
TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 263

TDMQ for RocketMQ

RocketMQ 5.x

Product Documentation

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 263

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 263

Contents

RocketMQ 5.x
Introduction to RocketMQ 5.x

Overview
Strengths
Architecture

Purchase Guide
Billing Overview
Product Series
Purchase Methods
Refund
Arrears

Getting Started
Resource Creation and Preparation
Use SDK for TDMQ 5.x to Send/Receive General Messages
Use SDK for TDMQ 4.x to Send/Receive General Messages

Console Guide
Cluster Management

Creating Cluster
Upgrade Clusters
Delete Cluster
Adjust Public Network Bandwidth
Role and Permission
Switching Cluster Billing Mode

Topic Management
Group Management
Monitoring Alarm
Message Query

Query General Message
Querying Retry Messages
Querying Dead Letter Message
Message Trace Description

Permission Management
Access Authorization for Root Account
Access Authorization for Sub-Account

Granting Sub-Account Access to TDMQ for RocketMQ

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 263

Granting Operation-Level Permissions to Sub-Accounts
Granting Resource-Level Permissions to Sub-Accounts
Granting Tag-Level Permissions to Sub-Accounts

Tag Management
Development Guide

Message Type
General Message
Scheduled Message and Delayed Message
Sequential Message
Transactional Message

Message Filtering
Message Retry
Dead Letter Message
Consumption Mode

Cluster Consumption
Broadcast Consumption

SDK Documentation
Compatibility Description
5.x SDK

Use of Java SDK
Use of Go SDK
Use of C++ SDK

4.x SDK
Use of Java SDK
Use of Go SDK
Use of C++ SDK
Use of Python SDK
Use of Spring Cloud Stream
Use of Spring Boot Starter

Best Practice
Naming Conventions for Common Concepts of RocketMQ

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 263

RocketMQ 5.x
Introduction to RocketMQ 5.x
Overview
Last updated：2024-01-17 16:40:26

TDMQ for RocketMQ 5.x is a distributed message middleware developed by Tencent Cloud based on the latest
Apache RocketMQ 5.0. It is fully compatible with the use and concepts of Apache RocketMQ 5.0 and supports
connection to the open-source community version client without modifications.

In addition to retaining the characteristics of low latency, high performance, reliability, and scalability, and the capacity
to process trillions of messages of its preceding versions, TDMQ for RocketMQ 5.x takes full advantage of the
infrastructure and technologies in the cloud native era to enhance resource usage and elasticity.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 263

Strengths
Last updated：2024-01-17 16:40:38

In addition to retaining the characteristics of low latency, high performance, reliability, and scalability, and the capacity
to process trillions of messages of its preceding versions, TDMQ for RocketMQ 5.x takes full advantage of the
infrastructure and ecological technologies in the cloud native era to enhance resource usage and elasticity.

The 5.x series possesses the following strengths compared to self-built RocketMQ and the TDMQ for RocketMQ 4.x
series:

Elastic Storage and Computing

The 5.x series of TDMQ for RocketMQ uses an architecture featuring separation of storage and computation,
significantly enhancing both resource usage and elasticity. The storage operates on a pay-as-you-go basis.
Customers do not need to reserve storage resources in advance for their peak demands, thereby effectively reducing

the actual cost. It also supports elastic TPS for computing specifications, eliminating the need for customers to reserve
additional computing resources for unexpected peaks, achieving higher cost efficiency.

Lightweight SDK

TDMQ for RocketMQ 5.x series is compatible with the open-source community SDK, thereby enjoying the benefits of
iterative development. The client for the 5.x series is more lightweight, with a new minimalist API design that is easier
to integrate and use. Moreover, the 5.x series offers SDKs in a greater variety of programming languages, providing
developers with a wider range of technical stack options.

Enhanced Basic Features

The 5.x series of TDMQ for RocketMQ introduces several functional enhancements, such as more flexible control over
the duration for which messages are retained, enabling the retention period to be set at the granularities of the cluster
or the individual topic. Consumer groups also have more customizable settings. For example, the number of retry
attempts for messages can be specified on the server side, and dead letter queues can be freely associated.

##Observability

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 263

The 5.x series of TDMQ for RocketMQ introduces a richer set of metrics, including those related to message backlog
scenarios, key interface time consumption, error distribution, and storage read-write traffic. These metrics are
integrated seamlessly with Tencent Cloud's monitoring and alarm services. Moreover, it provides a comprehensive

cloud API that supports integration with self-service Ops systems.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 263

Architecture
Last updated：2024-01-17 16:40:54

This document describes the deployment architecture of TDMQ for RocketMQ 5.x for you to better understand the
architectural principles of TDMQ for RocketMQ.

Deployment Architecture

The system deployment architecture of TDMQ for RocketMQ is as follows:

The TDMQ for RocketMQ 5.x introduces the new gRPC protocol and Proxy components, implementing an
architecture featuring separation of computation and storage separation. This significantly changes both the Ops and
usage of RocketMQ.
The concepts involved are as follows:
Producer cluster: A client-side application responsible for producing and sending messages.

Consumer cluster: A client-side application responsible for message subscription and consumption.
NameServer cluster: A server-side application responsible for routing address location and Broker heartbeat
registration.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 263

Heartbeat registration: The NameServer acts as a registration center. Machines of each role must report its status to
the NameServer regularly. If a machine does not report within a certain time window, the NameServer will presume it
to be faulty and remove it from the availability list.

Route addressing: Every NameServer stores both the complete routing information of the Broker cluster and the
queue information for client queries. Producers and consumers use the NameServer to acquire route information of
the entire Broker cluster, which then allows for message delivery and consumption.
Proxy cluster: The new elastic, stateless proxy service splits the Broker responsibilities for the 4.x version, abstracting
elements such as client protocol adaptation, permissions management, and consumption management.

Broker cluster: Compared with the 4.x series, the Broker in the 5.x series is more focused on the continuous
enhancements of storage capabilities.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 263

Purchase Guide
Billing Overview
Last updated：2024-05-14 16:53:51

This section describes the billing composition and billing method of TDMQ for the RocketMQ 5.0 cluster.

Billing Method
TDMQ for RocketMQ offers two types of billing modes: monthly subscription (prepaid) and pay-as-you-go
(postpaid) .

Monthly Subscription is a billing method that requires prepayment for resource use and is primarily suitable for
steady business operation scenarios. You need to analyze resource use requirements according to the actual
business volumes, paying upfront for one or multiple months or even years.
Pay-As-You-Go is a billing method that charges based on the actual usage of the resource specifications you
purchased. It is mainly suitable for scenarios such as testing environments or those with uncertain peak traffic. You

can first use the resources and then pay for them, with the costs being settled on the hour.

Billable Items
TDMQ for RocketMQ is sold in the form of clusters composed of the following billable items:

Billable Items Billing
Method

Billing Rules

Storage Fees
Pay-As-
You-Go

The storage fees for the TDMQ for RocketMQ clusters are billed based on the
size of the storage space occupied by the message storage and its retention
duration.

Computing
Specifications

Monthly
subscription
Pay-As-
You-Go

TDMQ for RocketMQ clusters uses messaging TPS as their computational
capabilities and provides different TPS specifications for each cluster version.
Computational fees are billed based on the size of the TPS specification and
its duration of use. The calculation rules for TPS are divided into two
dimensions: message type and message size.
Message Type: TDMQ for RocketMQ supports four types of messages:
General messages, Scheduled and Delayed messages, Transactional
messages, and Sequential messages. Both Scheduled and Delayed

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 263

messages, Transactional messages, and Sequential messages are classified
as advanced feature messages.
General Message: Sending or consuming a single generic message. Whether
the message is successfully sent or consumed, the message TPS is
calculated as one time per second.
Advanced Feature Message: Sending or consuming a single advanced
feature message; the message TPS will be calculated five times per second.
For example, if one Topic sends two transactional messages and consumes
one transactional message, the resulting messaging TPS is calculated as
2x5+1x5=15 messages per second.
Message Size: The message size is gauged in units of 4 KB. Messages that
are less than 4KB will be considered as 4 KB. For instance, for a message
request of 18 KB, the TPS for message sending would be ⌈18/4⌉ = 5 times
per second.
⌈ ⌉ signifies rounding up to the nearest integer.

Elastic TPS
Costs

Pay-As-
You-Go

Each specification of TDMQ for the RocketMQ cluster is bound by TPS
limitations. For the Pro and Platinum versions of the cluster, once a certain
level of TSP specification has been purchased, the part exceeding the
computational specification will be charged according to TPS count. Elastic
TPS is suitable for a scenario where occasional bursts of small
amounts of traffic occur on the business side. If your business
volume frequently exceeds computational specification limitations, it
is recommended to upgrade your cluster specifications.

Public
Network
Bandwidth
Costs

Monthly
subscription
Pay-As-
You-Go

After the public network bandwidth is activated, charges will be based on the
duration of use. This pay-as-you-go mode is settled on an hourly basis. In
cases of prepaid mode, settlement is carried out monthly. This is ideal for
scenarios where peak business traffic is relatively stable at various time slots
and only used for short-term purposes. No cost is incurred if the public
network access is not activated.

Pricing Explanation

Storage Fees

TDMQ for RocketMQ cluster storage fees are calculated based on the size of the storage space occupied by
message storage and the duration of storage. The billing method is pay-as-you-go (postpaid), with the billing unit as
"XX dollars/GB/hour." An invoice is generated hourly. An invoice is generated hourly, and less than an hour is
considered as one hour.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 263

Storage fees = Storage space × Usage duration × Storage unit price

Storage Charge Type Price (USD/GB/Hour)

Hourly Storage Billing (Postpaid) 0.0003

Computing Specification Costs

Billing for TDMQ for RocketMQ clusters is calculated based on the size of the specifications and the duration of use.
The billing modes include both monthly subscription and pay-as-you-go options.

Monthly Subscription: The billing unit is "XX USD/month."
Pay-as-you-go (postpaid): The billing unit is "XX USD/hour." An invoice is generated hourly. An invoice is generated
hourly, and less than an hour is considered as one hour. Settlement is done daily, and the bill will be pushed for
deductions on the following day.
Computing Specification Costs = Unit price of the computing specification x Usage duration.

Version
TPS
Specification

Topic
Upper
Limit
(Quantity)

Group
Upper
Limit
(Quantity)

Region: Beijing, Guangzhou,
Shanghai, Nanjing, Chengdu,
Chongqing, and Qingyuan.

Region: Hong Kon
Taipei (China), To
Singapore, Bangk
Silicon Valley.

Pay-As-
You-Go
Price
(USD/Hour)

Monthly
Subscription
Price
(USD/Month)

Pay-As-
You-Go
Price
(USD/Hour)

M
S
P
(U

Trial
Version

500 50 500 0.11 54.86 0.15 7

Basic 1,000 100 1,000 0.24 114.29 0.31 1

2,000 100 1,000 0.36 171.43 0.46 2

3,000 100 1,000 0.48 228.57 0.62 2

4,000 100 1,000 0.60 285.71 0.77 3

5,000 100 1,000 0.71 342.86 0.93 4

6,000 200 2,000 0.83 400.00 1.08 5

7,000 200 2,000 0.95 457.14 1.24 5

8,000 200 2,000 1.07 514.29 1.39 6

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 263

9,000 200 2,000 1.19 571.43 1.55 7

10,000 200 2,000 1.31 628.57 1.70 8

Professional
Version

4,000 300 3,000 1.14 548.57 1.49 7

6,000 300 3,000 1.63 780.00 2.11 1

8,000 300 3,000 2.11 1,011.43 2.74 1

10,000 300 3,000 2.59 1,242.86 3.37 1

15,000 325 3,250 3.30 1,585.71 4.30 2

20,000 350 3,500 3.90 1,871.43 5.07 2

25,000 375 3,750 4.49 2,157.14 5.84 2

30,000 400 4,000 5.09 2,442.86 6.62 3

35,000 425 4,250 5.68 2,728.57 7.39 3

40,000 450 4,500 6.28 3,014.29 8.16 3

45,000 475 4,750 6.88 3,300.00 8.94 4

50,000 500 5,000 7.47 3,585.71 9.71 4

55,000 550 5,500 7.66 3,675.00 9.95 4

60,000 600 6,000 8.21 3,942.86 10.68 5

65,000 650 6,500 8.77 4,210.71 11.40 5

70,000 700 7,000 9.33 4,478.57 12.13 5

75,000 750 7,500 9.89 4,746.43 12.86 6

80,000 800 8,000 10.45 5,014.29 13.58 6

85,000 850 8,500 11.00 5,282.14 14.31 6

90,000 900 9,000 11.56 5,550.00 15.03 7

95,000 950 9,500 12.12 5,817.86 15.76 7

100,000 1,000 10,000 12.68 6,085.71 16.48 7

Platinum
Version

10,000 1,000 10,000 4.61 2,214.29 6.00 2

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 263

(Exclusive
Resources)

20,000 1,000 10,000 5.95 2,857.14 7.74 3

30,000 1,000 10,000 7.29 3,500.00 9.48 4

40,000 1,000 10,000 8.63 4,142.86 11.22 5

50,000 1,000 10,000 9.97 4,785.71 12.96 6

60,000 1,100 11,000 10.42 5,000.00 13.54 6

70,000 1,200 12,000 11.61 5,571.43 15.09 7

80,000 1,300 13,000 12.80 6,142.86 16.64 7

90,000 1,400 14,000 13.99 6,714.29 18.19 8

100,000 1,500 15,000 15.18 7,285.71 19.73 9

120,000 1,600 16,000 17.56 8,428.57 22.83 1

140,000 1,700 17,000 19.94 9,571.43 25.92 1

160,000 1,800 15,000 21.73 10,428.57 28.24 1

180,000 1,900 19,000 23.81 11,428.57 30.95 1

200,000 2,000 20,000 25.89 12,428.57 33.66 1

250,000 2,500 25,000 31.10 14,928.57 40.43 1

300,000 3,000 30,000 36.31 17,428.57 47.20 2

350,000 3,500 35,000 41.52 19,928.57 53.97 2

400,000 4,000 40,000 46.73 22,428.57 60.74 2

450,000 4,500 45,000 51.93 24,928.57 67.51 3

500,000 5,000 50,000 57.14 27,428.57 74.29 3

600,000 6,000 60,000 63.99 30,714.29 83.19 3

700,000 7,000 70,000 73.66 35,357.14 95.76 4

800,000 8,000 80,000 83.33 40,000.00 108.33 5

900,000 9,000 90,000 93.01 44,642.86 120.91 5

1,000,000 10,000 100,000 102.68 49,285.71 133.48 6

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 263

Elastic TPS Costs

Only the Professional version and Platinum version clusters support the "Elastic TPS" feature and are subject to these
costs.
The TROCKET cluster's Elastic TPS are calculated by the pay-as-you-go (postpaid) billing method. The billing unit is

"XX dollars/TPS/hour". An invoice is generated hourly, and less than an hour is considered as one hour.
The cost of elastic TPS for each hour = the highest increment TPS value in 1 hour x Unit price of the elastic TPS.

Version
TPS Specification
(Transactions/Second)

Elastic TPS Upper
Limit
(Transactions/Second)

Price
(USD/TPS/Hour,
Region: Beijing,
Guangzhou,
Shanghai,
Nanjing,
Chengdu,
Chongqing, and
Qingyuan)

Price
(USD/TPS/Hour,
Region: Hong
Kong (China),
Taipei (China),
Tokyo,
Singapore,
Bangkok, and
Silicon Valley)

P
(
R
S
F
S
A
D

Trial
Version

Does Not Support
Elastic TPS Capability

Not Involved

Basic Does Not Support
Elastic TPS Capability

Professional
Version

4,000 2,500 0.0008 0.00104 0

6,000 4,000

8,000 5,000

10,000 6,000

15,000 9,000

20,000 12,000

25,000 13,000

30,000 15,000

35,000 18,000

40,000 20,000

45,000 22,000

50,000 25,000

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 263

55,000

60,000

65,000

70,000

75,000

30,000
80,000

85,000

90,000

95,000 35,000

100,000 40,000

Platinum
Version

10,000 6,000 0.0017 0.00221 0

20,000 12,000

30,000 18,000

40,000 25,000

50,000

30,00060,000

70,000

80,000

40,000
90,000

100,000

120,000

140,000 50,000

160,000
60,000

180,000

200,000 80,000

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 263

250,000

300,000
100,000

350,000

400,000
150,000

450,000

500,000 200,000

600,000
250,000

700,000

800,000
300,000

900,000

1,000,000 350,000

Billing Example:
Suppose your cluster is located in Guangzhou, the cluster type is professional version, and the purchased basic
messaging TPS specification is 10,000 times/second, the elastic TPS upper limit is 6,000 times/second, and the unit

price of elastic TPS is $0.0008/TPS/second. Suppose the message sending and receiving situation of this cluster is
as follows between 14:00–15:00:
At 14:00, the peak TPS usage of the cluster is 9,000 times per second with no use of elastic TPS.
At 14:01, the peak TPS usage of the cluster is 9,500 times per second with no use of elastic TPS.
At 14:02, the peak TPS usage of the cluster is 10,500 times per second, thus 500 times per second of the elastic TPS
is used.

……, the peak TPS usage of the cluster consistently remained between 8,000–9,000 times per second with no use of
elastic TPS.
At 14:58, the peak TPS usage of the cluster is 12,000 times per second, thus 2,000 times per second of the elastic
TPS is used.
At 14:59, the peak TPS usage of the cluster is 11,000 times per second, thus 1,000 times per second of the elastic

TPS is used.
Consequently, within this hour, we take the maximum increments of TPS in one hour, which is 2,000 times per
second. Therefore, the cost for the elastic TPS generated within this hour is 2,000 x 0.0008 = 1.6 USD.

Public Network Bandwidth Costs

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 263

Public Network Bandwidth Costs support two billing modes: monthly subscription and hourly billing.

Monthly Subscription

Bandwidth
Range

Price (USD/Month)

Beijing,
Guangzhou,
Shenzhen
Finance,
Shanghai,
Nanjing,
Chengdu,
Chongqing, and
Qingyuan

Hong Kong
(China), Taipei
(China), and
Silicon Valley

Singapore
Bangkok and
Tokyo

Shanghai
Autonomous
Driving Zone

1 Mbps 3.29 4.29 3.29 3.57 4.93

2 Mbps 6.57 8.57 6.57 7.14 9.86

3 Mbps 10.14 12.86 9.86 10.71 15.21

4 Mbps 13.71 17.14 13.14 14.29 20.57

5 Mbps 17.86 21.43 16.43 17.86 26.79

6 Mbps and
above (n is
the
configured
upper limit
of
bandwidth)

17.86 + 11.43 x
(n-5)

21.43 + 14.29 x
(n-5)

16.43 + 11.43
x (n-5)

17.86 + 11.43
x (n-5)

43.93 + 17.14 x
(n-5)

Pay-as-You-Go Billing Mode

Billing is based on the total amount of data transmitted over the public network (measured in GB), with settlements
completed on an hourly basis. Charges are settled according to actual traffic usage.

Bandwidth
Range

Price (USD/Hour)

Beijing, Guangzhou,
Shanghai, Nanjing,
Chengdu, Chongqing,
Qingyuan, Shenzhen
Finance, Hong Kong
(China), Taipei

 Singapore and Silicon
Valley

Region: Shanghai Autonomous
Driving Zone

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 263

(China), Tokyo, and
Bangkok

1–5 Mbps 0.0057 0.0050 0.0086

6 Mbps and
above (n is
the
configured
upper limit
of
bandwidth)

0.0200 0.0171 0.0300

Charges for Topics Beyond Specification Limits

Considering the stability of the cluster and real-world use cases, the maximum number of Topics allowed varies with
different TPS specifications. Customers can increase the Topic quantity limit on their own via the page. Charges apply
according to a tiered pricing structure for any amount that exceeds the free quota.

