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Best Practices
Automated Deployment
K8s Clusters
Last updated：2023-12-29 11:44:50

This document describes how to use Continuous Integration to release a project to a K8s cluster.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the 
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click 

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Follow the steps below to easily deploy a project to a K8s cluster through Continuous Integration:
1. Retrieve the username and password for the Docker repository (You can obtain them by creating an access token 
with one click in CODING Artifact Repository). Then, enter them in the environment variables of Continuous 
Integration.
2. Build a Docker image and upload it to the repository.
3. Using a cloud computing service provider (such as Tencent Cloud), create a K8s cluster and deployment. Retrieve 

kubeconfig and enter it in CODING Credential Management.
4. Use the following Jenkinsfile in Continuous Integration: Run kubectl and deploy.

Jenkinsfile
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pipeline {

  agent any

  stages {

    stage('Check out') {

      steps {

        checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

        userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

      }

    }

    stage('Build') {

      steps {
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        echo 'building...'

        script {

          // Modify dockerServer, dockerPath, and imageName

          dockerServer = 'codes-farm-docker.pkg.coding.net'

          dockerPath = '/laravel-demo/laravel-docker'

          imageName = "${dockerServer}${dockerPath}/laravel-demo:1.0.0"

          def customImage = docker.build(imageName)

          // Push Docker image to repository

          docker.withRegistry("https://${dockerServer}", CODING_ARTIFACTS_CREDENTIA

            customImage.push()

          }

        }

      }

    }

    stage('Deploy to K8s') {

      steps {

        echo 'deploying...'

        script {

          // Modify credentialsId: Fill in the K8s credential ID

          withKubeConfig([credentialsId: 'f23cc59c-dfd1-40b9-a12f-2c9b6909e908']) {

            // Use kubectl to create a K8s secret key: originates from the environm

            sh(script: "kubectl create secret docker-registry coding --docker-serve

            // Use kubectl to modify the K8s deployment: Specify the Docker image l

            // Modify laravel-demo and web to the values in your deployment

            sh "kubectl patch deployment laravel-demo --patch '{\\"spec\\": {\\"tem

          }

        }

      }

    }

  }

}

Notice

As a K8s deployment includes at least five steps, we recommend you to use Continuous Deployment instead of 
writing all of them in Continuous Integration to facilitate future maintenance.

https://intl.cloud.tencent.com/document/product/1137/44819
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Docker Servers
Last updated：2023-12-29 11:44:51

This document describes how to use Continuous Integration to release a project to a Docker server.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the 
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click 

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Retrieve SSH Key Pair

Log in to the server console and create an SSH key pair. After you obtain the private key pair, enter it in CODING's 
project token. Then, copy the public key content in id_rsa.pub to  ~/.ssh/authorized_keys  in the server. 
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Retrieve Artifact Repository Information

1. Follow the instructions to retrieve the username and password for the Docker repository with one click and enter 
them in the environment variables of Continuous Integration. 
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2. Enter them in Variables and Caches in the build plan details. 

Jenkinsfile

Go to "Build Plan Settings" > "Process Configuration". Refer to the following configuration for filling.
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pipeline {

  agent any

  stages {

    stage('Check out') {

      steps {

        checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

        userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

      }

    }

    stage('Build') {

      steps {
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        echo 'building...'

        script {

          // Modify dockerServer, dockerPath, and imageName

          dockerServer = 'codes-farm-docker.pkg.coding.net'

          dockerPath = '/laravel-demo/laravel-docker'

          imageName = "${dockerServer}${dockerPath}/laravel-demo:1.0.0"

          def customImage = docker.build(imageName)

          // Push Docker image to repository

          docker.withRegistry("https://${dockerServer}", CODING_ARTIFACTS_CREDENTIA

            customImage.push()

          }

        }

      }

    }

    stage('Deploy') {

      steps {

        echo 'deploying...'

        script {

          // Declare server information

          def remote = [:]

          remote.name = 'web-server'

          remote.allowAnyHosts = true

          remote.host = '106.54.86.239'

          remote.port = 22

          remote.user = 'ubuntu'

