
Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 37

Cloud Load Balancer

More

Product Documentation

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 37

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,

copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud

Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products

and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's

products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 37

Contents

More

HTTP Long Connections

WebSocket Principle

SSL Principle

Session Persistence Principle

How Cookies Work

HTTP Status Codes

SSL Certificate Chain

SSL Mutual/Unidirectional Authentication

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 4 of 37

Currently, HTTP persistent connection for Layer-7 CLB can be configured to the default value of 75s.

You can customize the configuration for different CLB instances. The following describes HTTP

persistent connection and non-persistent connection.

Relationship between HTTP protocol and TCP/IP protocol

HTTP persistent and non-persistent connections are essentially TCP persistent and non-persistent

connections. HTTP is an application layer protocol. TCP is used at the transport layer, and IP is used

at the network layer. IP protocol mainly solves network routing and addressing problems. TCP

protocol mainly solves how to reliably transfer data packets at the IP layer, so all packets can be

received in the order they are sent. TCP protocol is reliable and connection-oriented.

What does stateless HTTP protocol mean?

HTTP protocol is stateless, meaning the protocol has no memory for transaction processing, and the

server does not know the state of the client. In other words, opening a webpage on a server has

nothing to do with the previous opening of a webpage on the same server. HTTP is a stateless and

connection-oriented protocol. It does not mean HTTP cannot maintain TCP connections, or it uses the

UDP protocol (no connection).

What are persistent and non-persistent connections?

Non-persistent connection is used by default in HTTP/1.0. A connection is established each time the

client and server perform an HTTP operation, while terminated when the task ends. If a client

browser accesses a webpage of HTML or other formats that contains web resources (such as

JavaScript, image, or CSS files), the browser will create an HTTP session each time it encounters such

a web resource.

Starting from HTTP/1.1, persistent connection is used by default to maintain the connection. The

following code is added in the response header when using HTTP persistent connection:

More

HTTP Long Connections

Last updated：2020-03-10 10:40:57

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 5 of 37

Connection:keep-alive

When persistent connection is used, TCP connection used to transfer HTTP data between the client

and the server will not be closed after a webpage is opened. When the client accesses the server

again, the established connection will be used. Keep-Alive does not keep the connection

permanently alive, but the time can be configured in different server softwares (such as Apache). To

implement persistent connection, both the client and the server should support persistent

connection.

HTTP persistent connection and non-persistent connection are essentially TCP persistent connection

and non-persistent connection.

TCP Connection

If TCP protocol is used for network communication, a connection must be established between the

client and the server before an actual read/write operation is performed. After the operation is

completed, the connection can be released if no longer needed by the two parties. The

establishment of a connection relies on a "three-way handshake", while the release requires a "four-

way handshake". The establishment of each connection consumes resource and time.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 6 of 37

Diagram of connection establishment via three-way handshake:

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 7 of 37

Diagram of connection close via four-way handshake:

TCP non-persistent connection

Below is a simulation of TCP non-persistent connection. The client initiates a connection request to

the server, the server receives the request, and a connection is established. The client sends a

message to the server, the server responds to the client, and a request is completed. Either party

can now initiate a close operation, which is usually initiated by the client first. In general, non-

persistent connection only passes one single request between the client and the server.

Non-persistent connections are easy to manage, and all existing ones are useful connections that do

not require additional control.

TCP persistent connection

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 8 of 37

Below is a simulation of persistent connection. The client initiates a connection request to the server,

the server accepts the request, and a connection is established. After a request between the client

and the server is completed, the connection will not be closed but used for subsequent read and

write operations.

TCP keep-alive feature is mainly provided for server applications. If the client has disappeared but

the connection is not closed, a half-open connection will be retained on the server, which will wait for

data from the client. In this case, the server will keep waiting for data from the client. The keep-alive

feature detects half-open connections on the server.

If a given connection has not taken any actions within two hours, the server will send a probe

message segment to the client to detect the following four client statuses based on responses from

the server host:

The client host is still running and the server is reachable. TCP response from the client is normal,

and the server will reset the keep-alive timer.

The client host has crashed and shut down or is restarting. The client cannot respond to TCP, and

the server will not receive the client’s response to the probe. The server will send a total of 10

probes at an interval of 75 seconds. If the server does not receive any response, it assumes the

client has closed and terminated the connection.

The client has crashed and restarted. The server will receive a response to its keep-alive probe.

This response is a reset for the server to terminate the connection.

The client is running normally but the server is unreachable. This status is similar to the second

one.

Pros and cons of persistent and non-persistent connection

Persistent connection can reduce the number of TCP connection establishment and closing, saving

time and resources. Persistent connection is suitable for clients that frequently request resources.

When persistent connection is used, the client generally does not close the connection. As the

number of client connections increases, however, the server will maintain too many connections. In

this case, the server may need to close connections that have no requests for a long time, in order

to prevent malicious connections from damaging the server. If possible, you can limit the maximum

number of persistent connections for each client to avoid malicious clients from damaging the real

server.

