
Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 136

Mobile Live Video Broadcasting

Publishing

Product Documentation

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 136

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 136

Contents

Publishing
iOS

Publishing from Camera
Publishing from Screen

Android
Publishing from Camera
Publishing from Screen

Web
Flutter

Publishing from Camera
Publishing from Screen

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 136

Publishing
iOS
Publishing from Camera
Last updated：2024-01-13 15:49:41

Overview

Publishing from camera refers to the process of collecting video and audio data from the mobile phone’s camera and
mic, encoding the data, and publishing it to cloud-based live streaming platforms. Tencent Cloud’s LiteAVSDK
provides the camera publishing capability via V2TXLivePusher , the following is the relevant operation interface of

the demo camera in the simple version of LiteAVSDK:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 136

Notes

About running projects on x86 emulators: The SDK uses a lot of audio and video APIs of the iOS system, most of
which cannot be used on the x86 emulator built into macOS. Therefore, we recommend that you test your project on a

real device.

Sample Code

Platform GitHub Address Key Class

iOS Github CameraPushViewController.m

https://github.com/tencentyun/LiteAVProfessional_iOS/blob/master/Demo/TXLiteAVDemo/LivePusherDemo/CameraPushDemo/CameraPushViewController.m

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 136

Android Github CameraPushMainActivity.java

Flutter Github live_camera_push.dart

Integration

1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，Need to Get License URL and License Key in Cloud Live
Console

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the - [AppDelegate

application:didFinishLaunchingWithOptions:]), set the following settings:

https://github.com/tencentyun/LiteAVProfessional_Android/blob/master/Demo/livepusherdemo/src/main/java/com/tencent/liteav/demo/livepusher/camerapush/ui/CameraPushMainActivity.java
https://github.com/LiteAVSDK/Live_Flutter
https://intl.cloud.tencent.com/document/product/1071/38150
https://intl.cloud.tencent.com/document/product/1071/38155
https://console.intl.cloud.tencent.com/live/license
https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 136

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<your licenseUrl>";

 NSString * const licenceKey = @"<your key>";

 // V2TXLivePremier is located in "V2TXLivePremier.h"

 [V2TXLivePremier setEnvironment:@"GDPR"]; // set environment

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 136

#pragma mark - V2TXLivePremierObserver

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

@end

Note:
The BundleId configured in the license must be the same as the application itself, otherwise the
streaming will fail.

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object and specify V2TXLiveMode .

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 136

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher *pusher = [[V2TXLivePusher alloc] initWithLiveMode:V2TXLiveMode_RTMP

4. Enable camera preview

Call setRenderView in V2TXLivePusher to configure a view object for displaying video images, and then call

 startCamera to enable camera preview for your mobile phone.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 136

 // Create a view object and insert it into the UI

 UIView *_localView = [[UIView alloc] initWithFrame:self.view.bounds];

 [self.view insertSubview:_localView atIndex:0];

 _localView.center = self.view.center;

 // Enable preview for the local camera

 [_pusher setRenderView:_localView];

 [_pusher startCamera:YES];

 [_pusher startMicrophone];

Note:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 136

To add animated effects to the view, modify its transform attribute rather than frame attribute.

[UIView animateWithDuration:0.5 animations:^{

 _localView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3

}];

5. Start and stop publishing

After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher to

start publishing.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a33b38f236a439e7d848606acb68cc087

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 136

Note:
If the RTMP protocol is selected in Step 3 to push the stream, please refer to the generation of the push stream URL

RTMP URL。

//This URL does not support co-anchoring. The stream is published to a live streami

NSString* url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

[_pusher startPush:url];

Call stopPush in V2TXLivePusher to stop publishing streams.

https://intl.cloud.tencent.com/document/product/267/7977
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a7332411d6264bc743b0b2bae0b8a73ae

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 136

//Stop publishing

[_pusher stopPush];

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure License Authorization for SDK.

6. Publish audio-only streams

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 136

If your live streaming scenarios involve audio only, you can skip Step 4 or do not call startCamera before

 startPush .

[_pusher startMicrophone];

//This URL does not support co-anchoring. The stream is published to a live streami

NSString* url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

[_pusher startPush:url];

Note:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 136

If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration, please submit a ticket for help.

7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For
details, please see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set beauty filters.

Beauty filter style

The SDK has three built-in beauty filter algorithms, each corresponding to a beauty filter style. Choose one that best

fits your product positioning. For details, please see the TXBeautyManager.h file.

Beauty Filter Style Description

TXBeautyStyleSmooth The smooth style, which features more obvious skin smoothing effects and is
suitable for live showrooms

TXBeautyStyleNature The natural style, which retains more facial details and is more natural

TXBeautyStylePitu

The Pitu style, which uses the beauty filter algorithm developed by YouTu Lab. Its
effect is between the smooth style and the natural style, that is, it retains more skin
details than the smooth style and delivers more obvious skin smoothing effects than
the natural style.

You can call the setBeautyStyle API in TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Rosy skin filter strength
Via the setRuddyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

https://console.intl.cloud.tencent.com/workorder/category
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
https://intl.cloud.tencent.com/document/product/1071/41861
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a4fb05ae6b5face276ace62558731280a
https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__ios.html#gafbbe0e87ec0168eacfc10e57c43abad8
https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__ios.html#a8f2378a87c2e79fa3b978078e534ef4a

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 136

9. Set color filters

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set color filters.

Call the setFilter API in TXBeautyManager to set color filters. Color filters are a technology that adjusts the

color tone of sections of an image. For example, it may lighten the yellow sections of an image to achieve the effect of

skin brightening, or add warm tones to a video to give it a refreshing and soft boost.
Call the setFilterStrength API in TXBeautyManager to set the strength of a color filter. The higher the

strength, the more obvious the effect.
Based on our experience of operating Mobile QQ and Now Live, it’s not enough to use only the setBeautyStyle

API in TXBeautyManager to set the beauty filter style. The setBeautyStyle API must be used together with

 setFilter to produce richer effects. Given this, our designers have developed 17 built-in color filters for you to

choose from.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a4fb05ae6b5face276ace62558731280a

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 136

NSString * path = [[NSBundle mainBundle] pathForResource:@"FilterResource" ofType:@

path = [path stringByAppendingPathComponent:lookupFileName];

UIImage *image = [UIImage imageWithContentsOfFile:path];

[[_pusher getBeautyManager] setFilter:image];

[[_pusher getBeautyManager] setFilterStrength:0.5f];

10. Manage devices

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 136

 V2TXLivePusher provides a series of APIs for the control of devices. You can call getDeviceManager to

get a TXDeviceManager instance for device management. For detailed instructions, please see

TXDeviceManager API.

11. Set the video mirroring effect for audience

Call setEncoderMirror in V2TXLivePusher to set the camera mirror mode, which affects the way video images

are presented to audience. By default, the local image seen by the host is flipped when the front camera is used.

12. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should

watch videos in landscape resolutions (960 × 540).
By default, V2TXLivePusher outputs videos in portrait resolutions. You can publish landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__ios.html#interfaceTXDeviceManager
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#ae4464d33567ce1a31d92530e02a48dd7
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 136

[_pusher setVideoQuality:videoQuality

 resolutionMode:isLandscape ? V2TXLiveVideoResolutionModeLandscape : V2

13. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which can be

used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music mixing
means mixing into the published stream the music played by the host’s phone so that audience can also hear the
music.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__ios.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 136

Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which

allows hosts to hear their vocals in earphones when they sing.
Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by
audience.