Monthly Subscriptions

Excess Topic Quantity
Pricing Tiers

Price (region: Beijing,
Guangzhou, Shanghai,
Nanjing, Chengdu, and
Chongqing)

Price (Region: Hong
Kong (China), Taipei
(China), Tokyo,
Singapore, Bangkok,
and Silicon Valley)

Price (region: Shenzhen
Finance and Shanghai
Autonomous Driving
Zone)

0–100 1.6598 USD/Unit/Month 2.1577 USD/Unit/Month 2.6556 USD/Unit/Month

101–200 1.3831 USD/Unit/Month 1.7981 USD/Unit/Month 2.213 USD/Unit/Month

201–500 1.1065 USD/Unit/Month 1.4385 USD/Unit/Month 1.770 USD/Unit/Month

501–1,500 0.8299 USD/Unit/Month 1.0788 USD/Unit/Month 1.3278 USD/Unit/Month

1,501–2,000 0.5533 USD/Unit/Month 0.7192 USD/Unit/Month 0.8852 USD/Unit/Month

Above 2,000 0.274 USD/Unit/Month 0.3596 USD/Unit/Month 0.4426 USD/Unit/Month

Purchasing pay-as-you-go instances

Excess Topic Quantity
Pricing Tiers

Price (region: Beijing,
Guangzhou, Shanghai,

Price (Region: Hong
Kong (China),

Price (region: Shenzhen
Finance and Shanghai

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 263

Nanjing, Chengdu and
Chongqing)

Singapore, Bangkok,
and Silicon Valley)

Autonomous Driving
Zone)

0–100 0.0035 USD/Unit/Hour 0.0045 USD/Unit/Hour 0.0055 USD/Unit/Hour

101–200 0.0028 USD/Hour 0.0036 USD/Hour 0.0044 USD/Hour

201–500 0.0022 USD/Hour 0.0028 USD/Hour 0.0035 USD/Unit/Hour

501–1,500 0.0017 USD/Hour 0.0022 USD/Hour 0.0028 USD/Hour

1,501–2,000 0.0011 USD/Hour 0.0014 USD/Hour 0.0018 USD/Hour

Above 2,000 0.0006 USD/Hour 0.0007 USD/Hour 0.0009 USD/Hour

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 263

Product Series
Last updated：2024-05-14 16:56:53

TDMQ for RocketMQ offers various edition specifications to cater to the diverse needs of different business scenarios
and scales. The differences in functions between these editions are as follows.

Item Trial
Edition

Basic
Edition

Pro
Edition

Platinum Edition

TPS
specifications
(times/second)

500
1000-
10000

4000-
100000 10000-1000000

Message trace Supported

Read/write traffic
ratio

Adjustable

Message
retention
duration
configuration

1 to 3 days 1 to 7 days

Message
retention
granularity
configuration

Cluster granularity Topic granularity

SQL filtering Supported Supported

Message retry
policy

Default Customizable

Elastic TPS Not supported Supported

Duration of
scheduled
messages

7 days 40 days 40 days Customizable, up to a maximum of 1 year

Message size 4MB Customizable, 20 MB

Service
availability

SLA not
guaranteed

99.95% 99.95% 99.99%

Deployment
Architecture

Resource
sharing

Resource
sharing

Resource
sharing

Exclusive resource allocation

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 263

Deployment
architecture

24/7 work order service Professional service support, training and
communication, key event protection services,
and architecture consultation and suggestions

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 263

Purchase Methods
Last updated：2024-01-17 16:41:12

TDMQ for RocketMQ clusters currently support the monthly subscription and pay-as-you-go billing modes. You
can follow the operations below to purchase services:
1. Log in to the Tencent Cloud RocketMQ Console.

2. Select Cluster from the left sidebar and click Create Cluster to open the purchase page.
3. On the purchase page, select the region, availability zone, cluster type, and cluster specification.
4. Specify the information, click Buy Now, and make the payment as prompted by the system to complete the
purchase.

https://console.intl.cloud.tencent.com/trocketmq/cluster

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 263

Refund
Last updated：2024-01-17 16:41:26

Pay-as-you-go

Clusters under pay-as-you-go mode can be terminated at any moment. Once terminated, the billing will cease
immediately.

Monthly Subscription

Refund Description

Unit prices and discounts are subject to the current system promotions.

Products purchased in a promotional event must adhere to the campaign policy. In case of a conflict between the
campaign policy and refund rules, the campaign policy prevails. If the campaign policy expressly prohibits refunds,
refund application cannot be initiated.
Currently, orders made via promotional channels does not allow self-initiation of refunds. Please submit a ticket to
apply for a refund.

Tencent Cloud reserves the right to reject the return request if we detect suspected anomalies or malicious returns.

Refund Quantity and Channels

Refund amount = Paid order amount - Consumed resource amount
The calculation is based on the usage duration:
Consumed amount = (Usage duration/Total duration) × Original order cost × Current discount
Note
If the usage duration is less than one day, it will be calculated as one day, with the system's discount according to the

usage duration applied.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 263

Arrears
Last updated：2024-01-17 16:41:32

Note：
If you are a customer of a Tencent Cloud partner, the rules regarding resources when there are overdue payments ar
e subject to the agreement between you and the partner.

Notice

When the cluster is no longer in use, terminate it to avoid ongoing charges.
Upon the termination or repossession of a cluster, the associated data will be cleared and cannot be retrieved.

Pay-as-you-go

Under the pay-as-you-go mode, the billing cycle is "daily". That is, the billing system measures service usage and
generates a bill based on the previous day's usage on the next day, and deducts the service fees from your account
according to the bill amount.

If the current account balance is insufficient but the current usage falls within the free tier, the service can still be used.
If your account balance is insufficient and you do not have the privilege of uninterrupted service during overdue
payment, TDMQ for RocketMQ can continue to be used and be charged for 24 hours. Then, TDMQ for RocketMQ
services will be suspended, disrupting the normal sending and receiving of messages and the routine operation of the
console and APIs, and resource occupancy fees will be incurred.
Upon service suspension, the system will process TDMQ for RocketMQ in the following ways:

Time after Service
Suspension

Description

≤ 7 days

If your account is recharged to a positive balance within this period, the billing continues
and you can reactivate TDMQ for RocketMQ.

If your account does not have a positive balance, you cannot reactivate TDMQ for
RocketMQ.

> 7 days

If your account does not have a positive balance, pay-as-you-go TDMQ for RocketMQ
resources will be terminated, and all data will be erased and cannot be retrieved. When
your resources are terminated, the Tencent Cloud account creator and all collaborators
will be notified by email and SMS.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 263

Monthly Subscription

TDMQ for RocketMQ exclusively adopts the monthly subscription billing mode.

Alert for Overdue Payment

Seven days before the expiration of your monthly-subscribed instance, the system will automatically send you an
expiration warning message every other day. This message will be sent via email and SMS to the creator and all

collaborators of the Tencent Cloud account.

Overdue Payment Notification

Starting from the day of the expiration of your monthly-subscribed instance, an overdue payment isolation alert will be
sent to you every other day. These alert messages will be sent via email and SMS to the creator and all collaborators
of the Tencent Cloud account.

Overdue Payment Policy

If the account balance is sufficient and auto-renewal has been configured, the device will undertake automatic renewal

on its expiration date.
For seven days after expiration, your cluster instance can function normally. If a renewal is made within this period,
the start date for the renewed cluster instance's period will be the termination date of the previous cycle.
In the event that your cluster instance is not renewed within seven days after expiration, the cluster service will be
suspended. Then, all related cluster resources will be terminated, and all data will be cleared and cannot be retrieved.
Upon cluster termination, the creator and all collaborators of the Tencent Cloud account will be notified via email and

SMS.
Note
Upon receipt of an overdue payment notice, promptly proceed to the Billing Center in the console to top up your
account, thereby avoiding any potential disruption to your operations.
If you have any questions related to your billing details, you may cross-verify these details by visiting the Resource

Bills page in the console.
If you have any questions about specific charges, see Pricing Details for in-depth description of each billing item and
the corresponding billing rules.
You can self-configure alerts for overdue payments through the balance alert feature available in the Billing Center.
For more information, see Balance Alerts Guide.

https://console.intl.cloud.tencent.com/account/recharge
https://console.intl.cloud.tencent.com/account/resources
https://intl.cloud.tencent.com/document/product/1113/43117
https://intl.cloud.tencent.com/document/product/555/9942

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 263

Getting Started
Resource Creation and Preparation
Last updated：2024-01-17 17:44:26

Operation Scenarios

Before using the SDK to send and receive messages, you need to create resources such as clusters and Topic in the
console of TDMQ for RocketMQ . Relevant resource information needs to be configured when running the client.

Prerequisites

You have completed Sign up for a Tencent Cloud account.

Steps

Step 1. Create a new cluster

1. Log in to the RocketMQ console, enter the Cluster Management page, and select the target region.
2. Click Create Cluster, select the appropriate cluster specifications, and then click Buy Now to establish a new
cluster.

3. From the cluster list page, click the created cluster ID. In Access Information section of the cluster information
page, you can view the access point details of the cluster.

Step 2. Configure cluster permissions

1. Click the "ID" of the created cluster in Step 1 to access the basic information page of the cluster.

https://intl.cloud.tencent.com/document/product/378/17985
https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 263

2. Select the Cluster Permissions tab at the top of the page, click Add Role to create a role, and configure production
and consumption permissions for it.

Step 3. Create a Topic

1. From the cluster permissions list page, select the Topic tab to access the Topic list page.
2. Click Create, enter a Topic name, select General message as the type, then click Submit to create a Topic.
Note:
This document describes the process of using general messages as an example, therefore, the created Topic

following these steps for general messages cannot be used to send or receive messages of other types.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 263

Step 4. Create a Group

1. From the Topic list page, select the Group tab at the top to access the Group list page.
2. Click Create, enter a Group name, leave the other settings at their defaults, then click Submit to create a Group.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 263

Use SDK for TDMQ 5.x to Send/Receive
General Messages
Last updated：2024-01-17 17:44:44

Operation Scenarios

In calling Java SDK for example, this article introduces the process of using an open-source SDK to send and receive
messages, thus enhancing your comprehension of the complete procedure in messaging.
Note:

Take the Java client as an exemple. For clients employing other languages, please refer to the SDK Documentation.

Prerequisites

Resources Creation and Preparationalready completed
Install JDK 1.8 or the later
Install Maven 2.5 or later
Download the demo

Steps

Step 1: Install the Java dependency

Incorporate the relevant dependencies in the Java project. Take a Maven project as an example, add the following
dependency to pom.xml:

https://intl.cloud.tencent.com/document/product/1113/58512
https://intl.cloud.tencent.com/document/product/1113/57440
https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq5/src/main/java/com/tencent/demo

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 263

<dependencies>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client-java</artifactId>

 <version>5.0.5</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.7</version>

 </dependency>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 263

</dependencies>

Step 2: Generate a Message

public class NormalMessageSyncProducer {

 private static final Logger log = LoggerFactory.getLogger(NormalMessageSyncProd

 private NormalMessageSyncProducer() {

 }

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 263

 public static void main(String[] args) throws ClientException, IOException {

 final ClientServiceProvider provider = ClientServiceProvider.loadService();

 // Add the configuration's ak and sk.

 String accessKey = "yourAccessKey"; //ak

 String secretKey = "yourSecretKey"; //sk

 SessionCredentialsProvider sessionCredentialsProvider =

 new StaticSessionCredentialsProvider(accessKey, secretKey);

 // Enter the service access address provided by Tencent Cloud.

 String endpoints = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8081";

 ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()

 .setEndpoints(endpoints)

 .enableSsl(false)

 .setCredentialProvider(sessionCredentialsProvider)

 .build();

 String topic = "yourNormalTopic";

 // In most case, you don't need to create too many producers, singleton pat

 final Producer producer = provider.newProducerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the topic name(s), which is optional but recommended. It makes p

 // route before message publishing.

 .setTopics(topic)

 // May throw {@link ClientException} if the producer is not initialized

 .build();

 // Define your message body.

 byte[] body = "This is a normal message for Apache RocketMQ".getBytes(Stand

 String tag = "yourMessageTagA";

 final Message message = provider.newMessageBuilder()

 // Set topic for the current message.

 .setTopic(topic)

 // Message secondary classifier of message besides topic.

 .setTag(tag)

 // Key(s) of the message, another way to mark message besides message i

 .setKeys("yourMessageKey-1c151062f96e")

 .setBody(body)

 .build();

 try {

 final SendReceipt sendReceipt = producer.send(message);

 log.info("Send message successfully, messageId={}", sendReceipt.getMess

 } catch (Throwable t) {

 log.error("Failed to send message", t);

 }

 // Close the producer when you don't need it anymore.

 producer.close();

 }

}

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 263

Step 3: Consume the message

Tencent Cloud's TDMQ for RocketMQ Version 5.x series supports two consumption modes: Push Consumer and
Simple Consumer. The following code example illustrates the use of Push Consumer:

public class NormalPushConsumer {

 private static final Logger log = LoggerFactory.getLogger(NormalPushConsumer.cl

 private NormalPushConsumer() {

 }

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 263

 public static void main(String[] args) throws ClientException, IOException, Int

 final ClientServiceProvider provider = ClientServiceProvider.loadService();

 // Add the configuration's ak and sk.

 String accessKey = "yourAccessKey"; //ak

 String secretKey = "yourSecretKey"; //sk

 SessionCredentialsProvider sessionCredentialsProvider =

 new StaticSessionCredentialsProvider(accessKey, secretKey);

 // Enter the service access address provided by Tencent Cloud.

 String endpoints = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8081";

 ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()

 .setEndpoints(endpoints)

 .enableSsl(false)

 .setCredentialProvider(sessionCredentialsProvider)

 .build();

 String tag = "*";

 FilterExpression filterExpression = new FilterExpression(tag, FilterExpress

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 // In most case, you don't need to create too many consumers, singleton pat

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

 // Block the main thread, no need for production environment.

 Thread.sleep(Long.MAX_VALUE);

 // Close the push consumer when you don't need it anymore.

 pushConsumer.close();

 }

}

Step 4: View message details

After sending the message, a message ID (messageID) is generated. Developers can then verify this recently sent
message on the "Message Query" page as shown below. Additionally, it allows viewing specific details and track
information of the message. For more information, please refer to the Querying Message section.

https://intl.cloud.tencent.com/document/product/1113/57454

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 263

Use SDK for TDMQ 4.x to Send/Receive
General Messages
Last updated：2024-01-17 17:45:31

Operation Scenarios

In calling 4.0 Java SDK for example, this article introduces the process of using an open-source SDK to send and
receive messages, thus enhancing your comprehension of the complete procedure in messaging.
Note:

Take the Java client as an exemple. For clients employing other languages, please refer to the SDK Documentation.

Prerequisites

Resources Creation and Preparation already completed
Install JDK 1.8 or the later
Install Maven 2.5 or the later
Download the demo

Steps

Step 1: Install the Java dependency

Incorporate the relevant dependencies in the Java project. Take a Maven project as an example, add the following
dependency to pom.xml:

https://intl.cloud.tencent.com/document/product/1113/45953
https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq5/src/main/java/com/tencent/demo

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 263

<!-- in your <dependencies> block -->

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 <version>4.9.7</version>

 </dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-acl</artifactId>

 <version>4.9.7</version>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 263

 </dependency>

Step 2: Generate a Message

// Instantiate the message producer.

 DefaultMQProducer producer = new DefaultMQProducer(

 groupName,

 new AclClientRPCHook(new SessionCredentials(accessKey, secretKey)) // ACL Pe

);

 // Set the NameServer address. The address should be in the form of xxx.tencentt

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 263

 producer.setNamesrvAddr(nameserver);

 // Start the Producer instance.

 producer.start();

 for (int i = 0; i < 10; i++) {

 // Create a message instance and establish the topic and content.

 Message msg = new Message(topic_name, ("Hello RocketMQ " + i).getBytes(Re

 // Send the message.

 SendResult sendResult = producer.send(msg);

 System.out.printf("%s%n", sendResult);

 }

Step 3: Consume the message

The following code example illustrates the use of Push Consumer. For further details, please refer to the more detailed
4.x documentation.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 263

// Instantiate the consumer

DefaultMQPushConsumer pushConsumer = new DefaultMQPushConsumer(

 groupName,

 new AclClientRPCHook(new SessionCredentials(accessKey, secretKey))); //

 // Set the NameServer address.

pushConsumer.setNamesrvAddr(nameserver);

 // Subscribe to a topic.

pushConsumer.subscribe(topic_name, "*");

 // Register a callback implementation class to process messages pulled from t

pushConsumer.registerMessageListener((MessageListenerConcurrently) (msgs, context)

 // Message processing logic.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 263

 System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread(

 // Mark the message as being successfully consumed, and return to the pro

 return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;

 });

 // Start the consumer instance.

pushConsumer.start();

Step 4: View message details

After sending the message, a message ID (messageID) is generated. Developers can then verify this recently sent
message on the "Message Query" page as shown below. Additionally, it allows viewing specific details and track
information of the message. For more information, please refer to Message Query.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 263

Console Guide
Cluster Management
Creating Cluster
Last updated：2024-01-17 18:06:24

Operation Scenarios

Cluster is a form of resource dimension of TDMQ for RocketMQ, where resources in disparate clusters are fully
isolated, such as Topic, Group, and etc. Each cluster adheres to specific resource constraints, such as a cap on the
number of Topic and the duration of message retention. Typically, specialized clusters are designated for individual

environments such as development, testing, and production.

Steps

Create a cluster

1. Log in to the RocketMQ console and go to the Cluster page.
2. On the Cluster page, select the region and click Create Cluster to enter to the purchase page, where you can
configure the relevant information.

Parameter Required
or Not

Description

Cluster
Version

Yes Select 5.x

Billing Mode Yes The 5.x architecture cluster currently supports two billing modes: pay-as-you-go
and monthly subscription.

Region Yes

Select the region that is closest to your operations. Tencent Cloud products in
various regions are unable to intercommunicate via the private network, and the
region selection cannot be altered after purchasing. For instance, CVMs in the
Guangzhou region cannot access clusters to the Shanghai region via the private
network. In circumstances of required inter-regional private network
communication, please refer to Peering Connections.

Cluster
Specification

Yes The following editions are currently supported: Trial, Basic, Pro, and Platinum.
These differing cluster types exhibit variants in both performance, specifications,
and functions. For more details, please refer to Product Series.

https://console.intl.cloud.tencent.com/trocketmq
https://intl.cloud.tencent.com/document/product/553/18836
https://intl.cloud.tencent.com/document/product/1113/57516

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 263

Trial Edition: It is designed for corporate clients and individual developers to
experience product functions in the initial development phase. For testing and
experiencing purposes only, it is not recommended for use in a production
environment.
Basic Edition: It is designed for customers with moderate scale, providing basic
capabilities such as message sending and receiving that are compatible with the
open source RocketMQ community.
Pro Edition: It is designed for enterprise-level clients with larger business scale,
but have no specific requirements for the physical resources isolation. It supports
the sharing underlying resources, with the highest available TPS specification
reaching up to 150,000 TPS.
Platinum Edition: It is designed for large corporates and large-scale business
scenarios that need physical resource separation. This is the only specification
type possessing the underlying resources. It offers the broadest TPS specification
span, up to a maximum of a million TPS.

TPS
Specification

Yes

TPS Specification contains the entire sum of message production and message
consumption. Messages are measured in units of 4KB each, with special
message types converted at specific proportions. For detailed rules, please refer
to Billing Overview.
Trial Edition: Supports up to 500.
Basic Edition: Supports 1000, 2000, 4000, and 6000.
Pro Edition: Supports a range between 4,000 to 150,000 TPS.
Platinum Edition: Supports a range between 6,000 to 1,000,000 TPS.

Message
Retention
Time

Yes
The message retention time ranges from 24 to 72 hours. Regardless of whether
the message has been consumed, it will be deleted after exceeding the retention
time.

Virtual
Private
Cloud (VPC)

Yes
Authorize domain binding of the newly purchased cluster's access point to the
Virtual Private Cloud (VPC).

Public
Network
Access

No
Activating the public network bandwidth will incur additional fees. Once activated,
it can be disabled via the cluster management page. For more details, please refer
to Public Network Fee Description.

Cluster
Name

Yes Enter the cluster name with 3-64 characters long, and can only contain numbers,
letters, "-" and "_".

Tag No Tags are used for the classified management of resources from various
dimensions. For detailed usage, please refer to Managing Resources Using Tags.

Terms and
Conditions

Yes Tick the box to confirm that you have read and accepted the <TDMQFOR
ROCKETMQ SERVICE LEVEL AGREEMENT>.

https://intl.cloud.tencent.com/document/product/1113/57437
https://intl.cloud.tencent.com/document/product/1113/57437
https://intl.cloud.tencent.com/document/product/1113/58501

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 263

3. Click Buy Now, wait for 3-5 minutes, and the cluster creation will be accomplished.

Follow-up steps:

1. Acquire the access address to obtain the connection information of the server.

2. In the cluster, add a role and provide it with message production and consumption permissions for this cluster.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 263

3. In the cluster, complete Create Topic, and Create Group.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 263

4. Compose a Demo as directed in the SDK documentation, configure the connection details, and proceed with
message production and consumption.

