
Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 11

Mobile Live Video Broadcasting

Host Competition

Product Documentation

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 11

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 11

Overview

In RTMP-based mic connect, the MLVB SDK of Tencent Video Cloud Toolkit offers the MLVBLiveRoom

component to help you quickly implement the host competition feature. To better cater to your needs, Tencent Cloud
has launched an RTC-based host competition scheme and offered simpler and more flexible V2 APIs.

MLVB’s V2 APIs support publishing/host competition via RTMP as well as RTC. You can choose whichever scheme
fits your needs. Below is a comparison of the two schemes.

Item RTMP WebRTC

Protocol Based on TCP Based on UDP (more suitable for streaming)

QoS Poor adaptability to bad
network connection

Video streaming unaffected with 50% packets loss; audio mic
connect unaffected with 70% packets loss

Region Chinese mainland Worldwide

Tencent Cloud
products used

MLVB, CSS MLVB, CSS, TRTC

Price 0.0028 USD/min Tiered pricing. For details, see Purchase Guide.

Demonstration

The MLVB SDK provides new V2 APIs via V2TXLivePusher (publishing) and V2TXLivePlayer (playback)

to power larger-scale live streaming scenarios with greater flexibility and lower latency. Hosts can use the capabilities
provided by the APIs for RTC-based publishing. Audience, by default, play streams via CDNs, whose cost is relatively

low. To compete, hosts only need to play each other’s stream. To enable RTC-based host competition, you must
activate TRTC.
Below are the UI views of the MLVB-API-Example demo.

UI demonstration

Before streaming

Host A (Phone A) Host B (Phone B) Audience of Host A (Phone C)

Host Competition
Last updated：2022-06-14 12:41:46

https://intl.cloud.tencent.com/document/product/1071/38114

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 11

Competing

Host A (Phone A) Host B (Phone B) Audience of Host A (Phone C)

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 11

Implementation

As shown in the figure below, both host A and host B have their audience. To compete, they only need to do the
following:

Host A starts playing host B’s stream and initiates a stream mixing task to mix his or her stream with host B’s so

that his or her audience can watch them compete.
Host B starts playing host A’s stream and initiates a stream mixing task to mix his or her stream with host A’s so
that his or her audience can watch them compete.
Audience A and B can continue to play streams via CDNs and will see the competing videos of host A and host B
after stream mixing.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 11

1. Host A starts publishing

Host A calls V2TXLivePusher to publish a stream. For how to splice a publishing URL, please see

Publish/Playback URL.

java java

Objective-C ObjectiveC

2. Host B starts publishing

Host B calls V2TXLivePusher to publish a stream. For how to splice a publishing URL, please see

Publish/Playback URL.

java java
Objective-C ObjectiveC

3. Start competition

V2TXLivePusher pusher = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RT

C);

pushURLA= "trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&userId=A&u

sersig=xxx";

pusher.startPush(pushURLA);

V2TXLivePusher pusher = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RT

C);

pushURLB "trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&userId=B&us

ersig=xxx";

pusher.startPush(pushURLB);

https://intl.cloud.tencent.com/document/product/1071/39359
https://intl.cloud.tencent.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 11

Host A and host B call V2TXLivePlayer to play each other’s stream and start RTC-based competition. For how

to splice a playback URL, please see Publish/Playback URL.

java java

Objective-C ObjectiveC

4. Audience watch the hosts compete

After host competition starts, audience can watch via one of two methods.

1. Host A’s audience calls V2TXLivePlayer to play host B’s stream, and host B’s audience calls

 V2TXLivePlayer to play host A’s stream.

2. Host A and host B mix their streams, and audience use the original URL to play the mixed stream.
Host A and host B each initiate a stream mixing task to mix their streams so that their audience can watch them
complete. To achieve this, the hosts need to call setMixTranscodingConfig to start On-Cloud

MixTranscoding, specifying audio-related parameters including audioSampleRate , audioBitrate , and

 audioChannels .

Sample code:

java java
Objective-C ObjectiveC

// Host A

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

playURLB = "trtc://cloud.tencent.com/play/streamid?sdkappid=1400188888&userId=B&

usersig=xxx&appscene=live"

player.startPlay(playURLB);

...

// Host B

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

playURLA= "trtc://cloud.tencent.com/play/streamid?sdkappid=1400188888&userId=A&u

sersig=xxx&appscene=live"

player.startPlay(playURLA);

// Host A

V2TXLiveDef.V2TXLiveTranscodingConfig config = new V2TXLiveDef.V2TXLiveTranscodi

ngConfig();

// Set the resolution to 720 × 1280 px, bitrate 1500 Kbps, and frame rate 20 fps

config.videoWidth = 720;

https://intl.cloud.tencent.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 11

config.videoHeight = 1280;

config.videoBitrate = 1500;

config.videoFramerate = 20;

config.videoGOP = 2;

config.audioSampleRate = 48000;

config.audioBitrate = 64;

config.audioChannels = 2;

config.mixStreams = new ArrayList<>();

// Position of the camera image of host A

V2TXLiveDef.V2TXLiveMixStream local = new V2TXLiveDef.V2TXLiveMixStream();

local.userId = "localUserId";

local.streamId = null; // `streamID` is required for the remote user but not for

the local user

local.x = 0;

local.y = 0;

local.width = videoWidth;

local.height = videoHeight;

local.zOrder = 0; // When `zOrder` is set to `0`, it indicates that the host’s i

mage is displayed at the bottom

config.mixStreams.add(local);