Note:

For detailed instructions, please see TXAudioEffectManager API.

14. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#ad48aacbfad38b8f5389c159283fae859

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 136

// Set a video watermark

[_pusher setWatermark:[UIImage imageNamed:@"watermark"] x:0.03 y:0.015 scale:1];

15. Inform hosts of poor network conditions

Connecting phones to Wi-Fi does not necessarily guarantee network conditions. In case of poor Wi-Fi signal or limited
bandwidth, the network speed of a Wi-Fi connected phone may be slower than that of a phone using 4G. Hosts should
be informed when their network conditions are bad and be prompted to switch to a different network.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 136

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts, as shown

above.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__ios.html#ga5506c2171438841ab3e99c80786c7ba0

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 136

- (void)onWarning:(V2TXLiveCode)code

 message:(NSString *)msg

 extraInfo:(NSDictionary *)extraInfo {

 dispatch_async(dispatch_get_main_queue(), ^{

 if (code == V2TXLIVE_WARNING_NETWORK_BUSY) {

 [_notification displayNotificationWithMessage:

 @"Your network conditions are poor. Please switch to a different ne

 }

 });

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 136

16. Send SEI messages

Call the sendSeiMessage API in V2TXLivePusher to send SEI messages. SEI refers to the supplementary

enhancement information of encoded video. It is not used most of the time, but you can insert custom information into
SEI messages. The information will be forwarded to audience by live streaming CDNs. The applications for SEI

messages include:
Live quiz: The publisher can use SEI messages to send questions to the audience. SEI can ensure synchronization
among audio, video, and the questions.
Live showroom: The publisher can use SEI messages to display lyrics to the audience in real time. The effects are not
affected by reduction in video encoding quality.

Online education: The publisher can use SEI messages to display pointers and sketches on slides to the audience in
real time.
Custom data is inserted directly into video data and therefore cannot be too large in size (preferably several bytes). It’s
common to insert information such as custom timestamps.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a106dc65c2616b80e193aad95876f7fe6

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 136

int payloadType = 5;

NSString* msg = @"test";

[_pusher sendSeiMessage:payloadType data:[msg dataUsingEncoding:NSUTF8StringEncodin

Common open-source players or web players are incapable of parsing SEI messages. You must use
 V2TXLivePlayer , the built-in player of LiteAVSDK.

1. Configuration:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 136

int payloadType = 5;

[_player enableReceiveSeiMessage:YES payloadType:payloadType];

2. If the video streams played by V2TXLivePlayer contain SEI messages, you will receive the messages via the

 onReceiveSeiMessage callback in V2TXLivePlayerObserver .

Event Handling

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 136

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Latency during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314 No access to the camera.
This usually occurs on mobile

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__ios.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 136

devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 136

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Screen recording allows a host to live stream the image on their phone screen. It can be combined with local camera
preview and is used in scenarios such as game streaming and mobile app demos. The Tencent Cloud LiteAV SDK
offers screen recording capabilities via V2TXLivePusher . The UIs for screen recording operations in the SDK

API-Example project are as shown below:

Restrictions

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 136

The screen recording feature is available only on iOS 11.0 or later. This document describes how to use ReplayKit 2
on iOS 11 to push streams from the screen. The parts about the use of the SDK also apply to other custom stream
push scenarios. For more information, see the code sample in the TXReplayKit_Screen folder of the demo.

Screen recording is a new feature on iOS 10. In addition to using ReplayKit to record video from the screen, which is
possible on iOS 9, with iOS 10, users can also stream live video from the screen. For more information, see Go Live
with ReplayKit. On iOS 11, Apple made ReplayKit more usable and more universally applicable and launched
ReplayKit 2, going from supporting ReplayKit alone to allowing the recording of the entire screen. Therefore, we
recommend you use ReplayKit 2 on iOS 11 to enable the screen recording feature. Screen recording relies on

extensions, which operate as independent processes. However, to ensure system smoothness, iOS allocates limited
resources to extensions and may kill extensions with high memory usage. Given this, Tencent Cloud has further
reduced the memory usage of the LiteAV SDK while retaining its high streaming quality and low latency to ensure the
stability of extensions.

Sample Code

Tencent Cloud offers an easy-to-understand API example project to help you quickly learn how to use different APIs.

Platform GitHub Address

iOS LivePushScreenViewController.m

Android LivePushScreenActivity.java

Flutter live_screen_push.dart

Xcode

Xcode 9 or above is required, and your iPhone must be updated to iOS 11 or above. Screen recording is not

supported on emulators.

Create a broadcast upload extension

Open your project with Xcode and select New > Target... > Broadcast Upload Extension, as shown below.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC/Basic/LivePushScreen
https://developer.apple.com/videos/play/wwdc2016/601/
https://developer.apple.com/videos/play/wwdc2017/606/
https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/LivePushScreenViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushScreen/src/main/java/com/tencent/mlvb/livepushscreen/LivePushScreenActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 136

Enter a product name and click Finish. A new directory with the product name entered will appear in your project.
Under the directory, there is an automatically generated SampleHandler class, which is responsible for screen

recording operations.

SDK Integration

1. Download the SDK

Download the SDK and follow the instructions in [SDK Integration]
(https://intl.cloud.tencent.com/document/product/1071/38155 to integrate the SDK into your application.

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

https://intl.cloud.tencent.com/document/product/1071/38150
https://console.intl.cloud.tencent.com/live/license

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 136

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of LiteAVSDK, complete the following configuration (preferably in -

[AppDelegate application:didFinishLaunchingWithOptions:]):

https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 136

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<The license URL obtained>";

 NSString * const licenceKey = @"<The key obtained>";

 // `V2TXLivePremier` is in the `V2TXLivePremier.h` header file.

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 136

#pragma mark - V2TXLivePremierObserver

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

Note:
 BundleId configured in the license must be the same as that of the application; otherwise, stream

push will fail.

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object and specify V2TXLiveMode .

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 136

// Set the live streaming protocol to RTMP, which doesn't support mic connect.

V2TXLivePusher *pusher = [[V2TXLivePusher alloc] initWithLiveMode:V2TXLiveMode_RTMP

4. Configure RPBroadcastSampleHandler

To use screen recording, you need to use a subclass of the system API RPBroadcastSampleHandler to get the

screen audio/video data. Here, add the following code to the custom subclass SampleHandler.m to implement screen
recording:

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/TXReplayKit_Screen/SampleHandler.m

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 136

#import "SampleHandler.h"

@import TXLiteAVSDK_ReplayKitExt;

@implementation SampleHandler

- (void)broadcastStartedWithSetupInfo:(NSDictionary<NSString *,NSObject *> *)setupI

 // The application group ID. The ID must match `startScreenCapture` of `V2TXLiv

 [[TXReplayKitExt sharedInstance] setupWithAppGroup:APPGROUP delegate:self];

}

- (void)broadcastPaused {

 // User has requested to pause the broadcast. Samples will stop being delivered

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 136

 [[TXReplayKitExt sharedInstance] broadcastPaused];

}

- (void)broadcastResumed {

 // User has requested to resume the broadcast. Samples delivery will resume.