View cluster details

On the Cluster page, click the cluster ID to enter to its details page. In that page, you can inquire the following
information:
Basic information of the cluster (cluster name/ID, region, creation time, description, and resource tag).
Cluster data statistics: Displays the current cluster's message consumption rate, message production rate, heaped
messages amount, the cluster's production traffic per second, and the cluster's consumption traffic per second in

chosen time frame.
Access information: Displays the access point information of both private and public networks.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 263

Cluster overview: Displays the quantities of various resources in the current cluster, the usage of resource quota, and
the distribution of message types, and etc.
Top cluster resource consumption: Displays the ranking of Group and Topic in the current cluster that occupy the

primary resource, including the rankings for the amount of heaped Group and badmails, the rankings for Topic
production and consumption speed, and the rankings of Topics that occupy storage space.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 263

Upgrade Clusters
Last updated：2024-01-17 17:47:26

Operation Scenarios

If the present cluster specifications fail to meet your business requirements, you can enhance both your cluster and
TPS specifications in the console.
Note:

At present, only upgrading of cluster and TPS specifications is permissible. Downgrading is not yet supported.
During the upgrading process of RocketMQ clusters, whether for cluster or TPS specifications, Tencent Cloud
provides a seamless and imperceptible upgrading experience, obviating the need for any downtime handling on the
client's application side.

Steps

There are two entries for upgrading your cluster specifications:

Entry one: Log in to the RocketMQ Console, and on the Cluster List page, click Upgrade in the operation column for
the cluster where adjustments need to be made.
Entry two: Log in to the RocketMQ Console, and on the Cluster Information page, click Upgrade in the upper right
corner.
Target Cluster Specifications: Only the upgrading of cluster specifications is supported; downgrading is not supported.
Target TPS Specifications: Only the upgrading of TPS specifications is supported; downgrading is not supported.

https://console.intl.cloud.tencent.com/trocketmq
https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 263

Delete Cluster
Last updated：2024-01-17 17:47:38

Operation Scenarios
When you no longer require a RocketMQ cluster, you can manually terminate it via the console to prevent extra
charges.
Note:

After deletion, all the configurations under this cluster will be erased and are irretrievable. Please proceed with caution.

Steps
1. Log in to the Console for RocketMQ.
2. On the Cluster list page, click More in the operation column of the instance you wish to delete, then click Delete.

3. Within the deletion confirmation dialog box, click Delete to successfully delete the cluster.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 263

Note:
To prevent misoperations from causing the deletion of internal data (such as topics, groups, and roles) within the

cluster, the console will verify your cluster resources when deleting the cluster. If any resources, such as topics or
groups, have not been deleted, the cluster cannot be removed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 263

Adjust Public Network Bandwidth
Last updated：2024-01-17 17:47:50

Operation Scenarios
After cluster creation, you can enable or disable public network access by adjusting the public network bandwidth,
modify the size of the public network bandwidth, and set public network security policies to restrict user access.

Steps
There are two entries to adjust the public network bandwidth:

Entry One: On the Cluster List page, click More > Adjust Network Bandwidth in the operation column.
Entry Two: On the Basic Information page of the cluster, click Edit under the Public Network Access in the
Access Information module.
Public Network Access: After enabling the public network bandwidth, additional costs will be incurred. For more billing
details, please refer to Public Network Billing Overview.

Public Network Bandwidth: Select the desired size of the public network bandwidth to be adjusted.
Public Network Security Policy: Specify the IPs allowed to access. If no security policy is set, all IPs will be denied
access by default. If a newly added rule overlaps with an existing rule, the new one will be used first.

https://console.intl.cloud.tencent.com/trocketmq/cluster
https://intl.cloud.tencent.com/document/product/1113/57437

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 263

Role and Permission
Last updated：2024-01-17 17:48:06

Definition

The "role" in RocketMQ is a proprietary concept in RocketMQ and distinct from Tencent Cloud's "role". It is the
smallest unit of authority partitioning performed by the user in RocketMQ. Users can assign different production and
consumption permissions under multiple clusters to numerous roles. Each role has its unique corresponding access

key. Users can access RocketMQ for message production and consumption by adding these keys into the client.
The application scenarios are as follows:
Users require to securely employ RocketMQ for message production and consumption.
Users require to define production consumption permissions of varying roles for diverse clusters.
For instance, a company comprises Department A and Department B. The system operated by Department A

generates transaction data. The system operated by Department B performs data analysis and presentation based on
these transaction data. To comply with the principle of least permission, two roles could be configured, providing
Department A with exclusive permission to produce messages in the transaction system cluster, while Department B
would be granted permission solely to consume messages. Such a setup significantly avoids issues related to data
confusion or business dirty data that could arise from ambiguities in permission.

Steps

Add roles and assign permissions

1. Log in to the Console for RocketMQ.

2. From the left sidebar, select Cluster List. After selecting the region, click the "ID" of the desired cluster to configure
roles for and proceed to the basic information page.
3. At the top of the page, select the Cluster Permissions tab. Click Add Role, enter a role name, and configure
production and consumption permissions.
4. Click Save to complete role creation.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 263

Verify the effectiveness of permissions

1. Copy the role key from the cluster permission list.

Note:
Key leakage may lead to data leakage. Please keep your key well.

2. Add the copied role key into the parameters of the client. For guidance on how to add the key parameter in the client
code, please refer to Sample Code from RocketMQ.
The following provides a suggested approach.
2.1 Declare two fields, ACL_SECRET_KEY and ACL_SECRET_ACCESS . When using various frameworks, it is

recommended to read these from the configuration files.

https://github.com/TencentCloud/rocketmq-demo

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 263

private static final String ACL_ACCESS_KEY = "eyJr****";

private static final String ACL_SECRET_KEY = "xxx"; /

2.2 Declare a static function to load a RocketMQ Client RPCHook object.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 263

static RPCHook getAclRPCHook() {

 return new AclClientRPCHook(new SessionCredentials(ACL_ACCESS_KEY, ACL_SECRET_K

}

2.3 When creating RocketMQ's producer , pushConsumer , or pullConsumer , import the RPCHook

object.
Here is a code example for creating a producer :

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 263

DefaultMQProducer producer = new DefaultMQProducer("rocketmq-mw***|namespace", "Pro

3. Run the configured client to draw upon topic resources in the relevant cluster, adhering to recently established

permissions for production or consumption. If no 'permission denied' error message is generated, this denote a
successfully set configuration.

Edit permission

1. In the cluster permissions list, locate the desired role to edit the permission, then click Edit in the action column.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 263

2. In the edit pop-up window, after modifying the permission details, click Save.

Delete role

Note:
After role deletion, any keys (accessKey and accessSecret) used to produce or consume messages under the role will

become defunct instantly. Please ensure that the current line of business no longer relies on this role for message
production or consumption, failing which, client exceptions could emerge due to an inability to produce or consume
messages.
1. In the cluster permission list, locate the role that requires permission deletion. Click Delete in the action column.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 263

2. In the deletion pop-up window, click Delete to remove the role.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 263

Switching Cluster Billing Mode
Last updated：2024-06-13 16:07:35

Operation Scenarios

To make it easier for you to use RocketMQ, Tencent Cloud has opened the feature allowing the conversion between
pay-as-you-go and monthly subscription billing modes for RocketMQ. This document introduces the operations for
switching billing modes in the RocketMQ console.

Conversion Rules

After the successful conversion of the billing method and payment, the cluster will be billed in the new billing mode
immediately, with the new cluster's start time being the time of successful conversion.
After the conversion of the cluster billing mode, the public network bandwidth will also automatically switch its billing
mode.
RocketMQ does not support the five-day unconditional refund after switching from pay-as-you-go to monthly

subscription billing.

Use Limits

Only clusters in the running status support switching billing modes. Clusters in isolating/delivery/abnormal statuses do
not support changing the billing mode.

Directions

Switch from Pay-as-You-Go to Monthly Subscription
Switch from Monthly Subscription to Pay-as-You-Go
1. log in to the RocketMQ console.

2. In the left sidebar, click Cluster Management, then click More in the operation column of the target cluster >
Switch to Monthly Billing.
3. In the pop-up pay-as-you-go to monthly billing window, set the renewal duration and whether to enable auto-
renewal according to your actual needs.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 263

4. Check the box for I have read and agree to the billing mode conversion rules, and then click Confirm.
5. Follow the prompts on the page to complete the payment and finish the conversion operation.
1. log in to RocketMQ Console.

2. In the left sidebar, click Cluster Management, then click More in the operation column of the target cluster >
Switch to Pay-as-You-Go.
3. In the pop-up window, set the renewal duration and whether to enable auto-renewal according to your actual needs.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 263

4. Check the box for I have read and agree to the billing mode conversion rules, then click Confirm to complete
the conversion.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 263

Topic Management
Last updated：2024-04-25 15:42:53

Operation Scenarios
Topic is a central concept in the TDMQ for RocketMQ. It is typically used for the organization and centralized
management of various messages generated by the system. For instance, messages associated with transactions can
be congregated within a Topic titled "trade", available for subscription by other consumers.

In practical application scenarios, a Topic often corresponds to a business aggregation. Developers determine to
design different Topics based on the design of their own system and data architecture.
This guide provides instructions on how to use Topics for the categorization and management of messages when
using TDMQ for RocketMQ.

Steps

Establish a topic

1. Log in to the RocketMQ Console.

2. Select the Topic Management tab on the left sidebar, choose the region and cluster, then click Create to go to the
Topic creation page.
3. In the Create Topic dialog box, please complete the following details.
Topic Name: Input the name of the topic (cannot be modified after creation), containing 3-64 characters including only
letters, numbers, "-" and "_".
Type: Select the message type, including general, sequential, delayed, and transaction messages. (For more

information, see Message Type).
Partition Count: Select the number of partitions, supporting up to 16 partitions. Using numerous partitions can
enhance the production and consumption performance of a single topic, while the sequentiality cannot be assured.
Topic Description: Provide a description for the Topic, limited to a maximum of 128 characters.
4. Click Submit and the newly created topic can be viewed in the topic list.

https://console.intl.cloud.tencent.com/trocketmq
https://intl.cloud.tencent.com/document/product/1113/57510

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 263

Send test messages

Messages can be manually transmitted to specific topics through actions performed in the RocketMQ console.
1. In Topic Management list, click Send Message in the action bar of the intended topic.
2. In the pop-up window, enter the message key, message tag, and message content, then click Send.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 263

View subscribed groups

1. In Topic Management list, click the "ID" of the desired topic.
2. You will be redirected to the Group list page, which displays the information of Groups subscribed to that specific
Topic.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 263

Query a topic

You can search by a Topic name in the search box located at the top-right corner of the Topic Management list
page. TDMQ for RocketMQ will perform a fuzzy match and present the corresponding search results.

Edit a topic

1. In Topic Management list, locate the Topic that requires editing, and click Edit in the action bar.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 263

2. In the pop-up dialog box, you can modify the Topic Description.
3. Click Submit to complete the editing of the Topic.

Delete a topic

Batch Deletion: In Topic Management list, choose all the topics that need to be deleted. Click Batch Delete on the

top left, and in the prompt box, press Delete to conclude the deletion.
Individual Deletion: In Topic Management list, locate the Topic that requires removal. Click Delete in the action
bar, and in the prompt box, press Delete to conclude the deletion.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 263

Note:
After the topic is deleted, all its configurations will be cleared and cannot be recovered. Please proceed with caution.

Metadata Import/Export

Metadata Export

You can directly export metadata through the

 button located at the upper-right corner of the topic list page. The exported metadata will be formatted as an .xlsx
spreadsheet file.

Metadata Import

If you need to load topic information from one cluster into another, after metadata is exported, click the

 button located in the upper-right corner of the Topic list page to import topic data into the specified namespace.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 263

Group Management
Last updated：2024-01-17 17:48:36

Operation Scenarios

A group is used to identify a category of Consumers. These consumers typically consume the same kind of messages
and subscribe to them in a consistent manner.
This document provides instructions on how to create, delete, and query a Group in the TDMQ for RocketMQ console.

Prerequisites

A corresponding namespace must be previously established.
You have created a message producer and consumer using the SDK provided by TDMQ, and they are functioning
normally.

Steps

Create a Group

1. Log in to the Console for RocketMQ.
2. Navigate to Group Management from the left navigation bar, select the desired region and intended cluster.

3. Click Create to access the Group creation page.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 263

4. Provide the relevant Group details.
Group Name: Enter the group name (cannot be edited after creation). It can contain 3 to 64 characters, including
letters, numbers, "-" and "_".

Group Description: Enter a description for the group.
Maximum Retries: Indicates the maximum number of times a message can be redelivered. If a message is still not
successfully consumed after exceeding the maximum number of retries, the message will be delivered to the dead
letter queue or discarded. If you are using the RocketMQ 4.x client, the number of message retries is determined by
the retry count you set in the client. If you are using the RocketMQ 5.x client, then the number of message retries is

based on what you have set on the current page.
Delivery Order: The order in which the server delivers messages to consumers. It supports sequential and concurrent
delivery. By default, messages are delivered concurrently.
Enable Consumption: If this option is disabled, all consumers in the group will stop consumption, but will resume
consuming if it is enabled again.
5. Click Submit to complete Group creation.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 263

View Consumer Details

1. In Group list, click the Group name to enter the client connection list, where you can view the basic information
about the Group as well as the client connection list.

Group Name
Creation Time
Delivery Orderliness: Sequential delivery or Concurrent delivery
Consumer Type: PUSH or PULL
Total Backlog: The total number of heaped messages.

2. Click View Details in the client operation bar to review consumer details.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 263

3. Switch to the Subscription tab to view the list of Topics subscribed by the Group and their subscription properties.

Set an offset

1. In Group list, click Reset Offset in the operation column of the intended Group.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 263

2. In the pop-up window, you can either choose to Start from the latest offset or Start from a specified point to
set the Topic's Consumer Offset (Namely, specify where the consumer under this subscription begins to consume

messages).
3. Click Submit to complete the setting.

Note:

TDMQ-RocketMQ supports resetting the offset (consumption position) for offline Groups, but currently only supports
consumer groups under the Push consumption model; otherwise, it might fail to reset.

Edit Group

1. In Group list, click Edit in the operations column of the intended Group.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 263

2. In the pop-up window, edit the Group information.
3. Click Submit to complete the modification.

Delete Group

Batch Deletion: In Group list, select all the Groups that need to be deleted, click Batch Delete at the top-left corner.
In the prompt box, click Delete to conclude the deletion.
Single Deletion: In Group list, locate the Group that requires to delete, click Delete in the Operations column. In the

prompt box, click Delete to conclude the deletion.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 263

Note:
After the Group is deleted, consumers identified by this Group will cease to receive messages immediately. All

configurations under this Group will be erased and are irretrievable. Please proceed with caution.

Metadata Import/Export

Export Metadata

You can directly export metadata through the

 button located at the upper-right corner of the Group list page. The exported metadata will be formatted as an .xlsx
spreadsheet file.

Import Metadata

If you need to load Group information from one cluster into another, after exporting metadata, click the

 button located in the upper-right corner of the Group list page to import Group data into the specified namespace.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 263

Monitoring Alarm
Last updated：2024-01-17 17:48:49

Operation Scenarios

TDMQ for RocketMQ allows you to monitor resources created under your account, including clusters, topics, and
groups. Based on these metrics, you can analyze the cluster usage and promptly address any possible risks.
Moreover, you can set alarm rules for the monitoring metrics to receive notifications in case of abnormal data, allowing

you to manage risks promptly and ensure stable system performance.

Monitoring Metrics

The monitoring metrics supported by TDMQ for RocketMQ are as follows:

Classification Unit Metric

Cluster

Count Number of Heaped Messages

Count/s Billing API Production Consumption Count

Count/s Billing API Consumption Throttling Count

Count/s Billing API Consumption Count

Count/s Billing API Production Throttling Count

Count/s Billing API Production Count

Topic Bytes/s Message Production Byte TPS

Count/s Message Production Count TPS

Count Number of Heaped Messages

Count/s Billing API Consumption Throttling Count

Count/s Billing API Consumption Count

Count/s Billing API Production Throttling Count

Count/s Billing API Production Count

Count/s Number of Messages Consumed

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 263

Bytes/s Bytes of Messages Consumed

Bytes Topic Message Storage Size

Group

Count Number of Consumers

Count Number of Heaped Messages

Count/s Billing API Consumption Throttling Count

Count/s Billing API Consumption Count

Count/s Number of Messages Consumed

Bytes/s Bytes of Messages Consumed

View Monitoring Data

1. Log in to the RocketMQ console.
2. On the left sidebar, click Monitoring Dashboard and select the region and cluster to be viewed.
3. On the monitoring page, select the desired resource tab and define the time range to access the corresponding

monitoring data.

Icon Description

Click to adjust time granularity of the chart. 1 minute, 5 minutes, and 1 hour are
supported.

Click to fetch the latest monitoring data, it supports setting 30 seconds, 1
minute, and 5 minutes as automatic refresh intervals for the monitoring data.

Click to copy the chart to the dashboard. For more information about the
dashboard, please refer to What is Dashboard.

https://console.intl.cloud.tencent.com/trocketmq
https://intl.cloud.tencent.com/document/product/248/38461?lang=en&pg=

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 263

Configure Alarm Rules

Create Alarm Rules

You can configure alarm rules for monitoring metrics. In the event that a monitoring metric hits the pre-set alarm
threshold, TCOP can timely notify you of any exceptional circumstances through various mediums such as email,
SMS, WeChat, and telephone.

1. On Monitoring page of the cluster, click the alarm icon as shown below to redirect to the TCOP Console for
configuring an alarm policy.

https://console.intl.cloud.tencent.com/monitor/policylist

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 263

2. On the Alarm Policy page, choose the policy type and instance for alarm setting, establish the alarm rule, and set up
the alarm notification template.

Policy Type: Select TDMQ/RocketMQ5 Cluster.
Alarm Object: Select the RocketMQ instance to configure the alarm policy.
Trigger Condition: You can select Select template or Configure manually. The latter is selected by default. For
more information on manual configuration, see the description below. For more information on how to create a
template, please refer to Creating trigger condition template.

Note:
Metric: For instance, if you select 1 minute as the statistical granularity for the "message production TPS" metric, then
if the message production TPS exceeds the threshold for N consecutive data points in that minute, an alarm will be
triggered.
Alarm Frequency: For instance, "Alarm once every 30 minutes" implies that if a metric surpasses the threshold during
multiple consecutive statistical granularity in 30 minutes, then a single alarm will be activated. Within these 30

minutes, no further alarms will be triggered until the next 30-minute interval. If the metric consistently exceeds the
threshold during this subsequent interval, another alarm will be dispatched.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 263

Notification Template: You can select an existing notification template or create one to set the alarm receiving
objects and receiving channels.
3. Click Complete to complete the configuration.

Note:
For more details on alarms, please refer to TCOP Alarm Service.

Create a new trigger condition template

1. Log in to the TCOP console.
2. In Configure Alarm Rules, click Select Template> Add Trigger Condition Template to access the trigger
condition list page.

3. Click Create Trigger Condition Template on the trigger condition template page.

https://intl.cloud.tencent.com/document/product/248/38916
https://console.intl.cloud.tencent.com/monitor/

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 263

4. On the template creation page, configure the strategy type.
Policy Type: Select TDMQ/RocketMQ5.

Triggers Condition: By selecting this option, the suggested alarm policies from system will occur.

5. After ensuring all details are correct, click Save.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 263

6. Navigate back to the alarm policy creation page and click Refresh. The newly configured alarm policy template will
occur.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 263

Message Query
Query General Message
Last updated：2024-05-14 17:32:36

When sending a message from its origin at the producer to the TDMQ for RocketMQ server, and finally to the
consumers, TDMQ for RocketMQ records the flow progress of the message and displays as a message trace in the
console.

The message trace records the full course of the message, from its origin at the producer to the TDMQ for RocketMQ
server, and finally to the consumers. This includes details about each phase, such as time duration (accurate to the
microsecond), execution results, producer IP, and consumer IP.
If you use a client version 5.0 or later one for producing and consuming messages, there is no need to individually
activate the trace switch on the client.

