
CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 39

CODING Continuous Integration

Best Practices

Product Documentation

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 39

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 39

Contents

Best Practices
Automated Deployment

K8s Clusters
Docker Servers
COS Buckets

Use Docker in Continuous Integration
Use SSH in Continuous Integration

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 39

Best Practices
Automated Deployment
K8s Clusters
Last updated：2023-12-29 11:44:50

This document describes how to use Continuous Integration to release a project to a K8s cluster.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Follow the steps below to easily deploy a project to a K8s cluster through Continuous Integration:
1. Retrieve the username and password for the Docker repository (You can obtain them by creating an access token
with one click in CODING Artifact Repository). Then, enter them in the environment variables of Continuous
Integration.
2. Build a Docker image and upload it to the repository.
3. Using a cloud computing service provider (such as Tencent Cloud), create a K8s cluster and deployment. Retrieve

kubeconfig and enter it in CODING Credential Management.
4. Use the following Jenkinsfile in Continuous Integration: Run kubectl and deploy.

Jenkinsfile

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 39

pipeline {

 agent any

 stages {

 stage('Check out') {

 steps {

 checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

 }

 }

 stage('Build') {

 steps {

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 39

 echo 'building...'

 script {

 // Modify dockerServer, dockerPath, and imageName

 dockerServer = 'codes-farm-docker.pkg.coding.net'

 dockerPath = '/laravel-demo/laravel-docker'

 imageName = "${dockerServer}${dockerPath}/laravel-demo:1.0.0"

 def customImage = docker.build(imageName)

 // Push Docker image to repository

 docker.withRegistry("https://${dockerServer}", CODING_ARTIFACTS_CREDENTIA

 customImage.push()

 }

 }

 }

 }

 stage('Deploy to K8s') {

 steps {

 echo 'deploying...'

 script {

 // Modify credentialsId: Fill in the K8s credential ID

 withKubeConfig([credentialsId: 'f23cc59c-dfd1-40b9-a12f-2c9b6909e908']) {

 // Use kubectl to create a K8s secret key: originates from the environm

 sh(script: "kubectl create secret docker-registry coding --docker-serve

 // Use kubectl to modify the K8s deployment: Specify the Docker image l

 // Modify laravel-demo and web to the values in your deployment

 sh "kubectl patch deployment laravel-demo --patch '{\\"spec\\": {\\"tem

 }

 }

 }

 }

 }

}

Notice

As a K8s deployment includes at least five steps, we recommend you to use Continuous Deployment instead of
writing all of them in Continuous Integration to facilitate future maintenance.

https://intl.cloud.tencent.com/document/product/1137/44819

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 39

Docker Servers
Last updated：2023-12-29 11:44:51

This document describes how to use Continuous Integration to release a project to a Docker server.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Retrieve SSH Key Pair

Log in to the server console and create an SSH key pair. After you obtain the private key pair, enter it in CODING's
project token. Then, copy the public key content in id_rsa.pub to ~/.ssh/authorized_keys in the server.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 39

Retrieve Artifact Repository Information

1. Follow the instructions to retrieve the username and password for the Docker repository with one click and enter
them in the environment variables of Continuous Integration.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 39

2. Enter them in Variables and Caches in the build plan details.

Jenkinsfile

Go to "Build Plan Settings" > "Process Configuration". Refer to the following configuration for filling.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 39

pipeline {

 agent any

 stages {

 stage('Check out') {

 steps {

 checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

 }

 }

 stage('Build') {

 steps {

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 39

 echo 'building...'

 script {

 // Modify dockerServer, dockerPath, and imageName

 dockerServer = 'codes-farm-docker.pkg.coding.net'

 dockerPath = '/laravel-demo/laravel-docker'

 imageName = "${dockerServer}${dockerPath}/laravel-demo:1.0.0"

 def customImage = docker.build(imageName)

 // Push Docker image to repository

 docker.withRegistry("https://${dockerServer}", CODING_ARTIFACTS_CREDENTIA

 customImage.push()

 }

 }

 }

 }

 stage('Deploy') {

 steps {

 echo 'deploying...'

