
IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 84

IoT Hub

Device Connection Manual

Product Documentation

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 84

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 84

Contents

Device Connection Manual
Device Connection Overview
Connection Based on SDK for C

SDK for C Download
SDK for C Cross-Platform Porting

Overview
FreeRTOS + lwIP Platform Porting Description
MCU + Universal TCP_AT Module Porting (FreeRTOS)
MCU + Universal TCP_AT Module Porting (nonOS)

SDK for C Connection Description
SDK for C Use Instructions

Usage Overview
Compilation Configuration Description
Compilation Environment (Linux and Windows)
Getting Started with MQTT
API and Variable Parameter Description
Device Information Storage

Connection Based on SDK for Android
SDK for Android Release Notes
SDK for Android Project Configuration
SDK for Android Use Instructions

Connection Based on SDK for Java
SDK for Java Release Notes
SDK for Java Project Configuration
SDK for Java Use Instructions

Connection Based on SDK for Python
Python SDK Release Notes
SDK for Python Project Configuration
SDK for Python Use Instructions

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 84

Feature Overview

To facilitate the connection of your devices and ensure the security of connection, IoT Hub provides a complete device
connection service. To connect a device to IoT Hub, you need to complete device registration/creation first. The
process of connection to IoT Hub be completed only after the device registration/creation succeeds.

Device connection service

The device connection service provides the feature of dynamic device registration, so device registration can be
completed by devices themselves.
The device connection service supports connection over diverse protocols, including MQTT, WebSocket,
HTTP/HTTPS, and CoAP.
The device connection service is capable of connection authentication, so devices need to be authenticated based

on the connection protocol to ensure the connection security.
The device connection service offers device SDKs, based on which devices can be connected easily.

Device connection based on SDK

IoT Hub provides SDKs for C, Android, and Java for device connection. They are integrated with the features included
in the device connection service, so you only need to set the device information (for key-authenticated devices:
 ProductID , DeviceName , and device key; for certificate-authenticated devices: ProductID ,

 DeviceName , certificate file, key file, and CA Certificate) in them and integrate their corresponding features into

your devices to complete device connection. In addition to the connection service features, the SDKs also include
functional APIs for device shadow, OTA, and RRPC. For more information on the APIs, please see:

SDK for C Use Instructions
SDK for Android Use Instructions
SDK for Java Use Instructions

Note：
IoT Hub supports custom connection. You can connect devices to it in a custom way simply by following the
protocols and authentication processes it provides.

Device Connection Manual
Device Connection Overview
Last updated：2021-08-31 11:09:28

https://intl.cloud.tencent.com/document/product/1105/41476
hhttps://intl.cloud.tencent.com/document/product/1105/41849
https://intl.cloud.tencent.com/document/product/1105/41857
https://intl.cloud.tencent.com/document/product/1105/41860
https://intl.cloud.tencent.com/document/product/1105/41849
https://intl.cloud.tencent.com/document/product/1105/41857
https://intl.cloud.tencent.com/document/product/1105/41860

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 84

Code Hosting

The code of the device SDK has been hosted on GitHub since v1.0.0

https://github.com/tencentyun/qcloud-iot-sdk-embedded-c

Download the latest version

https://github.com/tencentyun/qcloud-iot-sdk-embedded-c/releases

v3.2.1

Release date: August 4, 2020

Programming language: C

Development environments: Linux/Windows

Content:

i. Added the RRPC sync communication feature and samples.
ii. Added the broadcasting feature and samples.
iii. Added the subdevice binding/unbinding APIs for gateway devices.
iv. Updated the documentation.

v3.2.0

Release date: April 30, 2020
Programming language: C

Development environments: Linux/Windows
Content:

i. Merged the MTMC branch code, supported multi-device connection, and optimized multithreaded APIs.
ii. Fixed some potential memory leak and out-of-bounds issues as well as cross-platform compilation and running

issues.

iii. Used clang-format to format the code and introduced the code checkers clang-tidy and cpplint.

Connection Based on SDK for C
SDK for C Download
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 84

v3.1.3

Release date: March 6, 2020
Programming language: C
Development environments: Linux/Windows

Content:
i. Optimized ota_mqtt_sample to decouple and separate the OTA process and the places where file

operations were required, and added the checkpoint restart capability for the sample in case of MQTT
reconnection.

ii. Optimized gateway_sample and added the sample code for proxying more than one subdevice.

iii. Added the API for querying whether the MQTT topic was subscribed to successfully.
iv. Optimized and updated the documentation.
v. Fixed some compilation warnings and bugs.
vi. Unified the code indentation style.

v3.1.2

Release date: November 11, 2019
Programming language: C

Development environments: Linux/Windows
Content:

i. Removed the relevant code and documentation for IoT Explorer to support IoT Hub only, and optimized the
document descriptions.

ii. Fixed memory leaks in the OTA module, device_info.json file parsing issues, and Windows time format

issues.
iii. Renamed ca.c/h to qcloud_iot_ca.c/h and device.c/h to qcloud_iot_device.c/h to

avoid filename conflicts.

v3.1.0

Release date: September 19, 2019
Programming language: C

Development environments: Linux/Windows
Content:

Refactored C-SDK:

i. Optimized the code structure and directory hierarchy, used English comments, improved the documentation,
and improved the usability and portability.

ii. Added the CMake compilation method and code extraction method on the basis of original Makefile compilation

to adapt to multiple compilation environments.
iii. Added support for Windows to support development in Microsoft Visual Studio.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 84

iv. Added the AT_socket network layer to support the development and porting of MCU+TCP AT module

devices.
v. Added the porting adaptation for FreeRTOS + lwIP platforms.

v3.0.3

Release date: August 26, 2019
Programming language: C
Development environments: Linux/GNU Make
Content:

i. Supported OTA checkpoint restart: added local firmware version information management (version, checkpoint,

and MD5) in ota_mqtt_sample.c , and supported the range parameter when an HTTPS connection is

established during firmware download.
ii. Updated the SDK version number to v3.0.3.

v3.0.2

Release date: July 18, 2019
Programming language: C
Development environments: Linux/GNU Make

Content:
i. Supported escape character processing for the string type in data templates.
ii. Removed device version management from device shadow.
iii. Optimized relevant examples of data templates.

v3.0.1

Release date: June 11, 2019

Programming language: C
Development environments: Linux/GNU Make
Content:

i. Optimized the log reporting feature, introduced dynamic buffer memory allocation, and supported multipart log
reporting for large logs in various scenarios.

ii. Added the event handler callback of subscribe for MQTT to notify the status change of the subscribed

topic timely.
iii. Fixed some code issues, such as improper judgment on the return values of MQTT APIs.

v3.0.0

Release date: May 17, 2019
Programming language: C

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 84

Development environments: Linux/GNU Make
Content:

i. Added the data template feature based on shadow.

ii. Added the event reporting feature.
iii. Added the data template code generation script tool.
iv. Fixed several bugs in JSON processing.
v. Added data template samples, event samples, and smart light scenario samples in the data template.
vi. Adjusted the documentation structure and added the document directory docs and platform SDK use

instructions.
vii. Supported both IoT Hub and IoT Explorer starting from v3.0.0.

v2.3.5

Release date: May 15, 2019
Programming language: C
Development environments: Linux/GNU Make
Content:

i. Added the dynamic device registration feature.
ii. Added dynamic device registration samples.
iii. Added device information read/write HAL APIs.
iv. Added AES encryption and decryption APIs.
v. Changed the device information acquisition method of all samples to implementation by APIs at the HAL layer.

v2.3.3

Release date: May 6, 2019
Programming language: C
Development environments: Linux/GNU Make
Content:

i. Optimized the MQTT keepalive connection mechanism and ping request packet sending policy.

ii. Stored the topic names of MQTT subscription/unsubscription in the dynamic memory to make them easier to be
called.

iii. Changed the maximum length of topic name to 128 for consistency with the cloud backend.
iv. Fixed the bugs with the acquisition of sys and log messages by HTTPC and MQTT.

v. Optimized the error code types.

v2.3.2

Release date: April 12, 2019

Programming language: C

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 84

Development environments: Linux/GNU Make
Content:

i. Fixed user experience issues: added the gateway compilation option (disabled by default) in

 make.settings and modified the firmware update print level.

ii. Fixed the problem where the MQTT receiving buffer was prone to loss during shadow message downstreaming:
added an error message when the receiving buffer was insufficient, and changed the default size of the MQTT
sending/receiving buffer to 2,048 bytes.

iii. Changed the maximum number of successfully subscribed topics to 10.

v2.3.1

Release date: March 12, 2019
Programming language: C
Development environments: Linux/GNU Make
Content:

1. Added the device log reporting feature in the SDK, making it easier for users to remotely monitor and diagnose the
network status of devices in the console (only supported for the MQTT mode).

2. Streamlined the printout content of SDK logs, fixed several bugs, and optimized the code design.
3. Changed the maximum length of device name to 48 characters for consistency with the IoT Hub console.

v2.3.0

Release date: February 25, 2019
Programming language: C
Development environments: Linux/GNU Make

Content:

1. Added the gateway feature to allow gateway devices to connect/disconnect and send/receive messages on behalf
of subdevices based on the MQTT protocol.

2. Optimized the thread safety design for multithreaded applications and added multithreaded routines and
precautions in the samples.

3. Optimized the MQTT reconnection mechanism and heartbeat packet timer refresh policy.
4. Fixed several bugs and added validity checks for some memory operations.
5. Removed the bit field operation mode from some structures to reduce cross-platform errors.

v2.2.0

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 84

Release date: July 20, 2018

Programming language: C

Development environments: Linux/GNU Make

Content:

i. Added the NB-IoT device connection capability.

ii. Adapted to the topic wildcards # and + .

iii. Organized the directory structure of third-party libraries.

iv. Fixed several bugs.

v2.1.0

Release date: May 2, 2018

Programming language: C

Development environments: Linux/GNU Make

Content:

i. Added the new firmware update capability (over the OTA-CoAP channel).
ii. Added the HMAC-SHA1 connection authentication capability for low-end resource-constrained devices.

iii. Added the capability to get backend time.

v2.0.0

Release date: March 12, 2018

Programming language: C

Development environments: Linux/GNU Make

Content:

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 84

i. Added the new firmware update capability (over the OTA-MQTT channel).
ii. Fixed the issue where the device shadow heartbeat interval was invalid.
iii. Fixed the issue where the data received by MQTT caused buffer overflow when the data length was at the

threshold.

v1.2.2

Release date: February 7, 2018

Programming language: C

Development environments: Linux/GNU Make

Content:

i. Added support for MQTT/CoAP symmetric encryption connection.
ii. Optimized the Linux C compilation.

v1.2.1

Release date: February 2, 2018
Programming language: C
Development environments: Linux/GNU Make
Content: fixed the incorrect logic of message publishing timeout callback.

v1.2.0

Release date: January 17, 2018
Programming language: C
Development environments: Linux/GNU Make
Content:

 1. Modified the message publishing/subscribing ACKs for receipt through the callback without blocking the

sending thread.

 2. Added the capabilities of devices and the backend for connection and logging.

 3. Added the new UDP-based CoAP channel which used DTLS asymmetric encryption and consumed less power
in pure data reporting scenarios.

v1.0.0

Release date: November 15, 2017

Programming language: C

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 84

Development environments: Linux/GNU Make
Content:

 1. Added support for the MQTT protocol: devices could quickly and easily connect to the cloud server of IoT Hub.

For more information, please see MQTT Protocol Details.