 [[TXReplayKitExt sharedInstance] broadcastResumed];

}

- (void)broadcastFinished {

 // User has requested to finish the broadcast.

 [[TXReplayKitExt sharedInstance] broadcastFinished];

}

- (void)processSampleBuffer:(CMSampleBufferRef)sampleBuffer withType:(RPSampleBuffe

 [[TXReplayKitExt sharedInstance] sendSampleBuffer:sampleBuffer withType:sampleB

}

#pragma mark - TXReplayKitExtDelegate

- (void)broadcastFinished:(TXReplayKitExt *)broadcast reason:(TXReplayKitExtReason)

{

 NSString *tip = @"";

 switch (reason) {

 case TXReplayKitExtReasonRequestedByMain:

 tip = NSLocalizedString(@"MLVB-API-Example.liveStop", "");

 break;

 case TXReplayKitExtReasonDisconnected:

 tip = NSLocalizedString(@"MLVB-API-Example.appReset", "");

 break;

 case TXReplayKitExtReasonVersionMismatch:

 tip = NSLocalizedString(@"MLVB-API-Example.sdkError", "");

 break;

 }

 NSError *error = [NSError errorWithDomain:NSStringFromClass(self.class)

 code:0

 userInfo:@{

 NSLocalizedFailureReasonErrorKey:tip

 }];

 [self finishBroadcastWithError:error];

}

@end

In the implementation class of RPBroadcastSampleHandler , you need to call the corresponding method

in TXReplayKitExt to set the screen recording information and handle screen recording events.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 136

The broadcastFinished callback can be used to get the reason that screen recording is stopped and can be used to
prompt the user to take action.
For details about communication between the extension and host app, see Communication and Data Transfer

Between Extensions and Host Apps.

5. Enable screen recording and stream push

Call startScreenCapture to start screen recording and then call the startPush API in V2TXLivePusher to start

pushing the stream.
Note:
If you select the RTMP protocol for stream push in step 3, you can generate a stream push address as instructed in

Quick URL Generation.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a9db6d67c2e8dc94c6d9d658366b2dbb2
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a33b38f236a439e7d848606acb68cc087
https://intl.cloud.tencent.com/document/product/267/7977

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 136

// The application group ID for data sharing between the host application and Broad

[livePusher startScreenCapture:@"group.com.xxx"];

[livePusher startMicrophone];

// Pass in the corresponding URL based on the stream push protocol to start stream

NSString * const url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxx

V2TXLiveCode code = [livePusher startPush:url];

if (code != V2TXLIVE_OK) {

 // Check the error code

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 136

Why is `V2TXLIVE_ERROR_INVALID_LICENSE` returned?
If the startPush API returns V2TXLIVE_ERROR_INVALID_LICENSE, it means your license verification failed. Check
the error code and error message in the onLicenceLoaded callback in Step 2. Configure a license for the SDK.

On iOS 11 or later, you can enable screen recording only by pulling down the status bar and pressing and holding the
screen recording button.
On iOS 12 or later, you can use `RPSystemBroadcastPickerView` to pop up the screen recording selection page as
instructed in TRTCBroadcastExtensionLauncher.m.

6. Set landscape stream push and the resolution

Call setVideoQuality to set the resolution (you can select from a number of resolutions) and orientation for stream

publishing. Below is an example:

https://intl.cloud.tencent.com/document/product/1071/41878?lang=en#step2
https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/TRTCBroadcastExtensionLauncher.m
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 136

 BOOL landScape; // `YES`: Landscape; `NO`: Portrait.

 V2TXLiveVideoEncoderParam *videoParam = [[V2TXLiveVideoEncoderParam alloc] init

 videoParam.videoResolution = V2TXLiveVideoResolution960x540;

 videoParam.videoResolutionMode = landScape ? V2TXLiveVideoResolutionModeLandsca

 [livePusher setVideoQuality:videoParam];

7. Set the logo watermark

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#ad48aacbfad38b8f5389c159283fae859

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 136

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won't work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to (0.1, 0.1, 0.1) , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

// Set the video watermark

[livePusher setWatermark:image x:0 y:0 scale:1];

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 136

8. Stop stream push

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

// Stop stream push

[livePusher stopScreenCapture];

[livePusher stopPush];

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 136

Event Handling

1. Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

2. Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

3. Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: Data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusherObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 136

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314 No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is currently having a call
on the mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system

Appendix: Communication and Data Transfer Between Extensions
and Host Applications

ReplayKit2 invokes only the broadcast upload extension during screen sharing. The extension does not support UI
operations and cannot implement complicated business logic. Therefore, the host app is often responsible for

implementing business logic such as authentication, while the extension focuses on recording the screen and
publishing the audio and video data captured. This makes it necessary to communicate and transfer data between the
extension and host app.

1. Sending local notifications

Users should be informed of the status of the extension. For example, in cases where the host app is not started, you
can send a local notification asking users to interact with the host app. Below is an example of sending a notification to
users when the broadcast upload extension is started.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 136

- (void)broadcastStartedWithSetupInfo:(NSDictionary<NSString *,NSObject *> *)setupI

 [self sendLocalNotificationToHostAppWithTitle:@"Tencent Cloud Screen Sharing" m

}

- (void)sendLocalNotificationToHostAppWithTitle:(NSString*)title msg:(NSString*)msg

{

 UNUserNotificationCenter* center = [UNUserNotificationCenter currentNotificatio

 UNMutableNotificationContent* content = [[UNMutableNotificationContent alloc] i

 content.title = [NSString localizedUserNotificationStringForKey:title arguments

 content.body = [NSString localizedUserNotificationStringForKey:msg arguments:n

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 136

 content.sound = [UNNotificationSound defaultSound];

 content.userInfo = userInfo;

 // Schedule a local notification to be sent at the specified time

 UNTimeIntervalNotificationTrigger* trigger = [UNTimeIntervalNotificationTrigger

 triggerWithTimeInterval:0.1f repe

 UNNotificationRequest* request = [UNNotificationRequest requestWithIdentifier:@

 content:c

 // Add operation after the notification is sent

 [center addNotificationRequest:request withCompletionHandler:^(NSError * _Nulla

 }];

}

You can use this notification to ask the user to return to the host app to configure publishing information and start

stream publishing.

2. Sending notifications between processes via CFNotificationCenter

The extension and host app may also need to interact with each other in real time, which cannot be achieved through
local notifications because with local notifications, code is triggered only after users tap the banner. Neither can it be
implemented via NSNotificationCenter because NSNotificationCenter does not allow communication between
processes. To send notifications between processes, you will need CFNotificationCenter, but instead of using the

 userInfo field for data transfer, you must configure an app group and use NSUserDefault for data transfer.