Non-persistent connections are relatively easy for the server to manage. All existing connections are

useful and do not require additional control. However, if client requests are frequent, time and

bandwidth will be wasted on the establishment and closing of TCP connections.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 9 of 37

Persistent and non-persistent connections are generated based on closing policies adopted by the

client and server. The optimal policy varies by use case.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 10 of 37

Communication of a web application is as follows: the client sends a request via the browser, the

server receives the request, processes it, and returns the result to the client. The client's browser

then displays the information. This mechanism better support applications with infrequent

information change. However, it may be less effective for applications with high requirement for real-

time transmission and high concurrence. Given the robust growth of mobile internet, web application

frequently encounters high concurrence and demands for real-time response. This includes real-time

information on financial securities, geographic information in web-based navigation apps, and real-

time message push in social network.

To manage these business scenarios, web development based on request-response mode generally

uses real-time communication method such as polling. When using polling, the client frequently

sends requests to the server at certain intervals to keep data synced between the client and server.

But when the client sends requests to the server at fixed intervals, data on the server may be

outdated, generating a large number of unnecessary requests that waste bandwidth and reduce

efficiency.

Adobe Flash uses its embedded Socket to implement data exchange and Flash to expose related

APIs for JavaScript to call, achieving real-time communication. This method is more efficient than

polling, because Flash is commonly installed and widely used. However, Flash is not well supported

on mobile devices. iOS does not support Flash, while Android provides poor support for Flash with

high requirements for hardware configuration. In 2012, Adobe announced that Flash no longer

supported Android 4.1 and above, marking the end of Flash on mobile devices.

Traditional web modes would encounter difficulties when handling demands with high concurrence

and real-time communication. A bi-directional communication mechanism with cost efficiency was

required to facilitate real-time data transmission. WebSocket, known as "web TCP", was thereby

developed based on HTML5. At the early stage, the industry had no unified HTML5 specification.

Browser and application server vendors had different implementation methods, such as MQTT of IBM

and Comet’s open-source framework. In 2014, HTML5 was established as a standard specification.

Application server and browser vendors gradually unified their HTML5 implementation, and

WebSocket protocol was implemented in Java EE 7. At this point, WebSocket for clients and servers is

fully established. For more information on the new HTML protocol and WebSocket support, see

HTML5 Specification.

WebSocket Mechanism

WebSocket Principle

Last updated：2020-03-09 14:59:41

http://www.jb51.net/w3school/html5/

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 11 of 37

The following is an overview of the principle and operating mechanism of WebSocket.

WebSocket is a new HTML5 protocol, which implements full-duplex communication between browser

and server. It supports real-time communication and reduces the consumption of server resources as

well as bandwidth. Similar to HTTP, WebSocket uses an established TCP connection to transmit data.

However, their biggest differences are:

WebSocket is a bi-directional communication protocol. After a connection is established,

WebSocket server and client can actively send or receive data to and from each other, which is

similar to Socket.

Like TCP, a connection should be established first with WebSocket before communication can be

made.

The traditional HTTP request-response mode between server and client is as shown below:

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 12 of 37

The WebSocket client-server request-response mode is as shown below:

In traditional HTTP mode, each request-response requires a new connection between the client and

server. WebSocket, which is similar to Socket, is a communication mode based on persistent TCP

connection. Once a WebSocket connection is established, subsequent data will be transmitted in the

form of frame sequence. The client or server does not need to initiate a connection request again

before WebSocket is disconnected. In scenarios with high concurrence or high volumes of load traffic

on client and server, WebSocket significantly reduces consumption of network bandwidth resources

and improves performance. In addition, the client sends and receives messages over a persistent

connection, achieving real-time communication.

Compared to HTTP persistent connection, WebSocket has the following advanatges:

It is a real full-duplex method. The client and server are completely equal after a connection is

established. They can initiate requests proactively. In contrast, HTTP persistent connection is

based on HTTP. It uses the traditional mode where the client initiates a request to the server.

In addition to real data, a large number of HTTP headers are exchanged between the client and

server in HTTP persistent connection, which reduces data exchange efficiency. In WebSocket

protocol, data can be exchanged without HTTP headers after a TCP connection is established

through the first request. Given this difference, WebSocket can be implemented after client and

server upgrades (mainstream browsers already support HTML5). WebSocket also has distinct

features such as multiplexing and reusable WebSocket connection by different URLs.

Below is a comparison between WebSocket and traditional HTTP based on messages exchanged

between the client and the server:

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 13 of 37

The new WebSocket instantiates a new WebSocket client object on the client and requests a

WebSocket URL similar to ws://yourdomain:port/path from the server. The client WebSocket object

automatically parses and recognizes the WebSocket request, connects the server port, and

implements handshake. The client sends data in the following format:

GET /webfin/websocket/ HTTP/1.1
Host: localhost
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: xqBt3ImNzJbYqRINxEFlkg==
Origin: http://localhost:8080
Sec-WebSocket-Version: 13

As can be seen above, the WebSocket connection message initiated by the client is similar to the

traditional HTTP message. Upgrade: websocket indicates a WebSocket request, and Sec-WebSocket-

Key indicates a Base64-encoded ciphertext sent by the WebSocket client. The server must return a

corresponding encrypted Sec-WebSocket-Accept response. Otherwise, the client will throw an Error

during WebSocket handshake error and close the connection.