If you use a client v4.x, you need to enable the message trace feature via the client. An example of specific setting is
as follows:
Producer settings
Push consumer settings
Pull consumer settings
Spring Boot Starter Integration (version 2.2.2 and above)

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 263

DefaultMQProducer producer = new DefaultMQProducer(namespace, groupName,

 // ACL permissions

 new AclClientRPCHook(new SessionCredentials(AK, SK)), true, null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 263

// Instantiate the consumer

DefaultMQPushConsumer pushConsumer = new DefaultMQPushConsumer(NAMESPACE,groupName,

 new AclClientRPCHook(new SessionCredentials(AK, SK)),

 new AllocateMessageQueueAveragely(), true, null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 263

DefaultLitePullConsumer pullConsumer = new DefaultLitePullConsumer(NAMESPACE,groupN

 new AclClientRPCHook(new SessionCredentials(AK, SK)));

// Set the NameServer address.

pullConsumer.setNamesrvAddr(NAMESERVER);

pullConsumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);

pullConsumer.setAutoCommit(false);

pullConsumer.setEnableMsgTrace(true);

pullConsumer.setCustomizedTraceTopic(null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 263

package com.lazycece.sbac.rocketmq.messagemodel;

import lombok.extern.slf4j.Slf4j;

import org.apache.rocketmq.spring.annotation.MessageModel;

import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;

import org.apache.rocketmq.spring.core.RocketMQListener;

import org.springframework.stereotype.Component;

/**

 * @author lazycece

 * @date 2019/8/21

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 263

 */

@Slf4j

@Component

public class MessageModelConsumer {

@Component

 @RocketMQMessageListener(

 topic = "topic-message-model",

 consumerGroup = "message-model-consumer-group",

 enableMsgTrace = true,

 messageModel = MessageModel.CLUSTERING)

 public class ConsumerOne implements RocketMQListener<String> {

 @Override

 public void onMessage(String message) {

 log.info("ConsumerOne: {}", message);

 }

 }

}

Operation Scenarios

When you need to investigate the following issues, you can utilize the message query features in the TDMQ for
RocketMQ console. You can search for specific messages by time dimension, or by message ID or message key
found in the logs, in order to view the message content, parameters, and trace.
Observe the specific content and parameters of a given message.
Examine the producer IP from which a message was dispatched, verify its successful transmission, and determine the

precise timestamp of its arrival at the server.
Inspect whether the message has been persistently stored.
Investigate which consumers have ingested the message, ascertain the success of the consumption, and determine
the exact moment at which the consumption was acknowledged.
Conduct a performance analysis of the distributed system by scrutinizing the message processing latency of the

message queue.

Steps

1. Log in to the RocketMQ console and click on Message Query in the left sidebar.
2. On the message query page, after selecting the region, follow the instructions to input the query conditions.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 263

Time Range: Select the desired query time range, supporting the options of the most recent 100 messages (default
choice displays the latest 100 messages in chronological order), the last 30 minutes, last 1 hour, last 6 hours, last 24
hours, last 3 days, or a customizable time range.

Cluster: Select the cluster where the Topic you intend to query is located.
Topic: Select the desired Topic.
Query Method: The message query feature supports the following query methods.
Query all: This method is suitable for querying all messages.
By message ID: This is a precise and high-speed query method with an exact match.

By message key: This method is a fuzzy query. It is suitable for a scenario where you have set a message key with
no recorded message ID.
3. Click Query. The list below will show all the results of the search, displayed by pages.

4. Locate contents or parameters of the message you require to view. Click View Details in the operation column to

access the basic information, content (message body), detailed parameters, and consumption status of the message.
In the consumption status section, you can view the Group that consumed the message and the consumption status.
In the operation column, you can also perform the following actions:
Resend: This action sends the message to a specific client again. If the message has already been successfully
consumed, resending it may lead to duplicated consumption.

Exception Diagnosis: If consumption is abnormal, you can access the exception diagnosis information.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 263

5. Click View Message Trace in the operation column, or click Message Trace in the details page. You can view
the message trace of the message (For detailed information, please refer to Overview of Message Trace Query

Results).

https://intl.cloud.tencent.com/document/product/1113/58493

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 263

Verify consumption

After querying a message, you can click Verify Consumption in the operation column to send the message to a
specified client for verification. Using this feature may lead to message duplication.

Note:
The consumption verification feature is exclusively use to verify the normalcy of the client's consumption logic with no
influence on the standard message receiving process. Consequently, information such as the status of message
consumption remains unaltered post-verification.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 263

Export messages

After querying a message, you can click Export Message in the operation column to export details such as the
message body, message Tag, message Key, message production time and consumption attributes.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 263

Querying Retry Messages
Last updated：2024-05-14 17:37:50

To support business operations in case of failure and ensure a full lifecycle for the message in the event of message
consumption failure, RocketMQ has implemented a policy to retry message consumption upon failure.
If you are using the RocketMQ 4.x client, the number of message retries is based on the settings you specify within the

client.
For the RocketMQ 5.x clusters, you can set the number of message retries when you are creating a Group. If you are
using a 5.x client, then the number of retries is based on the settings on the server side; if you are using a 4.x client,
then the number of retries is still based on the settings within the client.

Overview

When you need to check if there are any retry messages under a specific Topic, you can query messages on the Retry

Message Query Page and expand to view details of each retry attempt, including the time and producer address. It
also supports exporting the message and viewing its detailed contents, as shown below.

Directions

1. Log in to the RocketMQ console and click Retry Message Query Page on the left sidebar.
2. On the message query page, select the region and then enter the query criteria as prompted on the page.
Time Range: Select the time range for query, which can be the last 30 minutes, last hour, last 6 hours, last 24 hours,
last 3 days, or a custom time range.

Cluster: Select the cluster where the topic you want to query is located.
Topic: Select the topic you want to query.
Group: If the cluster you are querying is a 5.x cluster, you need to select the specific group subscribed under that
topic. No need to fill in for 4.x clusters.
Query Method: The message query feature supports the following methods.

Query All: This method is suitable for situations where the information about retry messages is unclear, and it is used
to query all retry messages under the current topic.
Query by Message ID: This method is an exact query, and it provides a fast and exact match.
Query by Message Key: This method is a fuzzy query, and it is applicable when you do not have a record of the
message ID but have set the message key.

Note:

https://console.intl.cloud.tencent.com/trocketmq/retry-message?rid=1
https://console.intl.cloud.tencent.com/trocketmq/retry-message?rid=1

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 263

To ensure query speed, when you select Query All, the server will query the most recent messages in chronological
order. However, due to query time and display limitations, it may not quickly locate the message you need to query. It
is recommended to use more specific search criteria, such as Message ID and Message Key.

3. click Query, and the results will be displayed in the list below with pagination.

4. After the query is completed, you can click a single message to view the retry situation of the current message, such
as the number of retries and the producer address, etc. You can also click other options in the operation bar.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 263

Querying Dead Letter Message
Last updated：2024-01-17 16:42:03

Overview

A dead letter queue is a special form of message queue, used to process messages that are unable to be normally
consumed in a centralized manner. If a message fails to be properly consumed after a certain number of retry
attempts, TDMQ for RocketMQ will determine that this message cannot be consumed in the current situation and

send it to the dead letter queue.
In actual situations, messages may become unconsumable due to extended periods of service downtime or network
disconnections. In such situations, messages are not discarded immediately, but the dead letter queue engages in
extended persistence processing for such messages. Upon identifying an appropriate solution, users can create a
consumer subscription to the dead letter queue in order to process messages that cannot be process at the time.

Query Restrictions

You can query messages from the past three days at most.

Feature Description

If a message is sent to the dead letter queue, it will not be consumed by consumers normally. You can query
messages from the past three days at most. Please process dead letter messages within three days after they are
generated. Otherwise, these messages may be deleted.
A dead letter queue contains all the dead letter messages generated in every topic within a single group. If there are
no dead letter messages in a group, no dead letter queues will be created and dead letter messages cannot be found.

Directions:

1. Log in to the TDMQ for RocketMQ console, and then click on Dead Letter Message Query in the left sidebar.
2. On the message query page, select the region and follow the on-screen instructions to enter the query conditions.
Time Range: Choose your desired time period for conducting the query. You can choose the last 30 minutes, last
hour, last 6 hours, last 24 hours, last 3 days, or a customized time range.
Present Cluster: Choose the cluster that contains the dead letter message to be queried.

Group: Choose the group that contains the dead letter message to be queried.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 263

Message ID: It is optional.
If you leave the Message ID field blank, the query is a fuzzy search. Queries can be conducted in batch according to
Group ID and time range in which the dead letter messages are generated.

If you specify Message ID, the query is an exact search. Group ID and Message ID will be used to precisely locate
any message.
3. Click Query. The list below will show all the results of the search in pages.

4. You can select multiple dead letter messages and click Batch Resend Messages at the top left corner to resend
these messages to the original retry queue. Alternatively, you can click Resend Message under the operations

column of a single message to resend a particular dead letter message. Messages that have been resent will be
delivered to the retry queue of the original queue and will not be immediately deleted from the dead letter queue.
These messages will only be deleted after their lifecycle (three days) expires.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 263

5. Find the message in which you want to view its content or parameters, and click View Details under the operation
column. Then you can view the basic information, content (message body), and parameters of the message.

6. Click View Message Trace under the operation column, or select Message Trace on the tab bar in the details

page. Then you can view the message trace of the message. For details, see the Message Trace Query Results.
You will see that when a dead letter message is resent, the consumption status changes to Dead Letter Redelivery
Completed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 263

Message Trace Description
Last updated：2024-01-17 16:42:18

A message trace records the entire process of a message from the producer to the TDMQ for RocketMQ server, and
ultimately to the consumer, enumerating elements such as the time spent in each stage (accurate to the microsecond),
execution outcome, producer IP, and consumer IP.

Prerequisites

You have deployed the producer and consumer services as instructed in the SDK documentation, and there are
messages produced and consumed in the last three days.
If you are producing and consuming messages using a client 5.0 or later, there is no need to separately turn on the
trace switch on the client.
If you are using a client 4.x, you need to enable the message trace feature on the client itself. The following shows an

example of how to implement this setting:
Producer Settings
Push Consumer Settings
Pull Consumer Settings
Spring Boot Starter Access (Version 2.2.2 and Above)

https://intl.cloud.tencent.com/document/product/1113/58512

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 263

DefaultMQProducer producer = new DefaultMQProducer(namespace, groupName,

 // ACL permission

 new AclClientRPCHook(new SessionCredentials(AK, SK)), true, null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 263

// Instantiate the consumer

DefaultMQPushConsumer pushConsumer = new DefaultMQPushConsumer(NAMESPACE,groupName,

 new AclClientRPCHook(new SessionCredentials(AK, SK)),

 new AllocateMessageQueueAveragely(), true, null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 263

DefaultLitePullConsumer pullConsumer = new DefaultLitePullConsumer(NAMESPACE,groupN

 new AclClientRPCHook(new SessionCredentials(AK, SK)));

// Set the NameServer address

pullConsumer.setNamesrvAddr(NAMESERVER);

pullConsumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);

pullConsumer.setAutoCommit(false);

pullConsumer.setEnableMsgTrace(true);

pullConsumer.setCustomizedTraceTopic(null);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 263

package com.lazycece.sbac.rocketmq.messagemodel;

import lombok.extern.slf4j.Slf4j;

import org.apache.rocketmq.spring.annotation.MessageModel;

import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;

import org.apache.rocketmq.spring.core.RocketMQListener;

import org.springframework.stereotype.Component;

/**

 * @author lazycece

 * @date 2019/8/21

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 263

 */

@Slf4j

@Component

public class MessageModelConsumer {

@Component

 @RocketMQMessageListener(

 topic = "topic-message-model",

 consumerGroup = "message-model-consumer-group",

 enableMsgTrace = true,

 messageModel = MessageModel.CLUSTERING)

 public class ConsumerOne implements RocketMQListener<String> {

 @Override

 public void onMessage(String message) {

 log.info("ConsumerOne: {}", message);

 }

 }

}

Directions:
1. Log in to the TDMQ for RocketMQ console and click Message Query on the left sidebar.
2. On the message query page, select the region and follow the on-screen instructions to enter the query conditions.
Time Range: Choose the required time range for the query. Options include the most recent 100 messages (display in
chronological order by default), last 30 minutes, last 1 hour, last 6 hours, last 24 hours, last 3 days, or a custom time
range.

Cluster: Select the cluster where the Topic you want to query is located.
Topic: Select the Topic you want to query.
Query Method: The following query methods are supported.
Query All: This method will display all messages in the selected Topic within the selected time range.
By message ID: This is a precise and high-speed query method with an exact match.

By message key: This method is a fuzzy query best suited when you have not recorded the message ID but have
configured a message key.
3. Click Query. The results will be displayed by pages in the list below.
4. Click View message trace in the action column, or select Message Trace in the details page tab bar to view the
corresponding message trace.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 263

Description of Message Trace Query Results
The query results of the message trace are divided into three sections: message production, message storage, and
message consumption.

Message Production

Parameter Description

Production
Address

Corresponding producer's address and port.

Production
Time

The time when the TDMQ for RocketMQ server acknowledged message receipt, accurate to the
millisecond.

Sending
duration

The time expended to send the message from the producer to the TDMQ for RocketMQ server,
accurate to the microsecond.

Production
Status

Whether the message production was successful. A failure generally denotes loss of part of the
header data during message transmission, which may result in the preceding fields being NULL.

Message Storage

Parameter Description

Storage
Time

The time when the message is persistently stored.

Storage
Duration

The duration between when the message was persistently stored and when the TDMQ for
RocketMQ server received the acknowledgment, accurate to the millisecond.

Storage
Status

Whether the persistent storage of the message was successful. If the status is failure, the
message was not successfully stored, possibly due to disk damage or insufficient capacity. Such
situation requires immediate submission of a ticket.

Message Consumption

Message consumption is presented in a list format. TDMQ for RocketMQ supports both cluster consumption and

broadcast consumption modes.
The information displayed in the list is as described below:

Parameter Description

Consumer
Group Name

The name of the Consumer Group.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 263

Consumption
Mode

The consumption mode of the consumer group, supporting both cluster consumption and
broadcast consumption modes.

Number of
Pushes

The number of times the TDMQ for RocketMQ server sends the message to the consumer.

Last Pushed
Time

The final instance in which the TDMQ for RocketMQ server sent the message to the consumer.

Consumption
Status

Unacknowledged: The TDMQ for RocketMQ server has sent the message to the consumer, but
has not yet received an acknowledgment from the consumer.
Acknowledged: The consumer has sent an acknowledgment (ack) to the TDMQ for RocketMQ
server and the server has received the acknowledgment.
Retried: The server has not received an acknowledgment and the message is subsequently
sent again due to timeout.
Retried but Unacknowledged: The TDMQ for RocketMQ server has resent the message to the
consumer, but an acknowledgment in response from the consumer has still not been received.
Moved to Dead Letter Queue: After a number of unsuccessful consumption attempts, the
message has been sent to the dead letter queue.
Note:
If the consumption mode is broadcasting, the only state of consumption is Pushed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 263

Permission Management
Access Authorization for Root Account
Last updated：2024-01-17 16:42:42

Overview
RocketMQ needs to access APIs of other cloud products, so granting RocketMQ permissions to create service roles
is required.

Prerequisites

A Tencent Cloud account has been successfully registered.

Note:
If you have registered for a Tencent Cloud account, a root account is automatically created by the system for quick
access to Tencent Cloud resources.

Directions:

1. Log in to the TDMQ for RocketMQ console, choose RocketMQ > Cluster Management from the left-hand
navigation bar, and then click on Create Cluster.

2. During the network configuration on the purchase cluster page, upon selecting a VPC and then ticking the option "I
authorize the “binding of the access point domain name of the newly purchased cluster to the above VPCs", a prompt
window for authorization will appear.

https://intl.cloud.tencent.com/document/product/378/17985
https://console.intl.cloud.tencent.com/tdmq/rocket-cluster

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 263

3. Click on Authorize to navigate to the CAM console. Click on Authorize Now to assign the TDMQ RocketMQ
service a role to access your other cloud service resources.

4. After you have completed the authorization process, you can create a RocketMQ cluster and use the relevant

services.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 263

Access Authorization for Sub-Account
Granting Sub-Account Access to TDMQ for
RocketMQ
Last updated：2024-01-17 16:43:19

Basic Concepts in CAM

The root account authorizes sub-accounts by associating them with policies. The policies can be configured to the
granularity of API, Resource, User/User Group, Allow/Deny, and Condition.

Account System

Root Account: Possesses all Tencent Cloud resources and has the capability to access any of its resources.

Sub-account: Comprised of sub-users and collaborators.
Sub-user: Created and fully owned by a root account.
Collaborator: Possesses the identity of a root account. If an account is added as a collaborator to a current root
account, it is one of the sub-accounts and can switch back to its original root account identity.
Identity Credentials: Includes both login credentials and access certificates. Login Credentials refer to usernames

and passwords, and Access Certificates refer to API keys (SecretId and SecretKey).

Resources and Permissions

Resources: An object within the cloud service that is subjected to operations, such as a CVM instance, a COS
bucket, and a VPC instance.
Permissions: Permissions refer to allowing or rejecting certain users to perform certain actions. By default, the root
account has unrestricted access to all resources under it, and a sub-account possesses no access to any
resources under its root account.

Policy: A syntactical guideline that defines and describes one or more permissions. The root account performs
authorization by associating policies with users/user groups.

Sub-account Using RocketMQ

To ensure that a sub-account can successfully use RocketMQ, the root account must grant authorization to the sub-
account.
Use the root account to log in to the CAM console, locate the appropriate sub-account within the sub-account list, and

then click on Authorize in the action column.

https://console.intl.cloud.tencent.com/cam

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 263

RocketMQ offers two preset policies for sub-accounts: QcloudTrocketReadOnlyaccess and
QcloudTrocketFullAccess. The former only allows viewing related information in the console, and the latter allows
read and write operations on the product console.

Apart from the preceding preset policies, the root account also needs to grant the sub-account permissions to call
other cloud services as needed to better usage. The use of RocketMQ involves the following corresponding API
permissions of cloud services:

Cloud
Service

API Name API Features Corresponding Features in
RocketMQ

TCOP
(Monitor) GetMonitorData

Queries
monitoring
metric data

Views corresponding monitoring
metrics displayed in the console

TCOP
(Monitor) DescribeDashboardMetricData

Queries
monitoring
metric data

Views corresponding monitoring
metrics displayed in the console

Resource
tags

DescribeResourceTagsByResourceIds Queries
resource tags

Views resource tags of the cluster

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 263

To grant the preceding permissions to a sub-account, the root account needs to perform the Create Custom Policy
operation on Policies page of the CAM Console. After clicking Create by syntax for creation, select a Blank
Template and enter the following policy syntax:

 {

 "version": "2.0",

 "statement": [

 {

 "effect": "allow",

 "action": [

 "monitor:GetMonitorData",

https://console.intl.cloud.tencent.com/cam

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 263

 "monitor:DescribeDashboardMetricData",

 "tag:DescribeResourceTagsByResourceIds"

],

 "resource": [

 "*"

]

 }

]

 }

After creating the policy, associate the newly created policy with the sub-account under the operation column. See the
following figure:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 263

##Related Documents

Operational Level Authorization
Resource Level Authorization
Tag-Level Authorization

https://intl.cloud.tencent.com/document/product/1113/58498
https://intl.cloud.tencent.com/document/product/1113/58499
https://intl.cloud.tencent.com/document/product/1113/58500

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 263

Granting Operation-Level Permissions to Sub-
Accounts
Last updated：2024-01-17 16:43:30

Overview

This documentation describes how to use a Tencent Cloud root account to grant operation-level permissions to a sub-
account. You can grant different read/write permissions to the sub-account as needed.

Directions:

Granting Full Read/Write Permissions

Note:

Once a sub-account is granted full read/write permissions, the sub-account will possess full read/write capabilities
over all resources under the root account.
1. Log in to the CAM console with your root account.
2. Click Policies in the left sidebar to access the policy management list page.
3. In the search bar on the right, enter QcloudTrocketFullAccess and search.

4. In the search results, click the Associate Users/User Groups/Role of QcloudTrocketFullAccess and choose
the sub-account you want to authorize.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 263

5. Click OK to complete the authorization. This policy will then be displayed in the user's policy list.

Granting Read-Only Permission

Note:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 263

Once a sub-account is granted read-only permission, it will possess read-only capabilities for all resources under
the root account.
1. Log in to the CAM console with your root account.

2. Click Policies on the left-hand navigation bar to access the policy management list page.
3. In the search bar on the right, enter QcloudTrocketReadOnlyAccess and search.

4. In the search results, click on the Associate Users/User Groups/Role of QcloudTrocketReadOnlyAccess and
choose the sub-account you want to authorize.

5. Click OK to complete the authorization. This policy will then be displayed in the user's policy list.

https://console.intl.cloud.tencent.com/cam

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 263

Other Authorization Methods

Resource Level Authorization
Tag-Level Authorization

https://intl.cloud.tencent.com/document/product/1113/58499
https://intl.cloud.tencent.com/document/product/1113/58500

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 263

Granting Resource-Level Permissions to Sub-
Accounts
Last updated：2024-01-17 16:43:42

Overview

This document describes how to use the root account to grant a sub-account resource-level permissions. After the
authorization, the sub-account will possess control over a specific resource.