 2. Added support for device shadow: for more information, please see Device Shadow Details.

 3. Added support for symmetric and asymmetric encryption.

https://github.com/mcxiaoke/mqtt
https://intl.cloud.tencent.com/document/product/1105/41834

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 84

This document describes how to port the device C-SDK to the target hardware platform. C-SDK adopts modular
design to separate the core protocol service and hardware abstraction layer (HAL). When porting across platforms,
you generally only need to modify and adapt the HAL.

C-SDK Architecture

Architecture diagram

SDK for C Cross-Platform Porting
Overview
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 84

Architecture description

The SDK is designed into four layers from top to bottom: platform service layer, core protocol layer, network layer, and
hardware abstraction layer.

Service layer

This layer is above the network protocol layer and implements features such as device connection authentication,
device shadow, gateway, dynamic registration, log reporting, and OTA.
Protocol layer
The network protocols over which devices can interact with the IoT Hub platform include MQTT, CoAP, and HTTP.
Network layer

This layer implements network protocol stacks based on TLS/SSL (TLS/DTLS), POSIX_socket (TCP/UDP), and
AT_socket. Different services can use different protocol stack API functions as needed.
Hardware abstraction layer

To implement the abstract encapsulation of underlying operations of different hardware platforms, it is necessary to
conduct porting for the specific software and hardware platforms, which is divided into two parts of required and
optional HAL APIs.

HAL Porting

HAL mainly has several major parts for porting, including those related to the OS, network and TLS, time and print,
and device information.

In the platform/os directory, the SDK demonstrates the implementation of HAL in four scenarios: Linux, Windows,
FreeRTOS, and nonOS. You can refer to the corresponding directory to port for the target platform.

OS APIs

No. Function Description

1 HAL_Malloc Dynamically applies for memory block

2 HAL_Free Releases memory block

3 HAL_ThreadCreate Creates thread

4 HAL_ThreadDestroy Terminates thread

5 HAL_MutexCreate Creates mutex lock

6 HAL_MutexDestroy Terminates mutex lock

7 HAL_MutexLock Locks mutex

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 84

No. Function Description

8 HAL_MutexUnlock Unlocks mutex

9 HAL_SemaphoreCreate Creates semaphore

10 HAL_SemaphoreDestroy Terminates semaphore

11 HAL_SemaphoreWait Waits for semaphore

12 HAL_SemaphorePost Releases semaphore

13 HAL_SleepMs Sleeps

Network and TLS HAL APIs

Network APIs provide either-or adaptation and porting. For devices that have network communication capabilities and

integrate TCP/IP network protocol stacks, you need to implement the POSIX_socket network HAL APIs. For

devices using TLS/SSL for encrypted communication, you also need to implement the TLS HAL APIs. For devices
with MCU + universal TCP_AT module, you can choose the AT_Socket framework provided by the SDK and

implement relevant AT module APIs.

HAL APIs based on POSIX_socket

Among them, TCP/UDP APIs are implemented based on POSIX socket functions. TLS APIs are dependent on the
mbedtls library. Before porting, you must ensure that the mbedtls library is available on the system. If you use other
TLS/SSL libraries, please refer to the relevant implementation of platform/tls/mbedtls for porting and

adapting.

UDP/DTLS functions need to be ported only when CoAP communication is enabled.

No. Function Description

1 HAL_TCP_Connect Establishes TCP connection

2 HAL_TCP_Disconnect Closes TCP connection

3 HAL_TCP_Write Writes data to TCP connection

4 HAL_TCP_Read Reads data from TCP connection

5 HAL_TLS_Connect Establishes TLS connection

6 HAL_TLS_Disconnect Closes TLS connection

7 HAL_TLS_Write Writes data to TLS connection

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 84

No. Function Description

8 HAL_TLS_Read Reads data from TLS connection

9 HAL_UDP_Connect Establishes UDP connection

10 HAL_UDP_Disconnect Closes UDP connection

11 HAL_UDP_Write Writes data to UDP connection

12 HAL_UDP_Read Reads data from UDP connection

13 HAL_DTLS_Connect Establishes DTLS connection

14 HAL_DTLS_Disconnect Closes DTLS connection

15 HAL_DTLS_Write Writes data to DTLS connection

16 HAL_DTLS_Read Reads data from DTLS connection

HAL APIs based on AT_socket

After AT_socket is selected by enabling the compilation macro AT_TCP_ENABLED , the SDK will call the

 at_socket API of network_at_tcp.c . You don't need to port the at_socket layer, but you need to

implement the AT serial port driver and AT module driver. For the AT module driver, you only need to implement the
driver API of the driver structure at_device_op_t in at_device of the AT framework. You can refer to the

supported modules in the at_device directory. For the AT serial port driver, you need to implement serial port

receipt interruption and then call the callback function at_client_uart_rx_isr_cb in the interruption service

program. You can refer to HAL_AT_UART_freertos.c to port for the target platform.

No. Function Description

1 HAL_AT_Uart_Init Initializes AT serial port

2 HAL_AT_Uart_Deinit Deinitializes AT serial port

3 HAL_AT_Uart_Send Sends data over AT serial port

4 HAL_AT_UART_IRQHandler Handles AT serial port receipt interruption

Time and print HAL APIs

No. Function Description

1 HAL_Printf Writes formatted data to standard output stream

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 84

No. Function Description

2 HAL_Snprintf Writes formatted data to string

3 HAL_UptimeMs Retrieves the number of milliseconds that elapsed since the system has started

4 HAL_DelayMs Blocking delay in milliseconds

Device information HAL APIs

To connect a device to the IoT Hub platform, you need to create product and device information on the platform and
save such information in a non-volatile storage medium on the device. You can refer to
 platform/os/linux/HAL_Device_linux.c for implementation.

No. Function Description

1 HAL_GetDevInfo Reads device information

2 HAL_SetDevInfo Saves device Information

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 84

This document describes how to port IoT Hub C-SDK to the FreeRTOS + lwIP platform.

FreeRTOS Porting Overview

As a micro-kernel system, FreeRTOS mainly provides core OS mechanisms such as task creation and scheduling
and inter-task communication. Different device platforms also should be equipped with different software components

before they can form a complete embedded operating platform, including C runtime libraries (such as Newlib or ARM
CMSIS library) and TCP/IP network protocol stacks (such as lwIP). In addition, the compilation and development
environments vary by device platform, so when porting C-SDK, you need to adapt it according to the specific
conditions of different devices.

Note：

The SDK provides a reference implementation based on FreeRTOS + lwIP + Newlib in
 platform/os/freertos , which has been verified and tested on Espressif's ESP8266 platform.

Code Extraction

Because different RTOS-based platforms have different compilation methods, it is generally impossible to directly use
the SDK's CMake or Make to compile. Therefore, the SDK provides the code extraction feature. It allows you to
extract the relevant code into a separate folder based on your needs. The code hierarchy in the folder is concise,
making it easy for you to copy and integrate it into your own development environment.

1. Change the platform in CMakeLists.txt to FreeRTOS and enable the code extraction feature:

set(BUILD_TYPE "release")

set(PLATFORM "freertos")

set(EXTRACT_SRC ON)

set(FEATURE_AT_TCP_ENABLED OFF)

FreeRTOS + lwIP Platform Porting
Description
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 84

2. Run the following command on Linux:

mkdir build

cd build

cmake ..

3. You can find the relevant code files in output/qcloud_iot_c_sdk with the following directory hierarchy:

qcloud_iot_c_sdk

├── include

│ ├── config.h

│ ├── exports

├── platform

└── sdk_src

└── internal_inc

Note：

 include directory: contains the SDK APIs and variable parameters, where config.h is the

compilation macros generated according to the compilation options. For more information, please see API
and Variable Parameter Description.
 platform directory: contains platform-related code, which can be modified and adapted according to

the specific conditions of the device. For more information on functions, please see Overview.
 sdk_src directory: contains the SDK core logic and protocol-related code, which generally don't need to

be modified, where internal_inc is the header file used internally by the SDK.

4. You can copy qcloud_iot_c_sdk to the compilation and development environment of your target

platform and then modify the compilation options as needed.

Porting Sample

Build a demo project based on Espressif's ESP8266 RTOS platform in the Linux development environment.

1. Please refer to ESP8266_RTOS_SDK to obtain the RTOS_SDK and cross compiler and create a project.

2. Copy the qcloud_iot_c_sdk directory extracted above to components/qcloud_iot .

3. In components/qcloud_iot , create a compilation configuration file component.mk with the following

content:

https://intl.cloud.tencent.com/document/product/1105/41853
https://intl.cloud.tencent.com/document/product/1105/41844
https://github.com/espressif/ESP8266_RTOS_SDK

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 84

#

Component Makefile

#

COMPONENT_ADD_INCLUDEDIRS := \

qcloud_iot_c_sdk/include \

qcloud_iot_c_sdk/include/exports \

qcloud_iot_c_sdk/sdk_src/internal_inc

COMPONENT_SRCDIRS := \

qcloud_iot_c_sdk/sdk_src \

qcloud_iot_c_sdk/platform

At this point, you can compile qcloud_iot_c_sdk as a component and then call the IoT Hub C-SDK APIs in your

code to connect devices and send/receive messages.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 84

For MCUs that have no network communication capabilities, the "MCU + communication module" combination is often
used. Communication modules (including Wi-Fi/2G/4G/NB-IoT) generally provide serial port-based AT instruction
protocols for MCUs to communicate over the network. For this scenario, the C-SDK encapsulates the AT-socket

network layer, where the core protocol and service layer don't need to be ported. This document describes how to port
C-SDK for connection to IoT Hub in the target environment of MCU (FreeRTOS) + universal TCP AT module.

SDK Download

Download the latest version of the device C-SDK.

SDK Feature Configuration

Use the general TCP module to compile and configure the options as follows:

Name Configuration Description

BUILD_TYPE debug/release Set as needed

EXTRACT_SRC ON Enable code extraction

COMPILE_TOOLS gcc/MSVC Set as needed and ignore in case of IDE

PLATFORM Linux/Windows Set as needed and ignore in case of IDE

FEATURE_OTA_COMM_ENABLED ON/OFF Set as needed

FEATURE_AUTH_MODE KEY Key authentication is recommended for resource-
constrained devices

FEATURE_AUTH_WITH_NOTLS ON/OFF Enable TLS as needed

FEATURE_EVENT_POST_ENABLED ON/OFF Enable event reporting as needed

FEATURE_AT_TCP_ENABLED ON Whether to enable TCP feature in AT module

MCU + Universal TCP_AT Module Porting
(FreeRTOS)
Last updated：2023-07-27 10:41:13

https://github.com/tencentyun/qcloud-iot-sdk-embedded-c

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 84

Name Configuration Description

FEATURE_AT_UART_RECV_IRQ ON Whether to enable receipt interruption feature in
AT module

FEATURE_AT_OS_USED ON Whether to enable multithreaded feature in AT
module

FEATURE_AT_DEBUG OFF
The AT module debugging feature is disabled by
default, and it needs to be enabled during
debugging

Code Extraction

1. Run the following command on Linux:

mkdir build

cd build

cmake ..

2. You can find the relevant code files in output/qcloud_iot_c_sdk with the following directory hierarchy:

qcloud_iot_c_sdk

├── include

│ ├── config.h

│ ├── exports

├── platform

└── sdk_src

└── internal_inc

Note：

 include directory: contains the SDK APIs and variable parameters, where config.h is the

compilation macros generated according to the compilation options.
 platform directory: contains platform-related code, which can be modified and adapted according to

the specific conditions of the device.

 sdk_src directory: contains the SDK core logic and protocol-related code, which generally don't need to

be modified, where internal_inc is the header file used internally by the SDK.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 84

3. You can copy qcloud_iot_c_sdk to the compilation and development environment of your target

platform and then modify the compilation options as needed.

