
CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 94

CODING Continuous Integration

Operation Guide

Product Documentation

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 94

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 94

Contents

Operation Guide
Compile Build Process

Text Editor
Process Configuration Details
Graphical Editor

Configure Build Plan
Trigger Rules
Environment Variables
Build Snapshots
Cache Directory

Build Artifacts
Docker

Manage Build Plans
Group Management
Build Plan Templates

System Plugins
Error
Upload Generic Artifacts

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 94

Operation Guide
Compile Build Process
Text Editor
Last updated：2023-12-29 11:44:51

title: Text Editor - CODING Help Center

pageTitle: Text Editor

pagePrevTitle: Getting Started

pagePrev: ci/start.html

pageNextTitle: Configuration Details

pageNext: ci/process/detail.html

In essence, build tasks follow the processes and steps defined in configuration files. CODING Continuous Integration
(CODING-CI) is fully compatible with Jenkinsfiles. Configuration files composed in the text editor can be run as long as
they follow the syntax specifications of Jenkinsfiles.
Open a project, click "Continuous Integration" on the left, and then click "Settings" on a build plan.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 94

Select "Process Configuration" > "Text Editor".

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 94

Follow the syntax for Jenkinsfile in the build process. For more information, refer to the following documentation.

More information

Official Jenkinsfile Documentation

Configuration Details
==== 2021/08/14 ====

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://intl.cloud.tencent.com/document/product/1135/45428

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 94

Process Configuration Details
Last updated：2023-12-29 11:44:51

title: Process Configuration Details - CODING Help Center

pageTitle: Process Configuration Details

pagePrevTitle: Text Editor

pagePrev: ci/process/text.html

pageNextTitle: Graphical Editor

pageNext: ci/process/visual-editor.html

alias: process/detail.html

This document provides you a guidance on compiling a build process and describes parameters in each step.

Code repositories

Git

Checks out source code from a Git repository in the current project. This command is a simpler version of the
checkout command.
Parameter list:
Git URL url : string

Branch branch : string

Change log changelog : string

Identity authentication ID credentialsId : string

Poll poll : boolean

Check out from version control

Universally checks out SCM code (Git or SVN).

This step returns content in a map format. If you are using Git, you could use the following:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 94

def scmVars = checkout scm

def commitHash = scmVars.GIT_COMMIT

// or

def commitHash = checkout(scm).GIT_COMMIT

The parameter scm is an object that allows the SCM type to be configured, such as the following:

GitSCM example:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 94

checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL]]])

userRemoteConfigs parameter list:
 url : string

 name : string, name of a remote repository such as "origin"

 refspec : string, for more information, see Git Internals - The Refspec.

 branches : array of objects (optional)

 changelog : boolean (optional)

https://git-scm.com/book/zh/v2

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 94

 credentialsId : string (optional)

 doGenerateSubmoduleConfigurations : boolean (optional)

 submoduleCfg : array (optional)

SubversionSCM: Checks out code from an SVN server. Example:

checkout([$class: 'SubversionSCM', remote: 'http://sv-server/repository/trunk']]])

Parameter list:
 locations : array of objects

 remote : string

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 94

 credentialsId : string

 local : string, specifies a local directory (relative to the workspace) as the location of code to be checked out

 depthOption : string. Corresponds to --depth. The default value is unlimited. Learn More.

 ignoreExternalsOption : boolean

Build process

Subnodes

Parameter list:
 label : string, environment label name such as java-8

Collect artifacts

Collects build results (such as jar, war, or apk). Note that the artifacts collected are saved and deleted along with the
build history. This is just a temporary storage space. We recommend using "Artifact Management" for version

management of build results.
Parameter list:
 artifacts : string, you can use the wildcard * to specify the path pattern of files in the workspace to be collected

while keeping to the Apache Ant Path Rules
 allowEmptyArchive : boolean (optional). Generally, this command results in "Building Failed" if no file

appropriate to the collection pattern is found. If this parameter is set to "true", a build process returns a warning if there

are no artifacts, instead of a failure result.
 caseSensitive : boolean (optional). By default, file path rules are case-sensitive. If this parameter is set to

"false", the rules are non-case-sensitive.
 defaultExcludes : boolean (optional)

 excludes : boolean (optional), you can exclude certain files when setting the path pattern while keeping to the

Apache Ant Path Rules
 fingerprint : boolean (optional), file hashes are also calculated during collection

 onlyIfSuccessful : boolean (optional), only collected when "Build successful" is returned

Execute shell script

Executes a shell script.
Example:

http://svnbook.red-bean.com/en/1.7/svn.advanced.sparsedirs.html
http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 94

pipeline {

 agent any

 stages {

 stage('Example') {

 steps {

 echo 'Hello World'

 sh 'ls -al'

 }

 }

 }

}

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 94

Collect JUnit test reports

Collects JUnit and TestNG test reports (in XML). You can specify the XML files to be collected using

 **/build/test-reports/*.xml , for example. Do not include XML files that are not reports. You can use

commas to separate multiple rules.
Parameter list:
 testResults : string

 allowEmptyResults : boolean (optional), "file does not exist" or "file is empty" is allowed

 keepLongStdio : boolean (optional), all test logs, including those of passed test cases, are kept

Others

Change directory substep

Changes directory substeps. You can fill in some substeps in the "dir" block, which will be run in the specified directory
path.
Parameter list:
 path : string

Sleep

Pauses for a period of time until the set due time. Similar to sleep xxx in Unix.