For example, after getting the publishing URL, the host app can notify the broadcast upload extension via
CFNotificationCenter that stream publishing can start. You may also use the clipboard, but delayed rendering is
needed as the clipboard sometimes fails to transfer data between processes in real time.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 136

CFNotificationCenterPostNotification(CFNotificationCenterGetDarwinNotifyCenter(),

 kDarvinNotificationNamePushStart,

 NULL,

 nil,

 YES);

The extension can start publishing streams after receiving this notification. As the notification is at the CF layer, to
facilitate operations, it needs to be sent to the Cocoa layer via NSNotificationCenter.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 136

 CFNotificationCenterAddObserver(CFNotificationCenterGetDarwinNotifyCenter(),

 (__bridge const void *)(self),

 onDarwinReplayKit2PushStart,

 kDarvinNotificationNamePushStart,

 NULL,

 CFNotificationSuspensionBehaviorDeliverImmediat

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handl

static void onDarwinReplayKit2PushStart(CFNotificationCenterRef center,

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 136

 void *observer, CFStringRef name,

 const void *object, CFDictionaryRef

 userInfo)

{

// Send to the Cocoa layer

 [[NSNotificationCenter defaultCenter] postNotificationName:@"Cocoa_ReplayKit2_P

}

- (void)handleReplayKit2PushStartNotification:(NSNotification*)noti

{

// Get the data to be transferred by the host app via NSUserDefault or the clipboar

// NSUserDefaults *defaults = [[NSUserDefaults alloc] initWithSuiteName:kReplayK

 UIPasteboard* pb = [UIPasteboard generalPasteboard];

 NSDictionary* defaults = [self jsonData2Dictionary:pb.string];

 s_rtmpUrl = [defaults objectForKey:kReplayKit2PushUrlKey];

 s_resolution = [defaults objectForKey:kReplayKit2ResolutionKey];

 if (s_resolution.length < 1) {

 s_resolution = kResolutionHD;

 }

 NSString* rotate = [defaults objectForKey:kReplayKit2RotateKey];

 if ([rotate isEqualToString:kReplayKit2Portrait]) {

 s_landScape = NO;

 }

 else {

 s_landScape = YES;

 }

 [self start];

}

FAQs

ReplayKit2 is a new framework introduced by Apple in iOS 11, for which relatively few official documents have been
released. The framework is still being improved, and problems have been found. See below for some common
questions you may have when using ReplayKit2.
1. When does screen recording stop automatically?

Screen recording stops automatically when the screen locks or there is an incoming call. At such times, the
 broadcastFinished function in SampleHandler will be invoked, and you can send a notification to users

about the interruption.
2. Why does screen recording stop sometimes during screen sharing?
The problem usually occurs after landscape/portrait mode switch if the resolution for stream publishing is set high. The

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 136

broadcast upload extension is allocated a memory of only 50 MB and will be killed if its memory usage exceeds the
limit. Given this, we recommend that you set the resolution to 720p or lower.
3. Why are images streamed from the screen of iPhone X distorted?

iPhone X has a notch at the top of the screen, so video captured from the screen is not in the aspect ratio of 16:9. If
you set the output resolution for stream publishing to 16:9, for example, to HD (960 × 540), the images published will
be slightly distorted because their original aspect ratio is not 16:9. We recommend that you set the resolution
according to your screen size. Besides, if you play video streamed from the screen of iPhone X in aspect fit mode, the
video may have black bars, and if you play it in aspect fill mode, the video may be cropped.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 136

Android
Publishing from Camera
Last updated：2024-01-13 15:49:41

Overview

Publishing from camera refers to the process of collecting video and audio data from the mobile phone’s camera and
mic, encoding the data, and publishing it to cloud-based live streaming platforms. Tencent Cloud’s LiteAVSDK
provides the camera publishing capability via V2TXLivePusher .The following is the relevant GUI that

demonstrating camera push stream in the SDK API-Example project:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 136

Notes

Testing on real devices: The SDK uses a lot of audio and video APIs of the Android system, most of which cannot
be used on emulators. Therefore, we recommend that you test your project on a real device.

Sample Code

Platform GitHub Address Key Class

iOS Github LivePushCameraViewController.m

Android Github LivePushCameraActivity.java

Flutter Github live_camera_push.dart

Integration

1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization, need to Get License URL and License Key in Cloud Live
Console

If you have not yet obtained the license authorization, please reference Adding and Renewing Licenses to make an
application.

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushCamera/LivePushCameraViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushCamera/src/main/java/com/tencent/mlvb/livepushcamera/LivePushCameraActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_camera_push.dart
https://intl.cloud.tencent.com/document/product/1071/38150
https://intl.cloud.tencent.com/document/product/1071/38156
https://console.intl.cloud.tencent.com/live/license
https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 136

2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

public class MApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

String licenceURL = ""; // your licence url

String licenceKey = ""; // your licence key

V2TXLivePremier.setEnvironment("GDPR"); // set your environment

V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 136

V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

 }

 });

}

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object, which will be responsible for publishing operations.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 136

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher mLivePusher = new V2TXLivePusherImpl(this, V2TXLiveDef.V2TXLiveMode.

4. Enable camera preview

Before enabling camera preview, you must first provide the SDK with a TXCloudVideoView object to display

video images. Given that TXCloudVideoView is inherited from FrameLayout in Android, you can:

1. Add a video rendering control in the XML file:

<com.tencent.rtmp.ui.TXCloudVideoView

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 136

 android:id="@+id/pusher_tx_cloud_view"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

2. Call startCamera in V2TXLivePusher to enable camera preview for your mobile phone.

// Enable preview for the local camera

TXCloudVideoView mPusherView = (TXCloudVideoView) findViewById(R.id.pusher_tx_cloud

mLivePusher.setRenderView(mPusherView);

mLivePusher.startCamera(true);

mLivePusher.startMicrophone();

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 136

5. Start and stop publishing

1. After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher

to start publishing.
Note

if you choose RTMP protocol to push in Step3，the generate of the push URL, please refer to RTMP URL.

//This URL does not support co-anchoring. The stream is published to a live streami

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

int ret = mLivePusher.startPush(url);

if (ret == V2TXLIVE_ERROR_INVALID_LICENSE) {

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ab4f8adaa0616d54d6ed920e49377a08a
https://intl.cloud.tencent.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 136

 Log.i(TAG, "startRTMPPush: license verification failed");

}

Note
Reason for returning V2TXLIVE_ERROR_INVALID_LICENSE?
If the startPush interface returns V2TXLIVE_ERROR_INVALID_LICENSE, it means that your license verification
failed, please check the url and key set in Step 2: Configure the SDK for license authorization.
2. Call stopPush in V2TXLivePusher to stop publishing streams

//Stop publishing

mLivePusher.stopPush();

https://write.woa.com/document/133487155812577280#step2
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#af07c1dcff91b43a2309665b8663ed530

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 136

6. Publish audio-only streams

If your live streaming scenarios involve audio only, you can skip Step 4 or call stopCamera before startPush .

mLivePusher.startMicrophone();

// The push stream can be started by passing in the corresponding URL according to

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

int ret = mLivePusher.startPush(url);

Note

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 136

If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration, please submit a ticket for help.

7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For
details, please see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set beauty filters.

Beauty filter style

The SDK has three built-in beauty filter algorithms, each corresponding to a beauty filter style. Choose one that best

fits your product positioning. For the definitions, see TXLiveConstants.java .

Beauty Filter Style Description

BEAUTY_STYLE_SMOOTH The smooth style, which features more obvious skin smoothing effects and
is suitable for live showrooms

BEAUTY_STYLE_NATURE The natural style, which retains more facial details and is more natural

BEAUTY_STYLE_PITU

The Pitu style, which uses the beauty filter algorithm developed by YouTu
Lab. Its effect is between the smooth style and the natural style, that is, it
retains more skin details than the smooth style and delivers more obvious
skin smoothing effects than the natural style.