// Position of the camera image of host B

V2TXLiveDef.V2TXLiveMixStream remoteB = new V2TXLiveDef.V2TXLiveMixStream();

remoteB.userId = "remoteUserIdB";

remoteB.streamId = "remoteStreamIdB"; // `streamID` is required for the remote u

ser but not for the local user

remoteB.x = 400; // For reference only

remoteB.y = 800; // For reference only

remoteB.width = 180; // For reference only

remoteB.height = 240; // For reference only

remoteB.zOrder = 1;

config.mixStreams.add(remoteB);

// Start On-Cloud MixTranscoding

pusher.setMixTranscodingConfig(config);

//Host B

V2TXLiveDef.V2TXLiveTranscodingConfig config = new V2TXLiveDef.V2TXLiveTranscodi

ngConfig();

// Set the resolution to 720 × 1280 px, bitrate 1500 Kbps, and frame rate 20 fps

config.videoWidth = 720;

config.videoHeight = 1280;

config.videoBitrate = 1500;

config.videoFramerate = 20;

config.videoGOP = 2;

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 11

Note：
Since you need to maintain room and user status by yourself, the new RTC-based scheme may seem more
complicated than the old one. In fact, there isn’t an always better scheme, only one that better suits
your needs.

You can stick to the old scheme if your application scenarios do not require low latency or high concurrency.
If you want to use V2 APIs without having to manage a room and users, try using Tencent Cloud’s IM SDK to

implement the necessary logic.

config.audioSampleRate = 48000;

config.audioBitrate = 64;

config.audioChannels = 2;

config.mixStreams = new ArrayList<>();

// Position of the camera image of host B

V2TXLiveDef.V2TXLiveMixStream local = new V2TXLiveDef.V2TXLiveMixStream();

local.userId = "localUserId";

local.streamId = null; // `streamID` is required for the remote user but not for

the local user

local.x = 0;

local.y = 0;

local.width = videoWidth;

local.height = videoHeight;

local.zOrder = 0; // When `zOrder` is set to `0`, it indicates that the host’s i

mage is displayed at the bottom

config.mixStreams.add(local);

// Position of the camera image of host A

V2TXLiveDef.V2TXLiveMixStream remoteA = new V2TXLiveDef.V2TXLiveMixStream();

remoteA.userId = "remoteUserIdA";

remoteA.streamId = "remoteStreamIdA"; // `streamID` is required for the remote u

ser but not for the local user

remoteA.x = 400; // For reference only

remoteA.y = 800; // For reference only

remoteA.width = 180; // For reference only

remoteA.height = 240; // For reference only

remoteA.zOrder = 1;

config.mixStreams.add(remoteA);

// Start On-Cloud MixTranscoding

pusher.setMixTranscodingConfig(config);

https://intl.cloud.tencent.com/document/product/1047

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 11

Billing

For billing details, please see Purchase Guide.

FAQs

1. Why is publishing and playback using the same streamid on the same device possible with
 TXLivePusher and TXLivePlayer but not with V2TXLivePusher and V2TXLivePlayer ?

 V2TXLivePusher and V2TXLivePlayer are based on Tencent Cloud’s TRTC protocol. This is a UDP-based

private protocol that features ultra-low latency and does not support using the same streamid for ultra-low-

latency publishing and playback on the same device. We have determined that it’s not necessary to support this
given the current use cases, but may consider optimizing the protocol in the future.

2. What are the parameters mentioned in Activate TRTC?

 SDKAppID identifies your application, and UserID your user. UserSig is a security signature calculated

based on the two parameters using the HMAC SHA256 encryption algorithm. Attackers cannot use your Tencent
Cloud traffic without authorization as long as they cannot forge a UserSig . UserSig calculation involves

hashing crucial information such as SDKAppID , UserID , and ExpireTime , as shown below.

// UserSig formula, in which `secretkey` is the key used to calculate UserSig

usersig = hmacsha256(secretkey, (userid + sdkappid + currtime + expire +

base64(userid + sdkappid + currtime + expire)))

3. How can I set audio or video quality using V2TXLivePusher and V2TXLivePlayer ?

We provide APIs for the setting of audio and video quality. For details, please see setAudioQuality() and
setVideoQuality:resolutionMode:().

4. What does the error code -5 mean?

The error code -5 means failure to call an API due to invalid license. The enumerated value is

V2TXLIVE_ERROR_INVALID_LICENSE. For other error codes, please see V2TXLiveCode.

5. What is the typical latency of RTC-based mic connect?

In the new RTC-based mic connect scheme, the mic connect latency is lower than 200 ms, and the latency for hosts

and audience is 100-1,000 ms.

6. What should I do if the 404 error occurs when I try to play streams via CDNs after successfully
publishing streams over RTC?

https://intl.cloud.tencent.com/document/product/1071/38114
https://intl.cloud.tencent.com/document/product/647/39958
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a88956a3ad5e030af7b2f7f46899e5f13
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 11

Check if you have enabled TRTC’s relayed push feature. The feature is needed because, after publishing streams via
RTC, to enable CDN playback, you need to relay the streams to CDNs.

