling snapshot. This feature can only capture

frames from the current livestreaming video. To capture the entire UI, you must call the API of the

Android system.

txLivePlayer.snapshot(new V2TXLiveSnapshotObserver() { 
@Override
public void onSnapshotComplete(Bitmap bitmap) { 
if (null != bitmap) { 
//doSomething 
} 
} 
});

Delay Adjustment

The LVB feature of the Tencent Cloud SDK, equipped with the self-developed playback engine, is not

developed based on ffmpeg. Compared with open-source players, LVB delivers better performance in

delay control. We provide three delay adjustment modes for live show, game, and hybrid scenarios,

respectively.

Performance comparison among the three modes

Control

Mode
Lag Rate

Average

Delay

Applicable

Scenario
Principle

Speedy High 2s - 3s Live show It has an advantage in delay control and



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 48 of 61

mode (relatively

smooth)

(online quiz) is suitable for delay-sensitive scenarios.

Smooth

mode
Lowest >= 5s

Livestreaming

game (Penguin

e-Sports)

It is suitable for ultra-high-bitrate

livestreaming games, such as

PlayerUnknown's Battlegrounds.

Auto

mode

Network

adaption
2s - 8s

Hybrid

scenario

The better the audience's network

condition, the shorter the delay, and

vice versa.

Interfacing codes of the three modes

private float CACHE_TIME_FAST = 1.0f; 
private float CACHE_TIME_SMOOTH = 5.0f; 
 
// Speedy mode 
txLivePlayer.setCacheParams(CACHE_TIME_FAST, CACHE_TIME_FAST); 
// Smooth mode 
txLivePlayer.setCacheParams(CACHE_TIME_SMOOTH, CACHE_TIME_SMOOTH); 
// Auto mode 
txLivePlayer.setCacheParams(CACHE_TIME_FAST, CACHE_TIME_SMOOTH);

Listening to SDK Events

You can bind a  V2TXLivePlayerObserver  to the  V2TXLivePlayer  object. After that, you will be notified

of SDK internal status information through  onConnectionStateUpdate  and  onStatisticsUpdate .

Warning codes

Warning Code ID Value Description

V2TXLIVE_OK 0 Playback successful

V2TXLIVE_WARNING_NETWORK_BUSY 1101 Network busy

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Failed to obtain the video

@Override 
public void onWarning(V2TXLivePlayer player, int code, String msg, Bundle extraInfo) { 
// doSomething 
}



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 49 of 61

Error codes

Error Code ID Value Description

V2TXLIVE_ERROR_FAILED -1 Unclassified error

V2TXLIVE_ERROR_INVALID_PARAMETER -2 Invalid parameter

V2TXLIVE_ERROR_REFUSED -3 Refused

V2TXLIVE_ERROR_NOT_SUPPORTED -4 Not supported

V2TXLIVE_ERROR_INVALID_LICENSE -5 Invalid license

@Override 
public void onError(V2TXLivePlayer player, int code, String msg, Bundle extraInfo) { 
// doSomething 
}

Obtaining the video resolution

Through the  onVideoResolutionChanged  callback, you can obtain the aspect ratio of the current video.

This is the quickest way to obtain the video resolution, which takes about 100 ms to 200 ms after

playback starts.

@Override 
public void onVideoResolutionChanged(V2TXLivePlayer player, int width, int height) { 
// doSomething 
}

Parameter Description Value

width Video width Resolution value, such as 1920

height Video height Resolution value, such as 1080

Periodically Triggered Status Notification

The  onStatisticsUpdate  notification is triggered every second to provide real-time feedback on the

current status of the pusher. Like a car dashboard, it can inform you of what is happening inside the

SDK so that you can see the current network conditions and video information.