Parameter list:
 time : int

 unit : Select one from NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS,

and DAYS .

Error

Sends an error signal. Used when you need to partially terminate an execution process. You can also use throw new

Exception(), but the exception stack printed is shorter if you use "error".
Parameter list:
 message : string

Current directory

Returns the current directory path as a string.
Parameter list:

 tmp : boolean (optional). This parameter returns a temporary directory associated with the workspace. Generally, it

is used when you need to store some temporary files without confusing the workspace directory.

Write file

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 94

Writes the specified content into a file.
Parameter list:
 file : string

 text : string

 encoding : string. File encoding. If left empty, the default encoding in the current run environment is used. In the

case of a binary file, a base-64-encoded result is returned.

Read file

Reads a file from a relative path and returns the file content as a string.
Parameter list:

 file : string, path address relative to the workspace directory

encoding: string. File encoding. If left empty, the default encoding in the current run environment is used. In the case of
a binary file, a base-64-encoded result is returned.

Retry substep

Retries the specified block until the set maximum number of retries is reached. Stops retrying if the execution process
ends normally. Keeps retrying until the set maximum number of retries is reached if an exception occurs in the
execution process. The build process terminates if an exception occurs during the last try.

Parameter list:
 count : int

Time-limited substep

Executes the process in a block within a limited time. When the time is up, the exception
 org.jenkinsci.plugins.workflow.steps.FlowInterruptedException is returned. The optional unit

parameter is minutes by default.

Parameter list:
 time : int

 activity : boolean. Time is calculated when there is no new content in the log rather than based on an absolute

execution time.
 unit : Select one from NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS,

and DAYS .

Catch error in substep

Catches errors in the specified substep.

Timed substep

Records the execution time of the specified substep in the form of a Unix timestamp.

Loop substep

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 94

Loops the execution of the specified substep for the designated number of times.

Conditional loop substep

Loops the execution of the specified substep until the substep returns "true".

Print information

Prints information in the log.

Parameter list:
 message : string

Run arbitrary pipeline script

Runs an arbitrary pipeline script.

Run Groovy source file

Runs a Groovy source file in this location during the build process.
Example:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 94

pipeline {

 agent any

 stages {

 stage('Example') {

 steps {

 echo 'Hello World'

 load 'test.groovy'

 }

 }

 }

}

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 94

Run yarn audit

Runs a yarn audit in the specified directory. In Continuous Integration, you can see the vulnerabilities found during the

yarn dependency audit on the results page.
Parameter list:
 directory : string (optional). Fill in the directory location of yarn.lock. Runs in the root directory of the project by

default.
 collectResult : boolean (optional). Collects yarn audit reports.

Run npm audit

Runs an npm audit in the specified directory. In Continuous Integration, you can see the vulnerabilities found during
the npm dependency audit on the results page.
Parameter list:
 directory : string (optional). Fill in the directory location of package.json. Runs in the root directory of the project

by default.

 collectResult : boolean (optional). Collects npm audit reports.

Merge merge request

Merges code. You can merge the specified merge request.
Parameter list:
 token : string, project token

 depot : string, repository name

 mrResourceId : string, specified resource ID

 commitMessage : string, merged commit message template

 deleteSourceBranch : boolean (optional), deletes source branch

 fastForward : boolean (optional), tries fast-forward merge

Merge request comment

Comments on a merge request. You can comment on a specified merge request.
Parameter list:

 token : string, project token

 depot : string, repository name

 mrResourceId : string, specified resource ID

 commentContent : string, comment template

==== 2020/08/13 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 94

Graphical Editor
Last updated：2023-12-29 11:44:51

title: Graphical Editor - CODING Help Center

pageTitle: Graphical Editor

pagePrevTitle: Process Configuration Details

pagePrev: ci/process/detail.html

pageNextTitle: Trigger Rules

pageNext: ci/configuration/trigger.html

alias:

devops/ci/visualeditor.html
ci/visualeditor.html
ci/visual-editor.html

Function Overview

Editing a Jenkinsfile (a file that describes a build process) using a command-line editor is the most basic mode of
human-computer interaction. Based on its core text editing function, CODING has been designed with an innovative

graphical editor that is compatible with most custom command-line operations. Enjoy an intuitive WYSIWYG editing
experience as you can view while building.
To access the function, go to "Build Plan Settings" > "Process Configuration".

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 94

Build Process Concepts

In essence, both graphical and text editors allow users to view and edit the core of the build process—the Jenkinsfile
(a file that describes the process). Before we go into the details of editors, let's take a look at a few important concepts

concerning the "file that describes the process".
Note:
This document focuses on the syntax rules for declarative files.

Pipeline

A pipeline is a customizable working model that defines an entire process for delivering software. In general, it

includes build, test, and deployment phases.