Operation Prerequisites

You have a Tencent Cloud root account and have activated the Tencent Cloud CAM service.

The root account should have at least one sub-account, and authorization has been granted according to "Retrieving
access permissions for sub-accounts".
You have at least one RocketMQ instance.

Directions:

You can use the policy feature in the CAM console to grant a sub-account permissions of the root account's
RocketMQ resources. For details, see Granting RocketMQ Resources to Sub-Accounts. This example

demonstrates how to grant a cluster resource to a sub-account. The operation for other resource types are similar.

Step 1: Acquiring the Resource ID of the RocketMQ Cluster

1. Use the root account to log in to the TDMQ for RocketMQ console, select an existing cluster instance, and click to
open the details page.

2. In Basic Info, the field ID is the ID of the current RocketMQ cluster.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 263

Step 2: Creating an Authorization Policy

1. Open the CAM console and click Policies on the left sidebar.
2. Click Create Custom Policy, and choose Create by Policy Generator.
3. In the visual policy generator, keep Effect set to Allow. In Service, enter "rocketmq" to filter and select RocketMQ

(trocket) from the results.

4. Select All Actions in Action. You can also select action types as needed.

5. In Resource, select Specific resources. You can either select Any resource of this type (grant access to all
resources in this category) on the right, or click on **Add a Six-segment Resource description (authorize specific
resources)**.

6. In the displayed sidebar under Resource, specify the ID of the resource you want to authorize. For the acquisition
procedure, see Step 1.

https://console.intl.cloud.tencent.com/cam/overview
https://console.intl.cloud.tencent.com/cam/policy

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 263

7. Click Next and fill in the policy name as needed.
8. Click Select Users or Select User Groups to choose the user or user group that needs to be granted resource
permissions.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 263

9. Click Complete. The sub-accounts granted with resource permissions can access the related resources.

Other Authorization Methods

Operational Level Authorization
Tag-Level Authorization

Appendix

List of APIs Supporting Resource-Level Authorization

TDMQ supports resource-level authorization, enabling you to bestow upon a particular sub-account, the API
permissions of a specific resource.

https://intl.cloud.tencent.com/document/product/1113/58498#
https://intl.cloud.tencent.com/document/product/1113/58500#

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 263

The APIs supporting resource-level authorization are as follows:

API Name API
Description

Resource Type Six-Segment Example of Resource

CreateConsumerGroup
Creates
consumer
groups

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

CreateInstance Creates
instances

instance qcs::trocket:${region}:uin/${uin}:instance/*

CreateInstanceEndpoint
Creates
access
points

instance qcs::trocket:${region}:uin/${uin}:instance/${i

CreateRole Adds roles role qcs::trocket:${region}:uin/${uin}:role/${instan

CreateTopic Creates
topics

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DeleteConsumerGroup
Deletes
consumer
groups

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

DeleteInstance Deletes
instances

instance qcs::trocket:${region}:uin/${uin}:instance/${i

DeleteInstanceEndpoint
Deletes
access
points

instance qcs::trocket:${region}:uin/${uin}:instance/${i

DeleteRole Deletes
roles

role qcs::trocket:${region}:uin/${uin}:role/${instan

DeleteTopic Deletes
topics

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeConsumerClient
Queries
consumer
client details

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

DescribeConsumerClientList

Queries
client
connections
under
consumer
group

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 263

DescribeConsumerGroup Queries
consumer
group
details

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

DescribeConsumerGroupList
Queries
consumer
group lists

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

DescribeInstance Queries
instances

instance qcs::trocket:${region}:uin/${uin}:instance/${i

DescribeInstanceList
Queries
instance
lists

instance qcs::trocket:${region}:uin/${uin}:instance/${i

DescribeInstanceTopUsages

Obtains
instance
resource
consumption
ranking

instance qcs::trocket:${region}:uin/${uin}:instance/${i

DescribeMessage Queries
messages

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeMessageList
Queries
message
lists

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeMessageTrace
Queries
message
traces

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeRoleList Queries role
lists

role qcs::trocket:${region}:uin/${uin}:role/${instan

DescribeTopic Queries
topic details

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeTopicList Queries
topic lists

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

DescribeTopicListByGroup Obtains
topic lists
based on
the

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 263

consumer
group

DescribeTopicStatisticalList

Obtains the
number and
types of
topics under
a specified
instance

instance qcs::trocket:${region}:uin/${uin}:instance/${i

ExportMessage Exports
messages

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

ModifyConsumerGroup

Modifies
consumer
group
attributes

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

ModifyInstance Modifies
instances

instance qcs::trocket:${region}:uin/${uin}:instance/${i

ModifyInstanceEndpoint
Modifies
access
points

instance qcs::trocket:${region}:uin/${uin}:instance/${i

ModifyRole Modifies
roles

role qcs::trocket:${region}:uin/${uin}:role/${instan

ResetConsumerGroupOffset
Resets
consumption
offset

consumerGroup qcs::trocket:${region}:uin/${uin}:consumerG

SendMessage Sends
messages

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

VerifyMessageConsumption
Verifies
message
consumption

topic qcs::trocket:${region}:uin/${uin}:topic/${insta

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 263

Granting Tag-Level Permissions to Sub-
Accounts
Last updated：2024-01-17 16:43:53

Overview

This document describes how to use a root account to grant a sub-account access to resources under a specific tag
through tag authorization. The authorized sub-account can gain control over the resources associated with the
corresponding tag.

Prerequisites

You have a Tencent Cloud root account and have activated the Tencent Cloud CAM service.
The root account should have at least one sub-account, and authorization has been granted according to "Retrieving
access permissions for sub-accounts".
You have at least one RocketMQ cluster resource instance.
You have at least one tag. If you do not have one, you can go to TAG control panel > TAG list to create one.

Directions

You can use the policy feature of the CAM console to grant the sub-account read/write permissions for RocketMQ
resources owned by the root account and already bound to a tag, by authorizing by TAG. For details, see Granting
Resource Permissions to Sub-Accounts by TAG.

Step 1: Binding Tags to Resources

1. Use the root account to log in to the MQ for RocketMQ console, and navigate to the cluster management page.
2. Select the target cluster and then click Edit Resource Tag in the upper left corner to bind a tag to the cluster.

https://console.intl.cloud.tencent.com/tag/taglist
https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 263

Step 2: Authorizing by Tag

1. Open the CAM console and click Policies on the left sidebar.
2. Click Create Custom Policy, and select Authorize by TAG.
3. In the visual policy generator, enter "rocketmq" in the service to filter. Select TROCKET(trocket) from the results.

Select All actions in Action, or select the corresponding operation as needed.

4. Click Next and fill in the policy name as needed.
5. Click Select Users or Select User Groups to choose the user or user group that needs to be granted resource
permissions.

https://console.intl.cloud.tencent.com/cam/overview
https://console.intl.cloud.tencent.com/cam/policy

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 263

6. Click Complete. The corresponding sub-accounts can now control resources under the specified tag according to
the policy.

Unified Management of Resource Tags

You can also manage resource tags in a unified manner on the TAG Console. The detailed operations are as follows:

1. Log in to the Tag console.
2. On the left sidebar, select Resource Tag and choose the query conditions as needed, and then choose TROCKET
> RocketMQ Instance in Resource type.
3. Click Query Resources.
4. Select the required resources in the results, and click Edit Tag. You can bind or unbind tags in batches.

https://console.intl.cloud.tencent.com/tag/taglist
https://console.intl.cloud.tencent.com/tag/taglist

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 263

Other Authorization Methods

Operational Level Authorization
Resource Level Authorization

https://intl.cloud.tencent.com/document/product/1113/58498
https://intl.cloud.tencent.com/document/product/1113/58499

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 263

Tag Management
Last updated：2024-01-26 17:07:58

Overview

Tag is a key-value pair provided by Tencent Cloud to identify a resource in the cloud. You can use it to easily
categorize and manage TDMQ for RocketMQ resources in many dimensions such as business, purpose, and owner.
Note:

Tencent Cloud will not use the tags you configure. They are only used for you to manage TDMQ for RocketMQ
resources.

Use Restrictions

Please be aware of the following restrictions when using tags:

Restriction
Type

Restrictions

Quantity
limit

Each cloud resource allows up to 50 tags.

Tag key
restrictions

 qcloud , tencent , and project are system reserved tag keys and cannot be created.
A Tag key can only contain numbers , letters , and +=.@- symbols. The maximum
length of a tag key is 255 characters.

Tag value
restrictions

A tag value can only contain empty strings or numbers , letters , and +=.@-
symbols. The maximum length of a tag value is 127 characters.

Operation Procedure and Use Cases

Use Case Description

A company has six TDMQ for RocketMQ clusters on Tencent Cloud. The following shows the department, business
scope, and responsible person information of the six clusters:

Queue ID Department of Usage Business Scope Responsible Person

rocketmq-qzga74ov5gw1 E-commerce Marketing campaigns John

rocketmq-qzga74ov5gw2 E-commerce Marketing campaigns Jack

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 263

rocketmq-qzga74ov5gw3 Games Game A John

rocketmq-qzga74ov5gw4 Games Game B Jack

rocketmq-qzga74ov5gw5 Entertainment Post-production Jack

rocketmq-qzga74ov5gw6 Entertainment Post-production John

Using 'rocketmq-qzga74ov5gw1' as an example, we can add the following three sets of tags to this instance:

Tag Key Tag Value

dept ecommerce

business mkt

owner John

Appropriate tags can also be assigned to other queue resources in the same way according to their department,
business scope, and responsible person.

Setting TAG on the TDMQ for RocketMQ Console

The preceding scenario is used as an example. After you design the tag key and tag value, you can log in to the
TDMQ for RocketMQ console to configure the tags.
1. Log in to the Console for RocketMQ.

2. In the cluster management list page, select the appropriate region. Then, tick the cluster for which you want to edit
the tag and click Edit Resource TAG at the top of the page.

3. Set the tag in the displayed "Edit TAG" window.

https://console.intl.cloud.tencent.com/trocketmq

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 263

Note:
If existing tags do not meet your specifications, go to TAG Management to create new tags.
4. Click OK. After receiving a successful modification prompt from the system, view the bound tags in the cluster's

resource tag column.

Filtering Resources with a Tag Key

If you want to filter clusters bound to the corresponding tag, perform the following operations.
1. Select TAG from the search box located in the upper right corner of the page.
2. In the window that is displayed after TAG:, select the tag you want to search for and click OK to initiate the search.
For example, by selecting TAG:owner:zhangsan , you can filter out clusters associated with the tag key

 owner:zhangsan .

Editing Tags

1. In the cluster management list page, select the appropriate region. Then, tick the cluster for which you want to edit
the tag and click Edit Resource TAG at the top of the page.

https://console.intl.cloud.tencent.com/tag/taglist

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 263

Note:
You can batch edit tags for a maximum of 20 resources at a time.
2. In the displayed "Edit TAG" window, add, modify, or delete tags as needed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 263

Development Guide
Message Type
General Message
Last updated：2023-11-14 16:34:59

A general message is a basic type of message that is delivered to a specified topic by production and consumed by
consumers who subscribe to the topic. There is no order in the topic of general messages, and multiple partitions can
be used to improve the efficiency of message production and consumption. The performance of general messages is

optimal when the throughput is huge.
General messages are different from scheduled and delayed messages, sequential messages, and transactional
messages. The topics corresponding to these four message types cannot be mixed and can only be used for sending
and receiving messages of the same type. For instance, the topic of a general message can only be used to send and
receive general messages and cannot be used to send and receive delayed, sequential, and transactional messages.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 263

Scheduled Message and Delayed Message
Last updated：2024-01-17 16:47:17

This document primarily describes the concepts and usage of scheduled messages and delayed messages in TDMQ
for RocketMQ.

Concepts

Scheduled message: In actual business, after a message is sent to the server, the consumer is expected to receive

it at a later time point rather than immediately. This type of message is called scheduled message.
Delayed message: In actual business, after a message is sent to the server, the consumer is expected to receive it
after a period of time rather than immediately. This type of message is called delayed message.
Actually, the delayed message can be regarded as a special type of scheduled message, which is essentially the
same thing.

Instructions

Apache RocketMQ does not provide an API for you to freely set the delay time. In order to ensure compatibility with
the open-source RocketMQ client, TDMQ for RocketMQ has designed a method to specify the message sending time
by adding the property key-value pair to the message. You only need to add the __STARTDELIVERTIME property

value to the property of the message that needs to be sent at a scheduled time (within 40 days). For delayed

messages, you can first calculate the time point for scheduled sending and then send them as scheduled messages.
A code sample is given below to show how to use scheduled messages and delayed messages in TDMQ for

RocketMQ. You can also view the complete code sample >>.

Scheduled Messages

To send a scheduled message, simply write a standard millisecond timestamp to the __STARTDELIVERTIME

property before sending it.

https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq4/src/main/java/com/tencent/demo/rocketmq4

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 263

Message msg = new Message("test-topic", ("message content").getBytes(StandardCharse

// Set the message to be sent at 00:00:00 on 2021-10-01

try {

 long timeStamp = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse("2021-10-01

 // Set `__STARTDELIVERTIME` into the property of `msg`

 msg.putUserProperty("__STARTDELIVERTIME", String.valueOf(timeStamp));

 SendResult result = producer.send(msg);

 System.out.println("Send delay message: " + result);

} catch (ParseException e) {

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 263

Delayed Messages

For a delayed message, its scheduled sending time point is first calculated by System.currentTimeMillis()

+ delayTime , and then it is sent as a scheduled message.

Message msg = new Message("test-topic", ("message content").getBytes(StandardCharse

// Set the message to be sent after 10 seconds

long delayTime = System.currentTimeMillis() + 10000;

// Set `__STARTDELIVERTIME` into the property of `msg`

msg.putUserProperty("__STARTDELIVERTIME", String.valueOf(delayTime));

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 263

SendResult result = producer.send(msg);

System.out.println("Send delay message: " + result);

Use Restrictions

When using delayed messages, make sure that the time on the client is in sync with the time on the server (UTC+8
Beijing time in all regions). Otherwise, there will be a time difference.
There is a precision deviation of about one second for scheduled and delayed messages.
The time ranges of scheduled and delayed messages varies based on different cluster specifications. For details, see

Product Series.
When using scheduled messages, you need to set a time point after the current time. Otherwise, the message will be
sent to the consumer immediately.

https://intl.cloud.tencent.com/document/product/1113/57516

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 263

Sequential Message
Last updated：2024-01-17 16:51:45

Sequential message is an advanced type of message offered by TDMQ for RocketMQ. For a specified Topic,
messages are published and consumed in strict accordance with the principle of First-In-First-Out (FIFO). That is,
messages sent first are consumed first, and messages sent later are consumed later.

Sequential messages are suitable for scenarios that have strict requirements on the sequence of message sending
and consumption.

Use Cases

The comparison between sequential messages and general messages is as follows:

Message
Type

Consumption
Sequence

Performance Use Cases

General
message No sequence High

Suitable for scenarios with high demands for throughput
and no requirement for production and consumption
sequence.

Sequential
message

Messages in a
specified Topic
following the FIFO
rule

Average
Scenarios having average demands for throughput and
requiring publishing and consuming all messages in a
specified Topic in strict accordance with the FIFO rule

Sequential messages are often used in the following actual business scenarios:
Order creation: In some e-commerce systems, the creation, payment, refund, and logistics messages of an order

must be produced or consumed in strict sequence. Otherwise, the order status delivery will be messed up, affecting
normal businesses. Therefore, the messages of this order must be produced and consumed in a certain sequence in
the client and message queue. In addition, the messages are sequentially dependent, and the processing of the next
message depend on the processing result of the preceding message.
Log synchronization: In the scenario of sequential event processing or real-time incremental data synchronization,
sequential messages can also play a vital role. For example, it is necessary to ensure that database operations are in

sequence when MySQL binlogs are synchronized.
Financial scenarios: In some matchmaking transaction scenarios such as certain securities trading, priority is given
to those who bid first case of the same biding price, so it is necessary to produce and consume sequential messages
in a FIFO manner.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 263

How It Works

In TDMQ for RocketMQ, the principle of sequential messages is shown in the figure below. You can partition
messages according to a certain standard, such as ShardingKey in the figure. Messages of the same ShardingKey
will be assigned to the same queue and consumed in sequence.

The code for sequential messages is as follows:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 263

public class Producer {

 public static void main(String[] args) throws UnsupportedEncodingException {

 try {

 DefaultMQProducer producer = new DefaultMQProducer("please_rename_uniqu

 producer.start();

 String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};

 for (int i = 0; i < 100; i++) {

 int orderId = i % 10;

 Message msg =

 new Message("TopicTest", tags[i % tags.length], "KEY" + i,

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 263

 ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHA

 SendResult sendResult = producer.send(msg, new MessageQueueSelector

 @Override

 public MessageQueue select(List<MessageQueue> mqs, Message msg,

 Integer id = (Integer) arg;

 int index = id % mqs.size();

 return mqs.get(index);

 }

 }, orderId);

 System.out.printf("%s%n", sendResult);

 }

 producer.shutdown();

 } catch (MQClientException | RemotingException | MQBrokerException | Interr

 e.printStackTrace();

 }

 }

}

The main difference here is that the SendResult send(Message msg, MessageQueueSelector

selector, Object arg) method is called. MessageQueueSelector is a queue selector and arg is a Java

object, which can be passed in as the classification standard for message sending partition.
The MessageQueueSelector API is as follows:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 263

public interface MessageQueueSelector {

 MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Obje

}

Where, mqs is the queue that can be sent, msg is the message, arg is the object passed in the preceding send API,
and the queue to which the message needs to be sent is returned. In the preceding sample, orderId is used as the
partition classification standard, and the remainder of the number of all queues is obtained to send messages with the

same orderId to the same queue.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 263

In the production environment, it is recommended that you select the most fine-grained partition key for splitting. For
example, when the order ID and user ID are used as the partition key keywords, the messages of the same end user
will be processed in sequence, while those of different users will not.

Note:
To ensure high availability of messages, TDMQ for RocketMQ currently does not support "globally sequential
messages" in a single queue (users who have already created globally sequential messages can continue to use them
normally). If you want to ensure global sequence, you can use a consistent ShardingKey.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 263

Transactional Message
Last updated：2024-01-17 16:52:56

This document describes the concept, technical principle, use cases, and application scenarios of transactional
messages in TDMQ for RocketMQ.

Feature Description

The transactional message solves the atomicity problem of local transaction execution and message sending,

ensuring the eventual consistency between them. It provides users with the distributed transaction feature similar to
X/Open XA, so users can achieve the eventual consistency of the distributed transaction in TDMQ for RocketMQ.

1. The producer sends a message to RocketMQ (1).
2. After receiving the message, the server stores it in the half message topic (2).
3. Local transaction is executed (3).

4. The producer proactively sends the transaction execution result to TDMQ for RocketMQ (4).
5. If the local transaction execution result has not been returned after a certain period of time, TDMQ for RocketMQ
will execute the recheck logic (5).
6. After receiving the message recheck, the producer needs to check the final result of the local transaction execution
of the corresponding message and give feedback (6, 7). There are three transaction execution status:
TransactionStatus.COMMIT: Commits the transaction. Consumers can consume the message.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 263

TransactionStatus.ROLLBACK: Rolls back the transaction. The message is discarded without being consumed by
consumers.
TransactionStatus.UN_KNOW: Unknown status, indicating the waiting of another recheck.

7. When the transaction is successfully executed, TDMQ for RocketMQ submits the transactional message to the real
topic for consumption by consumers (a).

Use Cases

The transaction messages of TDMQ for RocketMQ can be used to process transactions, which can greatly improve
processing efficiency and performance. A billed transaction chain is usually long with a significant chance of error or
timeout. TDMQ for RocketMQ's automated repush and abundant message retention features can be used to provide

transaction compensation, and the eventual consistency of payment tips notifications and transaction pushes can also
be achieved through TDMQ for RocketMQ.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 263

Message Filtering
Last updated：2024-01-17 16:53:09

This document describes the features, application scenarios, and usage instructions of message filtering in TDMQ for
RocketMQ.

Feature Description

Message filtering indicates that messages are filtered by the message attribute configured by the message producer

when the producer sends messages to the topic. The consumer that subscribes to the topic can filter messages based
on their attributes so that only eligible messages are delivered to the consumer for consumption.
If a consumer configures no filter conditions when subscribing to a topic, no matter whether filter attributes are
configured during message sending, all messages in the topic will be delivered to the consumer for consumption.