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 50 of 61

@Override
public void onStatisticsUpdate(V2TXLivePlayer player, V2TXLiveDef.V2TXLivePlayerStatistics statis
tics) { 
// doSomething 
}

Parameter Description

appCpu CPU utilization of the current app as a percentage (%)

systemCpu CPU utilization of the current system as a percentage (%)

width Video width

height Video height

fps Frame rate in fps

videoBitrate Video bitrate in Kbps

audioBitrate Audio bitrate in Kbps



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 51 of 61

RTC-based Co-anchoring

In RTMP-based co-anchoring, the MLVB SDK offers the co-anchoring component  MLVBLiveRoom  to help

you quickly implement the co-anchoring feature. To better cater to your co-anchoring needs, Tencent

Cloud has launched an RTC-based co-anchoring scheme and offered simpler and more flexible V2

APIs.

MLVB’s V2 APIs support publishing/co-anchoring via RTMP as well as RTC. You can choose whichever

scheme fits your needs. Below is a comparison of the two schemes.

Item RTMP RTC

Protocol Based on TCP Based on UDP (more suitable for streaming)

QoS

Low adaptability to

poor network

connection

Streaming unaffected with 50% of packets loss; co-

anchoring unaffected with 70% of packets loss

Region Chinese mainland Worldwide

Tencent Cloud

products used
MLVB, CSS MLVB, CSS, TRTC

Price Contact sales Tiered pricing. See Billing.

Trying out RTC-based Co-anchoring

Video Cloud Toolkit is a comprehensive audio-video service solution developed by Tencent Cloud. It

allows you to try out the features of the TRTC, MLVB and UGC SDKs, including RTC-based co-

anchoring: Co-anchoring (New).

GitHub address

Co-anchoring

RTC

iOS & Android

Last updated：2021-07-26 20:14:41

https://intl.cloud.tencent.com/contact-sales


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 52 of 61

Platform Demo Source code FolderPlatform Demo Source code Folder

Android GitHub Demo/livelinkmicdemonew

iOS GitHub Demo/TXLiteAVDemo/LiveLinkMicDemoNew

Directions

https://github.com/tencentyun/LiteAVProfessional_Android
https://github.com/tencentyun/LiteAVProfessional_Android/tree/master/Demo/livelinkmicdemonew
https://github.com/tencentyun/LiteAVProfessional_iOS
https://github.com/tencentyun/LiteAVProfessional_iOS/tree/master/Demo/TXLiteAVDemo/LiveLinkMicDemoNew


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 53 of 61

Note：

When you try out the demo, please note that due to the use of the ultra-low-latency streaming

protocol, in RTC-based co-anchoring, you cannot use the same  streamid  for ultra-low-

latency publishing and playback on the same device.

Integration

The latest MLVB SDK offers new V2 APIs  V2TXLivePusher  (publishing) and  V2TXLivePlayer  (playback)

to power live streaming scenarios with greater flexibility, lower latency, and larger scale. See

below for how to quickly implement interactive features such as co-anchoring and anchor

competition using  V2TXLivePusher  and  V2TXLivePlayer .

Step 1: Activate TRTC.

Before you start ultra-low-latency playback, follow the steps bellow to activate TRTC.

1. Sign up for a Tencent Cloud account and complete Identity Verification.

2. Log in to the TRTC console and click Application Management.

https://intl.cloud.tencent.com/document/product/647
https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/3629
https://console.cloud.tencent.com/trtc/app


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 54 of 61

3. Click Create Application, enter an application name, e.g.,  V2Demo , and click confirm.

4. Find the application you created, and click Application Info on the right to view its  SDKAppID .

5. Click Quick Start, wait for the information to load, and note the key needed to issue UserSig.

Note：

The method for generating  UserSig  described in this document involves configuring

 UserSig  in client code. In this method,  UserSig  may be easily decompiled and reversed,

and if your key is leaked, attackers can steal your Tencent Cloud traffic. Therefore, this

method is only suitable for the local execution and debugging of the demo.

The correct  UserSig  distribution method is to integrate the calculation code of  UserSig 

into your server and provide an application-oriented API. When  UserSig  is needed, your

application can send a request to the business server for a dynamic  UserSig . For more

information, see How do I calculate UserSig on the server?.

Note：

After activating TRTC, you are advised to compile the SimpleCode (a simplified demo) we

provide to try out the service and learn to use the demo’s APIs with the help of the following

documents.

https://intl.cloud.tencent.com/document/product/647/35166


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 55 of 61

Android

iOS

Step 2. Learn about publishing and playback protocols.