 script {

 // Declare server information

 def remote = [:]

 remote.name = 'web-server'

 remote.allowAnyHosts = true

 remote.host = '106.54.86.239'

 remote.port = 22

 remote.user = 'ubuntu'

 // In "CODING Credential Management" > "Credential ID", enter credentials

 withCredentials([sshUserPrivateKey(credentialsId: "c4af855d-402a-4f38-9c8

 remote.identityFile = id_rsa

 // Log in to the server via SSH and pull the Docker image

 // Configure DOCKER_USER and DOCKER_PASSWORD in the environment variabl

 sshCommand remote: remote, sudo: true, command: "apt-get install -y gnu

 sshCommand remote: remote, command: "docker login -u ${env.DOCKER_USER}

 sshCommand remote: remote, command: "docker pull ${imageName}"

 sshCommand remote: remote, command: "docker stop web | true"

 sshCommand remote: remote, command: "docker rm web | true"

 sshCommand remote: remote, command: "docker run --name web -d ${imageNa

 }

 }

 }

 }

 }

}

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 39

Docker Compose

The code for Docker Compose is slightly different:

sshCommand remote: remote, sudo: true, command: "apt-get install -y gnupg2 pass"

sshCommand remote: remote, command: "docker login -u ${env.DOCKER_USER} -p ${env.DO

sshCommand remote: remote, sudo: true, command: "mkdir -p /var/www/site/"

sshCommand remote: remote, sudo: true, command: "chmod 777 /var/www/site/"

sshPut remote: remote, from: 'docker-compose.yml', into: '/var/www/site/'

sshCommand remote: remote, command: "cd /var/www/site/ && echo IMAGE=${imageName} >

sshCommand remote: remote, command: "cd /var/www/site/ && docker-compose down --rem

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 39

sshCommand remote: remote, command: "cd /var/www/site/ && docker-compose up -d --no

 docker-compose.yml code:

version: '2.1'

services:

 web:

 env_file: .env

 build: .

 image: ${IMAGE:-laravel-demo:dev}

 ports:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 39

 - "80:80"

 links:

 - redis

 redis:

 image: "redis:5"

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 39

COS Buckets
Last updated：2023-12-29 11:44:51

This document describes how to use Continuous Integration to release a project to a Cloud Object Storage (COS)
bucket with one click.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the

CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click

 in the upper-right corner to open the project list page and click a project icon to open the project.

3. Select Continuous Integration from the menu on the left.

Function Overview

Tencent Cloud's auto-scaling storage allows you to release a project to COS with one click through Continuous
Integration, which is applicable for scenarios such as building a static website or compiling files for download.

Create Bucket

Create a bucket in cloud storage (such as Tencent Cloud's COS) and retrieve the bucket name, region, and secret
key.

https://intl.cloud.tencent.com/zh/products/cos

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 39

Jenkinsfile

In Continuous Integration, refer to and write the following Jenkinsfile to trigger a build task and upload files.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 39

pipeline {

 agent any

 stages {

 stage('Check out') {

 steps {

 checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_

 }

 }

 stage('Compile') {

 steps {

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 39

 // Convert markdown to HTML

 // sh 'pip install mkdocs && mkdocs build'

 // React/VUE SPA generate HTML

 // sh 'npm run build'

 // Create Android package

 // sh './gradlew assembleDebug'

 }

 }

 stage('Upload to Tencent Cloud COS') {

 steps {

 sh "coscmd config -a ${env.COS_SECRET_ID} -s ${env.COS_SECRET_KEY}" +

 " -b ${env.COS_BUCKET_NAME} -r ${env.COS_BUCKET_REGION}"

 sh "rm -rf .git"

 sh 'coscmd upload -r ./ /'

 //sh 'coscmd upload -r ./dist /'

 }

 }

 }

}

Environment Variables

Variable Description Example

COS_SECRET_ID Key ID for accessing Tencent Cloud stringLength36stringLength36string36

COS_SECRET_KEY Secret key for accessing Tencent
Cloud

stringLength32stringLength323232

COS_BUCKET_NAME Tencent Cloud COS bucket devops-host-1257110097

COS_BUCKET_REGION Tencent Cloud COS region ap-nanjing

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 39

Use Docker in Continuous Integration
Last updated：2023-12-29 11:44:50

This document describes how to use Docker in Continuous Integration.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Overview

Besides using Docker as a build environment for Continuous Integration, you may need to run additional services in
Docker as test dependencies, or build a Docker image in a CI process and push it to the relevant repository.