Use Cases

Generally, messages with the same business attributes are stored in the same topic. For example, when an order

transaction topic contains messages of order placements, payments, and deliveries, and if you want to consume only
one type of transaction messages in your business, you can filter them on the client, but this will waste bandwidth
resources.
To solve this problem, TDMQ supports message filtering on the broker. Users can set one or more tags during
message production and subscribe to specified tags during consumption.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 263

Instructions

Filtering by Tag

Sending Messages

Note:
During message sending, tags must be clearly specified for each message.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 263

 String tag = "yourMessageTagA";

 final Message message = provider.newMessageBuilder()

 // Set topic for the current message.

 .setTopic(topic)

 // Message secondary classifier of message besides topic.

 .setTag(tag)

 // Key(s) of the message, another way to mark message besides message i

 .setKeys("yourMessageKey-1c151062f96e")

 .setBody(body)

 .build();

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 263

Subscribing to Messages

Subscribing to all tags:
If a consumer wants to subscribe to all types of messages under a topic, an asterisk (*) can be used to represent all
tags.

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 String tag = "*";

 FilterExpression filterExpression = new FilterExpression(tag, FilterExpress

 // In most case, you don't need to create too many consumers, singleton pat

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 263

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

Subscribing to one tag:
If a consumer wants to subscribe to a certain type of messages under a topic, the tag should be specified clearly.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 263

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 String tag = "TAGA";

 FilterExpression filterExpression = new FilterExpression(tag, FilterExpress

 // In most case, you don't need to create too many consumers, singleton pat

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 263

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

Subscribing to multiple tags:
If a consumer wants to subscribe to multiple types of messages under a topic, two vertical bars (||) should be

added between the two tags for separation.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 263

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 String tag = "TAGA || TAGB";

 FilterExpression filterExpression = new FilterExpression(tag, FilterExpress

 // In most case, you don't need to create too many consumers, singleton pat

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

Filtering by SQL

Sending Messages

The message sending code here is basically the same as the code for sending simple messages. A message is
allowed to carry multiple user-defined attributes when you construct the message body.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 263

final Message message = provider.newMessageBuilder()

 // Set topic for the current message.

 .setTopic(topic)

 // Message secondary classifier of message besides topic.

 // Key(s) of the message, another way to mark message besides message i

 .setKeys("yourMessageKey-1c151062f96e")

 .setBody(body)

 // Some information for SQL filtering

 .addProperty("key1", "value1")

 .build();

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 157 of 263

Subscribing to Messages

The message consumption code here is basically the same as the code for consuming simple messages. However, a
message needs to be carried with the corresponding SQL expression when being subscribed to.

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 String sql = "key1 IS NOT NULL AND key1='value1'";

 // SQL expression

 FilterExpression filterExpression = new FilterExpression(sql, FilterExpress

 // If all is subscribed to

 //FilterExpression filterExpression = FilterExpression.SUB_ALL;

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 158 of 263

 // In most case, you don't need to create too many consumers, singleton pat

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

Note:
The preceding sections provide introduction to the use instructions of message publishing and subscription. For more
operations, see GitHub Demo or RocketMQ Official Documentation.

https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq4/src/main/java/com/tencent/demo/rocketmq4
https://rocketmq.apache.org/zh/docs/4.x/producer/02message1

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 159 of 263

Message Retry
Last updated：2024-01-17 16:53:20

This document describes the mechanism of message retry and its usage in TDMQ for RocketMQ.

Feature Description

When a message is consumed for the first time by a consumer and does not receive a normal response, or when
users request the server to deliver it again, TDMQ for RocketMQ will automatically attempt to deliver this message

again through the message retry mechanism until it is consumed successfully. When the number of retries reaches the
specified value but the message is still not consumed successfully, retry will stop, and the message will be delivered to
the dead letter queue.
After the message enters the dead letter queue, TDMQ for RocketMQ can no longer process it automatically. In this
situation, human intervention is generally required. You can write a dedicated client to subscribe to the dead letter

queue to process such failed messages.
Note:
The broker will automatically retry in the cluster consumption mode but not the broadcasting consumption mode.
The following results are considered as consumption failure, and the message will be retried accordingly:
The consumer returns ConsumeResult.FAILURE.
The consumer returns null.

The consumer actively/passively throws an exception.

Maximum Number of Retries

When a message needs to be retried in TDMQ for RocketMQ, set the messageDelayLevel parameter as follows to
configure the number of retries and retry intervals:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 160 of 263

messageDelayLevel=1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h

The number of retries and retry intervals have the following relationships:

Retry No. Time Interval Since Last Retry Retry No. Time Interval Since Last Retry

1 1 second 10 6 minutes

2 5 seconds 11 7 minutes

3 10 seconds 12 8 minutes

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 161 of 263

4 30 seconds 13 9 minutes

5 1 minute 14 10 minutes

6 2 minutes 15 20 minutes

7 3 minutes 16 30 minutes

8 4 minutes 17 1 hour

9 5 minutes 18 2 hours

Instructions

No special processing is required, the 5.0 SDK follows the preceding rules.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 162 of 263

Dead Letter Message
Last updated：2024-01-17 16:53:55

This document describes the dead letter queue in TDMQ for RocketMQ and how to use it.

Feature Description

When a message is consumed for the first time by a consumer and does not receive a normal response, or when
users request the server to deliver it again, TDMQ for RocketMQ will automatically attempt to deliver this message

again through the message retry mechanism until it is consumed successfully. When the number of retries reaches the
specified value but the message is still not consumed successfully, retry will stop, and the message will be delivered to
the dead letter queue.
If messages enter the dead letter queue, TDMQ for RocketMQ can no longer automatically process them. In this
situation, human intervention is required. You can confirm it via message export, or via specified message resending

on the control console.

Feature Description

Different from the retry queue, which supports automatic consumption, messages within the dead letter queue require
manual intervention.
The validity of messages also adheres to the rule of deletion after three days by default.
The dead letter queue starts with %DLQ% and corresponds to the consumer group one by one. Therefore, a dead

letter queue contains all dead letter messages corresponding to the group ID, regardless of their originating topic.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 163 of 263

Consumption Mode
Cluster Consumption
Last updated：2024-01-17 16:54:18

Introduction to Cluster Consumption Mode

When the cluster consumption mode is used, any message only needs to be processed by just one consumer within
the same subscription group.

Use Cases

This is suitable to scenarios where each message only needs to be processed once.

How to Use

The 5.0 SDK uses the cluster consumption mode by default, requiring no special configuration.
Note:
Please ensure consistency in the subscription relationships of all consumer instances under the same group ID.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 164 of 263

Broadcast Consumption
Last updated：2024-01-17 16:54:51

Introduction to Broadcasting Consumption Mode

When the broadcasting consumption mode is used, each message is pushed to all registered consumers within the
cluster, ensuring that each message is consumed at least once by every consumer.

Use Cases

This mode is suitable for scenarios where every message needs to be processed by every consumer within the

cluster.

How to Use

The 5.0 SDK no longer supports broadcasting consumption. However, a similar feature can be achieved by creating a
distinct subscription group for every consumer if it is required.
Note:
Please ensure consistency in the subscription relationships of all consumer instances under the same group ID.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 165 of 263

SDK Documentation
Compatibility Description
Last updated：2024-01-17 16:55:18

RocketMQ 5.0 introduces a brand-new 5.x SDK based on the gRPC protocol. The new SDK version offers a more
lightweight framework and better multilingual support. We highly recommend that you use this version. Moreover,
TDMQ for RocketMQ 5.x series continues to support the access through the 4.x SDK for existing businesses. The

compatibility details are as follows:

Server
Version

Client Version Compatibility

5.x

5.x SDK Fully compatible

4.x SDK

Versions of 4.9.5 or
later

PushConsumer does not support the broadcasting
consumption mode yet
PushConsumer
CONSUME_FROM_TIMESTAMP is currently
ineffective (The offset can be reset on the console).

Versions earlier than
4.9.5

PushConsumer does not support the broadcasting
consumption mode yet
PushConsumer
CONSUME_FROM_TIMESTAMP is currently
ineffective (The offset can be reset on the console).
PullConsumer consumption is not supported yet.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 166 of 263

5.x SDK
Use of Java SDK
Last updated：2024-01-17 16:55:30

Overview

This document describes how to use an open-source SDK to send and receive messages with the SDK for Java
serving as example, for you to better understand the complete procedure involved in message sending and receiving.
Note:

The Java client is used as an example. For clients of other languages, see the SDK Documentation.

Prerequisites

You have created and prepared the required resources.
You have installed JDK 1.8 or later.
You have installed Maven 2.5 or later.
You have downloaded the demo.

Directions:

Step 1: Installing the Java Dependency Library

Incorporate the relevant dependencies in the Java project. A Maven project is used as an example. Add the following
dependencies to pom.xml:

https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq5/src/main/java/com/tencent/demo

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 167 of 263

<dependencies>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client-java</artifactId>

 <version>5.0.5</version>

 </dependency>

</dependencies>

Step 2: Producing Messages

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 168 of 263

public class NormalMessageSyncProducer {

 private static final Logger log = LoggerFactory.getLogger(NormalMessageSyncProd

 private NormalMessageSyncProducer() {

 }

 public static void main(String[] args) throws ClientException, IOException {

 final ClientServiceProvider provider = ClientServiceProvider.loadService();

 //Adding ak and sk in the configuration

 String accessKey = "yourAccessKey"; //ak

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 169 of 263

 String secretKey = "yourSecretKey"; //sk

 SessionCredentialsProvider sessionCredentialsProvider =

 new StaticSessionCredentialsProvider(accessKey, secretKey);

 // Fill in the access location provided by Tencent Cloud

 String endpoints = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8080";

 ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()

 .setEndpoints(endpoints)

 .enableSsl(false)

 .setCredentialProvider(sessionCredentialsProvider)

 .build();

 String topic = "yourNormalTopic";

 // In most case, you don't need to create too many producers, singleton pat

 final Producer producer = provider.newProducerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the topic name(s), which is optional but recommended. It makes p

 // route before message publishing.

 .setTopics(topic)

 // May throw {@link ClientException} if the producer is not initialized

 .build();

 // Define your message body.

 byte[] body = "This is a normal message for Apache RocketMQ".getBytes(Stand

 String tag = "yourMessageTagA";

 final Message message = provider.newMessageBuilder()

 // Set topic for the current message.

 .setTopic(topic)

 // Message secondary classifier of message besides topic.

 .setTag(tag)

 // Key(s) of the message, another way to mark message besides message i

 .setKeys("yourMessageKey-1c151062f96e")

 .setBody(body)

 .build();

 try {

 final SendReceipt sendReceipt = producer.send(message);

 log.info("Send message successfully, messageId={}", sendReceipt.getMess

 } catch (Throwable t) {

 log.error("Failed to send message", t);

 }

 // Close the producer when you don't need it anymore.

 producer.close();

 }

}

Step 3: Consuming Messages

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 170 of 263

TDMQ for RocketMQ 5.x series by Tencent Cloud supports two types of clients: Push Consumer and Simple
Consumer.
The following code is an example based on Push Consumer:

public class NormalPushConsumer {

 private static final Logger log = LoggerFactory.getLogger(NormalPushConsumer.cl

 private NormalPushConsumer() {

 }

 public static void main(String[] args) throws ClientException, IOException, Int

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 171 of 263

 final ClientServiceProvider provider = ClientServiceProvider.loadService();

 //Adding ak and sk in the configuration

 String accessKey = "yourAccessKey"; //ak

 String secretKey = "yourSecretKey"; //sk

 SessionCredentialsProvider sessionCredentialsProvider =

 new StaticSessionCredentialsProvider(accessKey, secretKey);

 // Fill in the access location provided by Tencent Cloud

 String endpoints = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8080";

 ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()

 .setEndpoints(endpoints)

 .enableSsl(false)

 .setCredentialProvider(sessionCredentialsProvider)

 .build();

 String tag = "*";

 FilterExpression filterExpression = new FilterExpression(tag, FilterExpress

 String consumerGroup = "yourConsumerGroup";

 String topic = "yourTopic";

 // In most case, you don't need to create too many consumers, singleton pat

 PushConsumer pushConsumer = provider.newPushConsumerBuilder()

 .setClientConfiguration(clientConfiguration)

 // Set the consumer group name.

 .setConsumerGroup(consumerGroup)

 // Set the subscription for the consumer.

 .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpre

 .setMessageListener(messageView -> {

 // Handle the received message and return consume result.

 log.info("Consume message={}", messageView);

 return ConsumeResult.SUCCESS;

 })

 .build();

 // Block the main thread, no need for production environment.

 Thread.sleep(Long.MAX_VALUE);

 // Close the push consumer when you don't need it anymore.

 pushConsumer.close();

 }

}

Step 4: Viewing Message Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for

specific messages is also available. For details, see Message Query.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 172 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 173 of 263

Use of Go SDK
Last updated：2024-01-17 16:55:52

Overview

This document describes how to use an open-source SDK to send and receive messages with the Golang SDK
serving as example, for you to better understand the complete process of message sending and receiving.
Note:

The Golang client is used as an example. For clients of other languages, see the SDK Documentation.

Prerequisites

You have created and prepared the required resources.
You have installed Golang version 1.13 or higher.
You have downloaded the demo.

Directions:

Step 1: Installing the Golang Dependency Library

Incorporate the relevant dependencies in the Golang project. go get is used as example. Run the following

command:

https://go.dev/dl/
https://github.com/TencentCloud/rocketmq-demo/tree/main/golang/rocketmq5

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 174 of 263

go get github.com/apache/rocketmq-clients/golang/v5

Step 2: Producing Messages

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 175 of 263

package main

import (

 "context"

 "fmt"

 "log"

 "os"

 "strconv"

 "time"

 rmq_client "github.com/apache/rocketmq-clients/golang/v5"

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 176 of 263

 "github.com/apache/rocketmq-clients/golang/v5/credentials"

)

const (

 Topic = "xxxxxx"

 // Set Endpoint to the access address provided by Tencent Cloud

 Endpoint = "xxxxxx"

 // Add the configured ak to AccessKey

 AccessKey = "xxxxxx"

 // Add the configured sk to SecretKey

 SecretKey = "xxxxxx"

)

func main() {

 os.Setenv("mq.consoleAppender.enabled", "true")

 rmq_client.ResetLogger()

 // In most case, you don't need to create many producers, singleton pattern is

 producer, err := rmq_client.NewProducer(&rmq_client.Config{

 Endpoint: Endpoint,

 Credentials: &credentials.SessionCredentials{

 AccessKey: AccessKey,

 AccessSecret: SecretKey,

 },

 },

 rmq_client.WithTopics(Topic),

)

 if err != nil {

 log.Fatal(err)

 }

 // start producer

 err = producer.Start()

 if err != nil {

 log.Fatal(err)

 }

 // graceful stop producer

 defer producer.GracefulStop()

 for i := 0; i < 10; i++ {

 // new a message

 msg := &rmq_client.Message{

 Topic,

 Body: []byte("this is a message : " + strconv.Itoa(i)),

 }

 // set keys and tag

 msg.SetKeys("a", "b")

 msg.SetTag("ab")

 // send message in sync

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 177 of 263

 resp, err := producer.Send(context.TODO(), msg)

 if err != nil {

 log.Fatal(err)

 }

 for i := 0; i < len(resp); i++ {

 fmt.Printf("%#v\\n", resp[i])

 }

 // wait a moment

 time.Sleep(time.Second * 1)

 }

}

Step 3: Consuming Messages

TDMQ for RocketMQ 5.x series by Tencent Cloud supports two types of clients: Push Consumer and Simple
Consumer.

Note:
At this time, the community version of the Golang SDK only supports Simple Consumer.
The following sample code uses Simple Consumer as an example:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 178 of 263

package main

import (

 "context"

 "fmt"

 "log"

 "os"

 "time"

 rmq_client "github.com/apache/rocketmq-clients/golang/v5"

 "github.com/apache/rocketmq-clients/golang/v5/credentials"

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 179 of 263

)

const (

 Topic = "xxxxxx"

 ConsumerGroup = "xxxxxx"

 // Set Endpoint to the access address provided by Tencent Cloud

 Endpoint = "xxxxxx"

 // Add the configured ak to AccessKey

 AccessKey = "xxxxxx"

 // Add the configured sk to SecretKey

 SecretKey = "xxxxxx"

)

var (

 // maximum waiting time for receive func

 awaitDuration = time.Second * 5

 // maximum number of messages received at one time

 maxMessageNum int32 = 16

 // invisibleDuration should > 20s

 invisibleDuration = time.Second * 20

 // receive messages in a loop

)

func main() {

 // log to console

 os.Setenv("mq.consoleAppender.enabled", "true")

 rmq_client.ResetLogger()

 // In most case, you don't need to create many consumers, singleton pattern is

 simpleConsumer, err := rmq_client.NewSimpleConsumer(&rmq_client.Config{

 Endpoint: Endpoint,

 ConsumerGroup: ConsumerGroup,

 Credentials: &credentials.SessionCredentials{

 AccessKey: AccessKey,

 AccessSecret: SecretKey,

 },

 },

 rmq_client.WithAwaitDuration(awaitDuration),

 rmq_client.WithSubscriptionExpressions(map[string]*rmq_client.FilterExpress

 Topic: rmq_client.SUB_ALL,

 }),

)

 if err != nil {

 log.Fatal(err)

 }

 // start simpleConsumer

 err = simpleConsumer.Start()

 if err != nil {

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 180 of 263

 log.Fatal(err)

 }

 // graceful stop simpleConsumer

 defer simpleConsumer.GracefulStop()

 for {

 fmt.Println("start receive message")

 mvs, err := simpleConsumer.Receive(context.TODO(), maxMessageNum, invisible

 if err != nil {

 fmt.Println(err)

 }

 // ack message

 for _, mv := range mvs {

 simpleConsumer.Ack(context.TODO(), mv)

 fmt.Println(mv)

 }

 fmt.Println("wait a moment")

 fmt.Println()

 time.Sleep(time.Second * 1)

 }

}

Step 4: Viewing Message Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for
specific messages is also available. For details, see Message Query.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 181 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 182 of 263

Use of C++ SDK
Last updated：2024-01-17 16:56:06

Overview

This document describes how to use an open-source SDK to send and receive messages with the SDK for C++
serving as example, for you to better understand the complete procedure involved in message sending and receiving.
Note:

The C++ client is used as an example. For clients of other languages, see the SDK Documentation.

Prerequisites

You have created and prepared the required resources.
You have installed a compiler suite supporting C++11.
You have installed Bazel version 5.2.0 or CMake version 3.13 and later.
If you use CMake for compilation, gRPC version 1.46.3 is recommended due to incompatibilities between higher

versions and the SDK.
You have downloaded the demo.

Directions:

Step 1: Installing the SDK for C++

Install the SDK.
Note:
TDMQ for RocketMQ 5.x series does not currently support TLS. A patch must be applied.