HAL Porting

Please refer to Overview to port first.

For network HAL APIs, the AT_Socket framework provided by the SDK has been selected through the above

compilation options. The SDK will call the at_socket API of network_at_tcp.c . You don't need to port the

 at_socket layer, but you need to implement the AT serial port driver and AT module driver. For the AT module

driver, you only need to implement the driver API of the driver structure at_device_op_t in at_device of the

AT framework. You can refer to the supported modules in the at_device directory.

Currently, the SDK provides underlying API implementation for the Wi-Fi module ESP8266, which is widely used in
the IoT field, for reference when you port to other communication modules.

Business Logic Development

You can refer to the routines in the SDK's samples directory for development.

https://intl.cloud.tencent.com/document/product/1105/41844

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 84

For MCUs that have no network communication capabilities, the "MCU + communication module" combination is often
used. Communication modules (including Wi-Fi/2G/4G/NB-IoT) generally provide serial port-based AT instruction
protocols for MCUs to communicate over the network. For this scenario, the C-SDK encapsulates the AT-socket

network layer, where the core protocol and service layer don't need to be ported. This document describes how to port
C-SDK for connection to IoT Hub in the target environment of MCU (nonOS) + universal TCP AT module.

Compared with the RTOS scenario, the network data received by at_socket is processed differently. The

application layer needs to periodically call IOT_MQTT_Yield to receive the server's downstream data. If the

receipt window is missed, there will be data loss. Therefore, in scenarios with complex business logic, we

recommended you use RTOS and select the nonOS mode by configuring FEATURE_AT_OS_USED = OFF .

SDK Download

Download the latest version of the device C-SDK.

SDK Feature Configuration

Use the general TCP module to compile and configure the options for nonOS as follows:

Name Configuration Description

BUILD_TYPE debug/release Set as needed

EXTRACT_SRC ON Enable code extraction

COMPILE_TOOLS gcc/MSVC Set as needed and ignore in case of IDE

PLATFORM Linux/Windows Set as needed and ignore in case of IDE

FEATURE_OTA_COMM_ENABLED ON/OFF Set as needed

FEATURE_AUTH_MODE KEY Key authentication is recommended for resource-
constrained devices

FEATURE_AUTH_WITH_NOTLS ON/OFF Enable TLS as needed

MCU + Universal TCP_AT Module Porting
(nonOS)
Last updated：2023-07-27 10:41:13

https://github.com/tencentyun/qcloud-iot-sdk-embedded-c

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 84

Name Configuration Description

FEATURE_EVENT_POST_ENABLED ON/OFF Enable event reporting as needed

FEATURE_AT_TCP_ENABLED ON Enable at_socket component

FEATURE_AT_UART_RECV_IRQ ON Enable AT serial port receipt interruption

FEATURE_AT_OS_USED OFF
Use at_socket component in environment
without RTOS

FEATURE_AT_DEBUG OFF
The AT module debugging feature is disabled by
default, and it needs to be enabled during
debugging

Code Extraction

1. Run the following command on Linux:

mkdir build

cd build

cmake ..

2. You can find the relevant code files in output/qcloud_iot_c_sdk with the following directory hierarchy:

qcloud_iot_c_sdk

├── include

│ ├── config.h

│ ├── exports

├── platform

└── sdk_src

└── internal_inc

Note：

 include directory: contains the SDK APIs and variable parameters, where config.h is the

compilation macros generated according to the compilation options.
 platform directory: contains platform-related code, which can be modified and adapted according to

the specific conditions of the device.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 84

 sdk_src directory: contains the SDK core logic and protocol-related code, which generally don't need

to be modified, where internal_inc is the header file used internally by the SDK.

3. You can copy qcloud_iot_c_sdk to the compilation and development environment of your target platform

and then modify the compilation options as needed.

HAL Porting

Please refer to Overview first.

For network HAL APIs, the AT_Socket framework provided by the SDK has been selected through the above

compilation options. The SDK will call the at_socket API of network_at_tcp.c . You don't need to port the

 at_socket layer, but you need to implement the AT serial port driver and AT module driver. For the AT module

driver, you only need to implement the driver API of the driver structure at_device_op_t in at_device of the

AT framework. You can refer to the supported modules in the at_device directory. For the AT serial port driver,

you need to implement serial port receipt interruption and then call the callback function
 at_client_uart_rx_isr_cb in the interruption service program. You can refer to HAL_OS_nonos.c to

port for the target platform.

Business Logic Development

You can refer to the routines in the SDK's samples directory for development.

https://github.com/tencentyun/qcloud-iot-sdk-embedded-c/blob/master/docs/C-SDK_Porting%E8%B7%A8%E5%B9%B3%E5%8F%B0%E7%A7%BB%E6%A4%8D%E6%A6%82%E8%BF%B0.md

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 84

To ensure security, IoT Hub verifies the validity of each connected device. For this reason, it provides multiple
authentication methods to meet the needs for connection of devices with different resources in different use cases.

Device Identity Information

Depending on the form of device key, devices are divided into certificate-authenticated devices and key-authenticated

devices. Certificate authentication is more secure, but it consumes more software and hardware resources.

Certificate-authenticated devices must carry the following four pieces of information before it can pass the
authentication by the platform: product ID (ProductId), device name (DeviceName), device certificate (DeviceCert),
and device private key (DevicePrivateKey), among which, the certificate and private key files are generated by the
platform and correspond to each other.

Key-authenticated devices must carry the following three pieces of information before it can pass the authentication
by the platform: product ID (ProductId), device name (DeviceName), and device key (DeviceSecret), among which,
the device key is generated by the platform.

SDK for C Connection Description
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 84

The device key is determined by setting the authentication method during product creation as shown below:

Device Identity Information Burning

Device information burning is divided into preset burning and dynamic burning, which differ in terms of convenience

and security.

Preset burning

After a product is created, you can create devices one by one in the IoT Hub console or through TencentCloud API,
get their corresponding device information, and burn the above three or four pieces of information into a non-volatile
medium in a specific step of device production, so that the device SDK can read the stored device information during
running for device authentication.

Dynamic burning

https://intl.cloud.tencent.com/product/iothub

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 84

Preset burning: this involves performing personalized production actions in the mass production process and thus
affects the production efficiency. To improve the ease of use, the platform supports dynamic burning. This feature is
implemented as follows: after a product is created, its dynamic registration feature can be used to generate a

product key (ProductSecret). Unified product information can be burned for all devices under it in the production
process, i.e., product ID (ProductId) and product key (ProductSecret). After the devices are shipped, the device
identity information can be obtained through dynamic registration and then saved, and then obtained three or four
pieces of information can be used for device authentication.
Device name (DeviceName) generation for dynamic burning: if automatic device creation is used during dynamic

registration, device names can be generated by devices themselves, which are generally device IMEIs or MAC
addresses but must be unique under the same product ID (ProductId). If automatic device creation is not used
during dynamic registration, device names should be entered on the platform in advance, and the platform will
verify whether the requested device names are validly entered during dynamic device registration. This can reduce
the security risks in case of product key leakage.

Note：

For dynamic registration, you should ensure the security of the product key (ProductSecret); otherwise, major
security risks may arise.

Programming for Authenticating Preset Burnt Devices

Writing device information

For certificate-authenticated devices, implement the following HAL APIs:

HAL_API Description

HAL_SetProductID Sets the product ID, which must be stored on a non-volatile storage medium

HAL_SetDevName Sets the device name, which must be stored on a non-volatile storage medium

HAL_SetDevCertName
Sets the device certificate file name. The certificate file should be placed in the
 certs directory

HAL_SetDevPrivateKeyName
Sets the device private key file name. The private key file should be placed in
the certs directory

For key-authenticated devices, implement the following HAL APIs:

HAL_API Description

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 84

HAL_API Description

HAL_SetProductID Sets the product ID, which must be stored on a non-volatile storage medium

HAL_SetDevName Sets the device name, which must be stored on a non-volatile storage medium

HAL_SetDevSec Sets the device key, which must be stored on a non-volatile storage medium. We
recommend you encrypt and scramble it

Getting device information

For certificate-authenticated devices, implement the following HAL APIs:

HAL_API Description

HAL_GetProductID Gets product ID

HAL_GetDevName Gets device name

HAL_GetDevCertName Gets device certificate file name

HAL_GetDevPrivateKeyName Gets device certificate private key file name

For key-authenticated devices, implement the following HAL APIs:

HAL_API Description

HAL_GetProductID Gets product ID

HAL_GetDevName Gets device name

HAL_GetDevSec Gets device key. If it is encrypted and scrambled during write, it should be decrypted and
descrambled during read

Application demos

Initialize the connection parameters

static DeviceInfo sg_devInfo;

static int _setup_connect_init_params(MQTTInitParams* initParams)

{

int ret;

ret = HAL_GetDevInfo((void *)&sg_devInfo);

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 84

if(QCLOUD_ERR_SUCCESS != ret){

return ret;

}

initParams->device_name = sg_devInfo.device_name;

initParams->product_id = sg_devInfo.product_id;

......

}

Get the device information

int HAL_GetDevInfo(void *pdevInfo)

{

int ret;

DeviceInfo *devInfo = (DeviceInfo *)pdevInfo;

memset((char *)devInfo, 0, sizeof(DeviceInfo));

ret = HAL_GetProductID(devInfo->product_id, MAX_SIZE_OF_PRODUCT_ID);

ret |= HAL_GetDevName(devInfo->device_name, MAX_SIZE_OF_DEVICE_NAME);

#ifdef AUTH_MODE_CERT

ret |= HAL_GetDevCertName(devInfo->devCertFileName, MAX_SIZE_OF_DEVICE_CERT_FILE_

NAME);

ret |= HAL_GetDevPrivateKeyName(devInfo->devPrivateKeyFileName, MAX_SIZE_OF_DEVIC

E_KEY_FILE_NAME);

#else

ret |= HAL_GetDevSec(devInfo->devSerc, MAX_SIZE_OF_DEVICE_SERC);

#endif

if(QCLOUD_ERR_SUCCESS != ret){

Log_e("Get device info err");

ret = QCLOUD_ERR_DEV_INFO;

}

return ret;

}

Generate the authentication parameters

static int _serialize_connect_packet(unsigned char *buf, size_t buf_len, MQTTConn

ectParams *options, uint32_t *serialized_len) {

......

......

int username_len = strlen(options->client_id) + strlen(QCLOUD_IOT_DEVICE_SDK_APPI

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 84

D) + MAX_CONN_ID_LEN + cur_timesec_len + 4;

options->username = (char*)HAL_Malloc(username_len);

get_next_conn_id(options->conn_id);

HAL_Snprintf(options->username, username_len, "%s;%s;%s;%ld", options->client_id,

QCLOUD_IOT_DEVICE_SDK_APPID, options->conn_id, cur_timesec);

#if defined(AUTH_WITH_NOTLS) && defined(AUTH_MODE_KEY)

if (options->device_secret != NULL && options->username != NULL) {

char sign[41] = {0};

utils_hmac_sha1(options->username, strlen(options->username), sign, options->devi

ce_secret, options->device_secret_len);

options->password = (char*) HAL_Malloc (51);

if (options->password == NULL) IOT_FUNC_EXIT_RC(QCLOUD_ERR_INVAL);

HAL_Snprintf(options->password, 51, "%s;hmacsha1", sign);

}

#endif

......