Execution Environment

The execution environment describes the execution environment of the entire process or a certain stage of

executing a pipeline . It must appear in the top grid of a descriptive file or at every stage .

Required? Yes

Parameter list See below

Permitted location Must appear in the top grid of a descriptive file or at every stage

Stage

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 94

A stage defines a series of closely related steps . Each stage , such as the "build stage", the "test stage",

or the "deployment stage", undertakes an independent, clear responsibility in an entire pipeline. Generally, all actual
build processes are provided in stages.

Required? At least one

Parameter list A required string parameter that specifies the name of a stage

Permitted location In the stage block

Stage List

The stage list includes a series of stages . A stage list will include at least one stage . A

 pipeline must have and only have one stage list .

Required? Yes

Parameter list None

Permitted location Can only appear once in the pipeline

Step List

The step list describes what to do at a stage and what specific commands to run. For example, a step

needs the system to print a "Building" message and run the command echo 'building...' .

Required? Yes

Parameter list None

Permitted location In every stage block

Parallel

"Parallel" is used to declare some stages executed in parallel to accelerate the execution speed, especially when

a stage and another stage are independent of each other. Take note that you cannot set the execution

environment for any stage with a parallel block.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 94

Sample File

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 94

pipeline {

 agent any

 stages {

 stage('check out') {

 steps {

 sh 'ci-init'

 checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL]]])

 }

 }

 stage('build') {

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 94

 steps {

 echo 'building...'

 sh 'make'

 echo 'build complete.'

 }

 }

 stage('Test') {

 steps {

 echo 'unit testing...'

 sh 'make check'

 junit 'reports/**/*.xml'

 echo 'unit testing complete.'

 }

 }

 stage('deploy') {

 steps {

 echo 'deploying...'

 sh 'make publish'

 echo 'deployment complete'

 }

 }

 }

}

Switching Between Editors

In essence, the graphical editor is preset code, allowing you to switch seamlessly to the text editor. However, you
cannot switch from the text editor to the graphical editor. Code added or deleted in the text editor must pass a "rule
check" before it can be converted into an editable view.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 94

The text editor supports a wider range of custom operations than the graphical editor. As the graphical editor is preset
with numerous commonly used steps, you can use it for pattern-based and standardized work. The text editor has no

limitations and only requires conformance to Jenkins syntax, lending itself to specific and special tasks.
==== 2020/09/07 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 94

Configure Build Plan
Trigger Rules
Last updated：2023-12-29 11:44:51

title: Trigger Rules - CODING Help Center

pageTitle: Trigger Rules

pagePrevTitle: Graphical Editor

pagePrev: ci/process/visual-editor.html

pageNextTitle: Environment Variables

pageNext: ci/configuration/env.html

alias:

devops/ci/trigger.html
ci/trigger.html

Function Overview

In the process of configuring a continuous integration (CI) plan, you can set trigger rules as necessary for running the
build plan. These include the run frequency and trigger conditions of the build plan. The following trigger methods can
be used in every CI build plan.

Manual trigger
Triggered by code changes
Scheduled trigger
API trigger
You can combine these methods.

Manual trigger

You can manually trigger a build plan by entering the build parameters, which will be added to the build environment in
the form of environment variables.
On the build plans page, select "Build Now". In the pop-up window, select the build targets (tag, branch, or revision
number), enter the required build parameters to complete the trigger build.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 94

Triggered by code changes

For a build plan configured to be triggered by code changes, the code repository selected for the build plan will be
monitored to trigger the build plan according to its changes.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 94

Code updates

Trigger build when pushing to <branch>
 A build is triggered only when the code of the specified branch is updated.

Trigger build when pushing a new tag
 A build is triggered only when a new Git tag is created.
Trigger build when pushing to a branch
 A build is triggered when the code of any branch is updated.
Build when branch or tag rules met

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 94

 Supports matches of regular expressions:
1.1 If you want to trigger a build when the code of a master branch is updated, "refs/heads/master" and "master" both
match the condition.

1.2 If you want to trigger a build only when a master or dev branch is updated, use the following:
^refs/heads/(master|dev).

Merge requests

A merge request triggers a build in the following circumstances:
When a merge request is initiated
A change has occurred in the source branch of a merge request

A change has occurred in the target branch of a merge request
When a merge request is merged
Note:
When a build is triggered by a merge request, the result after the source branch and target branch is
merged is built, so integration errors can be identified at the earliest. This is not possible when a build is triggered by
code updates.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 94

Automatically cancel identical builds

In the settings, you can select "Automatically cancel identical version numbers" and "Automatically cancel identical
merge requests" to cancel identical builds that are triggered (and only keep the latest one).

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 94

Private GitLab

In the case of Bind Private GitLab, GitLab Webhooks will be automatically created. Subsequently, CODING will be
notified of events to match the above-set trigger rules.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 94

Scheduled trigger

By configuring a scheduled trigger for a build plan, you can set the build plan to be triggered periodically or at specific
times to generate build tasks.