You can call the setBeautyStyle API of TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API
in `TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

Rosy skin filter strength
Via the setRuddyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

https://console.intl.cloud.tencent.com/workorder/category
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a2695806cb6c74ccce4b378d306ef0a02
https://intl.cloud.tencent.com/document/product/1071/41861
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a3fdfeb3204581c27bbf1c8b5598714fb

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 136

9. Set color filters

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set color filters.

Call the setFilter API in TXBeautyManager to set color filters. Color filters are a technology that adjusts the

color tone of sections of an image. For example, it may lighten the yellow sections of an image to achieve the effect of

skin brightening, or add warm tones to a video to give it a refreshing and soft boost.
Call the setFilterStrength API in TXBeautyManager to set the strength of a color filter. The higher the

strength, the more obvious the effect.
Based on our experience of operating Mobile QQ and Now Live, it’s not enough to use only the setBeautyStyle

API in TXBeautyManager to set the beauty filter style. The setBeautyStyle API must be used together with

 setFilter to produce richer effects. Given this, our designers have developed 17 built-in color filters for you to

choose from.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a3fdfeb3204581c27bbf1c8b5598714fb
https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__android.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 136

// Select the desired color filter file. The filter file can be obtained from the r

Bitmap filterBmp = decodeResource(getResources(), R.drawable.tuibeauty_filter_biaoz

mLivePusher.getBeautyManager().setFilter(filterBmp);

mLivePusher.getBeautyManager().setFilterStrength(0.5f);

10. Manage devices

 V2TXLivePusher provides a series of APIs for the control of devices. You can call getDeviceManager to

get a TXDeviceManager instance for device management. For detailed instructions, please see

TXDeviceManager API.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__android.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 136

11. Set the video mirroring effect for audience

Call setEncoderMirror in V2TXLivePusher to set the camera mirror mode, which affects the way video images

are presented to audience. By default, the local video watched by the host is flipped when the front camera is used,
which creates the same effect as a mirror does. The video watched by audience is the same as that watched by the

host, as shown below.

12. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should
watch videos in landscape resolutions (960 × 540).

By default, V2TXLivePusher outputs videos in portrait resolutions. You can publish landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ae025945b6f2633d8e3b879a6fe24dd99

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 136

V2TXLiveDef.V2TXLiveVideoEncoderParam param = new V2TXLiveDef.V2TXLiveVideoEncoderP

param.videoResolutionMode = isLandscape ? V2TXLiveVideoResolutionModeLandscape : V2

mLivePusher.setVideoQuality(param);

13. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which

can be used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 136

mixing means mixing into the published stream the music played by the host’s phone so that audience can also hear
the music.
Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which allows

hosts to hear their vocals in earphones when they sing.
Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by

audience.

Note
For detailed instructions, please see TXAudioEffectManager API.

14. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a4f56a5a937d87e5b1ae6f77c5bab2335

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 136

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark image will be the video width x 0.1, and the height will be scaled automatically.

// Set a video watermark

mLivePusher.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.wat

15. Inform hosts of poor network conditions

Hosts should be informed when their network conditions are bad and be prompted to check their network.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 136

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html#abd54414cbd5d52c096f9cc090cfe1fec

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 136

@Override

public void onWarning(int code, String msg, Bundle extraInfo) {

 if (code == V2TXLiveCode.V2TXLIVE_WARNING_NETWORK_BUSY) {

 showNetBusyTips(); // Show network tips

 }

}

16. Send SEI messages

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 136

Call the sendSeiMessage API in V2TXLivePusher to send SEI messages. SEI refers to the supplementary

enhancement information of encoded video. It is not used most of the time, but you can insert custom information into
SEI messages. The information will be forwarded to audience by live streaming CDNs. The applications for SEI

messages include:
Live quiz: The publisher can use SEI messages to send questions to the audience. SEI can ensure synchronization
among audio, video, and the questions.
Live showroom: The publisher can use SEI messages to display lyrics to the audience in real time. The effects are not
affected by reduction in video encoding quality.

Online education: The publisher can use SEI messages to display pointers and sketches on slides to the audience in
real time.
Custom data is inserted directly into video data and therefore cannot be too large in size (preferably several bytes). It’s
common to insert information such as custom timestamps.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a5ba3762815f11bf5005f151e06ae0b38

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 136

//Sample code for Android

int payloadType = 5;

String msg = "test";

mTXLivePusher.sendSeiMessage(payloadType, msg.getBytes("UTF-8"));

Common open-source players or web players are incapable of parsing SEI messages. You must use

 V2TXLivePlayer , the built-in player of LiteAVSDK.

1. Configuration:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 136

int payloadType = 5;

mTXLivePlayer.enableReceiveSeiMessage(true, payloadType)

2. If the video streams played by V2TXLivePlayer contain SEI messages, you will receive the messages via the

 onReceiveSeiMessage callback in V2TXLivePlayerObserver .

Event Handling

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 136

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314 No access to the camera.
This usually occurs on mobile

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 136

devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 136

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Publishing from screen means using hosts’ phones as the source for live streaming. It may be combined with local
camera preview and is used in scenarios such as game streaming and mobile application demonstration. Tencent
Cloud’s LiteAVSDK offers the screen sharing capability via V2TXLivePusher .

Note:
By adding a floating window to display the image of the local camera, you can include camera preview into the
streams published from the screen.

Restrictions

Screen recording is supported in Android 5.0 and above.
Floating windows need to be enabled manually on some mobile phones and systems.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 136

Sample Code

Platform GitHub Address

iOS LivePushScreenViewController.m

Android LivePushScreenActivity.java

Flutter live_screen_push.dart

Integration

Step 1. Download SDK development kit

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，Need to Get License URL and License Key in Cloud Live

Console

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/LivePushScreenViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushScreen/src/main/java/com/tencent/mlvb/livepushscreen/LivePushScreenActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart
https://intl.cloud.tencent.com/document/product/1071/38150
https://intl.cloud.tencent.com/document/product/1071/38156
https://console.intl.cloud.tencent.com/live/license
https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 136

public class MApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

String licenceURL = ""; // your licence url

String licenceKey = ""; // your licence key

V2TXLivePremier.setEnvironment("GDPR"); // set your environment

V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 136

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

 }

 });

}

Note:

The packageName configured in the license must be the same as the application itself, otherwise the
push stream will fail.

Step 3. Add Activity

Paste the following activity in the manifest file (no need to add it if it exists in the project code).

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 136

<activity

 android:name="com.tencent.rtmp.video.TXScreenCapture$TXScreenCaptureAssistantAc

 android:theme="@android:style/Theme.Translucent"/>

Step 4. Create a stream publishing object

Create a V2TXLivePusher object, which will be responsible for publishing operations.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 136

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher mLivePusher = new V2TXLivePusherImpl(this, V2TXLiveDef.V2TXLiveMode.