After receiving the message, the server returns data in the following format:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: K7DJLdLooIwIG/MOpvWFB3y3FE8=

The value of Sec-WebSocket-Accept is calculated by the server using the same key as that of the

client and then returned to the client. HTTP/1.1 101 Switching Protocols indicates that the server

accepts the connection from the client over WebSocket. After this request-response, WebSocket

handshake between the client and server is completed. TCP communication can now be

implemented. For more information on data exchange format between WebSocket client and server,

see WebSocket Protocol Stack.

WebSocket API is easy to use in development. You only need to instantiate WebSocket and create a

connection. The server and client can then send messages to each other and respond accordingly.

For more information on WebSocket API and code implementation, see WebSocket implementation

and case analysis sections.

Tencent Cloud offers Layer-7 public network CLB for daily rental whose forwarding module supports

WebSocket. Multiple customers such as Heroes Evolved and Yinhan Games have connected to this

service. If incompatibility occurs, modify the WebSocket configuration. The WebSocket server does

not verify circled fields in the figure below:

http://tools.ietf.org/html/rfc6455

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 14 of 37

To use WebSocket in your video business, follow the steps below:

Use heartbeat to maintain WebSocket linkage and detect whether influencers or VJs on the client

are online.

Configure proxy_read_timeout of Layer-7 CLB instance to 60s.

Configure the heartbeat to 50s, so WebSocket can be connected for the long term.

Custom configuration for WebSocket is coming soon.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 15 of 37

SSL/TLS is an optional protocol between the application layer (HTTP) and the transport layer (TCP).

Its protocol architecture is as shown below:

If HTTP communication does not use SSL/TLS, all information will be transmitted in plaintext, which

involves the following risks:

Eavesdropping: A third party can access to the communication content.

Tampering: A third party can modify the communication content.

Pretending: A third party can pretend to be someone else to participate in the communication

process.

SSL/TLS protocol is designed to address these risks with the following goals:

All information is encrypted and cannot be eavesdropped by a third party.

A verification mechanism helps both parties in the communication immediately detect tampering.

Identity certificates will be used to authenticate the identity.

Currently, all mainstream browsers support SSL/TLS.

SSL Principle

Last updated：2020-03-09 14:59:41

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 16 of 37

Operating process of SSL/TLS protocol

SSL/TLS protocol uses public-key encryption. The client requests the public key from the server first,

and uses it to encrypt as well as send the information to the server. After receiving the ciphertext,

the server decrypts it with its private key.

There are two problems to be solved:

How to ensure that the public key is not tampered with?

Solution: Put the public key in a digital certificate. As long as the certificate is trustworthy, the

public key will be trustworthy.

How to reduce the time consumed as public-key encryption involves high volumes of calculation?

Solution: For each session, the client and server will generate a "session key" and use it to encrypt

the information. As the "session key" is symmetrically encrypted, the calculation is fast. The

server's public key is only used to encrypt the "session key", reducing encryption time.

SSL/TLS protocol works as follows:

The client requests and verifies the public key from the server.

The two parties negotiate to generate a "session key".

The two parties use the "session key" for encrypted communication.

The first two steps are known as "handshake".

Specific handshake process

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 17 of 37

A "handshake" involves four stages of communication where all information is transmitted in

plaintext.

Client Request (ClientHello)

The client (usually a browser) first sends a request for encrypted communication to the server, which

is generally called a “ClientHello” request.

In this step, the client mainly provides the following information to the server:

Supported protocol versions, such as TLS 1.0.

A client-generated random number that will be used to generate a "session key" later.

Supported encryption methods, such as RSA public key encryption.

Supported compression methods.

The information sent by the client does not contain the domain name of the server. In other words, a

server can only host one website in principle. Otherwise, it would be difficult to tell which website’s

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 18 of 37

digital certificate should be provided to the client. This is why each server can only have one digital

certificate.

This is inconvenient for users of virtual host. To solve this, Server Name Indication was added in

2006 as an extension to TLS protocol, allowing the client to provide the server with the requested

domain name.

Server Response (ServerHello)

After the server receives the client request, it sends a response to the client, which is generally

called “ServerHello”. The server's response contains the following information:

The version of the encrypted communication protocol to be used, such as TLS 1.0. If the browser

and server support different versions, the server will shut down encrypted communication.

A server-generated random number that will be used to generate a "session key" later.

The encryption method to be used, such as RSA public key encryption.

Server certificate.

If the server needs to confirm the client identity, it will also request a "client certificate". For

example, financial institutions usually only allow authenticated customers to connect to their

networks. Their customers are provided with USB keys, which contain client certificates.

Client Response

After receiving the server response, the client will verify the server certificate. If the certificate is not

issued by a trustworthy CA, the domain name in the certificate is not the same as the actual domain

name, or the certificate has expired, a warning will be shown to the requester, who can choose

whether to continue the communication.