You can add multiple scheduled triggers in no order of priority. If scheduled triggers overlap, multiple builds are
triggered.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 94

Trigger condition: Do not repeatedly trigger scheduled task if code is unchanged
 If the code of the selected branch has not changed since the last trigger, a build will not be triggered at the trigger

time.
Select Date
 You can select multiple days in a week.
Repeatedly
 You can select a time range between 00:00 and 24:00 (accurate to the hour) to trigger tasks at the specified interval.

Once
 You can select a trigger time between 00:00 and 24:00 (accurate to the minute).

API trigger

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 94

Before using this feature, select "Project Settings" > "Developer Options" > "Project Token" > "Create Token" to
generate the token authorizing you to trigger the Continuous Integration API.

With the token, you can call the API in a build plan. Select "Generate cURL command to test trigger" to generate the
call command.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 94

API

When the project token calls the CODING Continuous Integration (CODING-CI) API, the authentication method is
 Basic Auth . See the API parameters below.

Trigger build task

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 94

POST https://< TEAM_GK >.coding.net/api/cci/job/< JOB_ID >/trigger

Request body

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 94

{

 "ref": "master",

 "envs": [

 {

 "name": "my-params-1",

 "value": "hello",

 "sensitive": 1

 },

 {

 "name": "my-params-2",

 "value": "world",

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 94

 "sensitive": 0

 }

]

}

Return body

{

 "code": 0

}

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 94

Parameter descriptions

Parameter Location Required? Type Default
value

Description

ref body No string master
Built target ref (commit sha / tag /
 branch), ignore if code repository isn't
used in build plan

envs body No env[] - Startup parameter of build plan

envItem

Parameter Location Required? Type Default
value

Description

name envItem.name Yes string master Name of startup parameter of
build plan

value envItem.value No string - Startup value of build plan

sensitive envItem.sensitive No number 0

Whether to keep startup
parameters confidential and do
not show startup parameters in
log 1: confidential, 0: plaintext

==== 2021/08/24 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 94

Environment Variables
Last updated：2023-12-29 11:44:51

title: Environment Variables - CODING Help Center

pageTitle: Environment Variables

pagePrevTitle: Trigger Rules

pagePrev: ci/configuration/trigger.html

pageNextTitle: Build Snapshots

pageNext: ci/configuration/snapshot.html

alias:

devops/ci/env.html
ci/env.html

Function Overview

In a continuous integration process, we may incorporate configurations (such as an account password or version
number) into the build process as environment variables. CODING Continuous Integration (CODING-CI) supports
environment variables in multiple formats. You can incorporate variables into a build process with the following

methods (in order of highest priority to lowest):
"withEnv" in a Jenkinsfile
"environment" in a Jenkinsfile
Startup parameters in a build plan (job)
Environment variables in a build plan (job)

Built-in system environment variables during a build process
This document describes these methods in detail.

withEnv and environment

You can use "environment" to define environment variables in a Jenkinsfile (as follows):

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 94

pipeline {

 agent any

 environment {

 MY_PROJECT = 'project-1'

 MY_TEAM = 'team-1'

 }

 stages {

 stage('Build') {

 steps {

 echo "MY_PROJECT is ${MY_PROJECT}"

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 94

 echo "MY_TEAM is ${MY_TEAM}"

 // The output is as follows:

 // MY_PROJECT is project-1

 // MY_TEAM is team-1

 }

 }

 }

}

In a build process, you may need to use environment variables of the same name at different stages. You can use

"withEnv" to set the environment variables for some operations to avoid confusing the global environment variables.
Steps executed with "withEnv" will prioritize the set environment variables. Refer to the following example:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 94

pipeline {

 agent any

 environment {

 MY_PROJECT = 'project-1'

 MY_TEAM = 'team-1'

 }

 stages {

 stage('Build') {

 steps {

 echo "MY_PROJECT is ${MY_PROJECT}"

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 94

 echo "MY_TEAM is ${MY_TEAM}"

 // The output is as follows:

 // MY_PROJECT is project-1

 // MY_TEAM is team-1

 // Environment variables set with "withEnv" are only valid for step

 withEnv(['MY_PROJECT=project-2']) {

 echo "MY_PROJECT is ${MY_PROJECT}"

 echo "MY_TEAM is ${MY_TEAM}"

 // The output is as follows:

 // MY_PROJECT is project-2

 // MY_TEAM is team-1

 }

 }

 }

 }

}

Note:
For more information, see the official Jenkins documentation—Using environment variables.