Step 2: Producing Messages

https://bazel.build/install
https://cmake.org/download/
https://grpc.io/
https://github.com/TencentCloud/rocketmq-demo/tree/main/cpp/rocketmq5
https://github.com/apache/rocketmq-clients/tree/master/cpp
https://github.com/apache/rocketmq-clients/pull/542

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 183 of 263

#include <algorithm>

#include <atomic>

#include <iostream>

#include <memory>

#include <random>

#include <string>

#include <system_error>

#include "rocketmq/CredentialsProvider.h"

#include "rocketmq/Logger.h"

#include "rocketmq/Message.h"

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 184 of 263

#include "rocketmq/Producer.h"

using namespace ROCKETMQ_NAMESPACE;

const std::string &alphaNumeric() {

 static std::string alpha_numeric("0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHI

 return alpha_numeric;

}

std::string randomString(std::string::size_type len) {

 std::string result;

 result.reserve(len);

 std::random_device rd;

 std::mt19937 generator(rd());

 std::string source(alphaNumeric());

 std::string::size_type generated = 0;

 while (generated < len) {

 std::shuffle(source.begin(), source.end(), generator);

 std::string::size_type delta = std::min({len - generated, source.length()})

 result.append(source.substr(0, delta));

 generated += delta;

 }

 return result;

}

static const std::string topic = "xxx";

// Enter the access address provided by Tencent Cloud

static const std::string access_point = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8081";

// Add the configured ak and sk

static const std::string access_key = "xxx";

static const std::string access_secret = "xxx";

static const uint32_t total = 32;

static const int32_t message_body_size = 128;

int main(int argc, char *argv[]) {

 CredentialsProviderPtr credentials_provider;

 if (!access_key.empty() && !access_secret.empty()) {

 credentials_provider = std::make_shared<StaticCredentialsProvider>(access_k

 }

 // In most case, you don't need to create too many producers, singletion patter

 auto producer = Producer::newBuilder()

 .withConfiguration(Configuration::newBuilder()

 .withEndpoints(access_point)

 .withCredentialsProvider(credentials_provide

 .withSsl(false)

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 185 of 263

 .build())

 .withTopics({topic})

 .build();

 std::atomic_bool stopped;

 std::atomic_long count(0);

 auto stats_lambda = [&] {

 while (!stopped.load(std::memory_order_relaxed)) {

 long cnt = count.load(std::memory_order_relaxed);

 while (count.compare_exchange_weak(cnt, 0)) {

 break;

 }

 std::this_thread::sleep_for(std::chrono::seconds(1));

 std::cout << "QPS: " << cnt << std::endl;

 }

 };

 std::thread stats_thread(stats_lambda);

 std::string body = randomString(message_body_size);

 try {

 for (std::size_t i = 0; i < total; ++i) {

 auto message = Message::newBuilder()

 .withTopic(topic)

 .withTag("TagA")

 .withKeys({"Key-" + std::to_string(i)})

 .withBody(body)

 .build();

 std::error_code ec;

 SendReceipt send_receipt = producer.send(std::move(message), ec);

 if (ec) {

 std::cerr << "Failed to publish message to " << topic << ". Cause:

 } else {

 std::cout << "Publish message to " << topic << " OK. Message-ID: "

 << std::endl;

 count++;

 }

 }

 } catch (...) {

 std::cerr << "Ah...No!!!" << std::endl;

 }

 stopped.store(true, std::memory_order_relaxed);

 if (stats_thread.joinable()) {

 stats_thread.join();

 }

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 186 of 263

 return EXIT_SUCCESS;

}

Step 3: Consuming Messages

TDMQ for RocketMQ 5.x series of Tencent Cloud supports two consumption modes: Push Consumer and Simple
Consumer.
The following code is an example based on Push Consumer:

#include <chrono>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 187 of 263

#include <iostream>

#include <mutex>

#include <thread>

#include "rocketmq/Logger.h"

#include "rocketmq/PushConsumer.h"

using namespace ROCKETMQ_NAMESPACE;

static const std::string topic = "xxx";

// Enter the access address provided by Tencent Cloud

static const std::string access_point = "rmq-xxx.rocketmq.xxxtencenttdmq.com:8081";

// Add the configured ak and sk

static const std::string access_key = "xxx";

static const std::string access_secret = "xxx";

static const std::string group = "group-xxx";

int main(int argc, char *argv[]) {

 auto &logger = getLogger();

 logger.setConsoleLevel(Level::Info);

 logger.setLevel(Level::Info);

 logger.init();

 std::string tag = "*";

 auto listener = [](const Message &message) {

 std::cout << "Received a message[topic=" << message.topic() << ", MsgId=" <

 return ConsumeResult::SUCCESS;

 };

 CredentialsProviderPtr credentials_provider;

 if (!access_key.empty() && !access_secret.empty()) {

 credentials_provider = std::make_shared<StaticCredentialsProvider>(access_k

 }

 // In most case, you don't need to create too many consumers, singletion patter

 auto push_consumer = PushConsumer::newBuilder()

 .withGroup(group)

 .withConfiguration(Configuration::newBuilder()

 .withEndpoints(access_point)

 .withRequestTimeout(std::chrono::seconds(3))

 .withCredentialsProvider(credentials_provide

 .withSsl(false)

 .build())

 .withConsumeThreads(4)

 .withListener(listener)

 .subscribe(topic, tag)

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 188 of 263

 .build();

 std::this_thread::sleep_for(std::chrono::minutes(30));

 return EXIT_SUCCESS;

}

Step 4: Viewing Message Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for
specific messages is also available. For details, see Message Query.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 189 of 263

4.x SDK
Use of Java SDK
Last updated：2024-01-17 16:56:33

Overview

This document describes how to use an open-source SDK to send and receive messages with the SDK for Java 4.0
serving as example, for you to better understand the complete procedure involved in message sending and receiving.
Note:

The Java client is used as an example. For clients of other languages, see the SDK Documentation.

Prerequisites

You have created and prepared the required resources.
You have installed JDK 1.8 or later.
You have installed Maven 2.5 or later.
You have downloaded the demo.

Directions:

Step 1: Installing the Java Dependency Library

Incorporate the relevant dependencies in the Java project. A Maven project is used as an example. Add the following
dependencies to pom.xml:

https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq5/src/main/java/com/tencent/demo

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 190 of 263

<!-- in your <dependencies> block -->

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 <version>4.9.7</version>

 </dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-acl</artifactId>

 <version>4.9.7</version>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 191 of 263

 </dependency>

Step 2: Producing Messages

// Instantiate the message producer

 DefaultMQProducer producer = new DefaultMQProducer(

 groupName,

 new AclClientRPCHook(new SessionCredentials(accessKey, secretKey)) // ACL pe

);

 // Set the NameServer's address. The address is in the format of an access addre

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 192 of 263

 producer.setNamesrvAddr(nameserver);

 // Start the producer instance.

 producer.start();

 for (int i = 0; i < 10; i++) {

 // Create a message instance, and configure the topic and message content

 Message msg = new Message(topic_name, ("Hello RocketMQ " + i).getBytes(Re

 // Send the message

 SendResult sendResult = producer.send(msg);

 System.out.printf("%s%n", sendResult);

 }

Step 3: Consuming Messages

The following code sample uses Push Consumer as example. For other codes, see the more detailed 4.x
documentation.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 193 of 263

// Instantiate the consumer

DefaultMQPushConsumer pushConsumer = new DefaultMQPushConsumer(

 groupName,

 new AclClientRPCHook(new SessionCredentials(accessKey, secretKey))); //

 // Set the NameServer address

pushConsumer.setNamesrvAddr(nameserver);

 // Subscribe to a topic

pushConsumer.subscribe(topic_name, "*");

 // Register a callback implementation class to process messages pulled from t

pushConsumer.registerMessageListener((MessageListenerConcurrently) (msgs, context)

 // Message processing logic

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 194 of 263

 System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread(

 // Mark the message as successfully consumed, and return consumption stat

 return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;

 });

 // Start the consumer instance

pushConsumer.start();

Step 4: Viewing Message Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for
specific messages is also available. For details, see Message Query section.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 195 of 263

Use of Go SDK
Last updated：2024-01-17 16:56:46

Overview

This document describes how to use an open-source SDK to send and receive messages with the Golang SDK
serving as example, for you to better understand the complete process of message sending and receiving.

Prerequisites

You have created the required resources.

You have installed Go.
You have downloaded the demo.

Directions:

1. Execute the following command in the client environment to download the relevant RocketMQ client dependencies.

https://intl.cloud.tencent.com/document/product/1113/43119
https://golang.org/dl/
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-java-sdk-demo.zip

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 196 of 263

go get github.com/apache/rocketmq-client-go/v2

2. Create a producer in the corresponding method. If you need to send standard messages, modify the corresponding

parameters in the syncSendMessage.go file.

Currently, delayed messages support arbitrary precision delay, unaffected by the delay level.
General message
Delayed Messages

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 197 of 263

// Service access address (Note: http:// or https:// must be appended before the ac

 var serverAddress = "https://rocketmq-xxx.rocketmq.ap-bj.public.tencenttdmq.com:

 // Authorize the role name

 var secretKey = "admin"

 // Authorize the key for the role

 var accessKey = "eyJrZXlJZC...."

 // Producer group name

 var groupName = "group1"

 // Create a message producer

 p, _ := rocketmq.NewProducer(

 // Set the service address

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 198 of 263

 producer.WithNsResolver(primitive.NewPassthroughResolver([]string{serverAddr

 // Set ACL permissions

 producer.WithCredentials(primitive.Credentials{

 SecretKey: secretKey,

 AccessKey: accessKey,

 }),

 // Set the producer group

 producer.WithGroupName(groupName),

 // Set the number of retries upon sending failures

 producer.WithRetry(2),

)

 // Start the producer

 err := p.Start()

 if err != nil {

 fmt.Printf("start producer error: %s", err.Error())

 os.Exit(1)

 }

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 199 of 263

// Topic name

 var topicName = "topic1"

 // Producer group name

 var groupName = "group1"

 // Create a message producer

 p, _ := rocketmq.NewProducer(

 // Set the service address

 producer.WithNsResolver(primitive.NewPassthroughResolver([]string{"http://r

 // Set ACL permissions

 producer.WithCredentials(primitive.Credentials{

 SecretKey: "admin",

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 200 of 263

 AccessKey: "eyJrZXlJZC......",

 }),

 // Set the producer group

 producer.WithGroupName(groupName),

 // Set the number of retries upon sending failures

 producer.WithRetry(2),

)

 // Start the producer

 err := p.Start()

 if err != nil {

 fmt.Printf("start producer error: %s", err.Error())

 os.Exit(1)

 }

 for i := 0; i < 1; i++ {

 msg := primitive.NewMessage(topicName, []byte("Hello RocketMQ Go Client! Th

 // Specify the delay level

 // Relationship between level and time:

 // 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h,

 // 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 // If you want to use the delay level, set the following method

 msg.WithDelayTimeLevel(3)

 // If you want to use arbitrary delay messages, set the following method an

 delayMills := int64(10 * 1000)

 msg.WithProperty("__STARTDELIVERTIME", strconv.FormatInt(time.Now().Unix()+

 // Send the message

 res, err := p.SendSync(context.Background(), msg)

 if err != nil {

 fmt.Printf("send message error: %s\\n", err)

 } else {

 fmt.Printf("send message success: result=%s\\n", res.String())

 }

 }

 // Release resources

 err = p.Shutdown()

 if err != nil {

 fmt.Printf("shutdown producer error: %s", err.Error())

 }

3. Message sending is the same as above (taking the synchronous sending as an example).

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 201 of 263

// Topic name

 var topicName = "topic1"

 // Construct message content

 msg := &primitive.Message{

 Topic: topicName, // Set the topic name

 Body: []byte("Hello RocketMQ Go Client! This is a new message."),

 }

 // Set the tag

 msg.WithTag("TAG")

 // Set the key

 msg.WithKeys([]string{"yourKey"})

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 202 of 263

 // Send the message

 res, err := p.SendSync(context.Background(), msg)

 if err != nil {

 fmt.Printf("send message error: %s\\n", err)

 } else {

 fmt.Printf("send message success: result=%s\\n", res.String())

 }

Parameter Description

topicName Topic name, which can be copied under the Topic tab on the Cluster page on the console.

TAG Message tag identifier.

yourKey Business message key.

Release the resources.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 203 of 263

// Shut down the producer

 err = p.Shutdown()

 if err != nil {

 fmt.Printf("shutdown producer error: %s", err.Error())

 }

Note:
For more information on asynchronous sending and one-way sending, see the demo or RocketMQ-Client-Go
Examples.
4. Create a consumer.

https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-go-sdk-demo.zip
https://github.com/TencentCloud/rocketmq-demo/tree/main/golang/rocketmq4

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 204 of 263

// Service access address (Note: http:// or https:// must be appended before the ac

 var serverAddress = "http://rocketmq-xxx.rocketmq.ap-bj.public.tencenttdmq.com:8

 // Authorize the role name

 var secretKey = "admin"

 // Authorize the key for the role

 var accessKey = "eyJrZXlJZC...."

 // Producer group name

 var groupName = "group11"

 // Create a consumer

 c, err := rocketmq.NewPushConsumer(

 // Set the consumer group

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 205 of 263

 consumer.WithGroupName(groupName),

 // Set the service address

 consumer.WithNsResolver(primitive.NewPassthroughResolver([]string{serverAddr

 // Set ACL permissions

 consumer.WithCredentials(primitive.Credentials{

 SecretKey: secretKey,

 AccessKey: accessKey,

 }),

 // Set consumption from the start offset

 consumer.WithConsumeFromWhere(consumer.ConsumeFromFirstOffset),

 // Set the consumption mode (cluster mode by default)

 consumer.WithConsumerModel(consumer.Clustering),

 // For broadcasting consumption, set the instance name to the system name of

 consumer.WithInstance("xxxx"),

)

 if err != nil {

 fmt.Println("init consumer2 error: " + err.Error())

 os.Exit(0)

 }

5. Consume the message.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 206 of 263

// Topic name

 var topicName = "topic1"

 // Set the tag of messages that are subscribed to

 selector := consumer.MessageSelector{

 Type: consumer.TAG,

 Expression: "TagA || TagC",

 }

 // Define the delay level for retrying consumption. There are 18 delay levels in

 // 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 // 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h, 2h

 delayLevel := 1

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 207 of 263

 err = c.Subscribe(topicName, selector, func(ctx context.Context,

 msgs ...*primitive

 fmt.Printf("subscribe callback len: %d \\n", len(msgs))

 // Set the delay level for the next consumption

 concurrentCtx, _ := primitive.GetConcurrentlyCtx(ctx)

 concurrentCtx.DelayLevelWhenNextConsume = delayLevel // only run when return

 for _, msg := range msgs {

 // Simulate a successful consumption after three retries

 if msg.ReconsumeTimes > 3 {

 fmt.Printf("msg ReconsumeTimes > 3. msg: %v", msg)

 return consumer.ConsumeSuccess, nil

 } else {

 fmt.Printf("subscribe callback: %v \\n", msg)

 }

 }

 // Simulate a consumption failure and respond with a retry

 return consumer.ConsumeRetryLater, nil

 })

 if err != nil {

 fmt.Println(err.Error())

 }

Parameter Description

topicName The name of the topic, copied from the Topic page on the console.

Expression Message tag identifier.

delayLevel Configure the delay level for re-consumption. A total of 18 delay levels are supported.

6. Consume the message (The consumer must consume the message after subscription).

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 208 of 263

// Initiate consumption

 err = c.Start()

 if err != nil {

 fmt.Println(err.Error())

 os.Exit(-1)

 }

 time.Sleep(time.Hour)

 // Release resources

 err = c.Shutdown()

 if err != nil {

 fmt.Printf("shundown Consumer error: %s", err.Error())

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 209 of 263

 }

7. Check consumption details. After the message is sent, you will receive a message ID (messageID). Developers can
query the recently sent messages on the Message Query page, as shown in the following figure. Information such as

details and traces for specific messages is also available. For details, see Message Query section.

Note:
This document briefly describes sending and receiving messages using the Golang client. For more operations, see
the demo or the RocketMQ-Client-Go Examples.

https://intl.cloud.tencent.com/document/product/1113/57454
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-java-sdk-demo.zip
https://github.com/apache/rocketmq-client-go/tree/master/examples

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 210 of 263

Use of C++ SDK
Last updated：2024-01-17 16:56:58

Overview

This document describes how to use an open-source SDK to send and receive messages with the SDK for C++
serving as example, for you to better understand the complete procedure involved in message sending and receiving.

Prerequisites

You have installed GCC.

You have downloaded the demo.

Directions:

1. Prepare the environment.
1.1 You need to install the RocketMQ-Client-CPP library in the client environment. Follow the official guide to Install
the CPP Dynamic Library.The master branch build is recommended.
1.2 Incorporate the associated header files and dynamic libraries of RocketMQ-Client-CPP into the project.

2. Initialize the message producer.

https://gcc.gnu.org/install/
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-cpp-sdk-demo.zip
https://github.com/apache/rocketmq-client-cpp

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 211 of 263

// Set the producer group name

DefaultMQProducer producer(groupName);

// Set the service access address

producer.setNamesrvAddr(nameserver);

// Set user permissions

producer.setSessionCredentials(

 accessKey, // Role key

 secretKey, // Role name

 "");

// Set the namespace (full namespace name)

producer.setNameSpace(namespace);

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 212 of 263

// Ensure that the parameters are set before initiation

producer.start();

Parameter Description

groupName Producer group name, which can be obtained from the Group tab of cluster management on
the console.

nameserver

Cluster access address in the basic information of the cluster. Select either the private
network or public network access address as needed.

secretKey Role name, which can be copied from SecretKey on the Cluster Permission page.

accessKey Role key, which can be copied from AccessKey on the Cluster Permission page.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 213 of 263

3. Send the message.

// Initialize message content

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 214 of 263

 MQMessage msg(

 topicName, // Topic name

 TAGS, // Message tag

 KEYS, // Business message key

 "Hello cpp client, this is a message." // Message content

);

 try {

 // Send the message

 SendResult sendResult = producer.send(msg);

 std::cout << "SendResult:" << sendResult.getSendStatus() << ", Message ID: "

 << std::endl;

 } catch (MQException e) {

 std::cout << "ErrorCode: " << e.GetError() << " Exception:" << e.what() << s

 }

Parameter Description

topicName Topic name, which can be copied from the Topic tab on the console.

TAGS Used to set the message tag.

KEYS Used to configure the message business key.

4. Release the resources.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 215 of 263

// Release resources

 producer.shutdown();

5. Initialize the consumer.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 216 of 263

// Monitor messages

 class ExampleMessageListener : public MessageListenerConcurrently {

 public:

 ConsumeStatus consumeMessage(const std::vector<MQMessageExt> &msgs) {

 for (auto item = msgs.begin(); item != msgs.end(); item++) {

 // Business

 std::cout << "Received Message Topic:" << item->getTopic() << ", Msg

 << item->getTags() << ", KEYS:" << item->getKeys() << ", B

 }

 // Return `CONSUME_SUCCESS` when consumption is successful

 return CONSUME_SUCCESS;

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 217 of 263

 // Return `RECONSUME_LATER` when consumption fails. The message will be

 // return RECONSUME_LATER;

 }

 };

 // Initialize the consumer

 DefaultMQPushConsumer *consumer = new DefaultMQPushConsumer(groupName);

 // Set the service address

 consumer->setNamesrvAddr(nameserver);

 // Set user permissions

 consumer->setSessionCredentials(

 accessKey,

 secretKey,

 "");

 // Set the namespace

 consumer->setNameSpace(namespace);

 // Set the instance name

 consumer->setInstanceName("CppClient");

 // Please register the custom listening function to process the received message

 ExampleMessageListener *messageListener = new ExampleMessageListener();

 // Subscribe to the message

 consumer->subscribe(topicName, TAGS);

 // Set the message listener

 consumer->registerMessageListener(messageListener);

 // After the preparations are complete, the startup function must be called for

 consumer->start();

Parameter Description

groupName Consumer group name, which can be obtained from the Group tab of cluster management on
the console.

nameserver Cluster access address, which can be obtained by clicking on Get Access Address in the
Operation column on the Cluster Management page.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 218 of 263

secretKey Role name, which can be copied from SecretKey on the Cluster Permission page.

accessKey

Role key, which can be copied from AccessKey on the Cluster Permission page.

topicName Topic name, which can be copied from the Topic tab on the console.

TAGS Used to set the tag of the subscribed messages.

6. Release the resources.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 219 of 263

// Release resources

consumer->shutdown();

7. After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for
specific messages is also available. For details, see Message Query.

https://intl.cloud.tencent.com/document/product/1113/45952

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 220 of 263

Note:
The preceding sections briefly describe how to publish and subscribe to messages. For more operations, see the
Demo or the RocketMQ-Client-CPP Examples.

https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-cpp-sdk-demo.zip
https://github.com/apache/rocketmq-client-cpp/tree/master/example

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 221 of 263

Use of Python SDK
Last updated：2024-01-17 16:57:19

Overview

This document describes how to use an open-source SDK to send and receive messages with the SDK for Python
serving as example, for you to better understand the complete procedure involved in message sending and receiving.

Prerequisites

You have created the required resources.

You have installed Python.
You have installed pip.
You have downloaded the demo.

Directions:

Step 1: Preparing the Environment

Rocketmq-client Python packaging is performed based on rocketmq-client-cpp. Therefore, librocketmq needs

to be installed in advance.

Note:
Currently, the Python client only supports Linux and macOS operating systems, and Windows is not supported.
1. Install librocketmq (version 2.0.0 or higher). For installation instructions, see librocketmq Installation.
2. Execute the following command to install rocketmq-client-python.

https://intl.cloud.tencent.com/document/product/1113/43119
https://www.python.org/downloads/
https://pip-cn.readthedocs.io/en/latest/installing.html
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-python-sdk-demo.zip
https://github.com/apache/rocketmq-client-cpp
https://github.com/apache/rocketmq-client-python

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 222 of 263

pip install rocketmq-client-python

Step 2: Producing a Message

Write codes for producing the message.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 223 of 263

from rocketmq.client import Producer, Message

 # Initialize the producer and set group information. group1

 producer = Producer(groupName)

 # Set the service address

 producer.set_name_server_address(nameserver)

 # Set permissions (role name and key)

 producer.set_session_credentials(

 accessKey, # Role key

 secretKey, # Role name

 ''

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 224 of 263

)

 # Start the producer

 producer.start()

 # Assemble the message. The topic name can be copied from the Topic tab on the c

 msg = Message(topicName)

 # Set keys

 msg.set_keys(TAGS)

 # Set tags

 msg.set_tags(KEYS)

 # Message content

 msg.set_body('This is a new message.')