If the certificate has no issues, the client will get the server's public key from the certificate and send

the following information to the server:

A random number, which is encrypted with the server's public key to prevent eavesdropping.

Encoding change notification, indicating subsequent messages will be sent using the encryption

method and key agreed upon by both parties.

Client handshake end notification, indicating handshake on the client side has ended. This is also

the hash value of all the content sent previously and used by the server for verification.

The random number mentioned above is the third random number used during the entire handshake

process, which is also known as a "pre-master key". Both the client and server now have three

random numbers. They can generate the same "session key" used for this session via the encryption

method agreed upon in advance.

http://tools.ietf.org/html/rfc4366

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 19 of 37

For RSA key exchange algorithms, the pre-master key is a random number. When it is coupled with

the two random numbers in “hello” messages, a final symmetric key will be generated through key

derivation.

The pre-master key exists because SSL protocol does not trust that every host can generate a

completely random number. The key generated by the random numbers of the client, the server,

and the pre-master key will be difficult to guess. One pseudo-random number may not be completely

random, but three together will create a random number.

In addition, if the server requests a client certificate in the previous step, the client will send the

certificate and related information in this step.

Final response from the server

After receiving the pre-master key (the third random number) from the client, the server calculates

and generates the "session key" used for this session. It then sends the following information to the

client:

Encoding change notification, indicating subsequent messages will be sent using the encryption

method and key agreed upon by both parties.

Server handshake end notification, indicating handshake on the server side has ended. This is also

the hash value of all the content sent previously and used by the client for verification.

The entire handshake process has now ended. The client and the server begin encrypted

communication. HTTP protocol is used, except that the content is encrypted with the "session key".

Below is a simple example to illustrate the process. Assume that SSL client A communicates with SSL

server B. The encrypted message is enclosed in square brackets "[]" to distinguish from plaintext

message. The description of actions by both parties is enclosed in parentheses "()".

A:

"I want to talk to you securely. My symmetric encryption algorithms are DES and RC5, my key excha
nge algorithms are RSA and DH, and my message digest algorithms are MD5 and SHA."

B:

"Let's use the DES-RSA-SHA combination. This is my certificate, which contains my name and public
key. Please use it to verify my identity."

Send the certificate to A.

"There is nothing else to say for now."

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 20 of 37

A:

Check whether the name of B in the certificate is correct, and verify the authenticity of B's certificate

with the existing CA certificate. If something is wrong, it will issue a warning and close the

connection. This step guarantees that B's public key is authentic.

Generate a secret message, which will be processed and then used as the encryption key to encrypt

the initialization vector (IV) and the key for HMAC. This secret message (called per_master_secret in

the protocol) is encrypted with B's public key and encapsulated into a message called

 ClientKeyExchange . Using B's public key prevents eavesdropping.

"I generated a secret message and encrypted it with your public key. Here it is." Send `ClientKey
Exchange` to B. "Please note that I will send you a message in an encrypted manner!"

Process the secret message to generate the encryption key, and encrypt the IV and the key for

HMAC.

[Over.]

B:

Use its own private key to decrypt the secret message in ClientKeyExchange , process it to generate

the encryption key, and encrypt the IV and the key for HMAC. The two parties have now securely

agreed on an encryption method.

"Please note that I'm going to send you a message in an encrypted manner!"

[Over]

A:

[My secret is...]

B:

[No one else can eavesdrop that...]

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 21 of 37

What is session persistence?

Session persistence is a common and rather complex topic in CLB. Sometimes, session persistence is

referred to as sticky session. It is a mechanism that can identify client-server affinity and guarantee

that associated access requests will be allocated to the same server during load balancing.

When is session persistence needed?

First, we need to understand some concepts: connection, session and their differences. Note that

connection and session mean the same if we only talk about load balancing.

To put it simple, it is a session if users need login. Otherwise, it is a connection.

For data packets in the same connection, CLB will perform network address translation (NAT) on

them and forward them to a fixed real server for further processing. A table in CLB system records

information about the connection status, such as source IP: port, target IP: port, server IP:

port, and idle timeout period (Idle Timeout). Because the table used to record connection status

consumes system memory resources, its size cannot be infinite. All traditional vendors will have

certain limits on its size, which is called the maximum number of concurrent connections, i.e., the

maximum number of connections that the system can sustain at the same time. In CLB’s current

connection status table, an Idle Timeout parameter is provided. When a connection has no traffic

within the idle timeout period, CLB will automatically delete it and release system resources.

After the connection is deleted, client requests may not be sent to the same real server. Instead, the

traffic distribution policy of CLB prevails.

In some scenarios where login is necessary, a session is required between the client and server to

record client information.

For example, in most ecommerce application systems or online systems that require identity

verification, a transaction or request can be completed after several rounds of interactions between

the client and server. As these interactions are closely related, the server needs to know the results

of the last one or several interactions before performing a new one. This requires that all these

interactions are completed on the same server, instead of being distributed to different servers by

CLB. Otherwise, the following exceptions may occur:

Session Persistence Principle

Last updated：2020-03-10 10:42:01

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 22 of 37

The client enters the correct username and password but is repeatedly redirected to the login

page.