Startup parameters in build plans

Startup parameters are the next most important environment variables. You can select or fill in their values when
starting a build plan.

https://jenkins.io/zh/doc/pipeline/tour/environment/

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 94

Add environment variable

Besides hardcoding environment variables into a Jenkinsfile, you can also set variables when configuring a build plan.
CODING supports four types of environment variables: string, single-selection, multi-selection, and CODING

credentials. You can also configure environment variables in a build plan as the default values of the startup
parameters.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 94

Built-in system environment variables

In CODING-CI build processes, he corresponding environment variables are incorporated to every build task. You can
view the list of default environment variables in "Build Snapshot":

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 94

The environment variables are summarized below by trigger rules (triggered upon code updates, scheduled trigger, or
triggered upon merge requests):

No. Variable Description

1 CREDENTIALS_ID Private deploy key CredentialsId, for pullin
repositories

2 DOCKER_REGISTRY_CREDENTIALS_ID
Docker private key CredentialsId (equivale
to
CODING_ARTIFACTS_CREDENTIALS_

3 CREDENTIALS_ID Repository private key CredentialsId, for
pulling repositories in the project

4 GIT_HTTP_URL Code repository HTTPS URL

5 GIT_BUILD_REF The Git revision number for the build

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 94

6 GIT_DEPLOY_KEY Public deploy key of code repositories

7 GIT_COMMIT Revision number of the current version

7 GIT_COMMIT_SHORT First seven digits of the revision number

8 GIT_PREVIOUS_COMMIT Revision number of the last build run No.

9 GIT_AUTHOR_EMAIL Email address of the latest author of this
version

10 GIT_SSH_URL SSH URL of the code repository

11 GIT_COMMITTER_NAME Name of the latest committer of this versio

12 GIT_AUTHOR_NAME Name of the latest author of this version

13 REF Version to be built

14 GIT_PREVIOUS_COMMIT Revision number of the last successful bu
run

15 GIT_COMMITTER_EMAIL Email address of the latest committer of th
version

16 GIT_BRANCH Branch triggering the build

17 GIT_URL SSH URL of the repository

18 GIT_LOCAL_BRANCH/BRANCH_NAME Local branch name

19 FETCH_REF_SPECS refs to be checked out by git

20 GIT_REPO_URL SSH URL of the repository

21 JOB_ID Build plan ID

22 JOB_NAME Build plan name

23 CI_BUILD_NUMBER Build No.

24 PROJECT_ID Project ID

25 PROJECT_NAME Project name

26 PROJECT_WEB_URL Project website URL

27 PROJECT_API_URL URL of project's backend API

28 PROJECT_TOKEN Project token password, for reading the

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 94

project

29 PROJECT_TOKEN_GK Project token user

30 GIT_TAG Git tag triggering the build (only applicable
when building with tags)

31 DEPOT_NAME Current code repository name

32 CCI_CURRENT_PROJECT_COMMON_CREDENTIALS_ID
(soon to be released)

Built-in project token's CredentialsId

33 CCI_CURRENT_TEAM (soon to be released)
Company name for the current build
environment, such as "myteam" in
myteam.coding.net

34 CCI_CURRENT_DOMAIN (soon to be released)
Domain name of the current build
environment, such as "coding.net" in
myteam.coding.net

35 MR_RESOURCE_ID Merge request ID

36 MR_TARGET_BRANCH Target branch of the merge request

37 MR_TARGET_SHA Version number of the target branch of the
merge request

38 MR_MERGED_SHA Simulated merged version number

39 MR_SOURCE_BRANCH Source branch of the merge request

40 MR_STATUS Status of the merge request

41 MR_SOURCE_SHA Version number of the source branch of th
merge request

==== 2020/10/14 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 94

Build Snapshots
Last updated：2023-12-29 11:44:51

title: Build Snapshots - CODING Help Center

pageTitle: Build Snapshots

pagePrevTitle: Environment Variables

pagePrev: ci/configuration/env.html

pageNextTitle: Cache Directory

pageNext: ci/configuration/cache.html

alias:

devops/ci/snapshot.html
ci/snapshot.html

Function overview

You may use different configuration files or build parameters for each build task in Continuous Integration. CODING
Continuous Integration (CODING-CI) features build snapshots to allow you to review the execution process of a build
task. Build snapshots clearly show the configuration parameters of every build record.

View build configuration

1. In a project, click "Continuous Integration" > "Build Plans". Select the title of a build plan to view all build records of
the plan. Click a record to open it:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 94

2. In a build record, you can click "Build Snapshot" to view the configuration snapshots of the build record—the startup
parameters, environment variables, and process configuration file.

Startup parameters

The startup parameters are the parameters that you entered when starting a build task. They are incorporated into the
run environment of the build task as environment variables.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 94

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 94

After the build is completed, you can view the configured startup parameters in "Build Snapshot".

Environment variables

The environment variables only include those you configured when starting the task, and exclude all environment
variables generated or dynamically set in the run process.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 94

Select "Environment Variables" to view the environment variables set by the system and user for the build task when
the task was started.

Process configuration file

Select the tab for the process configuration to view the configuration file (Jenkinsfile) used for the build record.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 94

==== 2020/08/13 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 94

Cache Directory
Last updated：2023-12-29 11:44:51

title: Cache Directory - CODING Help Center

pageTitle: Cache Directory

pagePrevTitle: Build Snapshots

pagePrev: ci/configuration/snapshot.html

pageNextTitle: Build Node Types

pageNext: ci/node/type.html

alias:

devops/ci/cache.html
ci/cache.html
practice/jenkins-dockerfile.html

Function Overview

When installing dependencies for a local project, the downloaded files are cached for the next installation. After you
run the npm install command, ./node_modules is generated in the project and is cached in the

 ~/.npm directory, which is more compact and universal.