          // In "CODING Credential Management" > "Credential ID", enter credentials

          withCredentials([sshUserPrivateKey(credentialsId: "c4af855d-402a-4f38-9c8

            remote.identityFile = id_rsa

            // Log in to the server via SSH and pull the Docker image

            // Configure DOCKER_USER and DOCKER_PASSWORD in the environment variabl

            sshCommand remote: remote, sudo: true, command: "apt-get install -y gnu

            sshCommand remote: remote, command: "docker login -u ${env.DOCKER_USER}

            sshCommand remote: remote, command: "docker pull ${imageName}"

            sshCommand remote: remote, command: "docker stop web | true"

            sshCommand remote: remote, command: "docker rm web | true"

            sshCommand remote: remote, command: "docker run --name web -d ${imageNa

          }

        }

      }

    }

  }

}
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Docker Compose

The code for Docker Compose is slightly different:

sshCommand remote: remote, sudo: true, command: "apt-get install -y gnupg2 pass"

sshCommand remote: remote, command: "docker login -u ${env.DOCKER_USER} -p ${env.DO

sshCommand remote: remote, sudo: true, command: "mkdir -p /var/www/site/"

sshCommand remote: remote, sudo: true, command: "chmod 777 /var/www/site/"

sshPut remote: remote, from: 'docker-compose.yml', into: '/var/www/site/'

sshCommand remote: remote, command: "cd /var/www/site/ && echo IMAGE=${imageName} >

sshCommand remote: remote, command: "cd /var/www/site/ && docker-compose down --rem
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sshCommand remote: remote, command: "cd /var/www/site/ && docker-compose up -d --no

 docker-compose.yml  code:

version: '2.1'

services:

  web:

    env_file: .env

    build: .

    image: ${IMAGE:-laravel-demo:dev}

    ports:
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     - "80:80"

    links:

    - redis

  redis:

    image: "redis:5"
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COS Buckets
Last updated：2023-12-29 11:44:51

This document describes how to use Continuous Integration to release a project to a Cloud Object Storage (COS) 
bucket with one click.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the 

CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click 

 in the upper-right corner to open the project list page and click a project icon to open the project.

3. Select Continuous Integration from the menu on the left.

Function Overview

Tencent Cloud's auto-scaling storage allows you to release a project to COS with one click through Continuous 
Integration, which is applicable for scenarios such as building a static website or compiling files for download.

Create Bucket

Create a bucket in cloud storage (such as Tencent Cloud's COS) and retrieve the bucket name, region, and secret 
key. 

https://intl.cloud.tencent.com/zh/products/cos
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Jenkinsfile

In Continuous Integration, refer to and write the following Jenkinsfile to trigger a build task and upload files.
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pipeline {

  agent any

  stages {

    stage('Check out') {

      steps {

        checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

        userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

      }

    }

    stage('Compile') {

      steps {
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        // Convert markdown to HTML

        // sh 'pip install mkdocs && mkdocs build'

        // React/VUE SPA generate HTML

        // sh 'npm run build'

        // Create Android package

        // sh './gradlew assembleDebug'

      }

    }

    stage('Upload to Tencent Cloud COS') {

      steps {

        sh "coscmd config -a ${env.COS_SECRET_ID} -s ${env.COS_SECRET_KEY}" +

           " -b ${env.COS_BUCKET_NAME} -r ${env.COS_BUCKET_REGION}"

        sh "rm -rf .git"

        sh 'coscmd upload -r ./ /'

        //sh 'coscmd upload -r ./dist /'

      }

    }

  }

}

Environment Variables

Variable Description Example

COS_SECRET_ID Key ID for accessing Tencent Cloud stringLength36stringLength36string36

COS_SECRET_KEY Secret key for accessing Tencent 
Cloud

stringLength32stringLength323232

COS_BUCKET_NAME Tencent Cloud COS bucket devops-host-1257110097

COS_BUCKET_REGION Tencent Cloud COS region ap-nanjing
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Use Docker in Continuous Integration
Last updated：2023-12-29 11:44:50

This document describes how to use Docker in Continuous Integration.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the 
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click 

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Overview

Besides using Docker as a build environment for Continuous Integration, you may need to run additional services in 
Docker as test dependencies, or build a Docker image in a CI process and push it to the relevant repository.