Run Specific Docker Image and Execute Commands

In a build process, you may need to use a public Docker image repository. Refer to the following Jenkinsfile for the
command to pull a specific Docker image.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 39

pipeline {

 agent any

 stages {

 stage('Test') {

 steps {

 script {

 docker.image("ubuntu").inside('-e MY_ENV=123') {

 sh 'echo ${MY_ENV}'

 }

 }

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 39

 }

 }

}

Run Docker Image of Specific Registry

In a build process, you may need to use a private Docker image repository. For example, you might need to use a
Docker image repository that has been uploaded to the CODING Artifact Repository (CODING-AR). Refer to the
following Jenkinsfile.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 39

pipeline {

 agent any

 stages {

 stage('Test') {

 steps {

 script {

 docker.withRegistry('https://registry.example.com') {

 // Pulls my-custom-image from the hostname registry.example

 docker.image('my-custom-image').inside {

 sh 'make test'

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 39

 }

 }

 }

 }

 }

 }

}

Refer to the following Jenkinsfile in the case that a configured registry requires authentication to pull the image and
needs a valid credential ID.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 39

pipeline {

 agent any

 stages {

 stage('Test') {

 steps {

 script {

 docker.withRegistry('https://registry.example.com', 'my-credent

 }

 }

 }

 }

 }

}

Build Docker Image in CI Process

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 39

pipeline {

 agent any

 stages {

 // You need to check out the code before using the Dockerfile in the code r

 stage('Checkout') {

 steps {

 checkout([

 $class: 'GitSCM',

 branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 39

 }

 stage('Build') {

 steps {

 script {

 // Uses the root path Dockerfile to build by default

 docker.build('my-docker-image:1.0.0')

 }

 }

 }

 }

}

If you need to specify additional parameters for a build, such as using a Dockerfile in a specific directory, refer to the
following Jenkinsfile.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 39

pipeline {

 agent any

 stages {

 // You need to check out the code before using the Dockerfile in the code r

 stage('Checkout') {

 steps {

 checkout([

 $class: 'GitSCM',

 branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

 }

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 39

 }

 stage('Build') {

 steps {

 script {

 // Uses /dockerfiles/Dockerfile.build to build

 docker.build('my-docker-image:1.0.0', '-f Dockerfile.build ./do

 }

 }

 }

 }

}

Push docker image to Specific Registry

Refer to the following Jenkinsfile.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 39

pipeline {

 agent any

 stages {

 // You need to check out the code before using the Dockerfile in the code r

 stage('Checkout') {

 steps {

 checkout([

 $class: 'GitSCM',

 branches: [[name: env.GIT_BUILD_REF]],

 userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.

])

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 39

 }

 }

 stage('Build') {

 steps {

 script {

 docker.build('my-docker-image:1.0.0')

 docker.withRegistry('https://registry.example.com', 'my-credent

 docker.image('my-docker-image:1.0.0').push()

 }

 }

 }

 }

 }

}

Use Docker to Run Additional Services as Test Dependencies

In the test process, you can use Docker to run MySQL and other services that can be used as test dependencies. Two
containers are used in the following example: one as a MySQL service and the other as an execution environment.
(Use a Docker link to link the two containers.)

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 39

pipeline {

 agent any

 stages {

 stage('Test') {

 steps {

 script {

 docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-sec

 // Note: The callback run environment is not the MySQL:5 en

 // Runs the second MySQL as the execution environment

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 39

 docker.image('mysql:5').inside("--link ${c.id}:db") {

 // The commands run here are all in the second MySQL Dock

 // Waits for the MySQL service

 sh 'while ! mysqladmin ping -hdb --silent; do sleep 1; do

 }

 // After the callback content finishes running, the MySQL D

 }

 }

 }

 }

 }

}

Run Multiple Containers at the Same Time as Test Dependencies

If you need more than one additional service as test dependencies, you can run multiple services in a nested way.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 39

pipeline {

 agent any

 stages {

 stage('Test') {

 steps {

 script {

 docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-sec

 // Note: The callback run environment is not the MySQL:5 en

 docker.image('redis').withRun('') { c2 ->

 // Note: The callback run environment is not the Redis

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 39

 sh 'docker ps'