In live streaming scenarios, URLs are required for both publishing and playback. Below are examples

of the URLs used for ultra-low-latency streaming.

Publish

trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&userId=A&usersig=xxxxx 

-Playback

trtc://cloud.tencent.com/play/streamid?sdkappid=1400188888&userId=A&usersig=xxx 

The table below lists the key fields in the URLs and their meanings.

Field Description

trtc:// Prefix of the URL for low-latency publishing

cloud.tencent.com
Dedicated domain name for low-latency streaming, which must not be

modified

push Identifier, which indicates publishing

play Identifier, which indicates playback

sdkappid The SDKAppID generated in Activate TRTC

userId Anchor’s ID, which is set by you

usersig The UserSig key obtained in Activate TRTC

Step 3. Learn about V2TXLivePusher publishing.

Splicing URLs

You need to splice your own URLs in the project code according to the rules described above.

Sample code

Java

Objective-C

https://github.com/tencentyun/LiteAVProfessional_Android
https://intl.cloud.tencent.com/pdf/document/1071/38151?lang=en


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 56 of 61

Step 4. Learn about V2TXLivePlayer playback.

Splicing URLs

You need to splice your own URLs in the project code according to the publishing URL and the rules

described above.

Sample code

Java

Objective-C

Step 5. Start co-anchoring.

// Create a V2TXLivePusher object and set the mode to TXLiveMode_RTC.
V2TXLivePusher pusher = new V2TXLivePusherImpl(this, V2TXLiveDef.V2TXLiveMode.TXLiveMode_RTC);
pusher.setObserver(new MyPusherObserver());
pusher.setRenderView(mSurfaceView);
pusher.startCamera(true);
pusher.startMicrophone();
// Pass in the low-latency publishing URL to start publishing.
pusher.startPush("trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&amp;userId=finnguan&
amp;usersig=xxxxx");

// Create a V2TXLivePlayer object.
V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);
player.setObserver(new MyPlayerObserver(playerView));
player.setRenderView(mSurfaceView);
// Pass in the low-latency playback URL to start playback.
player.startPlay("trtc://cloud.tencent.com/play/streamid?sdkappid=1400188366&amp;userId=A&amp;use
rsig=xxx");



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 57 of 61

1. Anchor A starts streaming by calling  V2TXLivePusher .

Java

Objective-C

2. All viewers play back anchor A’s stream by calling  V2TXLivePlayer .

Java

Objective-C

3. Start co-anchoring: viewer B (referred to as co-anchoring viewer B below) calls  V2TXLivePusher 

to start publishing.

Java

Objective-C

V2TXLivePusher pusherA = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RTC);
...
pusherA.startPush(pushURLA);

V2TXLivePlayer playerA = new V2TXLivePlayerImpl(mContext);
...
playerA.startPlay(playURLA);

V2TXLivePusher pusherB = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RTC);
...
pusherB.startPush(pushURLB);



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 58 of 61

4. After receiving the co-anchoring notification, anchor A calls  V2TXLivePlayer  to play back co-

anchoring viewer B’s stream and start ultra-low-latency interaction with co-anchoring viewer

B.

Java

Objective-C

5. After the co-anchoring starts, other viewers call  V2TXLivePlayer  to play back co-anchoring

viewer B’s stream.

Step 6. Start anchor competition.

1. Anchor A starts streaming by calling  V2TXLivePusher .

Java

Objective-C

2. Anchor B starts streaming by calling  V2TXLivePusher .

Java

Objective-C

3. Start anchor competition: anchor A and B call  V2TXLivePlayer  to play back each other’s stream

and interact with ultra low latency.

Java

Objective-C

V2TXLivePlayer playerB = new V2TXLivePlayerImpl(mContext);
...
playerB.startPlay(playURLB);

V2TXLivePusher pusherA = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RTC);
...
pusherA.startPush(pushURLA);

V2TXLivePusher pusherB = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RTC);
...
pusherB.startPush(pushURLB);



Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 59 of 61

4. After the anchor competition starts, anchor A’s viewers call  V2TXLivePlayer  to play back

anchor B’s stream, and anchor B’s viewers call  V2TXLivePlayer  to play back anchor A’s stream.