Default build nodes
 CODING distributes computing resources for each build plan, which are destroyed once a build is finished. As a new
build node is assigned for each build, the "cache directory" needs to be specified to accelerate the next build.
Custom build nodes

 If you would like to access computing resources and execute the task in the build plan using a custom build node, the
server will not be destroyed once the build is finished, so you do not need to specify the "cache directory".
When using Docker in Continuous Integration, you will need to enable the "cache directory" in Docker.

Default build nodes

CODING provides the basic task computing resources for build plans. A CVM is assigned for each task in a Linux
build environment with root user permissions, the cache directory is as follows:

Package management tool Cache directory

Maven /root/.m2/

Gradle /root/.gradle/

npm /root/.npm/

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 94

composer /root/.cache/composer/

pip3 /root/.cache/pip/

yarn /usr/local/share/.cache/yarn/

In "Build Plan Settings" > "Variables and Caches", select or enter the cache directory.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 94

Docker build environment

If you are using Docker in a build plan, go to "Variables and Caches", select the cache directory, and then enable it in
Docker.

Jenkinsfile

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 94

pipeline {

 agent any

 stages {

 stage('check out') {

 steps {

 checkout([

 $class: 'GitSCM',

 branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIAL

])

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 94

 }

 stage('Java cache') {

 agent {

 docker {

 image 'adoptopenjdk:11-jdk-hotspot'

 args '-v /root/.gradle/:/root/.gradle/ -v /root/.m2/:/root/.m2/'

 reuseNode true

 }

 }

 steps {

 sh './gradlew test'

 }

 }

 stage('npm cache') {

 steps {

 script {

 docker.image('node:14').inside('-v /root/.npm/:/root/.npm/') {

 sh 'npm install'

 }

 }

 }

 }

 }

}

Custom build nodes

When using a Docker environment in a custom build node, find the cache directory corresponding to the server
username. For example, if the default username for Ubuntu servers is ubuntu, the cache directory is

 /home/ubuntu/.npm/ , and the codes are as follows:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 94

docker.image('node:14').inside('-v /home/ubuntu/.npm/:/root/.npm/') {

 sh 'npm install'

}

Cache basic docker images

As the basic Docker images, such as the basic Dockerfile image and CI agent image, need to be pulled for

every build, the process can be accelerated by caching the images.
You can use the Jenkinsfile below by modifying the image name:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 94

pipeline {

 agent any

 environment{

 DOCKER_CACHE_EXISTS = fileExists '/root/.cache/docker/php-8.0-cli.tar'

 }

 stages {

 stage('Load cache') {

 when { expression { DOCKER_CACHE_EXISTS == 'true' } }

 steps {

 sh 'docker load -i /root/.cache/docker/php-8.0-cli.tar'

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 94

 }

 stage('Use images (modify this section)') {

 agent {

 docker {

 image 'php:8.0-cli'

 args '-v /root/.cache/:/root/.cache/'

 reuseNode 'true'

 }

 }

 steps {

 sh "php -v"

 }

 }

 stage('Generate cache (run once only)') {

 when { expression { DOCKER_CACHE_EXISTS == 'false' } }

 steps {

 sh 'mkdir -p /root/.cache/docker/'

 sh 'docker save -o /root/.cache/docker/php-8.0-cli.tar php:8.0-cli'

 }

 }

 }

}

Add the path /root/.cache/ in "Cache Directory". The duration of the second build is significantly shorten due to

the cache:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 94

⚠️Keep cached images up to date with official updates.

Save Dockerfiles

If you are using a Dockerfile as the build environment in Continuous Integration, instead of running the

 docker build command at initialization, save the built Docker images to a repository to pull and reuse them

again.

Jenkinsfile

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 94

// Creates a CODING Docker repository and obtains the username, password, and repos

sh "docker login -u $DOCKER_USER -p $DOCKER_PASSWORD my-team-docker.pkg.coding.net"

// Use MD5 of Dockerfile as tag

md5 = sh(script: "md5sum Dockerfile | awk '{print \\$1}'", returnStdout: true).trim

imageFullName = "my-team-docker.pkg.coding.net/my-project/my-repo/my-app:dev-${md5}

// Check if images exist in remote repository

dockerNotExists = sh(script: "docker manifest inspect $imageFullName > /dev/null",

def testImage = null

if (dockerNotExists) {

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 94

 testImage = docker.build("$imageFullName", "--build-arg APP_ENV=testing ./")

 sh "docker push $imageFullName"

} else {

 testImage = docker.image(imageFullName)

}

// Use images for automated testing

testImage.inside("-e 'APP_ENV=testing'") {

 stage('Test') {

 echo 'testing...'

 sh 'ls'

 echo 'test done.'

 }

}

Explanation: By running the following command in the shell, you can determine "if the images exist" based on the
returned value.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 94

docker manifest inspect ecoding/foo:bar

no such manifest

$ echo $?