Run Specific Docker Image and Execute Commands

In a build process, you may need to use a public Docker image repository. Refer to the following Jenkinsfile for the 
command to pull a specific Docker image.
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pipeline {

    agent any

    stages {

        stage('Test') {

            steps {

                  script {

                    docker.image("ubuntu").inside('-e MY_ENV=123') {

                          sh 'echo ${MY_ENV}'

                    }     

                  }

            }
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        }

    }

}

Run Docker Image of Specific Registry

In a build process, you may need to use a private Docker image repository. For example, you might need to use a 
Docker image repository that has been uploaded to the CODING Artifact Repository (CODING-AR). Refer to the 
following Jenkinsfile.
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pipeline {

    agent any

    stages {

        stage('Test') {

            steps {

                  script {

                    docker.withRegistry('https://registry.example.com') {

                        // Pulls my-custom-image from the hostname registry.example

                        docker.image('my-custom-image').inside {

                            sh 'make test'
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                        }

                    }

                  }

            }

        }

    }

}

Refer to the following Jenkinsfile in the case that a configured registry requires authentication to pull the image and 
needs a valid credential ID.



CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 39

pipeline {

    agent any

    stages {

        stage('Test') {

            steps {

                  script {

                    docker.withRegistry('https://registry.example.com', 'my-credent

                    }

                  }

            }

        }

    }

}

Build Docker Image in CI Process
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pipeline {

    agent any

    stages {

        // You need to check out the code before using the Dockerfile in the code r

        stage('Checkout') {

            steps {

                checkout([

                    $class: 'GitSCM', 

                    branches: [[name: env.GIT_BUILD_REF]], 

                    userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

            }
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        }

        stage('Build') {

            steps {

                script {

                    // Uses the root path Dockerfile to build by default

                    docker.build('my-docker-image:1.0.0')

                }

            }

        }

    }

}

If you need to specify additional parameters for a build, such as using a Dockerfile in a specific directory, refer to the 
following Jenkinsfile.
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pipeline {

    agent any

    stages {

        // You need to check out the code before using the Dockerfile in the code r

        stage('Checkout') {

            steps {

                checkout([

                    $class: 'GitSCM', 

                    branches: [[name: env.GIT_BUILD_REF]], 

                    userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

            }
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        }

        stage('Build') {

            steps {

                script {

                    // Uses /dockerfiles/Dockerfile.build to build

                    docker.build('my-docker-image:1.0.0', '-f Dockerfile.build ./do

                }

            }

        }

    }

}

Push docker image to Specific Registry

Refer to the following Jenkinsfile.
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pipeline {

    agent any

    stages {

        // You need to check out the code before using the Dockerfile in the code r

        stage('Checkout') {

            steps {

                checkout([

                    $class: 'GitSCM', 

                    branches: [[name: env.GIT_BUILD_REF]], 

                    userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

                ])
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            }

        } 

        stage('Build') {

            steps {

                  script {

                      docker.build('my-docker-image:1.0.0')

                    docker.withRegistry('https://registry.example.com', 'my-credent

                        docker.image('my-docker-image:1.0.0').push()               

                    }

                  }

            }

        }

    }

}

Use Docker to Run Additional Services as Test Dependencies

In the test process, you can use Docker to run MySQL and other services that can be used as test dependencies. Two 
containers are used in the following example: one as a MySQL service and the other as an execution environment. 
(Use a Docker link to link the two containers.)
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pipeline {

    agent any

    stages {

        stage('Test') {

            steps {

                  script {

                    docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-sec

                        // Note: The callback run environment is not the MySQL:5 en

                        // Runs the second MySQL as the execution environment
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                        docker.image('mysql:5').inside("--link ${c.id}:db") {