Step 5. Start stream publishing

Use startScreenCapture to start screen recording，and use V2TXLivePusher::startPush to pushing
Note:
 if you choose RTMP protocol to push in Step4，The generate of the push URL, please refer to RTMP URL。

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#acd14289e3bbf2708f23e61348136d9f9
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ab4f8adaa0616d54d6ed920e49377a08a
https://intl.cloud.tencent.com/document/product/267/7977

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 136

// The push stream can be started according to the push stream protocol. RTMP canno

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

mLivePusher.startMicrophone();

mLivePusher.startScreenCapture();

int ret = mLivePusher.startPush(url);

if (ret == V2TXLIVE_ERROR_INVALID_LICENSE) {

 Log.i(TAG, "startRTMPPush: license verification failed");

}

Note:

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 136

Reason for returning V2TXLIVE_ERROR_INVALID_LICENSE?
If the startPush interface returns V2TXLIVE_ERROR_INVALID_LICENSE , it means that your license

verification failed, please check the url and key set in Step 2: Configure the SDK for license authorization.

startScreenCapture is used to start screen recording, which is a built-in feature of the Android system. For security
reasons, before screen recording starts, Android will pop up a window asking users whether to start screen recording,
and you should agree.

Step 6. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a4f56a5a937d87e5b1ae6f77c5bab2335

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 136

// Set a video watermark

mLivePusher.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.wat

Step 7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For
details, please see Setting Video Quality.

https://intl.cloud.tencent.com/document/product/1071/41861

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 136

Step 8. Inform hosts of poor network conditions

Connecting phones to Wi-Fi does not necessarily guarantee network conditions. In case of poor Wi-Fi signal or limited
bandwidth, the network speed of a Wi-Fi connected phone may be slower than that of a phone using 4G. Hosts should
be informed when their network conditions are bad and be prompted to switch to a different network.

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts, as shown
above.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 136

@Override

public void onWarning(int code, String msg, Bundle extraInfo) {

 if (code == V2TXLiveCode.V2TXLIVE_WARNING_NETWORK_BUSY) {

 showNetBusyTips(); // Show a “network busy” message

 }

}

Step 9. Set the orientation

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 136

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should
watch videos in landscape resolutions (960 × 540), as shown below:

By default, V2TXLivePusher outputs videos in portrait resolutions. You can output landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

mLivePusher.setVideoQuality(mVideoResolution, isLandscape ? V2TXLiveVideoResolution

Step 10. Stop publishing streams

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__android.html#a2695806cb6c74ccce4b378d306ef0a02

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 136

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

// Stop screen sharing and release the resources

public void stopPublish() {

 mLivePusher.stopScreenCapture();

 mLivePusher.setObserver(null);

 mLivePusher.stopPush();

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 136

Event Handling

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 136

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314 No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 136

Web
Last updated：2024-01-13 15:49:41

The TXLivePusher SDK is mainly used to publish streams for LEB (ultra-low latency streaming). It can publish audio
and video the browser captures from the camera, screen, or a local media file to live streaming servers via WebRTC.
Note：

With WebRTC, each domain name can be used for the publishing of up to concurrent 100 streams by default. If you
want to publish more streams, please submit a ticket.

Basics

Below are some basics you need to know before integrating the SDK.

Splicing publishing URLs

To use Tencent Cloud live streaming services, you need to splice publishing URLs in the format required by Tencent
Cloud, which consists of four parts.

An authentication key is not required. You can enable publishing authentication if you need hotlink protection. For
details, please see Splicing CSS URLs.

Browser support

Publishing for LEB relies on WebRTC and therefore can only be used on OS and browsers that support WebRTC.
The audio/video capturing feature is poorly supported on mobile browsers. For example, mobile browsers do not

support screen recording, and only iOS 14.3 and above allow requesting camera access. Therefore, the publishing
SDK is mainly used on desktop browsers. The latest version of Chrome, Firefox, and Safari all support publishing for
LEB.
To publish streams on mobile browsers, use the MLVB SDK.

https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/267/38393
https://intl.cloud.tencent.com/document/product/1071/38157

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 136

SDK Integration

Step 1. Prepare the page

Add an initialization script to the (desktop) page from which streams are to be published.

<script src="https://video.sdk.qcloudecdn.com/web/TXLivePusher-2.1.0.min.js" charse

Note：

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 136

The script needs to be imported into the body part of the HTML code. If it is imported into the head part, an

error will be reported.

Step 2. Add a container to the HTML page

Add a player container to the section of the page where local video is to be played. This is achieved by adding a div

and giving it a name, for example, id_local_video . Local video will be rendered in the container. To adjust the

size of the container, style the div using CSS.

<div id="id_local_video" style="width:100%;height:500px;display:flex;align-items:ce

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 136

Step 3. Publish streams

1. Generate an instance of the publishing SDK:
Generate an instance of the global object TXLivePusher . All subsequent operations will be performed via the

instance.

var livePusher = new TXLivePusher();

2. Specify the local video player container:
Specify the div for the local video player container, which is where audio and video captured by the browser will be
rendered.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 136

livePusher.setRenderView('id_local_video');

Note：

The video element generated via setRenderView is unmuted by default. To mute video, obtain the video element

using the code below.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 136

document.getElementById('id_local_video').getElementsByTagName('video')[0].muted =

3. Set audio/video quality:

Audio/video quality should be set before capturing. You can specify quality parameters if the default settings do not
meet your requirements.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 136

// Set video quality

livePusher.setVideoQuality('720p');

// Set audio quality

livePusher.setAudioQuality('standard');

// Set the frame rate

livePusher.setProperty('setVideoFPS', 25);

4. Capture streams:
You can capture streams from the camera, mic, screen and local media files. If capturing is successful, the player
container will start playing the audio/video captured.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 136

// Turn the camera on

livePusher.startCamera();

// Turn the mic on

livePusher.startMicrophone();

5. Publish streams:

Pass in the LEB publishing URL to start publishing streams. For the format of publishing URLs, please see Splicing
CSS URLs. You need to replace the prefix rtmp:// with webrtc:// .

https://intl.cloud.tencent.com/document/product/267/38393

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 136

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

Note：

Before publishing, make sure that audio/video streams are captured successfully, or you will fail to call the publishing
API. You can use the code below to publish streams automatically after audio/video is captured, that is, after the
callback for capturing the first audio or video frame is received. If both audio and video are captured, publishing starts
only after both the callback for capturing the first audio frame and that for the first video frame are received.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 136

var hasVideo = false;

var hasAudio = false;

var isPush = false;

livePusher.setObserver({

onCaptureFirstAudioFrame: function() {

 hasAudio = true;

 if (hasVideo && !isPush) {

isPush = true;

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

 }

},

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 136

onCaptureFirstVideoFrame: function() {

 hasVideo = true;

 if (hasAudio && !isPush) {

isPush = true;

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

 }

}

});

6. Stop publishing:

livePusher.stopPush();

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 136

7. Stop capturing audio and video:

// Turn the camera off

livePusher.stopCamera();

// Turn the mic off

livePusher.stopMicrophone();

Advanced Features

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 136

Compatibility

The SDK provides a static method to check whether a browser supports WebRTC.