The client enters the correct verification code but repeatedly receives a verification code error

notification.

Items added to the shopping cart in the client are lost.

Session persistence is required to ensure that requests from the same client will be forwarded to the

same real server for processing in certain situations. In other words, multiple connections

established between the client and servers are sent to the same server for processing. If load

balancer is deployed between the client and servers, these connections will likely be forwarded to

different servers for processing. If there is no session information synchronization mechanism

between servers, other servers cannot authenticate the user and exceptions may occur when the

user interacts with the application system.

CLB forwards requests and connections from clients evenly to multiple servers to avoid overload on

a single server. The session persistence mechanism requires certain requests to be forwarded to the

same server for processing. In actual deployment environment, an appropriate session persistence

mechanism needs to be selected based on the application environment.

Session persistence types

Session persistence based on source address (Layer-4 session persistence)

Session persistence based on source address (also called IP-based session persistence or simple

session persistence) is when CLB uses the source address of the access request as the basis to

evaluate the associated session. All access requests from the same IP address will be forwarded to

the same server during load balancing.

An important parameter in simple session persistence is connection timeout period, which is a time

value configured by CLB for each connected session. If the time interval between the last completion

of the session and the next is less than this value, CLB will persist the session for the new

connection. Otherwise, CLB will consider the new connection as a new session and perform load

balancing.

Simple session persistence can be easily implemented based on Layer-3 and Layer-4 information of

data packets, improving efficiency.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 23 of 37

However, the problem with this method is when multiple clients access servers through proxy or

address translation, requests from the same source address will be allocated to the same server,

resulting in severe load imbalance between servers.

In another situation, a client generates a large number of concurrent requests that need to be

allocated to multiple servers for processing while persisting the session. In this case, session

persistence based on source client address will cause load balancing to fail.

If the above problems occur, you must consider using other types of session persistence.

Cookie-based session persistence (Layer-7 session persistence)

In cookie-based session persistence, the client and load balancer process the cookie, which is

transparent to the real server.

Processing logic for initial client request

1. When the client initiates a request for the first time, the request header does not have the session

persistence cookie. CLB receives the request and finds that the request header has no session

persistence cookie, so it will select a server based on the polling algorithm.

2. The real server processes the request and returns the response header and content to the CLB

instance.

3. CLB generates a cookie and stores it in the memory.

4. CLB returns the request response to the client.

Processing logic for subsequent client requests during the session persistence period

1. When the client sends a new request, the request must carry a session persistence cookie.

2. CLB receives the cookie, finds through the algorithm the real server that processes the previous

request, and forwards the request to that server.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 24 of 37

Session Persistence

This method implements session persistence simultaneously with load balancing by sharing a

session among multiple real servers.

1. Stored in database

The session information can be stored in a database table for sharing among application servers.

This method is suitable for websites with low database access requests.

Advantage: easy to implement.

Disadvantage: compared to an application server, database server is harder to scale out and its

resources are more valuable. In web applications with high concurrence, the performance of

database server is usually affected. If sessions are stored in database tables, frequent database

operations will affect the business.

2. Stored in file system

A file system such as NFS can be used to share sessions among multiple servers. This method is

suitable for websites with low concurrence.

Advantage: only disks that store sessions need to be mounted to servers, which is easy to

implement.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 25 of 37

Disadvantage: NFS cannot provide high performance for high-concurrence reads/writes. Its

disadvantages are in hard disk I/O performance and network bandwidth, especially for frequent

reads/writes on small files such as sessions.

3. Stored in Memcached

Memcached can be used to store session data, which is read directly from the memory.

Advantage: high efficiency and faster session reads/writes compared to when stored in file

system. Sharing sessions among servers is also more convenient, as servers can be simply

configured to use the same group of Memcached servers to reduce additional workload.

Disadvantage: once Memcached is down, data in the memory will be lost, even though it is not

a serious issue for session data. If the number of access requests to a website is high and there

are too many sessions, Memcached will delete those that are not commonly used. If the user

resumes use after a certain period of time, however, the session will fail to be read.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 26 of 37

Cookie Overview

HTTP is a stateless protocol, i.e., there is no need to establish a persistent connection between the

client and server. Such a connection is based on the request-response mode, where after a

connection is established between the client and server, the client submits a request to the server,

the server returns a response after receiving it, and then the connection is closed.

Therefore, once the client is disconnected from the server after the request is completed, they no

longer have any relationship. When a user logs in on page 1 and then is redirected to page 2 of the

same web application, how can page 2 know that the user has already logged in? In other words,

how can the server determine that two different requests are from the same client when the client

initiates another request?

Under the HTTP, the server cannot detect the relationship between different requests. To do so, a

state is needed to mark each request. If the state marks of two requests are the same, then it

indicates that the two requests are initiated by the same client.