1

==== 2021/09/17 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 94

Build Artifacts
Docker
Last updated：2023-12-29 11:44:51

title: Docker - CODING Help Center

pageTitle: Docker

pagePrevTitle: Build Composer Artifacts

pagePrev: ci/artifacts/composer.html

pageNextTitle: Build File Type Artifact

pageNext: ci/artifacts/generic.html

alias:

devops/ci/artifacts/docker.html
ci/artifacts/docker.html

Feature Overview

This document provides an example of a Jenkinsfile for building a Docker image with a continuous integration task.
After you build the Docker image, you can use a preset plugin to upload it to the CODING Artifact Repository
(CODING-AR). Before using this function, ensure that you have a basic understanding of Docker artifact repositories.

Jenkinsfile

https://intl.cloud.tencent.com/document/product/1135/45430

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 94

pipeline {

 agent any

 stages {

 stage('Check out') {

 steps {

 checkout([

 $class: 'GitSCM',

 branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIAL

])

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 94

 }

 stage('Build Docker image') {

 steps {

 script {

 ARTIFACT_VERSION = "1.2.0"

 // Note: When creating a project, use hyphens in the link ID instead of u

 // Modify build/my-api to your artifact repository name and image name

 CODING_DOCKER_IMAGE_NAME = "${env.PROJECT_NAME.toLowerCase()}/build/my-ap

 // The environment variable CODING_ARTIFACTS_CREDENTIALS_ID has been buil

 docker.withRegistry("https://${env.CCI_CURRENT_TEAM}-docker.pkg.coding.ne

 docker.build("${CODING_DOCKER_IMAGE_NAME}:${ARTIFACT_VERSION}").push()

 }

 }

 }

 }

 }

}

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 94

Manage Build Plans
Group Management
Last updated：2023-12-29 11:44:51

title: Group Management - CODING Help Center

pageTitle: Group Management

pagePrevTitle: Build node pool

pagePrev: ci/node/pool.html

pageNextTitle: Team Build Template

pageNext: ci/manage/team-template.html

alias:

devops/ci/group.html
ci/group.html

Starring and grouping

Build plans can be starred and grouped to help you quickly locate build plans that you are following.
Starring
This is a personal setting that only takes effect for the user who has starred a plan. Click the star on a build plan area,

and you can view only starred plans in "My Stars" tab.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 94

Grouping
This is a global setting that is only accessible to users with permission to "Continuous Integration Management".

Members of a project can view the groups and categories configured for build plans and conveniently sort plans.
Click "More" > "Create Group" and enter a group name to create a group.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 94

You can modify group names, change the order, and create and delete groups.
Note: Deleting a group does not delete the build plans in the group. After you delete a group, the build plans in the

group will be categorized as "Not Grouped".

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 94

Click "Batch Sort Build Plans" to enter the build plan sorting page. You can select multiple and move them to the same
group at once. Then the selected build plans can be seen a separate group tab after being added.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 94

Filtering and sorting

In the search bar on the right of the build plan page, you can filter build plans by name. Select "Filters" > "Only Me".
Only the latest build plans triggered by you will be shown. This filter can also be enabled in the build records.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 94

You can also sort the build plans by the trigger time of the latest build records.
==== 2020/09/25 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 94

Build Plan Templates
Last updated：2023-12-29 11:44:51

title: Build Plan Templates - CODING Help Center

pageTitle: Build Plan Templates

pagePrevTitle: Group Management

pagePrev: ci/manage/group.html

pageNextTitle: Upload Generic Artifacts

pageNext: ci/plugins/generic.html

alias:

ci/node/overview.html
ci/team-template.html

Function Overview

In CODING Continuous Integration (CODING-CI), you can create unified build plan templates. Members in a team
can reuse configured standard templates across projects to configure build processes more efficiently and centrally
manage universal build plans.

New build plan template

Click the gear icon

 in the upper-right corner of your team homepage to go to the team settings. Select "Feature Settings" > "Build Plan
Templates" to create a new build template.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 94

Edit build plan template

In a template, you can edit the process configuration, basic configurations, trigger rules, and variables and caches.

Process configuration

Use the "Graphical Editor" or "Text Editor" to compose the execution process of the build template. The graphical

editor allows you to view while writing a build process. You can add and delete steps in the graphical editor and
convert the result to text. However, steps composed in the text editor may not be fully converted to graphics.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 94

Basic configurations

In "Basic Configurations", you can change the template name and icon. From the "Actions" dropdown menu on the
right, you can select "Delete Template" or Sync Template.

If a template is updated, the creator of the template can click Sync Template to sync the updates to all build plans
created from the template. Selecting "Sync Template" will overwrite the configurations in the related build plans. Refer

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 94

to the sample scenarios.

Trigger rules

You can configure code source trigger, scheduled trigger, or manual trigger rules. The settings are the same as those
of normal build plans. For more information, see Trigger Rules.

Variables and caches

You can add environment variables to a build plan. If you manually enable a build task, the environment variables will
be used as the default values for startup parameters. For more information, see Environment Variables.

Use build plan template

After a build template is created, members of the team can use the build plan template in any project.