TXLivePusher.checkSupport().then(function(data) {

 // Whether WebRTC is supported

 if (data.isWebRTCSupported) {

 console.log('WebRTC Support');

 } else {

 console.log('WebRTC Not Support');

 }

 // Whether H.264 is supported

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 136

 if (data.isH264EncodeSupported) {

 console.log('H264 Encode Support');

 } else {

 console.log('H264 Encode Not Support');

 }

});

Event callbacks

The SDK supports callback event notifications. You can set an observer to receive callbacks of the SDK’s status and
WebRTC-related statistics. For details, see TXLivePusherObserver.

https://intl.cloud.tencent.com/document/product/1071/42709

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 136

livePusher.setObserver({

 // Warnings for publishing

 onWarning: function(code, msg) {

 console.log(code, msg);

 },

 // Publishing status

 onPushStatusUpdate: function(status, msg) {

 console.log(status, msg);

 },

 // Publishing statistics

 onStatisticsUpdate: function(data) {

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 136

 console.log('video fps is ' + data.video.framesPerSecond);

 }

});

Device management

You can use a device management instance to get the device list, switch devices, and perform other device-related
operations.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 136

var deviceManager = livePusher.getDeviceManager();

// Get the device list

deviceManager.getDevicesList().then(function(data) {

 data.forEach(function(device) {

 console.log(device.deviceId, device.deviceName);

 });

});

// Switch cameras

deviceManager.switchCamera('camera_device_id');

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 136

Flutter
Publishing from Camera
Last updated：2024-01-13 15:49:41

Feature Overview

Publishing from the camera refers to the process of collecting video and audio data from the mobile phone's camera
and mic, encoding the data, and pushing it to cloud-based live streaming platforms. Tencent Cloud live_flutter_plugin
provides the camera push capabilities via the v2_tx_live_pusher APIs.

Notes

About running projects on x86 emulators: The SDK uses many audio and video APIs of the iOS system, most of
which cannot be used on the x86 emulator built into macOS. Therefore, we recommend that you test your project on a
real device.

Sample Code

Platform GitHub Address Key Class

iOS GitHub CameraPushViewController.m

Android GitHub CameraPushMainActivity.java

Flutter GitHub live_camera_push.dart

Note:
 In addition to the above sample code, regarding frequently asked questions among developers, Tencent Cloud offers

an easy-to-understand API example project, which you can use to quickly learn how to use different APIs.
iOS: MLVB-API-Example
Android: MLVB-API-Example
Flutter: Live-API-Example

Getting Started

https://pub.dev/packages/live_flutter_plugin
https://github.com/tencentyun/LiteAVProfessional_iOS/blob/master/Demo/TXLiteAVDemo/LivePusherDemo/CameraPushDemo/CameraPushViewController.m
https://github.com/tencentyun/LiteAVProfessional_Android/blob/master/Demo/livepusherdemo/src/main/java/com/tencent/liteav/demo/livepusher/camerapush/ui/CameraPushMainActivity.java
https://github.com/LiteAVSDK/Live_Flutter
https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 136

1. Set dependencies

Integrate live_flutter_plugin into your application as instructed in SDK Integration Guide.

dependencies:

 live_flutter_plugin: latest version number

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

https://intl.cloud.tencent.com/document/product/1071/50582
https://console.intl.cloud.tencent.com/live/license

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 136

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 136

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.intl.cloud.tencent.com/

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 136

Note:
The packageName/BundleId configured in the license must be the same as that of the application;

otherwise, stream push will fail.

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object and specify V2TXLiveMode .

import 'package:live_flutter_plugin/v2_tx_live_pusher.dart';

/// Initialize `V2TXLivePusher`

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 136

initPusher() {

 _livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTC);

}

4. Set the video rendering view

import 'package:live_flutter_plugin/widget/v2_tx_live_video_widget.dart';

/// The video rendering view widget

Widget renderView() {

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 136

 return V2TXLiveVideoWidget(

 onViewCreated: (viewId) async {

 /// Set the video rendering view

 _livePusher.setRenderViewID(_renderViewId);

 /// Enable camera preview

 _livePusher.startCamera(true);

 },

);

}

5. Start and stop publishing

After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher to

start publishing. You can use TRTC's URL or an RTMP URL for publishing. The former uses UDP. It offers better
streaming quality and supports co-anchoring.

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/startPush.html
https://intl.cloud.tencent.com/document/product/1071/39359
https://intl.cloud.tencent.com/document/product/1071/39359#.E8.87.AA.E4.B8.BB.E6.8B.BC.E8.A3.85.E6.8E.A8.E6.B5.81-url

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 136

/// Start stream push

startPush() async {

 // Generate a stream push address of RTMP/TRTC

 var url = "";

 // Start stream push

 await _livePusher.startPush(url);

 // Turn the mic on

 await _livePusher.startMicrophone();

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 136

After stream push ends, you can call the stopPush API in V2TXLivePusher to stop stream push.

/// Stop stream push

stopPush() async {

 // Turn the camera off

 await _livePusher.stopCamera();

 // Turn the mic off

 await _livePusher.stopMicrophone();

 // Stop stream push

 await _livePusher.stopPush();

}

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/stopPush.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 136

Note:
If you have enabled camera preview, please disable it when you stop publishing streams.
How do I get a valid stream push URL?

Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.
For more information, see Publishing/Playback URL.

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure a license for the SDK.

6. Publish audio-only streams

If your live streaming scenarios involve audio only, you can skip Step 4 or do not call startCamera before

 startPush .

https://console.intl.cloud.tencent.com/live/addrgenerator/addrgenerator
https://intl.cloud.tencent.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 136

/// Start stream push

startPush() async {

 // Initialize `V2TXLivePusher`

 _livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTC);

 // Generate a stream push address of RTMP/TRTC

 var url = "";

 // Start stream push

 await _livePusher.startPush(url);

 // Turn the mic on

 await _livePusher.startMicrophone();

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 136

Note:

If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration. Please submit a ticket for help.

7. Set video quality

You can call the setVideoQuality API in V2TXLivePusher to set image definition on the viewer end. The video

image watched by the host is the source video without encoding or compression and is not subject to settings.
However, viewers can perceive the encoding quality of the video encoder set in setVideoQuality . For more

information, see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

You can call the getBeautyManager API in V2TXLivePusher to get the TXBeautyManager instance so as to

further set the beauty filter effect.

Beauty filter style

The SDK has three built-in skin smoothing algorithms, each of which corresponds to a beauty filter style. You can
select the one most suitable for your product needs. For more information, see the TXBeautyManager.h file.

Beauty Filter Style Description

TXBeautyStyleSmooth The smooth style, which features more obvious skin smoothing effects and is suitable
for live showrooms.

TXBeautyStyleNature The natural style, which retains more facial details and is more natural.

TXBeautyStylePitu

The Pitu style, which uses the beauty filter algorithm developed by YouTu Lab. Its
effect combines the smooth style and the natural style, that is, it retains more skin
details than the smooth style and delivers more obvious skin smoothing effects than
the natural style.

You can call the setBeautyStyle API in TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Rosy skin filter Via the setRuddyLevel API in Value range: 0-9. `0` means the filter is

https://console.intl.cloud.tencent.com/workorder/category
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setVideoQuality.html
https://intl.cloud.tencent.com/document/product/1071/41861
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getBeautyManager.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_beauty_manager/TXBeautyManager-class.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_beauty_manager/TXBeautyManager/setBeautyStyle.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 136

strength `TXBeautyManager` disabled. The greater the value, the
more obvious the effect.