A cookie is such a state bit used to mark a request. After many years of development, cookie has

become more and more standardized and been widely accepted as a universal standard.

How a Cookie Works

1. When a request is initiated to Tencent Cloud for the first time, the HTTP request header is as

follows:

How Cookies Work

Last updated：2020-04-01 17:15:14

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 27 of 37

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8
Accept-Encoding:gzip, deflate, sdch
Accept-Language:en,zh-CN;q=0.8,zh;q=0.6
Connection:keep-alive
Host:cloud.tencent.com

2. After the request reaches the Tencent Cloud server, the server will generate a response and write

cookie information to the response header:

Set-Cookie:BD_HOME=1; path=/
Set-Cookie:__bsi=14934756243064632384_00_0_I_R_174_0303_C02F_N_I_I_0; expires=Thu, 19-Nov-15 14:1
4:50 GMT; domain=www.qcloud; path=/
Set-Cookie:BDSVRTM=172; path=/

3. After receiving the response header, the client browser will write the cookie information to the

local system for management.

4. When initiating another request to the server, the client will send an HTTP header containing

 Cookie: name=value; name2=value2 to send the locally stored cookie. The information of the request

header is as follows:

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8
Accept-Encoding:gzip, deflate, sdch
Accept-Language:en,zh-CN;q=0.8,zh;q=0.6
Connection:keep-alive
Cookie:BD_HOME=1; BDSVRTM=0; BD_LAST_QID=1507196234531915875957057
Host:cloud.tencent.com

5. After receiving the request, the server will get the cookie information from the request header,

analyze the cookie, and then return a response to the client.

This is how a cookie is used to transfer information between the client and the server.

Cookie Lifecycle

A cookie has a lifecycle. When a cookie expires, it will be deleted from the client. When creating a

cookie, the server can control how long the cookie can "live" on a client. A cookie's lifecycle will end

in the following conditions:

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 28 of 37

Cookies with no expiration time specified: if the server does not specify the expiration time of a

cookie when creating it, the client will write the cookie in a chunk of memory provided by the

browser. After the browser is closed, the chunk of memory will be released, and the cookie will be

ended.

Cookies with expiration time specified: if the server specifies the expiration time of a cookie when

creating it, the cookie will be deleted upon expiration.

When the number of cookies in the browser reaches the upper limit, the browser will delete some

old cookies based on the configured rule to free up space for new ones.

Cookies can also be deleted manually.

Managing Cookies

When creating a cookie, the server will generally specify the following two options:

domain

path

These two options determine the domain name and location of the created cookie.

By default, domain will be set to the domain name of the page that creates the cookie. When the

client sends a request again to the same domain name, the cookie will be sent to the server too. If

 domain in a cookie is set to a top-level domain name, all second-level domain names under it will

have the same cookie; therefore, the cookies at a top-level domain name often conflict with those at

second-level domain names.

When a request is sent, the browser will make an end comparison of the domain value and the

requested domain name (i.e., comparing the domain names starting from the end of the string) and

send the matched cookie to the server.

If domain is not specified, it will be the domain name of the access address by default. If the

client accesses a top-level domain name, the set cookie can be shared by other second-level

domain names. Therefore, operations such as login are generally performed at the top-level

domain name.

A second-level domain name can read its own cookie and the cookie whose domain is set to the

top level, but it cannot read the cookies of another second-level domain name. In this case, to

share a cookie among multiple second-level domain names, you need to set domain to the top-

level domain name, so that all second-level domain names under it can use this cookie. It should

be noted that a top-level domain name can only get the cookie whose domain is set to the top

level and cannot get cookies of second-level domain names.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 29 of 37

As for path , only when the path specified by path exists in the URL requested by a client will the

client send the cookie message header. The path parameter determines the matching rule for the

cookie sent from the client to the server. Generally, the value of path and the requested URL are

compared character by character starting from the first one. If all characters are matched, the cookie

message header will be sent. It should be noted that only after the domain value is satisfied will

 path be compared. The default value of path is the path in the URL corresponding to the sent

message header Set-Cookie .

The section above summarizes cookie management in terms of browser limitations and options for

cookie generation. Next, some snippets of sample code will be used to demonstrate how to create

and get a cookie.

Creating a cookie on the server

The Tencent Cloud server sends an HTTP response header containing Set-Cookie to create a cookie

as shown below:

// Create a cookie object
Cookie co = new Cookie(“site”, “http://cloud.tencent.com“);
co.setDomain(“test.com”);
// Send the cookie to the client through the response header
response.addCookie(co);

Cookie co = new Cookie(“site”, “http://qcloud.com“);
co.setDomain(“test.com”);
co.setPath(“/pages”);
co.setMaxAge(3600); // Unit: seconds
co.setHttpOnly(true);
co.setSecure(false);
response.addCookie(co);

Reading a cookie by the client

When the client initiates a request to the server, if domain and path are matched successfully, it

will send the corresponding cookie together to the server. If there are too many cookies under a

 path , the HTTP request header may be too long. After the request arrives at the server, the cookies

can be read as shown below:

Cookie[] cookies = request.getCookies();
if (cookies != null) {
for (int i = 0; i < cookies.length; ++i) {
// Get the specific cookie
Cookie cookie = cookies[i];
// Get the cookie name

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 30 of 37

String name = cookie.getName();
String value = cookie.getValue();
out.print("Cookie name:" + name + " Cookie value:" + value + "
”);
}
}

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 31 of 37

An HTTP status code is a 3-digit code representing the HTTP response status of the webpage server.