"Template" will be shown in the upper-left corner of such a build plan. You can select the code source as required for a
project.

https://intl.cloud.tencent.com/document/product/1135/45430
https://intl.cloud.tencent.com/zh/document/product/1135/45431

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 94

After you create the build plan, the build plan process, trigger configurations, environment variables, and default
values are the same as the template, you can modify them according to the project. These modifications will not apply

to the template. To modify the template, from your team settings, select "Feature Settings" > "Build Plan Templates".

Sync build plan template

After a build plan template is modified, the creator of a template can sync the updates to all build plans created from
the template.
Sample scenario: Team A implements continuous integration build specifications. Most build plans are created from
a standard build plan template. After some time, the previous specifications need to be updated and the template

creator simply needs to modify the build plan template and sync the updates to all build plans created from the
template.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 94

Syncing updates will not overwrite all contents in build plans. See the figure below for an example of "changes" that
would be applied.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 94

⚠️ Make sure you have known the effect before you perform the sync operation.

==== 2020/11/27 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 94

System Plugins
Error
Last updated：2023-12-29 11:44:51

title: Error - CODING Help Center

pageTitle: Error

pagePrevTitle: Update Images in K8s Clusters

pagePrev: ci/plugins/html-report.html

pageNextTitle: Push to CODING Docker Artifact Repository

pageNext: ci/plugins/cci-push-docker.html

alias: devops/ci/plugins/api-doc.html

In a sense, the "errorl" in Continuous Integration is a terminator to stop the remaining steps and suspend the build
process.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 94

In Continuous Integration, add "Catch incorrect substep". The result will serve as a signal for whether to suspend the
continuous integration task. If the result is successful, the remaining steps are run. Even if the result fails, the

remaining steps are still run, but the build task is deemed to have failed.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 94

==== 2021/06/30 ====

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 94

Upload Generic Artifacts
Last updated：2023-12-29 11:44:51

title: Upload Generic Artifacts - CODING Help Center

pageTitle: Upload Generic Artifacts

pagePrevTitle: Team Template

pagePrev: ci/manage/team-template.html

pageNextTitle: Retrieve Entered Credentials

pageNext: ci/plugins/credentials.html

alias: devops/ci/plugins/generic.html

Feature Overview

In an actual production environment, many tasks are repetitive. CODING Continuous Integration (CODING-CI)
features plugins that can help you handle tedious and repetitive tasks efficiently. You can also use custom parameters
to address unique needs. More built-in plugins are coming soon. At the moment, you can use the following convenient
plugin types in CODING-CI:
Upload generic artifacts

Retrieve uploaded credentials
Automatically add reviewers in merge requests
Manual confirmation

Use plugin to upload generic artifacts

In the process of building a CI task, you can choose to upload an artifact to the CODING Artifact Repository
(CODING-AR). Generic artifacts upload plugin allows you to conveniently upload generic artifacts of up to 5 GB in

Continuous Integration. Before using this function, ensure that you have a basic understanding of generic repositories.
For more information, see Using Generic Repositories.

Getting Started

You can use a fixed template or a Jenkinsfile configuration to upload generic artifacts.

Fixed Template

1. Before using the plugin, make sure that you have created a generic repository. Take a test repository as an example
below.

https://intl.cloud.tencent.com/document/product/1136/44805

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 94

2. Click "New Build Plan" and select "Artifact Repository" > CODING Generic Artifact Upload.

3. Set the default value to "test" repository you have just created. You can also fill in your artifact repository URL in the
code.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 94

4. Select "Trigger build after creation" and click "OK" to run the build.

5. After the build is complete, the file uploaded beforer will appear in the artifact repository.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 94

Jenkinsfile Configuration

1. When selecting a code repository, make sure the code repository contains a Jenkinsfile with the configuration
below.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 90
of 94

pipeline {

 agent any

 stages {

 stage('Upload to generic repository') {

 steps {

 // Use the fallocate command to create a file of 10 MB in size. (Th

 sh 'fallocate -l 10m my-generic-file'

 codingArtifactsGeneric(

 files: 'my-generic-file',

 repoName: 'myrepo', // Fill in your repository parameters here,

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 91
of 94

)

 }

 }

 }

}

2. In "Process Configuration", you can modify the Jenkinsfile configuration.

More examples of parameters

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 92
of 94

pipeline {

 agent any

 stages {

 stage('Upload to generic repository') {

 steps {

 // Use the fallocate command to create a file of 10 MB in size. (Th

 sh 'fallocate -l 10m my-generic-file'

 codingArtifactsGeneric(

 files: 'my-generic-file',

 repoName: 'myrepo',

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 93
of 94

)

 }

 }

 }

}

Parameter Descriptions

Parameter Required? Parameter
type

Graphical parameter
type

Default value

files Yes -

List of files to be
uploaded, wildcards are
supported
 build/libs/**/xx

-

repoName

Yes (Not
required if
repoURL
is set
separately)

string Repository name -

version No string string latest

zip No - string string

credentialsId No string Credentials
(username+password)

env.CODING_ARTIFACTS_CREDE

repoURL No string string https:// < env.CCI_CURRENT_TE
generic. < env.CCI_CURRENT_D

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 94
of 94

withBuildProps No boolean boolean true

workspace No string No -

==== 2020/08/24 ====