 # Send synchronous messages

 ret = producer.send_sync(msg)

 print(ret.status, ret.msg_id, ret.offset)

 # Release resources

 producer.shutdown()

Parameter Description

groupName Producer group name, which is obtained from the Group tab of cluster management on the
console.

nameserver Cluster access address in the basic information of the cluster. Select either the private network
or public network access address as needed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 225 of 263

secretKey Role name, which can be copied from SecretKey on the Cluster Permission page.

accessKey

Role key, which can be copied from AccessKey on the Cluster Permission page.

topicName Topic name, which can be copied from the Topic tab on the console.

TAGS Used to set the message tag.

KEYS Used to configure the message business key.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 226 of 263

The Python client of the open-source community has certain defects in message production, resulting in an uneven
load distribution among different queues of the same topic. For details, see Defect Details.

Step 3: Consuming Messages

Create, compile, and execute a consumption message program.

import time

 from rocketmq.client import PushConsumer, ConsumeStatus

https://github.com/apache/rocketmq-client-python/issues/128

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 227 of 263

 # Callback for message processing.

 def callback(msg):

 # Simulate the business.

 print('Received message. messageId: ', msg.id, ' body: ', msg.body)

 # Return `CONSUME_SUCCESS` if the consumption is successful.

 return ConsumeStatus.CONSUME_SUCCESS

 # Return the status of the message upon successful consumption.

 # return ConsumeStatus.RECONSUME_LATER

 # Initialize the consumer and set the consumer group information.

 consumer = PushConsumer(groupName)

 # Set the service address

 consumer.set_name_server_address(nameserver)

 # Set permissions (role name and key)

 consumer.set_session_credentials(

 accessKey, # Role key

 secretKey, # Role name

 ''

)

 # Subscribe to a topic.

 consumer.subscribe(topicName, callback, TAGS)

 print(' [Consumer] Waiting for messages.')

 # Start the consumer.

 consumer.start()

 while True:

 time.sleep(3600)

 # Release resources

 consumer.shutdown()

Parameter Description

groupName Consumer group name, which can be copied from the
Group tab on the console.

nameserver The same as the producer address.

secretKey The same as the method of acquiring produced
messages.

accessKey The same as the method of acquiring produced
messages.

topicName Topic name, which can be copied from the Topic tab
on the console.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 228 of 263

TAGS Set the tag of subscribed messages, which is set to *
by default, indicating the subscription to all messages.

Step 4: Viewing Consumption Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for

specific messages is also available. For details, see Message Query.

Note:
The preceding sections briefly describe how to publish and subscribe to messages. For more operations, see the
Demo or the RocketMQ Client Python Examples.

https://intl.cloud.tencent.com/document/product/1113/45952
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-python-sdk-demo.zip
https://github.com/apache/rocketmq-client-python/tree/master/samples

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 229 of 263

Use of Spring Cloud Stream
Last updated：2024-01-17 16:57:33

Overview

This document describes how to send and receive messages with the Spring Cloud Stream serving as example, for
you to better understand the complete procedure involved in message sending and receiving.

Prerequisites

You have created the required resources.

You have installed JDK 1.8 or later.
You have installed Maven 2.5 or later.
You have downloaded the demo or visited the GitHub project.

Directions:

Step 1: Incorporating Dependencies

Incorporate the spring-cloud-starter-stream-rocketmq dependency in the pom.xml file. The current recommended
version is 2021.0.5.0, and it is necessary to exclude dependencies, using SDK 4.9.7.

https://intl.cloud.tencent.com/document/product/1113/43119
https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-springcloud-stream-demo.zip
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/springcloud_stream

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 230 of 263

 <dependency>

 <groupId>com.alibaba.cloud</groupId>

 <artifactId>spring-cloud-starter-stream-rocketmq</artifactId>

 <version>2021.0.5.0</version>

 <exclusions>

 <exclusion>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 </exclusion>

 <exclusion>

 <groupId>org.apache.rocketmq</groupId>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 231 of 263

 <artifactId>rocketmq-acl</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 <version>4.9.7</version>

 </dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-acl</artifactId>

 <version>4.9.7</version>

 </dependency>

Step 2: Adding Configurations

Add the corresponding RocketMQ configurations to the configuration file.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 232 of 263

spring:

 cloud:

 stream:

 rocketmq:

 binder:

 # Full name of the service address

 name-server: rmq-xxx.rocketmq.ap-bj.public.tencenttdmq.com:8080

 # Role name

 secret-key: admin

 # Role key

 access-key: eyJrZXlJZ...

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 233 of 263

 # producer group

 group: producerGroup

 bindings:

 # Channel name, corresponding to the channel name under spring.cloud.stre

 Topic-TAG1-Input:

 consumer:

 # Subscribed tag type, configured according to real consumer conditio

 subscription: TAG1

 # Channel name

 Topic-TAG2-Input:

 consumer:

 subscription: TAG2

 bindings:

 # Channel name

 Topic-send-Output:

 # Specify topic, corresponding to the created topic name

 destination: TopicTest

 content-type: application/json

 # Channel name

 Topic-TAG1-Input:

 destination: TopicTest

 content-type: application/json

 group: consumer-group1

 # Channel name

 Topic-TAG2-Input:

 destination: TopicTest

 content-type: application/json

 group: consumer-group2

Note:

In terms of configuration, the subscription configuration item for 2.2.5-RocketMQ-RC1 and

 2.2.5.RocketMQ.RC2 is subscription , and the configuration item for other lower versions is tags .

The complete configuration item reference for other versions is as follows:

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 234 of 263

spring:

 cloud:

 stream:

 rocketmq:

 bindings:

 # Channel name, corresponding to the channel name under spring.cloud.s

 Topic-test1:

 consumer:

 # Subscribed tag type, configured according to real consumer condi

 tags: TAG1

 # Channel name

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 235 of 263

 Topic-test2:

 consumer:

 tags: TAG2

 binder:

 # Full name of the service address

 name-server: rocketmq-xxx.rocketmq.ap-bj.public.tencenttdmq.com:8080

 # Role name

 secret-key: admin

 # Role key

 access-key: eyJrZXlJZ...

 bindings:

 # Channel name

 Topic-send:

 # Specified topic

 destination: topic1

 content-type: application/json

 # Use the full name of the group

 group: group1

 # Channel name

 Topic-test1:

 destination: topic1

 content-type: application/json

 group: group1

 # Channel name

 Topic-test2:

 destination: topic1

 content-type: application/json

 group: group2

Parameter Description

name-
server

Cluster access address, which can be copied from Access Address in the Operation column on the C
page on the console. Namespace access addresses in new version shared or exclusive clusters can
copied from the namespace list.

secret-key Role name, which can be copied from SecretKey on the Cluster Permission page.

access-
key

Role key, which can be copied from AccessKey on the Cluster Permission page.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 236 of 263

group Producer group name, which can be copied from the Group tab on the console.

destination Topic name, which can be copied from the Topic tab on the console.

Step 3: Configuring the Channel

A channel consists of input and output. These can be individually configured as needed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 237 of 263

/**

 * Custom channel binder

 */

public interface CustomChannelBinder {

 /**

 * Send the message (message producer)

 * Bind the channel name specified in the configuration settings.

 */

 @Output("Topic-send-Output")

 MessageChannel sendChannel();

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 238 of 263

 /**

 * Receive Message 1 (Consumer 1)

 * Bind the channel name specified in the configuration settings.

 */

 @Input("Topic-TAG1-Input")

 MessageChannel testInputChannel1();

 /**

 * Receive Message 2 (Consumer 2)

 * Bind the channel name specified in the configuration settings.

 */

 @Input("Topic-TAG2-Input")

 MessageChannel testInputChannel2();

}

Step 4: Adding Annotations

Add relevant annotations to the configuration or boot class. If there are multiple configured binder configurations, each
must be specifically specified within these annotations.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 239 of 263

@EnableBinding({CustomChannelBinder.class})

Step 5: Sending the Messages

1. Inject CustomChannelBinder into the class of the message to be sent.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 240 of 263

@Autowired

 private CustomChannelBinder channelBinder;

2. Send the messages by calling the corresponding output stream channel.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 241 of 263

Message<String> message = MessageBuilder.withPayload("This is a new message.").buil

 channelBinder.sendChannel().send(message);

Step 6: Consuming the Messages

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 242 of 263

@Service

public class StreamConsumer {

 private final Logger logger = LoggerFactory.getLogger(StreamDemoApplication.cla

 /**

 * Monitor channel (designated by channel name in configuration)

 *

 * @param messageBody message content

 */

 @StreamListener("Topic-TAG1-Input")

 public void receive(String messageBody) {

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 243 of 263

 logger.info("Receive1: Message received via stream, messageBody = {}", mess

 }

 /**

 * Monitor channel (designated by channel name in configuration)

 *

 * @param messageBody message content

 */

 @StreamListener("Topic-TAG2-Input")

 public void receive2(String messageBody) {

 logger.info("Receive2: Message received via stream, messageBody = {}", mess

 }

}

Step 7: Local Test

After the project is initiated locally, a successful startup notification will be displayed on the console.
Visit http://localhost:8080/test-simple via a browser. You can see a successful transmission. Keep an

eye on the output log of your development IDE.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 244 of 263

2023-02-23 19:19:00.441 INFO 21958 --- [nio-8080-exec-1] c.t.d.s.controller.Stream

2023-02-23 19:19:01.138 INFO 21958 --- [nsumer-group1_1] c.t.d.s.StreamDemoApplica

You can see that a message with the TAG1 has been sent, and only the subscriber of TAG1 has received the
message.
Note:

For specific usage, see the GitHub Demo or Spring Cloud Stream Official Website.

https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq4/src/main/java/com/tencent/demo/rocketmq4
https://github.com/alibaba/spring-cloud-alibaba/wiki/RocketMQ-en

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 245 of 263

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 246 of 263

Use of Spring Boot Starter
Last updated：2024-01-17 16:57:41

Overview

This document describes how to use the open-source SDK to send and receive messages with the Spring Boot
Starter SDK serving as example, for you to better understand the complete procedure involved in message sending
and receiving.

Prerequisites

You have created the required resources.
You have installed JDK 1.8 or later.
You have installed Maven 2.5 or later.
You have downloaded the Demo or visited the GitHub Project.

Directions:

Step 1: Incorporating Dependencies

Introduce dependencies of to pom.xml.

https://intl.cloud.tencent.com/document/product/1113/43119
https://www.oracle.com/java/technologies/javase-downloads.html
http://maven.apache.org/download.cgi#
https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-java-sdk-demo.zip
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/springboot/src/main/java/com/tencent/demo/springboot

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 247 of 263

<dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-spring-boot-starter</artifactId>

 <version>2.2.2</version>

 <exclusions>

 <exclusion>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 </exclusion>

 <exclusion>

 <groupId>org.apache.rocketmq</groupId>

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 248 of 263

 <artifactId>rocketmq-acl</artifactId>

 </exclusion>

 </exclusions>

</dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-client</artifactId>

 <version>4.9.7</version>

 </dependency>

 <dependency>

 <groupId>org.apache.rocketmq</groupId>

 <artifactId>rocketmq-acl</artifactId>

 <version>4.9.7</version>

 </dependency>

Step 2: Preparing Configurations

Add configuration information to the configuration file.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 249 of 263

server:

 port: 8082

 # rocketmq configuration information

 rocketmq:

 # Service access address of TDMQ for RocketMQ

 name-server: rocketmq-xxx.rocketmq.ap-bj.public.tencenttdmq.com:8080

 # Producer configurations

 producer:

 # Producer group name

 group: group111

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 250 of 263

 # Role key

 access-key: eyJrZXlJZC....

 # Name of the authorized role

 secret-key: admin

 # Common configurations for the consumer

 consumer:

 # Role key

 access-key: eyJrZXlJZC....

 # Name of the authorized role

 secret-key: admin

 # Custom configurations

 producer1:

 topic: testdev1

 consumer1:

 group: group111

 topic: testdev1

 subExpression: TAG1

 consumer2:

 group: group222

 topic: testdev1

 subExpression: TAG2

Parameter Description

name-server Cluster access address in the basic information of the cluster. Select either the private network or
network access address as needed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 251 of 263

group Producer group name, which can be copied from the Group tab on the console.

secret-key Role name, which can be copied from SecretKey on the Cluster Permission page.

access-key

Role key, which can be copied from accessKey on the Cluster Permission page.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 252 of 263

topic Topic name, which can be copied from the Topic tab on the console.

subExpression Used to set the message tag.

Step 3: Sending the Message

1. Inject RcoketMQTemplate into the class in the message that needs to be sent.

@Value("${rocketmq.producer1.topic}")

 private String topic; // Topic name

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 253 of 263

 @Autowired

 private RocketMQTemplate rocketMQTemplate;

2. Send the message. The message body can either be a custom object or a message object (from the
org.springframework.messaging package).

SendResult sendResult = rocketMQTemplate.syncSend(destination, message);

/*--*/

rocketMQTemplate.syncSend(destination, MessageBuilder.withPayload(message).build())

3. The following is a complete sample.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 254 of 263

/**

* Description: Message producer

*/

@Service

public class SendMessage {

// Concatenate the topic name because the full name is required. Alternatively, you

 @Value("${rocketmq.producer1.topic}")

 private String topic;

 @Autowired

 private RocketMQTemplate rocketMQTemplate;

 /**

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 255 of 263

 * Synchronously sending

 *

 * @param message message content

 * @param tags subscription tags

 */

 public void syncSend(String message, String tags) {

 // springboot does not support the use of headers to pass tags. Tags must

 String destination = StringUtils.isBlank(tags) ? topic : topic + ":" + tag

 SendResult sendResult = rocketMQTemplate.syncSend(destination,

 MessageBuilder.withPayload(message)

 .setHeader(MessageConst.PROPERTY_KEYS, "yo

 .build());

 System.out.printf("syncSend1 to topic %s sendResult=%s %n", topic, sendRes

 }

}

Note:

This example is for synchronous transmission. For information on asynchronous transmission, one-way transmission,
and so on, see the Demo or visit the GitHub Project.

Step 4: Consuming the Message

https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-java-sdk-demo.zip
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq4/src/main/java/com/tencent/demo/rocketmq4/simple

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 256 of 263

@Service

 @RocketMQMessageListener(

 consumerGroup = "${rocketmq.consumer1.group}", // Consumer group. Forma

 // Concatenate full topic name because the full name is required. Altern

 topic = "${rocketmq.consumer1.topic}",

 selectorExpression = "${rocketmq.consumer1.subExpression}" // Subscripti

)

 public class MessageConsumer implements RocketMQListener<String> {

 @Override

 public void onMessage(String message) {

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 257 of 263

 System.out.println("Tag1Consumer has received the message:" + message);

 }

 }

Multiple consumers can be configured based on your business needs. Other consumer configurations can be set as
needed.
Note:
For the complete example, see Download Demo or visit the GitHub project.

Step 5: Checking Consumption Details

After the message is sent, you will receive a message ID (messageID). Developers can query the recently sent
messages on the Message Query page, as shown in the following figure. Information such as details and traces for
specific messages is also available. For details, see the Message Query section.

https://tdmq-document-1306598660.cos.ap-nanjing.myqcloud.com/%E5%85%AC%E6%9C%89%E4%BA%91demo/rocketmq/tdmq-rocketmq-java-sdk-demo.zip
https://github.com/TencentCloud/rocketmq-demo/tree/main/java/rocketmq-demo/rocketmq4/src/main/java/com/tencent/demo/rocketmq4/simple
https://intl.cloud.tencent.com/document/product/1113/57454

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 258 of 263

Best Practice
Naming Conventions for Common Concepts
of RocketMQ
Last updated：2024-03-18 14:53:27

This document introduces the naming conventions and usage norms for common concepts in RocketMQ.

Naming Conventions

topic

It must not be empty, and can only contain letters, digits, (-), and (_), 3 to 64 characters.
Suggested format: String.format (tp_%s_%s, system name, and business name)

For example: tp_order_check

tag

Can be empty, as long as it is a string, used for secondary message filtering under a topic.
Suggested format: String.format (tag_%s, business action or category)
For example: tag+business action, e.g., the tag for order creation is tag_create; the tag for order closure is tag_close

keys

Can be empty, recommended setting, as long as it is a string or an array of strings, used for querying messages or

message traces in the console.
Suggested format: String.format (%s and unique business ID)
For example: order ID, transaction ID or serial number, TraceID, and other unique IDs

producer group

It must not be empty, 3 to 64 characters, and can only contain letters, digits, (-), and (_).
Suggested format: String.format (pg_%s_%s, system name, and business name)
For example: pg_transfer_check

consumer group

It must not be empty, 3 to 64 characters, and can only contain letters, digits, (-), and (_).
Suggested format: String.format (cg_%s_%s, system name, and business name)
For example: cg_transfer_check

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 259 of 263

role

It must not be empty, supports only digits, upper and lower case letters, and delimiters (_, -), and cannot exceed 32
characters.
Markers for different business read and write permissions, suggested format: business name + send/consume

For example: role_order_send, role_order_consume, and role_order_all

clientId

clientId represents a client instance ID, which must be unique across different clients. clientId cannot be directly set on
the client. instanceName is an optional component of clientId, which can modify the clientId by adjusting
instanceName.

Classification Generating Strategy

Producer ${currentIP}@${instanceName}

Cluster Consumer ${currentIP}@${instanceName}

Broadcast Consumer ${currentIP}@${instanceName}

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 260 of 263

 public String buildMQClientId() {

 StringBuilder sb = new StringBuilder();

 sb.append(this.getClientIP());

 sb.append("@");

 sb.append(this.getInstanceName());

 if (!UtilAll.isBlank(this.unitName)) {

 sb.append("@");

 sb.append(this.unitName);

 }

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 261 of 263

 if (enableStreamRequestType) {

 sb.append("@");

 sb.append(RequestType.STREAM);

 }

 return sb.toString();

 }

instanceName

Instance names, under default scenarios, do not require special settings by the user. The system will generate a

unique value randomly through the following code by default.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 262 of 263

 public void changeInstanceNameToPID() {

 if (this.instanceName.equals("DEFAULT")) {

 this.instanceName = UtilAll.getPid() + "#" + System.nanoTime();

 }

 }

Broadcast consumers, upon every startup, need to keep the instance name constant to read the local progress file on
the client. It is required to set the instanceName explicitly, and broadcast consumption must ensure the current Client
IP remains unchanged before and after startup. If deploying in a container, it is necessary to set a fixed pod IP for
scheduling; otherwise, broadcast messages during the restart period will be missed.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 263 of 263

Suggested format: String.format (instance-%s-%s, system name, and business name).

Usage Guidelines

Producer

[Mandatory] A domain service can only have one topic.
[Mandatory] When sending messages, a domain service must set the tag according to the business action.

[Mandatory] The keys must be set when the producer sends a message.
[Mandatory] Logs must be printed whether a message sending succeeded or failed, with both the SendResult and key
fields required to be printed.
[Recommended] After a message-sending failure, it is recommended to store the message in a database, and then
use a timer-like thread for periodic retries to ensure the message can be delivered to the broker.

[Recommended] For business scenarios where reliability is not a high requirement, the oneway messages can be
used.
[Mandatory] When creating a new producer, a producer group must be specified.

Consumer

[Mandatory] When creating a new consumer, a producer group must be specified.
[Mandatory] Message consumers cannot avoid duplicate messages, so the business service needs to ensure
idempotent message consumption.

[Recommended] To improve consumption parallelism, you can start multiple Consumer instances under the same
ConsumerGroup or increase the parallel consumption capacity of a single Consumer by modifying
ConsumeThreadMin and ConsumeThreadMax.
[Recommended] To increase business throughput, you can batch the consume messages by setting the consumer's
consumeMessageBatchMaxSize.

[Recommended] In the event of message accumulation, if the business does not have high data requirements, you
can choose to discard unimportant messages.
[Recommended] If the message volume is small, it is recommended to print messages and consumption time, etc. at
the entry point of consumption to facilitate subsequent troubleshooting.