}

Programming for Authenticating Dynamically Burnt Devices

Determine whether to initiate a dynamic request

int main(int argc, char **argv) {

......

memset((char *)&sDevInfo, 0, sizeof(DeviceInfo));

ret = HAL_GetProductID(sDevInfo.product_id, MAX_SIZE_OF_PRODUCT_ID);

ret |= HAL_GetProductKey(sDevInfo.product_key, MAX_SIZE_OF_PRODUCT_KEY);

ret |= HAL_GetDevName(sDevInfo.device_name, MAX_SIZE_OF_DEVICE_NAME); // Dynamic

registration. We recommend you use a unique identifier of the device as the devic

e name, such as chip ID or IMEI

#ifdef AUTH_MODE_CERT

ret |= HAL_GetDevCertName(sDevInfo.devCertFileName, MAX_SIZE_OF_DEVICE_CERT_FILE_

NAME);

ret |= HAL_GetDevPrivateKeyName(sDevInfo.devPrivateKeyFileName, MAX_SIZE_OF_DEVIC

E_KEY_FILE_NAME);

if(QCLOUD_ERR_SUCCESS != ret){

Log_e("Get device info err");

return QCLOUD_ERR_FAILURE;

}

/*You need to modify the logic for empty device information based on your own pro

duct conditions. Here is only a sample*/

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 84

if(!strcmp(sDevInfo.devCertFileName, QCLOUD_IOT_NULL_CERT_FILENAME)

||!strcmp(sDevInfo.devPrivateKeyFileName, QCLOUD_IOT_NULL_KEY_FILENAME)){

Log_d("dev Cert not exist!");

infoNullFlag = true;

}else{

Log_d("dev Cert exist");

}

#else

ret |= HAL_GetDevSec(sDevInfo.devSerc, MAX_SIZE_OF_PRODUCT_KEY);

if(QCLOUD_ERR_SUCCESS != ret){

Log_e("Get device info err");

return QCLOUD_ERR_FAILURE;

}

/*You need to modify the logic for empty device information based on your own pro

duct conditions. Here is only a sample*/

if(!strcmp(sDevInfo.devSerc, QCLOUD_IOT_NULL_DEVICE_SECRET)){

Log_d("dev psk not exist!");

infoNullFlag = true;

}else{

Log_d("dev psk exist");

}

#endif

......

}

Initiate a dynamic request and save the requested device information

/*The device information is empty. Initiate device registration. Note: after succ

essful device registration and connection, registration cannot be initiated agai

n, so please save the device information properly*/

if(infoNullFlag){

if(QCLOUD_ERR_SUCCESS == qcloud_iot_dyn_reg_dev(&sDevInfo)){

ret = HAL_SetDevName(sDevInfo.device_name);

#ifdef AUTH_MODE_CERT

ret |= HAL_SetDevCertName(sDevInfo.devCertFileName);

ret |= HAL_SetDevPrivateKeyName(sDevInfo.devPrivateKeyFileName);

#else

ret |= HAL_SetDevSec(sDevInfo.devSerc);

#endif

if(QCLOUD_ERR_SUCCESS != ret){

Log_e("devices info save fail");

}else{

#ifdef AUTH_MODE_CERT

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 84

Log_d("dynamic register success, productID: %s, devName: %s, CertFile: %s, KeyFil

e: %s", \

sDevInfo.product_id, sDevInfo.device_name, sDevInfo.devCertFileName, sDevInfo.dev

PrivateKeyFileName);

#else

Log_d("dynamic register success,productID: %s, devName: %s, devSerc: %s", \

sDevInfo.product_id, sDevInfo.device_name, sDevInfo.devSerc);

#endif

}

}else{

Log_e("%s dynamic register fail", sDevInfo.device_name);

}

}

After the device information is dynamically requested successfully, the preset burning feature will be completed. The
subsequent authentication process is the same as that with preset burning.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 84

IoT Hub device SDK for C relies on a secure and powerful data channel to enable IoT developers to quickly connect
devices to the cloud for two-way communication.

Note：

After v3.1.0, the SDK refactored and optimized the compilation environment, code, and directory structure,
increasing the availability and portability.

Scope of Application of SDK for C

Featuring a modular design, the SDK for C separates the core protocol service from the hardware abstraction layer
and provides flexible configuration options and multiple compilation methods, making it suitable for development
platforms and use environments of different devices.

Network communication-capable devices on Linux/Windows

For devices that have network communication capabilities and run on standard Linux/Windows, such as PCs,
servers, and gateway devices, as well as advanced embedded devices such as Raspberry Pi, you can directly
compile and run the SDK on them.
For embedded Linux devices that require cross compilation, if the toolchain of the development environment has
 glibc or similar libraries which can provide system calls, including socket communication, SELECT sync IO,

dynamic memory allocation, functions for getting time/sleeping/generating random number/printing, as well as

critical data protection such as the mutex mechanism (only when multiple threads are required), only simple
adaptation (e.g., changing the cross compiler settings in CMakeLists.txt or make.settings) is required

before the SDK can be compiled and run.

Network communication-capable devices on RTOS

For IoT devices that have network communication capabilities and run on RTOS, the SDK for C needs to be
adapted to different RTOS systems for porting. Currently, it has been adapted to multiple IoT-oriented RTOS

platforms, including FreeRTOS, RT-Thread, and TencentOS tiny.
When porting the SDK to an RTOS device, if the platform provides C runtime libraries like Newlib and

embedded TCP/IP protocol stacks like lwIP, adaptation for porting can be done easily.

SDK for C Use Instructions
Usage Overview
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 84

Devices with MCU + communication module

For MCUs that have no network communication capabilities, the "MCU + communication module" combination is
often used. Communication modules (including Wi-Fi/2G/4G/NB-IoT) generally provide serial port-based AT
instruction protocols for MCUs to communicate over the network. For this scenario, the SDK for C encapsulates the

AT-socket network layer, where the core protocol and service layer don't need to be ported. In addition, it provides
FreeRTOS-based and nonOS HAL implementation methods.
In addition, IoT Hub provides a dedicated AT instruction set. If the communication module implements this
instruction set, it will be easier for devices to connect and communicate, and less code will be required. For this
scenario, please refer to the SDK for MCU AT dedicated to the Tencent Cloud customized AT module.

SDK Directory Structure Overview

The directory structure and top-level documents are described as follows:

Name Description

CMakeLists.txt CMake compilation and description file

CMakeSettings.json CMake configuration file on Visual Studio

cmake_build.sh Compilation script with CMake on Linux

make.settings Configuration file compiled directly by Makefile on Linux

Makefile Direct compilation with Makefile on Linux

device_info.json
Device information file. If DEBUG_DEV_INFO_USED = OFF , the device information
will be parsed from this file

docs Documentation directory, i.e., the use instructions of the SDKs for different platforms

external_libs Third-party package components, such as Mbed TLS

samples Application demos

include External header files provided to users

platform Platform source code files. Currently, implementations are provided for different OS
(Linux/Windows/FreeRTOS/nonOS), TLS (Mbed TLS), and AT module

sdk_src Core communication protocols and service code of the SDK

tools Compilation and code generation script tools supporting the SDK

https://github.com/tencentyun/qcloud-iot-sdk-tencent-at-based.git

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 84

SDK Compilation Method Description

The SDK for C supports three compilation methods:

CMake
Makefile

Code extraction

For more information on the compilation methods and compilation configuration options, please see Compilation
Configuration Description and Compilation Environment (Linux and Windows).

SDK Demos

The samples directory of the SDK for C contains demos showing how to use the features. For more information on

how to run the demos, please see the corresponding documents in the SDK documentation directory.

For more information on device connection to and message sending/receiving in IoT Hub over MQTT, please see
Getting Started with MQTT.

Notes

API changes for OTA update

Starting from SDK v3.0.3, OTA update supports checkpoint restart. When the firmware download process is
interrupted due to network exceptions or other issues, the downloaded part of the firmware can be saved, so that the
download can start from where interrupted instead of from the beginning when it is resumed.

After this new feature was supported, the methods of using relevant OTA APIs changed. If you have upgraded from

v3.0.2 or below, you should modify your logic code; otherwise, firmware download will fail. For more information on
how to modify it, please see samples/ota/ota_mqtt_sample.c .

Code name changes

To improve the code readability and comply with the naming conventions, SDK v3.1.0 incorporated changes to certain
variables, functions, and macro names. If you have upgraded from v3.0.3 or below, you can run the
 tools/update_from_old_SDK.sh script on Linux to replace the names in your own code, and then you can

use the new version of the SDK directly.

Old Name New Name

QCLOUD_ERR_SUCCESS QCLOUD_RET_SUCCESS

https://intl.cloud.tencent.com/document/product/1105/41850
https://intl.cloud.tencent.com/document/product/1105/41851
https://intl.cloud.tencent.com/document/product/1105/41852

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 84

Old Name New Name

QCLOUD_ERR_MQTT_RECONNECTED QCLOUD_RET_MQTT_RECONNECTED

QCLOUD_ERR_MQTT_MANUALLY_DISCONNECTED QCLOUD_RET_MQTT_MANUALLY_DISC

QCLOUD_ERR_MQTT_CONNACK_CONNECTION_ACCEPTED QCLOUD_RET_MQTT_CONNACK_CONN

QCLOUD_ERR_MQTT_ALREADY_CONNECTED QCLOUD_RET_MQTT_ALREADY_CONN

MAX_SIZE_OF_DEVICE_SERC MAX_SIZE_OF_DEVICE_SECRET

devCertFileName dev_cert_file_name

devPrivateKeyFileName dev_key_file_name

devSerc device_secret

MAX_SIZE_OF_PRODUCT_KEY MAX_SIZE_OF_PRODUCT_SECRET

product_key product_secret

DEBUG eLOG_DEBUG

INFO eLOG_INFO

WARN eLOG_WARN

ERROR eLOG_ERROR

DISABLE eLOG_DISABLE

Log_writter IOT_Log_Gen

qcloud_iot_dyn_reg_dev IOT_DynReg_Device

IOT_SYSTEM_GET_TIME IOT_Get_SysTime

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 84

This document describes the compilation methods and compilation configuration options of the SDK for C, as well as
the compilation environment setup and compilation samples in the Linux and Windows development environments.

SDK for C Compilation Method Description

The SDK for C supports the following compilation methods.

CMake

We recommend you use CMake, a cross-platform compilation tool, for compilation in the Linux and Windows
development environments.
Compilation with CMake uses CMakeLists.txt as the input file for compilation configuration options.

Makefile

For environments that don't support CMake, Makefile can be used for compilation.
As for SDK v3.0.3 or below, compilation with Makefile uses make.settings as the input file for compilation

configuration options, and you only need to run make after the modification.

Code extraction

This method allows you to select features based on your needs and extract the relevant code into a separate folder.
The code hierarchy in the folder is concise, making it easy for you to copy and integrate it into your own
development environment.

This method relies on CMake. Configure relevant features in CMakeLists.txt , set EXTRACT_SRC to ON ,

and run the following command on Linux:

mkdir build

cd build

cmake ..

You can find the relevant code files in output/qcloud_iot_c_sdk with the following directory hierarchy:

qcloud_iot_c_sdk

├── include

Compilation Configuration Description
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 84

│ ├── config.h

│ ├── exports

├── platform

└── sdk_src

└── internal_inc

The include directory contains the SDK APIs and variable parameters, where config.h is the compilation

macros generated according to the compilation options.

The platform directory contains platform-related code, which can be modified and adapted according to the

specific conditions of the device.

The sdk_src directory contains the SDK core logic and protocol-related code, which generally don't need to be

modified, where internal_inc is the header file used internally by the SDK.

Note：
You can copy qcloud_iot_c_sdk to the compilation and development environment of your target

platform and then modify the compilation options as needed.