                          // The commands run here are all in the second MySQL Dock

                          // Waits for the MySQL service

                          sh 'while ! mysqladmin ping -hdb --silent; do sleep 1; do

                        }

                        // After the callback content finishes running, the MySQL D

                    }       

                  }

            }

        }

    }

}

Run Multiple Containers at the Same Time as Test Dependencies

If you need more than one additional service as test dependencies, you can run multiple services in a nested way.
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pipeline {

    agent any

    stages {

        stage('Test') {

            steps {

                  script {

                    docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-sec

                        // Note: The callback run environment is not the MySQL:5 en

                        docker.image('redis').withRun('') { c2 ->

                            // Note: The callback run environment is not the Redis 
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                            sh 'docker ps'

                        } 

                    }       

                  }

            }

        }

    }

}

References

For more information about Docker-based configuration in Jenkins, see the official Jenkins documentation:

Using Docker with Pipeline
Pipeline Syntax: agent

https://jenkins.io/zh/doc/book/pipeline/docker/
https://www.jenkins.io/zh/doc/book/pipeline/syntax/#%E4%BB%A3%E7%90%86
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Use SSH in Continuous Integration
Last updated：2023-12-29 11:44:51

This document describes how to use SSH in Continuous Integration.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the 
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click 

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Function Overview

When executing a build in Continuous Integration, you may need to log in to a remote server with SSH protocol to 
execute the necessary script or command. Go to Continuous Integration > "Build Plan Settings" > "Process 
Configuration", use the text editor to enter the relevant command.

How to Use SSH Commands

CODING-CI allows you to control a remote server using SSH commands.
sshCommand: Run a specific command on the remote server.
sshPut: Place files or directories of the current workspace in the remote server.

sshGet: Obtain files or directories from a remote server.
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sshScript: Read the local shell script and run it on the remote server. If you run the script of the remote server, you will 
get the error: does not exist.
sshRemove: Remove a certain file or directory from a remote server.

The following example shows how to use an account and password to connect to a remote server and run SSH 
commands. An example of a Jenkinsfile configuration is as follows:

def remote = [:]

remote.name = "node"

remote.host = "node.abc.com"

remote.allowAnyHosts = true
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node {

    withCredentials([usernamePassword(credentialsId: 'sshUserAcct', 

        passwordVariable: 'password', usernameVariable: 'userName')]) {

        remote.user = userName

        remote.password = password

        stage("SSH Steps Rocks!") {

            writeFile file: 'test.sh', text: 'ls'

            sshCommand remote: remote, 

                command: 'for i in {1..5}; do echo -n \\"Loop \\$i \\"; date ; slee

            sshScript remote: remote, script: 'test.sh'

            sshPut remote: remote, from: 'test.sh', into: '.'

            sshGet remote: remote, from: 'test.sh', into: 'test_new.sh', override: 

            sshRemove remote: remote, path: 'test.sh'

        }

    }

}

How to Use SSH to Connect to a Remote Service

Besides using an account and password to connect to a remote server, you can also use an SSH private key to 

connect to a remote service. An example of a Jenkinsfile configuration is as follows:
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def remote = [:]

remote.name = "node"

remote.host = "node.abc.com"

remote.allowAnyHosts = true

node {

    withCredentials([sshUserPrivateKey(credentialsId: 'sshUser', keyFileVariable: '

        // SSH login username

        remote.user = 'root'

        // Private key file address

        remote.identityFile = identity
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        stage("SSH Steps Rocks!") {

            writeFile file: 'abc.sh', text: 'ls'

            sshCommand remote: remote, 

                command: 'for i in {1..5}; do echo -n \\"Loop \\$i \\"; date ; slee

            sshPut remote: remote, from: 'abc.sh', into: '.'

            sshGet remote: remote, from: 'abc.sh', into: 'bac.sh', override: true

            sshScript remote: remote, script: 'abc.sh'

            sshRemove remote: remote, path: 'abc.sh'

        }

    }

}

More Information

For more information on SSH commands in Jenkinsfile, see the official Jenkins Help Documentation.
For more information about Jenkins SSH plugins, see the plugin's official homepage.

https://jenkins.io/doc/pipeline/steps/ssh-steps/
https://github.com/jenkinsci/ssh-steps-plugin