Such codes are defined by the RFC 2616 standard and further expanded by standards such as RFC

2518, RFC 2817, RFC 2295, RFC 2774, and RFC 4918.

The first digit of a status code represents one of the following five response classes:

1xx: information response, indicating that the request has been received and needs to be further

processed

2xx: success response, indicating that the action was successfully received, understood, and

accepted

3xx: redirection response, indicating that further action must be taken in order to complete the

request

4xx: client error, indicating that the request contains syntax errors or cannot be executed correctly

5xx: server error, indicating that the server cannot properly run a correct request

Below are descriptions of common response return values:

100 - The client must continue to send the request

101 - The client asks the server to switch HTTP protocol versions as requested

200 - The transaction succeeded

201 - The URL of the new file has been known

202 - The request has been accepted for processing, but the processing has not been completed

203 - The returned message is indefinite or incomplete

204 - The request has been received, but the returned message is empty

205 - The server has completed the request, but the user proxy must reset the browsed files

206 - The server has partially completed the user's GET request

300 - The requested resource can be obtained in multiple locations

301 - The request data was deleted

302 - The requested data was found at another address

303 - The client is recommended to visit another URL or use another access method

304 - The client has executed GET, but the file remains unchanged

305 - The requested resource must be obtained from the address specified by the server

306 - This code was used in the previous version of HTTP and has been disused

307 - The requested resource was temporarily deleted

HTTP Status Codes

Last updated：2020-05-12 16:18:57

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 32 of 37

400 - Bad request such as syntax error

401 - The request authorization failed

402 - The valid ChargeTo header response is retained

403 - The request is forbidden

404 - No file, query, or URL was found

405 - The method defined by the user in the Request-Line field is not allowed

406 - Not acceptable. The requested resource is inaccessible

407 - Similar to 401. The user must be authorized first on the proxy server

408 - The client failed to complete the request within the time specified by the user

409 - The request cannot be completed in the current resource status

410 - This resource is no longer available on the server and there is no reference address

411 - The server rejected the user-defined Content-Length attribute request

412 - One or more request header fields are incorrect in the current request

413 - The requested resource is larger than the size allowed by the server

414 - The requested resource URL is longer than the length allowed by the server

415 - The format of the request project is not supported by the requested resource

416 - The request contains the Range request header field, but there is no range indication value

within the current requested resource, and the request does not contain the If-Range request

header field

417 - The server does not satisfy the expected value specified in the Expect header field of the

request. If it is a proxy server, it is possible that the server at the next level cannot fulfill the request

500 - An internal server error occurred

501 - The requested function is not supported by the server

502 - The server is temporarily unavailable, sometimes to prevent system overload

503 - The server is overloaded or down for maintenance

504 - The gateway is overloaded, and the server uses another gateway or service to respond to the

user, but the set waiting time is too long

505 - The server does not support or refuses to support the HTTP version specified in the request

header

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 33 of 37

Definition of SSL certificate chain

There are two types of certificate authorities (CAs): root CAs and intermediate CAs. For an SSL

certificate to be trusted, it must be issued by a CA included in the trusted store connected to by the

device.

If the certificate is not issued by a trusted CA, the connecting device (e.g., a web browser) will check

whether the certificate is issued by a trusted CA until no trusted CA can be found.

The list of SSL certificates goes from root certificate to intermediate certificate and then to end-user

certificate.

Example of SSL certificate chain

Assume that you purchase a certificate from Qcloud CA and the domain name is example.qcloud .

Qcloud is not a root certificate authority. In other words, its certificate is not directly embedded in

your web browser and cannot be explicitly trusted.

Qcloud utilizes a certificate issued by Alpha, an intermediate Qcloud CA.

Alpha utilizes a certificate issued by Beta, an intermediate Qcloud CA.

Beta utilizes a certificate issued by Gamma, an intermediate Qcloud CA.

Gamma utilizes a certificate issued by the Root of Qcloud.

The Root of Qcloud is a root CA. Its certificate is directly embedded in your web browser and can

be explicitly trusted.

In the above example, SSL certificate chain is represented by 6 certificates:

1. End-user certificate: issued to example.qcloud by Qcloud CA.

2. Intermediate certificate 1: issued to example.qcloud by Alpha, an intermediate Qcloud CA.

3. Intermediate certificate 2: issued to Alpha by Beta, an intermediate Qcloud CA.

4. Intermediate certificate 3: issued to Beta by Gamma, an intermediate Qcloud CA.

5. Intermediate certificate 4: issued to Gamma by the Root of Qcloud.

6. Root certificate: issued by and to the Root of Qcloud.

SSL Certificate Chain

Last updated：2020-03-09 15:03:28

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 34 of 37

Certificate 1 is called end-user certificate, certificates 2–5 are called intermediate certificates, and

certificate 6 is called root certificate.