SDK for C Compilation Option Description

Compilation configuration options

Most of the following configuration options apply to CMake and make.setting . The ON value in CMake

corresponds to y in make.setting , and OFF to n .

Name CMake Value Description

BUILD_TYPE release/debug

release: disable the IOT_DEBUG
information (the compilation is output to
the release directory).

debug: enable the IOT_DEBUG
information (the compilation is output to
the debug directory).

EXTRACT_SRC ON/OFF Whether to enable code extraction, which
takes effect only for CMake.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 84

Name CMake Value Description

COMPILE_TOOLS gcc
GCC and MSVC are supported. It can
also be a cross compiler, such as arm-
none-linux-gnueabi-gcc .

PLATFORM Linux Includes
Linux/Windows/FreeRTOS/nonOS.

FEATURE_MQTT_COMM_ENABLED ON/OFF Whether to enable MQTT channel.

FEATURE_MQTT_DEVICE_SHADOW ON/OFF Whether to enable device shadow.

FEATURE_COAP_COMM_ENABLED ON/OFF Whether to enable CoAP channel.

FEATURE_GATEWAY_ENABLED ON/OFF Whether to enable gateway feature.

FEATURE_OTA_COMM_ENABLED ON/OFF Whether to enable OTA firmware update.

FEATURE_OTA_SIGNAL_CHANNEL MQTT/CoAP OTA signaling channel type.

FEATURE_AUTH_MODE KEY/CERT Connection authentication method.

FEATURE_AUTH_WITH_NOTLS ON/OFF OFF: TLS enabled; ON: TLS disabled.

FEATURE_DEV_DYN_REG_ENABLED ON/OFF Whether to enable dynamic device
registration.

FEATURE_LOG_UPLOAD_ENABLED ON/OFF Whether to enable log reporting.

FEATURE_EVENT_POST_ENABLED ON/OFF Whether to enable event reporting.

FEATURE_DEBUG_DEV_INFO_USED ON/OFF Whether to enable device information
source acquisition.

FEATURE_SYSTEM_COMM_ENABLED ON/OFF Whether to enable backend time
acquisition.

FEATURE_AT_TCP_ENABLED ON/OFF Whether to enable TCP feature in AT
module.

FEATURE_AT_UART_RECV_IRQ ON/OFF Whether to enable receipt interruption
feature in AT module.

FEATURE_AT_OS_USED ON/OFF Whether to enable multithreaded feature
in AT module.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 84

Name CMake Value Description

FEATURE_AT_DEBUG ON/OFF Whether to enable debugging feature in
AT module.

FEATURE_MULTITHREAD_TEST_ENABLED ON/OFF Whether to compile the Linux
multithreaded test routine.

There is a dependency relationship between the configuration options. A configuration option is valid only when the
value of its dependent option is valid as shown below:

Name Dependent Option Valid Value

FEATURE_MQTT_DEVICE_SHADOW FEATURE_MQTT_COMM_ENABLED ON

FEATURE_GATEWAY_ENABLED FEATURE_MQTT_COMM_ENABLED ON

FEATURE_OTA_SIGNAL_CHANNEL(MQTT) FEATURE_OTA_COMM_ENABLED

FEATURE_MQTT_COMM_ENABLED

ON

ON

FEATURE_OTA_SIGNAL_CHANNEL(COAP) FEATURE_OTA_COMM_ENABLED

FEATURE_COAP_COMM_ENABLED

ON

ON

FEATURE_AUTH_WITH_NOTLS FEATURE_AUTH_MODE KEY

FEATURE_AT_UART_RECV_IRQ FEATURE_AT_TCP_ENABLED ON

FEATURE_AT_OS_USED FEATURE_AT_TCP_ENABLED ON

FEATURE_AT_DEBUG FEATURE_AT_TCP_ENABLED ON

Device information options

After a device is created in the IoT Hub console, you need to configure its information
(ProductID/DeviceName/DeviceSecret/Cert/Key file) in the SDK first before it can run properly. In the

development phase, the SDK provides two methods of storing the device information:

If the device information is stored in the code (compilation option DEBUG_DEV_INFO_USED = ON), you should

modify the device information in platform/os/xxx/HAL_Device_xxx.c . This method can be used on

platforms without a file system.
If the device information is stored in the configuration file (compilation option DEBUG_DEV_INFO_USED =

 OFF), you should modify the device information in the device_info.json file with no need to recompile the

SDK. This method is recommended for development on Linux and Windows.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 84

Linux (Ubuntu)

Note：
The Ubuntu version used for demonstration in this document is v16.04.

1. Install the necessary software

The SDK requires CMake v3.5 or above. The CMake version installed by default is low. If compilation fails,
download and install the specific version of CMake as instructed in Installation Instructions.

$ sudo apt-get install -y build-essential make git gcc cmake

2. Modify the configuration

Modify the CMakeLists.txt file in the root directory of the SDK and make sure that the following options exist

(with a key-authenticated device as example):

set(BUILD_TYPE "release")

set(COMPILE_TOOLS "gcc")

set(PLATFORM "linux")

set(FEATURE_MQTT_COMM_ENABLED ON)

set(FEATURE_AUTH_MODE "KEY")

set(FEATURE_AUTH_WITH_NOTLS OFF)

set(FEATURE_DEBUG_DEV_INFO_USED OFF)

3. Run the script for compilation

4. Below is a complete compilation library and demo:

./cmake_build.sh

Compilation Environment (Linux and
Windows)
Last updated：2023-07-27 10:41:13

https://cmake.org/download/
https://gitlab.kitware.com/cmake/cmake

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 84

5. The output library files, header files, and samples are in the output/release folder.

After the complete compilation, if you only need to compile the demo, then run the following code:

./cmake_build.sh samples

6. Enter the device information

Enter the information of the device created on the IoT Hub platform (with a key-authenticated device as example) in
 device_info.json in the root directory of the SDK. Below is the sample code:

"auth_mode":"KEY",

"productId":"S3EUVBQAZW",

"deviceName":"test_device",

"key_deviceinfo":{

"deviceSecret":"vX6PQqazsGsMyf5SMfs6OA6y"

}

7. Run the demo

The demo output is in the output/release/bin folder. For example, to run the

 data_template_sample demo, enter ./output/release/bin/data_template_sample .

Windows

Getting and installing Visual Studio 2019

1. Download Visual Studio 2019 and install it. In this document, the downloaded and installed version is v16.2
Community.

https://visualstudio.microsoft.com/zh-hans/downloads/

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 84

2. Select Desktop development with C++ and C++ CMake tools for Windows.

Compilation and running

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 84

1. Run Visual Studio, select Open a local folder, and select the downloaded SDK for C directory.

2. Enter the information of the device created in the IoT Hub console (with a key-authenticated device as example) in
 device_info.json . Below is the sample code:

"auth_mode":"KEY",

"productId":"S3EUVBQAZW",

"deviceName":"test_device",

"key_deviceinfo":{

"deviceSecret":"vX6PQqazsGsMyf5SMfs6OA6y"

}

3. Double-click CMakeLists.txt in the root directory and make sure that the platform is set to Windows and the

compilation tool is set to MSVC in the compilation toolchain.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 84

Compilation toolchain

#set(COMPILE_TOOLS "gcc")

#set(PLATFORM "linux")

set(COMPILE_TOOLS "MSVC")

set(PLATFORM "windows")

4. Visual Studio will automatically build the CMake cache. Just wait for the build to complete.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 84

5. After the cache is generated, select Build > Build All.

6. Select the corresponding demo for running, which should correspond to the user information.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 84

This document describes how to create devices and permissions in the IoT Hub console and quickly try out device
connection to IoT Hub over the MQTT protocol for message sending and receiving based on the mqtt_sample of the
C-SDK.

Operations in Console

Creating product and device

1. Log in to the IoT Hub console and click Products on the left sidebar.
2. On the product list page, click Create Product.
3. On the pop-up product adding page, select the node type and product type, enter the product name, select the

authentication method and data format, and enter the product description.

Getting Started with MQTT
Last updated：2023-07-27 10:41:13

https://console.intl.cloud.tencent.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 84

Then, click Confirm (select as shown below for directly connected general devices).

4. After the product is created, click Devices at the bottom of the generated product page.

5. On the device list page, click Add Device.

If the authentication method is certificate authentication, after the device name is entered, be sure to click
Download in the pop-up window. The device key and device certificate in the downloaded package are used for

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 84

authenticating the device during connection to IoT Hub.

If the authentication method is key authentication, after the device name is entered, the key of the added device will

be displayed in the pop-up window.

Creating topic

1. On the generated product page, click Permissions.
2. On the permission list page, click Add Topic Permission.
3. In the topic permission pop-up window, enter data , set the operation permission to Subscribe and Publish,

and click Confirm.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 84

4. Then, the productID/\${deviceName}/data topic will be created, and you can view all permissions of the

product in the permission list on the product page.

Compiling and Running Demo

The following describes how to compile and run the mqtt_sample demo in the Linux environment (with a key-

authenticated device as example).

1. Compile the SDK

(1) Modify CMakeLists.txt to ensure that the following options exist:

set(BUILD_TYPE "release")

set(COMPILE_TOOLS "gcc")

set(PLATFORM "linux")

set(FEATURE_MQTT_COMM_ENABLED ON)

set(FEATURE_AUTH_MODE "KEY")

set(FEATURE_AUTH_WITH_NOTLS OFF)

set(FEATURE_DEBUG_DEV_INFO_USED OFF)

(2) Run the following script for compilation.

./cmake_build.sh

(3) The demo output is in the output/release/bin folder.

2. Enter the device information

Enter the information of the device created above on the IoT Hub platform in device_info.json .

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 84

"auth_mode":"KEY",

"productId":"S3EUVBRJLB",

"deviceName":"test_device",

"key_deviceinfo":{

"deviceSecret":"vX6PQqazsGsMyf5SMfs6OA6y"

}

3. Run the mqtt_sample demo

./output/release/bin/mqtt_sample

INF|2019-09-12 21:28:20|device.c|iot_device_info_set(67): SDK_Ver: 3.1.0, Product

_ID: S3EUVBRJLB, Device_Name: test_device

DBG|2019-09-12 21:28:20|HAL_TLS_mbedtls.c|HAL_TLS_Connect(204): Setting up the SS

L/TLS structure...

DBG|2019-09-12 21:28:20|HAL_TLS_mbedtls.c|HAL_TLS_Connect(246): Performing the SS

L/TLS handshake...

DBG|2019-09-12 21:28:20|HAL_TLS_mbedtls.c|HAL_TLS_Connect(247): Connecting to /S3

EUVBRJLB.iotcloud.tencentdevices.com/8883...

INF|2019-09-12 21:28:20|HAL_TLS_mbedtls.c|HAL_TLS_Connect(269): connected with /S

3EUVBRJLB.iotcloud.tencentdevices.com/8883...