Note：

Since you need to maintain a room and users yourself, you may think that the new RTC-based

co-anchoring scheme is more complicated that the old one. In fact, there isn’t an absolutely

better scheme, only one that better suits your needs.

You can stick to the old co-anchoring scheme if your application scenarios are not

demanding on latency or concurrency.

If you want to use V2 APIs without having to manage a room and users, try using Tencent

Cloud’s IM SDK to implement the necessary logic.

Billing

The RTC-based co-anchoring scheme is enabled by TRTC, which charges you based on mic-on

duration. The table below lists the types of durations and their list prices.

Duration Type Playback Resolution Unit Price (USD/1,000 Min)

Audio - 0.99

SD ≤ 640 × 480 1.99

HD 640 × 480 - 1280 × 720 3.99

UHD > 1280 × 720 14.99

Note：

V2TXLivePlayer playerA = new V2TXLivePlayerImpl(mContext);
...
playerA.startPlay(playURLA);

V2TXLivePlayer playerB = new V2TXLivePlayerImpl(mContext);
...
playerB.startPlay(playURLB);

https://intl.cloud.tencent.com/document/product/1047


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 60 of 61

Mic-on duration is the duration of playback by the anchor and co-anchoring viewers. The

type of a duration depends on the playback resolution.

If a user plays an audio-video stream, the duration will be charged only once as a video

duration rather than twice as a video and audio duration.

If a mic-on user publishes streams but does not play back streams, the user’s duration will

be billed as an audio duration, whose length is the same as the duration of publishing.

FAQs

1. Why is publishing and playback using the same  streamid  on the same

device possible with  TXLivePusher  and  TXLivePlayer  but not with  V2TXLivePusher 

and  V2TXLivePlayer ?

 V2TXLivePusher  and  V2TXLivePlayer  are based on Tencent Cloud’s TRTC protocol. The UDP-based

ultra-low latency private protocol does not support communication using the same  streamid  on the

same device. Given the current use case, we have not worked to support the feature, but may

consider enabling it in the future.

2. What do the parameters generated in Activate TRTC mean?

 SDKAppID  is used to identify your application, and  UserID  your user.  UserSig  is a security

signature calculated based on the two parameters using the HMAC SHA256 encryption algorithm.

Attackers cannot use your Tencent Cloud traffic without authorization as long as they cannot forge a

 UserSig . UserSig calculation involves hashing crucial information such as  SDKAppID ,  UserID , and

 ExpireTime , as shown below.

// `UserSig` calculation formula, in which `secretkey` is the key used to calculate `UserSig`. 
usersig = hmacsha256(secretkey, (userid + sdkappid + currtime + expire +  
base64(userid + sdkappid + currtime + expire))) 

3. How can I set the audio or video quality using  V2TXLivePusher  and

 V2TXLivePlayer ?

We provide APIs for the setting of audio and video quality. For details, please see setAudioQuality()

and setVideoQuality:resolutionMode().

4. What does the error code  -5  mean?

The error code  -5  means failure to call an API due to invalid license. The enumerated value is

V2TXLIVE_ERROR_INVALID_LICENSE. For other error codes, please see V2TXLiveCode.

http://doc.qcloudtrtc.com/group__V2TXLivePusher__ios.html#a88956a3ad5e030af7b2f7f46899e5f13
http://doc.qcloudtrtc.com/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
http://doc.qcloudtrtc.com/group__V2TXLiveCode__ios.html
http://doc.qcloudtrtc.com/group__V2TXLiveCode__ios.html


Mobile Live Video Broadcasting

©2013-2019 Tencent Cloud. All rights reserved. Page 61 of 61

5. What is the typical latency of RTC-based co-anchoring?

In the new RTC-based co-anchoring scheme, the co-anchoring latency is lower than 200 ms, and the

latency for anchors and viewers is 100-1,000 ms.