9. Manage devices

 V2TXLivePusher offers a set of APIs for device control. You can use getDeviceManager to get the

 TXDeviceManager instance for device management. For detailed directions, see TXDeviceManager API.

10. Set the mirror effect on the audience side

You can call setRenderMirror of V2TXLivePusher to change the camera mirroring mode, so as to change the

mirroring effect of the video image seen by viewers. If the host uses the front camera for live streaming, the image will
be reversed by the SDK by default.

11. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should
watch videos in landscape resolutions (960 × 540).

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getDeviceManager.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setRenderMirror.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 136

 V2TXLivePusher pushes video images in portrait mode by default. To push video images in landscape mode,

you can modify the parameters in the setVideoQuality API to set the image orientation on viewers' devices.

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setVideoQuality.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 136

// Video encoding parameters

var param = V2TXLiveVideoEncoderParam();

param.videoResolutionMode = isLandscape ? V2TXLiveVideoResolutionMode.v2TXLiveVideo

_livePusher.setVideoQuality(param);

12. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which can be

used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music mixing

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getAudioEffectManager.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 136

means mixing into the published stream the music played by the host's phone so that the audience can also hear the
music.
Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which

allows hosts to hear their vocals in earphones when they sing.
Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by the audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by

the audience.

Note:
For detailed directions, see TXAudioEffectManager API.

Event Handling

Listening for events

The SDK listens on push events and errors via the V2TXLivePusherObserver delegate. See v2_tx_live_code library
for a detailed list of events and error codes.

Errors

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_audio_effect_manager/TXAudioEffectManager-class.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher_observer/v2_tx_live_pusher_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_code/v2_tx_live_code-library.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 136

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to
continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger

tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Latency during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319 The mic is occupied. This
occurs when, for example, the

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 136

user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 136

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Publishing from the camera refers to the process of collecting video and audio data from the mobile phone's camera
and mic, encoding the data, and pushing it to cloud-based live streaming platforms. Tencent Cloud
 live_flutter_plugin provides the camera push capabilities via V2TXLivePusher APIs.

Sample Code

Tencent Cloud offers an easy-to-understand API example project to help you quickly learn how to use different APIs.

Platform GitHub Address

iOS GitHub

Android GitHub

Flutter GitHub

Environment Requirements

Android

Screen recording is supported in Android 5.0 and above.
Floating windows need to be enabled manually on some mobile phones and systems.

iOS

Screen recording is a new feature in iOS 10. In addition to using ReplayKit to record video from the screen, which is
possible in iOS 9, with iOS 10, users can also stream live video from the screen. For details, see Go Live with

ReplayKit. In iOS 11, Apple made ReplayKit more usable and more universally applicable and launched ReplayKit2,
going from supporting ReplayKit alone to allowing the recording of the entire screen. Therefore, we recommend using
ReplayKit2 in iOS 11 to enable the screen sharing feature. Screen sharing relies on extensions, which operate as
independent processes. However, to ensure system smoothness, iOS allocates limited resources to extensions and
may kill extensions with high memory usage. Given this, Tencent Cloud has further reduced the memory usage of
LiteAVSDK while retaining its high streaming quality and low latency to ensure the stability of extensions.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart
https://developer.apple.com/videos/play/wwdc2016/601/
https://developer.apple.com/videos/play/wwdc2017/606/

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 136

Note:
This document describes how to use ReplayKit 2 on iOS 11 to push streams from the screen. The parts about the use
of the SDK also apply to other custom stream push scenarios. For more information, see the code sample in the

 Live Demo Screen folder of the demo.

1. Create the live streaming extension
Open your project with Xcode and select New > Target... > Broadcast Upload Extension, as shown below.

Enter a product name and click Finish. A new directory with the product name entered will appear in your project.

Under the directory, there is an automatically generated SampleHandler class, which is responsible for screen

recording operations.
Note:
Xcode 9 or later is required, and your iPhone must be updated to iOS 11 or later. Screen recording is not supported on
emulators.
2. Import TXLiteAVSDK_ReplayKitExt.framework

Import TXLiteAVSDK_ReplayKitExt.framework into the live streaming extension the same way you import a

https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 136

framework into the host application. The system libraries the SDK depends on are also the same. For more
information, see iOS.

Getting Started

1. Set dependencies

Integrate live_flutter_plugin into your application as instructed in SDK Integration Guide.

dependencies:

https://intl.cloud.tencent.com/document/product/1071/38155
https://intl.cloud.tencent.com/document/product/1071/50582

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 136

 live_flutter_plugin: latest version number

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

https://console.intl.cloud.tencent.com/live/license
https://intl.cloud.tencent.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 136

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.intl.cloud.tencent.com/

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

}

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 136

Note:
The packageName/BundleId configured in the license must be the same as that of the application;

otherwise, stream push will fail.

3. Create a pusher object

Create a V2TXLivePusher object, which will be responsible for publishing operations.

V2TXLivePusher livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTMP);

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 136

4. Start stream push

After completing Step 1, you can use the code below to start publishing streams:

String rtmpUrl = "rtmp://2157.livepush.myqcloud.com/live/xxxxxx";

livePusher.startMicrophone();

livePusher.startScreenCapture();

livePusher.startPush(rtmpUrl);

How can I obtain a valid publishing URL?
Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.

https://console.intl.cloud.tencent.com/live/addrgenerator/addrgenerator

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 136

For more information, see Publishing/Playback URL.

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure a license for the SDK.

5. Stop stream push

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

https://intl.cloud.tencent.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 136

// Stop screen sharing and release the resources

void stopPush() {

 livePusher.stopMicrophone();

 livePusher.stopScreenCapture();

 livePusher.stopPush();

}

Event Handling

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 136

Listening for events

The SDK listens on push events and errors via the V2TXLivePusherObserver delegate. See v2_tx_live_code library
for a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314 No access to the camera.
This usually occurs on mobile

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher_observer/v2_tx_live_pusher_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_code/v2_tx_live_code-library.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 136

devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

FAQs

ReplayKit2 is a new framework introduced by Apple in iOS 11, for which relatively few official documents have been
released. The framework is still being improved, and problems have been found. See below for some common

questions you may have when using ReplayKit2.
1. When does screen recording stop automatically?
Screen recording stops automatically when the screen locks or there is an incoming call. At such times, the
 broadcastFinished function in SampleHandler will be invoked, and you can send a notification to users

about the interruption.
2. Why does screen recording stop sometimes during screen sharing?

The problem usually occurs after landscape/portrait mode switch if the resolution for stream publishing is set high. The
broadcast upload extension is allocated a memory of only 50 MB and will be killed if its memory usage exceeds the
limit. Given this, we recommend that you set the resolution to 720p or lower.
3. Why are images streamed from the screen of iPhone X distorted?
iPhone X has a notch at the top of the screen, so video captured from the screen is not in the aspect ratio of 16:9. If

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 136

you set the output resolution for stream publishing to 16:9, for example, to HD (960 × 540), the images published will
be slightly distorted because their original aspect ratio is not 16:9. We recommend that you set the resolution
according to your screen size. Besides, if you play video streamed from the screen of iPhone X in aspect fit mode, the

video may have black bars, and if you play it in aspect fill mode, the video may be cropped.