INF|2019-09-12 21:28:20|mqtt_client.c|IOT_MQTT_Construct(125): mqtt connect with

id: p8t0W success

INF|2019-09-12 21:28:20|mqtt_sample.c|main(303): Cloud Device Construct Success

DBG|2019-09-12 21:28:20|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(138): t

opicName=$sys/operation/result/S3EUVBRJLB/test_device|packet_id=1932

INF|2019-09-12 21:28:20|mqtt_sample.c|_mqtt_event_handler(71): subscribe success,

packet-id=1932

DBG|2019-09-12 21:28:20|system_mqtt.c|_system_mqtt_sub_event_handler(80): mqtt sy

s topic subscribe success

DBG|2019-09-12 21:28:20|mqtt_client_publish.c|qcloud_iot_mqtt_publish(337): publi

sh packetID=0|topicName=$sys/operation/S3EUVBRJLB/test_device|payload={"type": "g

et", "resource": ["time"]}

DBG|2019-09-12 21:28:20|system_mqtt.c|_system_mqtt_message_callback(63): Recv Msg

Topic:$sys/operation/result/S3EUVBRJLB/test_device, payload:{"type":"get","time":

1568294900}

INF|2019-09-12 21:28:21|mqtt_sample.c|main(316): system time is 1568294900

DBG|2019-09-12 21:28:21|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(138): t

opicName=S3EUVBRJLB/test_device/data|packet_id=1933

INF|2019-09-12 21:28:21|mqtt_sample.c|_mqtt_event_handler(71): subscribe success,

packet-id=1933

DBG|2019-09-12 21:28:21|mqtt_client_publish.c|qcloud_iot_mqtt_publish(329): publi

sh topic seq=1934|topicName=S3EUVBRJLB/test_device/data|payload={"action": "publi

sh_test", "count": "0"}

INF|2019-09-12 21:28:21|mqtt_sample.c|_mqtt_event_handler(98): publish success, p

acket-id=1934

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 84

INF|2019-09-12 21:28:21|mqtt_sample.c|on_message_callback(195): Receive Message W

ith topicName:S3EUVBRJLB/test_device/data, payload:{"action": "publish_test", "co

unt": "0"}

INF|2019-09-12 21:28:22|mqtt_client_connect.c|qcloud_iot_mqtt_disconnect(437): mq

tt disconnect!

INF|2019-09-12 21:28:22|system_mqtt.c|_system_mqtt_sub_event_handler(98): mqtt cl

ient has been destroyed

INF|2019-09-12 21:28:22|mqtt_client.c|IOT_MQTT_Destroy(186): mqtt release!

4. Observe message sending

The following log information shows that the demo reported data to /{productID}/{deviceName}/data

through the Publish message type of MQTT, and that the server received and successfully processed the

message.

INF|2019-09-12 21:28:21|mqtt_sample.c|_mqtt_event_handler(98): publish success, p

acket-id=1934

5. Observe message receiving

The following log information shows that as the message reached the subscribed topic, it was pushed to the demo as-
is by the server and entered the corresponding callback function.

INF|2019-09-12 21:28:21|mqtt_sample.c|on_message_callback(195): Receive Message W

ith topicName:S3EUVBRJLB/test_device/data, payload:{"action": "publish_test", "co

unt": "0"}

6. Observe logs in the console

Log in to the IoT Hub console, click the product name, and click Cloud Log on the top to view the message just
reported.

https://console.intl.cloud.tencent.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 84

The header files of the device SDK for C provided for you to call such as API function declarations, constants, and
variable parameter definitions are in the include directory. This document describes the variable parameters and

API functions in the directory.

Variable Parameter Configuration

You can configure corresponding parameters in the SDK for C based on the needs in specific scenarios to ensure the
smooth operations of your businesses. Variable connection parameters include:

1. Timeout period of blocking MQTT calls (including connection, subscribing, and publishing) in milliseconds. 5000
ms is recommended.

2. Size of the buffer for message sending and receiving over the MQTT protocol, which is 2,048 bytes by default and

can be up to 16 KB.
3. Size of the buffer for message sending and receiving over the CoAP protocol, which is 512 bytes by default and can

be up to 1 KB.
4. MQTT heartbeat message sending interval in milliseconds, which can be up to 690s.
5. Maximum waiting time for reconnection in milliseconds. When a device is reconnected after disconnection, the

waiting time will double if reconnection fails, and reconnection will stop when the maximum waiting time is

exceeded.

You can modify the configuration of the corresponding connection parameters by modifying the following macro
definitions in the include/qcloud_iot_export_variables.h file.

You need to recompile the SDK after modification. Below is the sample code:

/* default MQTT/CoAP timeout value when connect/pub/sub (unit: ms) */

#define QCLOUD_IOT_MQTT_COMMAND_TIMEOUT (5 * 1000)

/* default MQTT keep alive interval (unit: ms) */

#define QCLOUD_IOT_MQTT_KEEP_ALIVE_INTERNAL (240 * 1000)

/* default MQTT Tx buffer size, MAX: 16*1024 */

#define QCLOUD_IOT_MQTT_TX_BUF_LEN (2048)

/* default MQTT Rx buffer size, MAX: 16*1024 */

#define QCLOUD_IOT_MQTT_RX_BUF_LEN (2048)

API and Variable Parameter Description
Last updated：2023-07-27 10:41:13

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 84

/* default COAP Tx buffer size, MAX: 1*1024 */

#define COAP_SENDMSG_MAX_BUFLEN (512)

/* default COAP Rx buffer size, MAX: 1*1024 */

#define COAP_RECVMSG_MAX_BUFLEN (512)

/* MAX MQTT reconnect interval (unit: ms) */

#define MAX_RECONNECT_WAIT_INTERVAL (60 * 1000)

API Function Description

The following describes the main features and corresponding APIs provided by the SDK for C v3.1.0 for you to

compile business logic. For more information on API parameters and returned values, please see the comments in the
header files of the SDK code such as include/exports/qcloud_iot_export_*.h .

MQTT APIs

No. Function Description

1 IOT_MQTT_Construct Constructs MQTTClient and connects to MQTT cloud service

2 IOT_MQTT_Destroy Closes MQTT connection and terminates MQTTClient

3 IOT_MQTT_Yield
Performs tasks such as reading MQTT messages, processing messages,
timing out requests, and managing heartbeat packets and reconnection
status in the current thread context

4 IOT_MQTT_Publish Publishes MQTT message

5 IOT_MQTT_Subscribe Subscribes to MQTT topic

6 IOT_MQTT_Unsubscribe Unsubscribes from subscribed MQTT topic

7 IOT_MQTT_IsConnected Queries whether MQTT is currently connected to

8 IOT_MQTT_GetErrCode Gets the error code of IOT_MQTT_Construct failure

Notes on use in multithreaded environment

To use MQTT APIs in a multithreaded environment, you need to pay attention to the following:

You cannot use multiple threads to call IOT_MQTT_Yield , IOT_MQTT_Construct , or

 IOT_MQTT_Destroy .

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 84

You can use multiple threads to call IOT_MQTT_Publish , IOT_MQTT_Subscribe , and

 IOT_MQTT_Unsubscribe .

As the function to read MQTT messages from socket and process them, IOT_MQTT_Yield should have a

certain execution time to prevent it from being suspended or preempted for a long time.

Device shadow APIs

For more information on the device shadow feature, please see Device Shadow Details.

No. Function Description

1 IOT_Shadow_Construct
Constructs device shadow client
 ShadowClient and connects to MQTT
cloud service

2 IOT_Shadow_Publish The shadow client publishes an MQTT
message

3 IOT_Shadow_Subscribe The shadow client subscribes to an MQTT
topic

4 IOT_Shadow_Unsubscribe The shadow client unsubscribes from a
subscribed MQTT topic

5 IOT_Shadow_IsConnected Queries whether MQTT of the shadow client
is currently connected to

6 IOT_Shadow_Destroy
Closes shadow MQTT connection and
terminates ShadowClient

7 IOT_Shadow_Yield

Performs tasks such as reading MQTT
messages, processing messages, timing out
requests, and managing heartbeat packets
and reconnection status in the current
thread context

8 IOT_Shadow_Update Updates device shadow document
asynchronously

9 IOT_Shadow_Update_Sync Updates device shadow document
synchronously

10 IOT_Shadow_Get Gets device shadow document
asynchronously

https://intl.cloud.tencent.com/document/product/1105/41834

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 84

No. Function Description

11 IOT_Shadow_Get_Sync Gets device shadow document
synchronously

12 IOT_Shadow_Register_Property Registers the attribute of the current device

13 IOT_Shadow_UnRegister_Property Deletes registered device attribute

14 IOT_Shadow_JSON_ConstructReport
Adds reported field to JSON document
for update in a non-overwriting manner

15 IOT_Shadow_JSON_Construct_OverwriteReport
Adds reported field to JSON document
for update in an overwriting manner

16 IOT_Shadow_JSON_ConstructReportAndDesireAllNull
Adds reported field to JSON document
and empties desired field

17 IOT_Shadow_JSON_ConstructDesireAllNull
Adds "desired": null field to JSON
document

CoAP APIs

No. Function Description

1 IOT_COAP_Construct Constructs CoAPClient and completes CoAP connection

2 IOT_COAP_Destroy Closes CoAP connection and terminates CoAPClient

3 IOT_COAP_Yield Performs tasks such as reading CoAP messages and processing
messages in the current thread context

4 IOT_COAP_SendMessage Publishes CoAP message

5 IOT_COAP_GetMessageId Gets msgId in CoAP Response message

6 IOT_COAP_GetMessagePayload Gets the content of CoAP Response message

7 IOT_COAP_GetMessageCode Gets the error code of CoAP Response message

OTA APIs

For more information on the OTA firmware download feature, please see Device Firmware Update.

No. Function Description

https://intl.cloud.tencent.com/document/product/1105/41507

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 84

No. Function Description

1 IOT_OTA_Init Initializes OTA module. The client needs to initialize
MQTT/CoAP before calling this API

2 IOT_OTA_Destroy Releases resources related to OTA module

3 IOT_OTA_ReportVersion Reports local firmware version information to OTA server

4 IOT_OTA_IsFetching Checks whether the firmware is being downloaded

5 IOT_OTA_IsFetchFinish Checks whether the firmware has been downloaded

6 IOT_OTA_FetchYield Gets firmware from remote server with specific timeout value

7 IOT_OTA_Ioctl Gets specified OTA information

8 IOT_OTA_GetLastError Gets the last error code

9 IOT_OTA_StartDownload
Establishes HTTP connection with firmware server according to
obtained firmware update address and local firmware information
offset (whether to support checkpoint restart)

10 IOT_OTA_UpdateClientMd5 Calculates the MD5 of local firmware before checkpoint restart

11 IOT_OTA_ReportUpgradeBegin Reports the status of impending update to server before firmware
update

12 IOT_OTA_ReportUpgradeSuccess Reports the status of update success to server after successful
firmware update

13 IOT_OTA_ReportUpgradeFail Reports the status of update failure to server after failed firmware
update

Log APIs

For more information on the device log reporting feature, please see the log reporting section of the IoT Hub
documentation in the SDK docs directory.

No. Function Description

1 IOT_Log_Set_Level Sets the printout level of SDK logs

2 IOT_Log_Get_Level Returns the printout level of SDK logs

3 IOT_Log_Set_MessageHandler Sets log callback function to redirect SDK logs to another output
method

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 84

No. Function Description

4 IOT_Log_Init_Uploader Enables SDK log reporting to the cloud and initializes resources

5 IOT_Log_Fini_Uploader Disables SDK log reporting to the cloud and releases resources

6 IOT_Log_Upload Reports SDK execution logs to the cloud

7 IOT_Log_Set_Upload_Level Sets the reporting level of SDK logs

8 IOT_Log_Get_Upload_Level Returns the reporting level of SDK logs

9 Log_d/i/w/e Prints SDK logs by level

System time APIs

No. Function Description

1 IOT_Get_SysTime Gets IoT Hub's backend time. Currently, the time sync feature is supported only
for the MQTT channel

Gateway feature APIs

Fore more information on the gateway feature, please see the gateway product section of the IoT Hub documentation
in the SDK docs directory.