When you install your end-user certificate example.qcloud , you must bundle all intermediate

certificates and install them along with the end-user certificate. If the SSL certificate chain is invalid

or broken, your certificate will no longer be trusted by some devices.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 35 of 37

Specific process of SSL mutual authentication

The browser sends a request to connect to the secure server.

The server sends its own certificate and related information to the client browser.

The client browser checks whether the certificate sent from the server is issued by a trusted CA. If

yes, it will execute the protocol. Otherwise, it will send a warning message to the client that the

certificate is untrustworthy and ask the client whether to proceed.

The client browser compares messages in the certificate, such as domain name and public key,

with messages sent from the server. If they are the same, the client browser will confirm the

authenticity of the server.

The server sends a request to the client for its certificate, and verifies the certificate after

receiving it. If the verification fails, the connection will be rejected. Otherwise, the server will get

the client's public key.

The client browser tells the server its supported symmetric password schemes for communication.

The server selects the password scheme with the highest encryption level from the schemes sent

from the client, and notifies the browser after encrypting it with the client's public key.

The browser selects a session key for this password scheme, and sends it to the server after

encrypting it with the server's public key.

The server receives the message from the browser, and decrypts it with its private key to get the

session key.

The server and the browser use the symmetric password scheme for subsequent communication

where the symmetric key is encrypted.

Mutual authentication requires the server and client to provide identity verification, which improves

security as only users authorized by the server can access.

Specific process of SSL one-way authentication

The client browser sends the server the version number of its SSL protocol, the type of encryption

algorithm, the random number generated, and other relevant information needed for

communication.

SSL Mutual/Unidirectional

Authentication

Last updated：2020-03-09 14:59:42

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 36 of 37

The server sends the client the version number of its SSL protocol, the type of encryption

algorithm, the random number and other relevant information, as well as its certificate.

The client uses the information sent from the server to authenticate the server, including whether

its certificate has expired, whether the CA issuing the certificate is trustworthy, whether the public

key of the CA certificate can correctly decrypt the CA's digital signature, and whether the domain

name in the server certificate is the same as the actual domain name of the server. If the

authentication fails, the communication will be disconnected. Otherwise, the client will proceed to

step 4.

The client randomly generates a "symmetric password" for subsequent communication, encrypts

it with the server's public key obtained from the server certificate in step 2, and then sends the

encrypted "pre-master password" to the server.

If the server requires client authentication (optional during handshake), the client can create a

random number and sign the data, and send the signed random number along with its own

certificate and the encrypted "pre-master password" to the server.

If the server requires identity verification, it must check the validity of the client certificate and the

signed random number, including the validity period of the client certificate, whether the CA

issuing the certificate is trustworthy, whether the public key of the CA can correctly decrypt the

digital signature of the CA issuing the client certificate, and whether the certificate is in the

Certificate Revocation List (CRL). If the verification fails, the communication will be disconnected

immediately. Otherwise, the server will use its own private key to decrypt the encrypted "pre-

master password" and then take a series of steps to generate a master password (the same

password will also be generated by the client).

The server and the client use the same master password, which is called "session password", and

a symmetric key is used for encrypting and decrypting secure data communication of SSL

protocol. The integrity of data communication should be guaranteed during SSL communication to

prevent changes.

The client sends a message to the server, indicating the master password generated in the

previous step will be used as the symmetric key in the subsequent data communication. It also

informs the server that handshake on the client side has ended.

The server sends a message to the client, indicating the master password generated in the

previous step will be used as the symmetric key in subsequent data communication. It also

informs the client that handshake on the server side has ended.

As SSL handshake ends, SSL data communication begins, i.e., the client and the server start to

use the same symmetric key for data communication while checking the integrity of

communication.

SSL one-way authentication only requires that an SSL certificate is installed on a website, which can

be accessed by any user (except restricted IPs, etc.). Only the server provides identity verification.

Cloud Load Balancer

©2013-2019 Tencent Cloud. All rights reserved. Page 37 of 37

Difference between SSL mutual authentication and one-

way authentication

SSL mutual authentication requires both the server and client have certificates, while SSL one-way

authentication does not require a client CA certificate.

Compared with mutual authentication, one-way authentication does not need server-side verification

of the client certificate. When negotiating a symmetric password scheme and symmetric session

key, the password scheme sent from the server to the client is not encrypted (does not affect the

security of SSL process). The specific communication content is the encrypted data. In the event of

third-party attacks, only the encrypted data will be obtained. To get any useful information, the third

party has to decrypt the encrypted data, whose security depends on the security of the password

scheme. Currently, a password scheme is secure as long as the communication key is long enough.

This is why 128-bit encryption is used for communication.

SSL one-way authentication can be configured for general web applications. However, identity

verification may be required for client to connect to financial applications. SSL mutual authentication

should be used.