 }

 }

 }

 }

 }

 }

}

References

For more information about Docker-based configuration in Jenkins, see the official Jenkins documentation:

Using Docker with Pipeline
Pipeline Syntax: agent

https://jenkins.io/zh/doc/book/pipeline/docker/
https://www.jenkins.io/zh/doc/book/pipeline/syntax/#%E4%BB%A3%E7%90%86

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 39

Use SSH in Continuous Integration
Last updated：2023-12-29 11:44:51

This document describes how to use SSH in Continuous Integration.

Prerequisites

Before configuring the CODING Continuous Integration (CODING-CI) build environment, you must activate the
CODING DevOps service for your Tencent Cloud account.

Open Project

1. Log in to the CODING Console and click the team domain name to go to CODING.
2. Click

 in the upper-right corner to open the project list page and click a project icon to open the project.
3. Select Continuous Integration from the menu on the left.

Function Overview

When executing a build in Continuous Integration, you may need to log in to a remote server with SSH protocol to
execute the necessary script or command. Go to Continuous Integration > "Build Plan Settings" > "Process
Configuration", use the text editor to enter the relevant command.

How to Use SSH Commands

CODING-CI allows you to control a remote server using SSH commands.
sshCommand: Run a specific command on the remote server.
sshPut: Place files or directories of the current workspace in the remote server.

sshGet: Obtain files or directories from a remote server.

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 39

sshScript: Read the local shell script and run it on the remote server. If you run the script of the remote server, you will
get the error: does not exist.
sshRemove: Remove a certain file or directory from a remote server.

The following example shows how to use an account and password to connect to a remote server and run SSH
commands. An example of a Jenkinsfile configuration is as follows:

def remote = [:]

remote.name = "node"

remote.host = "node.abc.com"

remote.allowAnyHosts = true

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 39

node {

 withCredentials([usernamePassword(credentialsId: 'sshUserAcct',

 passwordVariable: 'password', usernameVariable: 'userName')]) {

 remote.user = userName

 remote.password = password

 stage("SSH Steps Rocks!") {

 writeFile file: 'test.sh', text: 'ls'

 sshCommand remote: remote,

 command: 'for i in {1..5}; do echo -n \\"Loop \\$i \\"; date ; slee

 sshScript remote: remote, script: 'test.sh'

 sshPut remote: remote, from: 'test.sh', into: '.'

 sshGet remote: remote, from: 'test.sh', into: 'test_new.sh', override:

 sshRemove remote: remote, path: 'test.sh'

 }

 }

}

How to Use SSH to Connect to a Remote Service

Besides using an account and password to connect to a remote server, you can also use an SSH private key to

connect to a remote service. An example of a Jenkinsfile configuration is as follows:

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 39

def remote = [:]

remote.name = "node"

remote.host = "node.abc.com"

remote.allowAnyHosts = true

node {

 withCredentials([sshUserPrivateKey(credentialsId: 'sshUser', keyFileVariable: '

 // SSH login username

 remote.user = 'root'

 // Private key file address

 remote.identityFile = identity

CODING Continuous Integration

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 39

 stage("SSH Steps Rocks!") {

 writeFile file: 'abc.sh', text: 'ls'

 sshCommand remote: remote,

 command: 'for i in {1..5}; do echo -n \\"Loop \\$i \\"; date ; slee

 sshPut remote: remote, from: 'abc.sh', into: '.'

 sshGet remote: remote, from: 'abc.sh', into: 'bac.sh', override: true

 sshScript remote: remote, script: 'abc.sh'

 sshRemove remote: remote, path: 'abc.sh'

 }

 }

}

More Information

For more information on SSH commands in Jenkinsfile, see the official Jenkins Help Documentation.
For more information about Jenkins SSH plugins, see the plugin's official homepage.

https://jenkins.io/doc/pipeline/steps/ssh-steps/
https://github.com/jenkinsci/ssh-steps-plugin