No. Function Description

1 IOT_Gateway_Construct Constructs gateway client and completes MQTT connection

2 IOT_Gateway_Destroy Closes MQTT connection and terminates gateway client

3 IOT_Gateway_Subdev_Online Connects subdevice

4 IOT_Gateway_Subdev_Offline Disconnects subdevice

5 IOT_Gateway_Yield
Performs tasks such as reading MQTT messages, processing
messages, timing out requests, and managing heartbeat packets and
reconnection status in the current thread context

6 IOT_Gateway_Publish Publishes MQTT message

7 IOT_Gateway_Subscribe Subscribes to MQTT topic

8 IOT_Gateway_Unsubscribe Unsubscribes from subscribed MQTT topic

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 84

Overview

IoT Hub assigns a unique product ID to each created product. You can customize the DeviceName to identify

devices and use the product ID + device ID + device certificate/key to authenticate devices. Devices need to store
such identity information. The C-SDK provides APIs for reading and writing the device information and reference

implementations for adaptation as needed.

Device Identity Information

Certificate-authenticated devices must carry the following four pieces of information before it can pass the
authentication by the platform: product ID (ProductId), device name (DeviceName), device certificate (DeviceCert),
and device private key (DevicePrivateKey), among which, the certificate and private key files are generated by the
platform and correspond to each other.

Key-authenticated devices must carry the following three pieces of information before it can pass the authentication
by the platform: product ID (ProductId), device name (DeviceName), and device key (DeviceSecret), among which,
the device key is generated by the platform.

Device Identity Information Burning

Device information burning is divided into preset burning and dynamic burning, which differ in terms of convenience
and security.

Preset burning

After a product is created, you can create devices one by one in the IoT Hub console or through TencentCloud API,

get their corresponding device information, and burn the above three or four pieces of information into a non-volatile
medium in a specific step of device production, so that the device SDK can read the stored device information during
running for device authentication.

Dynamic burning

Preset burning: this involves performing personalized production actions in the mass production process and thus
affects the production efficiency. To improve the ease of use, the platform supports dynamic burning. This feature is

implemented as follows: after a product is created, its dynamic registration feature can be enabled to generate a

Device Information Storage
Last updated：2023-07-27 10:41:13

https://console.intl.cloud.tencent.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 84

product key (ProductSecret). Unified product information can be burned for all devices under it in the production
process, i.e., product ID (ProductId) and product key (ProductSecret). After the devices are shipped, the device
identity information can be obtained through dynamic registration and then saved, and then obtained three or four

pieces of information can be used for device authentication.
Device name (DeviceName) generation for dynamic burning: if automatic device creation is enabled during
dynamic registration, device names can be generated by devices themselves, which are generally device IMEIs or
MAC addresses but must be unique under the same product ID (ProductId). If automatic device creation is not
enabled during dynamic registration, device names should be entered on the platform in advance, and the platform

will verify whether the requested device names are validly entered during dynamic device registration. This can
reduce the security risks in case of product key leakage.

Note：
For dynamic registration, you should ensure the security of the product key (ProductSecret); otherwise, major
security risks may arise.

Device Information Read/Write HAL APIs

The SDK provides HAL APIs for reading and writing device information, which must be implemented. For more

information on how to implement device information read/write, please see HAL_Device_Linux.c on Linux.

Device information HAL APIs:

HAL_API Description

HAL_SetDevInfo Writes device information

HAL_GetDevInfo Reads device information

Device Information Configuration in Development Phase

After a device is created, you need to configure its information
(ProductID/DeviceName/DeviceSecret/Cert/Key file) in the SDK first before the demo can run properly.

In the development phase, the SDK provides two methods of storing the device information:

1. If the device information is stored in the code (compilation option DEBUG_DEV_INFO_USED = ON), you should

modify the device information in platform/os/xxx/HAL_Device_xxx.c . This method can be used on

platforms without a file system.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 84

/* product Id */

static char sg_product_id[MAX_SIZE_OF_PRODUCT_ID + 1] = "PRODUCT_ID";

/* device name */

static char sg_device_name[MAX_SIZE_OF_DEVICE_NAME + 1] = "YOUR_DEV_NAME";

#ifdef DEV_DYN_REG_ENABLED

/* product secret for device dynamic Registration */

static char sg_product_secret[MAX_SIZE_OF_PRODUCT_SECRET + 1] = "YOUR_PRODUCT_SEC

RET";

#endif

#ifdef AUTH_MODE_CERT

/* public cert file name of certificate device */

static char sg_device_cert_file_name[MAX_SIZE_OF_DEVICE_CERT_FILE_NAME + 1] = "YO

UR_DEVICE_NAME_cert.crt";

/* private key file name of certificate device */

static char sg_device_privatekey_file_name[MAX_SIZE_OF_DEVICE_SECRET_FILE_NAME +

1] = "YOUR_DEVICE_NAME_private.key";

#else

/* device secret of PSK device */

static char sg_device_secret[MAX_SIZE_OF_DEVICE_SECRET + 1] = "YOUR_IOT_PSK";

#endif

2. If the device information is stored in the configuration file (compilation option DEBUG_DEV_INFO_USED =

 OFF), you should modify the device information in the device_info.json file with no need to recompile the

SDK. This method is recommended for development on Linux and Windows.

{

"auth_mode":"KEY/CERT",

"productId":"PRODUCT_ID",

"productSecret":"YOUR_PRODUCT_SECRET",

"deviceName":"YOUR_DEV_NAME",

"key_deviceinfo":{

"deviceSecret":"YOUR_IOT_PSK"

},

"cert_deviceinfo":{

"devCertFile":"YOUR_DEVICE_CERT_FILE_NAME",

"devPrivateKeyFile":"YOUR_DEVICE_PRIVATE_KEY_FILE_NAME"

},

"subDev":{

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 84

"sub_productId":"YOUR_SUBDEV_PRODUCT_ID",

"sub_devName":"YOUR_SUBDEV_DEVICE_NAME"

}

}

Use Cases

Initialize the connection parameters

static DeviceInfo sg_devInfo;

static int _setup_connect_init_params(MQTTInitParams* initParams)

{

int ret;

ret = HAL_GetDevInfo((void *)&sg_devInfo);

if(QCLOUD_ERR_SUCCESS != ret){

return ret;

}

initParams->device_name = sg_devInfo.device_name;

initParams->product_id = sg_devInfo.product_id;

......

}

Generate the parameters for authenticating a key-authenticated device

static int _serialize_connect_packet(unsigned char *buf, size_t buf_len, MQTTConn

ectParams *options, uint32_t *serialized_len) {

......

......

int username_len = strlen(options->client_id) + strlen(QCLOUD_IOT_DEVICE_SDK_APPI

D) + MAX_CONN_ID_LEN + cur_timesec_len + 4;

options->username = (char*)HAL_Malloc(username_len);

get_next_conn_id(options->conn_id);

HAL_Snprintf(options->username, username_len, "%s;%s;%s;%ld", options->client_id,

QCLOUD_IOT_DEVICE_SDK_APPID, options->conn_id, cur_timesec);

#if defined(AUTH_WITH_NOTLS) && defined(AUTH_MODE_KEY)

if (options->device_secret != NULL && options->username != NULL) {

char sign[41] = {0};

utils_hmac_sha1(options->username, strlen(options->username), sign, options->devi

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 84

ce_secret, options->device_secret_len);

options->password = (char*) HAL_Malloc (51);

if (options->password == NULL) IOT_FUNC_EXIT_RC(QCLOUD_ERR_INVAL);

HAL_Snprintf(options->password, 51, "%s;hmacsha1", sign);

}

#endif

......

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 84

Code Hosting

The code of the device SDK for Android has been hosted on GitHub since v1.0.0.

Version Information

For the version iteration information of the device SDK for Android since v1.0.0, please visit GitHub.

Connection Based on SDK for Android
SDK for Android Release Notes
Last updated：2023-07-27 10:51:42

https://github.com/tencentyun/iot-device-java/tree/master/hub/hub-device-android
https://github.com/tencentyun/iot-device-java/releases

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 84

IoT Hub device SDK for Android relies on a secure and powerful data channel to enable IoT developers to quickly
connect devices to the cloud for two-way communication. You only need to complete the corresponding project
configuration to connect devices.

Prerequisites

Products and devices have been created as instructed in Device Connection Preparations.

How to Import

SDK integration

If you don't need to run the IoT Hub SDK in the service component, only dependency on iot_core is required.

Depend on Maven for remote build. Below is the sample code:

dependencies {

implementation 'com.tencent.iot.hub:hub-device-android-core:x.x.x'

implementation 'com.tencent.iot.hub:hub-device-android-service:x.x.x'

}

Note：

You can set the above x.x.x to the latest version according to SDK for Android Release Notes.
If you don't need to run the IoT Hub SDK in the service component, only dependency on iot_core is

required.
If you need to run the IoT Hub SDK in the service component, only dependency on iot_service is

required.

Depend on the local SDK source code for build:

Modify the build.gradle of the application module to make it dependent on the iot_core and iot_service source code.
Below is the sample code:

SDK for Android Project Configuration
Last updated：2023-07-27 10:51:43

https://intl.cloud.tencent.com/document/product/1105/41476
https://intl.cloud.tencent.com/document/product/1105/41855
https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/build.gradle

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 84

dependencies {

implementation project(':hub:hub-device-android:iot_core')

implementation project(':hub:hub-device-android:iot_service')

}

Connection Authentication

Edit the configuration information in the app-config.json file so that the following data in IoTMqttFragment.java can be
read:

{

"PRODUCT_ID": "",

"DEVICE_NAME": "",

"DEVICE_PSK": "",

"SUB_PRODUCT_ID": "",

"SUB_DEV_NAME": "",

"SUB_PRODUCT_KEY": "",

"TEST_TOPIC": "",

"SHADOW_TEST_TOPIC": "",

"PRODUCT_KEY": ""

}

The SDK supports two authentication methods: certificate authentication and key authentication, which should be
selected and set according to the authentication type of the created product.

For key authentication, you need to enter the parameters corresponding to PRODUCT_ID , DEVICE_NAME ,

and DEVICE_PSK in the configuration information in app-config.json. The SDK will automatically generate a

signature based on the device configuration information as a credential for connection to IoT Hub.

For certificate authentication, you need to enter the PRODUCT_ID and DEVICE_NAME in the configuration

information in app-config.json and read the content of the device certificate and private key files in either of the
following two ways:

Read through AssetManager . In this case, you need to create the assets directory under the hub/hub-

android-demo/src/main path of the project and place the device certificate and private key files in it.

Read through InputStream . In this case, you need to pass in the full path information of the device certificate

and private key files.

https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/src/main/java/com/tencent/iot/hub/device/android/app/IoTMqttFragment.java

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 84

i. After successfully reading the certificate and private key files, you need to set the mDevCertName certificate

name and mDevKeyName private key name in IoTMqttFragment.java.

private String mDevCertName = "YOUR_DEVICE_NAME_cert.crt";

private String mDevKeyName = "YOUR_DEVICE_NAME_private.key";

ii. After the configuration is completed, call the MQTT connection APIs of the SDK in the project to complete
device connection.

mMqttConnection = new TXGatewayConnection(mContext, mBrokerURL, mProductID, m

DevName, mDevPSK,null,null ,mMqttLogFlag, mMqttLogCallBack, mMqttActionCallBa

ck);

mMqttConnection.connect(options, mqttRequest);

https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/src/main/java/com/tencent/iot/hub/device/android/app/IoTMqttFragment.java

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 84

In addition to the device connection feature, the SDK for Android also provides gateway subdevice, device shadow,
and OTA features with the following APIs.

MQTT APIs

TXMqttConnection

Method Description

connect Establishes MQTT connection

reconnect Reestablishes MQTT connection

disConnect Closes MQTT connection

publish Publishes MQTT message

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

getConnectStatus Gets MQTT connection status

setBufferOpts Sets buffer for disconnection status

initOTA Initializes OTA feature

reportCurrentFirmwareVersion Reports current device version information to backend server

reportOTAState Reports device update status to backend server

MQTT Gateway APIs

TXGatewayConnection

Method Description

connect Establishes gateway connection

reconnect Reestablishes gateway connection

disConnect Closes gateway MQTT connection

SDK for Android Use Instructions
Last updated：2023-07-27 10:51:42

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 84

Method Description

publish Publishes MQTT message

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

getConnectStatus Gets MQTT connection status

setBufferOpts Sets buffer for disconnection status

initOTA Initializes OTA feature

reportCurrentFirmwareVersion Reports current device version information to backend server

reportOTAState Reports device update status to backend server

addSubDev Adds subdevice

removeSubdev Removes subdevice

findSubdev Finds subdevice

gatewaySubdevOffline Connects subdevice

gatewaySubdevOnline Disconnects subdevice

Device Shadow APIs

TXShadowConnection

Method Description

connect Establishes shadow connection

disConnect Closes shadow connection

getConnectStatus Gets MQTT connection status

update Updates device shadow document

get Gets device shadow document

registerProperty Registers device attribute

unRegisterProperty Unregisters device attribute

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 84

Method Description

reportNullDesiredInfo Reports empty desired information after updating delta information

setBufferOpts Sets buffer for disconnection status

getMqttConnection Gets TXMqttConnection instance

MQTT Remote Service Client

TXMqttClient

Method Description

setMqttActionCallBack Sets MqttAction callback API

setServiceConnection Sets remote service connection callback API

init Initializes remote service client

startRemoteService Starts remote service

stopRemoteService Stops remote service

connect Establishes MQTT connection

disConnect Closes MQTT connection

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

publish Publishes MQTT message

setBufferOpts Sets buffer for disconnection status

clear Releases resource

Shadow Remote Service Client

TXShadowClient

Method Description

setShadowActionCallBack Sets ShadowAction callback API

setServiceConnection Sets remote service connection callback API

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 84

Method Description

init Initializes remote service client

startRemoteService Starts remote service

stopRemoteService Stops remote service

connect Establishes shadow connection

disConnect Closes shadow connection

getMqttClient Gets MQTT client instance

get Gets device shadow

update Updates device shadow

registerProperty Registers device attribute

unRegisterProperty Unregisters device attribute

reportNullDesiredInfo Reports empty desired information after updating delta information

setBufferOpts Sets buffer for disconnection status

clear Releases resource

Firmware Update over MQTT Channel

TXMqttClient

Method Description

initOTA Initializes OTA feature

reportCurrentFirmwareVersion Reports current device version information to backend server

reportOTAState Reports device update status to backend server

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 84

Code Hosting

The code of the device SDK for Java has been hosted on GitHub since v1.0.0.

Version Information

For the version iteration information of the device SDK for Java since v1.0.0, please visit GitHub.

Connection Based on SDK for Java
SDK for Java Release Notes
Last updated：2023-07-27 10:51:42

https://github.com/tencentyun/iot-device-java/tree/master/hub/hub-device-java
https://github.com/tencentyun/iot-device-java/releases

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 84

IoT Hub device SDK for Java relies on a secure and powerful data channel to enable IoT developers to quickly
connect devices to the cloud for two-way communication. You only need to complete the corresponding project
configuration to connect devices.

Prerequisites

Products and devices have been created as instructed in Device Connection Preparations.

How to Import

If you need to use JAR import for project development, you can add dependencies in build.gradle in the

 module directory as follows:

dependencies {

...

implementation 'com.tencent.iot.hub:hub-device-java:x.x.x'

}

Note：

You can set the above x.x.x to the latest version according to SDK for Java Release Notes.

If you need to develop a project through code integration, you can download the SDK for Java source code from
GitHub.

Connection Authentication

Two device authentication methods are supported: key authentication and certificate authentication.

Key authentication requires ProductID , DevName , and DevPSK .

Certificate authentication requires ProductID , CertFile , and PrivateKeyFile .

SDK for Java Project Configuration
Last updated：2023-07-27 10:51:42

https://intl.cloud.tencent.com/document/product/1105/41476
https://intl.cloud.tencent.com/document/product/1105/41858
https://github.com/tencentyun/iot-device-java/tree/master/hub/hub-device-java

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 84

Below is the sample code for connection authentication:

private String mProductID = "YOUR_PRODUCT_ID";

private String mDevName = "YOUR_DEVICE_NAME";

private String mDevPSK = "YOUR_DEV_PSK";

private String mCertFilePath = null;

private String mPrivKeyFilePath = null;

TXMqttConnection mqttconnection = new TXMqttConnection(mProductID, mDevName, mDev

PSK, new callBack());

mqttconnection.connect(options, null);

try {

Thread.sleep(20000);

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

mqttconnection.disConnect(null);

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 84

In addition to the device connection feature, the SDK for Java also provides gateway subdevice and device shadow
features with the following APIs.

MQTT APIs

The APIs related to MQTT are defined in the TXMqttConnection class and support publishing and subscribing.

If you want to support the device shadow feature, you need to use the TXShadowConnection class and its

methods. TXMqttConnection class APIs are as detailed below:

Method Description

connect Establishes MQTT connection

reconnect Reestablishes MQTT connection

disConnect Closes MQTT connection

publish Publishes MQTT message

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

getConnectStatus Gets MQTT connection status

setBufferOpts Sets buffer for disconnection status

MQTT Gateway APIs

Devices that don't have direct access to the Ethernet can be connected to the network of the local gateway device
first and then connected to the IoT Hub platform through the communication feature of the gateway device.
For the subdevices that join or leave the LAN, they need to be bound or unbound through the platform.

Note：

SDK for Java Use Instructions
Last updated：2023-07-27 10:51:42

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 84

After a subdevice is connected once, as long as the gateway is successfully connected subsequently, the
backend will show that the subdevice is online until it is disconnected.

The APIs related to MQTT gateway are defined in the TXGatewayConnection class as detailed below:

Method Description

connect Establishes gateway MQTT connection

reconnect Reestablishes gateway MQTT connection

disConnect Closes gateway MQTT connection

publish Publishes MQTT message

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

getConnectStatus Gets MQTT connection status

setBufferOpts Sets buffer for disconnection status

gatewaySubdevOffline Connects subdevice

gatewaySubdevOnline Disconnects subdevice

gatewayBindSubdev Binds subdevice

gatewayUnbindSubdev Unbinds subdevice

Device Shadow APIs

If you want to support the device shadow feature, you need to use the APIs in the TXShadowConnection class as

detailed below:

Method Description

connect Establishes MQTT connection

reconnect Reestablishes MQTT connection

disConnect Closes MQTT connection

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 84

Method Description

publish Publishes MQTT message

subscribe Subscribes to MQTT topic

unSubscribe Unsubscribes from MQTT topic

update Updates device shadow document

get Gets device shadow document

reportNullDesiredInfo Reports the empty desired information after updating delta information

setBufferOpts Sets buffer for disconnection status

getMqttConnection Gets TXMqttConnection instance

getConnectStatus Gets MQTT connection status

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 84

Code Hosting

The code of the device SDK for Python has been hosted on GitHub since v1.0.0.

Version Information

For the version iteration information of the device SDK for Python since v1.0.0, see GitHub.

Connection Based on SDK for Python
Python SDK Release Notes
Last updated：2023-07-27 10:51:42

https://github.com/tencentyun/iot-device-python
https://github.com/tencentyun/iot-device-python/releases

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 84

IoT Hub device SDK for Python relies on a secure and powerful data channel to enable IoT developers to quickly
connect devices to the cloud for two-way communication. You only need to complete the corresponding project

configuration to connect devices.

Prerequisites

Products and devices have been created as instructed in Device Connection Preparations.

How to Import

If you want to develop a project through import, you can install the SDK as follows:

pip3 install tencent-iot-device

If you need to view the used SDK version, run the following command:

pip3 show --files tencent-iot-device

If you need to update the SDK version, run the following command:

pip3 install --upgrade tencent-iot-device

If you want to develop a project through code integration, you can download the SDK for Python source code from

Github.

SDK for Python Project Configuration
Last updated：2023-07-27 10:51:43

https://intl.cloud.tencent.com/document/product/1105/41476
https://github.com/tencentyun/iot-device-python

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 84

In addition to the device connection feature, the SDK for Python also provides gateway subdevice and device shadow
features with the following APIs.

MQTT APIs

MQTT APIs are defined in the hub.py class and support publishing and subscribing. If you want to support the device

shadow feature, you need to use the shadow.py class and its methods as detailed below:

Method Description

connect Establishes MQTT connection

disconnect Closes MQTT connection

subscribe Subscribes to topic over MQTT

unsubscribe Unsubscribes from topic over MQTT

publish Publishes message over MQTT

registerMqttCallback Registers MQTT callback function

registerUserCallback Registers user callback function

isMqttConnected Checks whether MQTT is normally connected

getConnectState Gets MQTT connection status

setReconnectInterval Sets MQTT reconnection attempt interval

setMessageTimout Sets message sending timeout period

setKeepaliveInterval Sets MQTT keepalive interval

MQTT Gateway APIs

Devices that don't have direct access to the Ethernet can be connected to the network of the local gateway device
first and then connected to the IoT Hub platform through the communication feature of the gateway device.

SDK for Python Use Instructions
Last updated：2023-07-27 10:51:42

https://github.com/tencentyun/iot-device-python/blob/master/hub/hub.py
https://github.com/tencentyun/iot-device-python/blob/master/hub/services/shadow/shadow.py

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 84

For the subdevices that join or leave the LAN, they need to be bound or unbound through the platform.

Note：
After a subdevice is connected once, as long as the gateway is successfully connected subsequently, the

backend will show that the subdevice is online until it is disconnected.

MQTT gateway APIs are defined in the gateway.py class as detailed below:

Method Description

gatewayInit Initializes gateway

isSubdevStatusOnline Determines whether subdevice is connected

updateSubdevStatus Updates subdevice's connection status

gatewaySubdevGetConfigList Gets subdevice list from configuration file

gatewaySubdevOnline Proxies subdevice connection

gatewaySubdevOffline Proxies subdevice disconnection

gatewaySubdevBind Binds subdevice

gatewaySubdevUnbind Unbinds subdevice

gatewaySubdevSubscribe Proxies subdevice subscription

Dynamic Registration APIs

If you want to use the dynamic registration feature, you need to use the APIs in the hub.py class as detailed below:

Method Description

dynregDevice Gets the dynamic registration information of device

OTA APIs

If you want to use the OTA feature, you need to use the APIs in the hub.py class as detailed below:

https://github.com/tencentyun/iot-device-python/blob/master/hub/services/gateway/gateway.py
https://github.com/tencentyun/iot-device-python/blob/master/hub/hub.py
https://github.com/tencentyun/iot-device-python/blob/master/hub/hub.py

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 84

Method DescriptionMethod Description

otaInit Initializes OTA

otaIsFetching Determines whether the download is in progress

otaIsFetchFinished Determines whether the download is completed

otaReportUpgradeSuccess Reports update success message

otaReportUpgradeFail Reports update failure message

otaIoctlNumber Gets the information of the downloaded firmware in int type, such as the size

otaIoctlString
Gets the information of the downloaded firmware in String type, such as
MD5

otaResetMd5 Resets MD5 information

otaMd5Update Updates MD5 information

httpInit Initializes HTTP

otaReportVersion Reports the information of current firmware version

otaDownloadStart Starts firmware download

otaFetchYield Reads firmware

