
TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 156

TencentDB for MySQL

Tencent Kernel TXSQL

Product Documentation

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 156

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 156

Contents

Tencent Kernel TXSQL
Overview
Kernel Version Release Notes

TXSQL Kernel Release Notes
TXRocks Kernel Release Notes
Database Proxy Kernel Release Notes

Functionality Features
Killing Idle Transactions Automatically
Parallel Replication
Dynamic Thread Pool
NOWAIT
RETURNING
Column Compression
Flashback Query

Performance Features
Parallel Query

Overview
Supported Statement Scenarios and Restricted Scenarios
Enabling/Disabling Parallel Query
HINT Statement Control
Viewing Parallel Query

Large Transaction Replication
Execution Plan Cache for Optimizing UK/PK Queries
fdatasync()
Auto-Increment Column Persistence
Buffer Pool Initialization
FAST DDL
Invisible Index
CATS Transaction Scheduling Algorithm
Computation Pushdown

Security Features
Transparent Data Encryption
Audit

Stability Features
Second-Level Column Addition

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 156

Second-Level Column Modification
Async Deletion of Big Tables
Hotspot Update
SQL Throttling
Statement Outline

TXRocks Engine
Overview
Instructions
Cost Performance
Practical Tutorial of TXRocks

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 156

Tencent Kernel TXSQL
Overview
Last updated：2024-07-22 11:03:04

TXSQL is a MySQL kernel branch maintained by the TencentDB team and is fully compatible with native MySQL. It
provides various features similar to those in the MySQL Enterprise Edition, such as enterprise-grade transparent data
encryption (TDE), auditing, dynamic thread pool, encryption function, backup and restoration, and parallel query.

TXSQL not only deeply optimizes the InnoDB storage engine, query performance, and replication performance, but
also improves the ease of use and maintainability of TencentDB for MySQL. While providing all the benefits of
MySQL, it offers more enterprise-grade advanced features such as disaster recovery, restoration, monitoring,
performance optimization, read/write separation, TDE, and auditing.
The following provides more information about TXSQL:

For details on the TencentDB for MySQL kernel version updates, see Kernel Version Release Notes.
The kernel minor versions of TencentDB for MySQL can be upgraded automatically or manually. For more
information, see Upgrading Kernel Minor Version.
You can use a CVM instance to log in to a TencentDB for MySQL instance and check its kernel minor version. For
more information, see Kernel Upgrade.

https://intl.cloud.tencent.com/document/product/236/35989
https://intl.cloud.tencent.com/document/product/236/36816
https://intl.cloud.tencent.com/document/product/236/35995

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 156

Kernel Version Release Notes
TXSQL Kernel Release Notes
Last updated：2024-06-20 10:26:07

This document describes the version updates of the TXSQL kernel.
Note:
For more information on how to upgrade the minor kernel version of a TencentDB for MySQL instance, see Upgrading

Kernel Minor Version.
When you upgrade the minor version, some minor versions may be under maintenance and cannot be selected. The
minor versions available in the console shall prevail.
MySQL 8.0 Kernel Version Release Notes
MySQL 5.7 Kernel Version Release Notes

MySQL 5.6 Kernel Version Release Notes

Minor
Version

Description

20230630 Note：
Starting from MySQL 8.0.29, the query results of tables in the Information Schema will use
utf8mb3 instead of utf8. Versions of Connector/Net earlier than 8.0.28 do not support utf8mb3;
encountering utf8mb3 will result in an error: Character Set 'utf8mb3' is not supported by .Net
Framework. If the application uses Connector/Net, please upgrade Connector/Net to 8.0.28 or
later before upgrading the TencentDB for MySQL version. For more details, see:
MySQL 8.0.29 Character Set Support
Changes in MySQL Connector/NET 8.0.28
New features
Supported Nonblocking DDL feature.
Supported xa commit to record the maximum gts instance TP/AP load statistics in relay log.
Supported selecting Innodb temporary tables for parallel query of worker thread sharing.
Supported using partition tables as parallel tables for parallel queries.
Supported the flashback version query feature.
Supports persistence for flashback query.
Supported virtual indexes.
Supported the range/list secondary partition feature.
Supported the automatic relay log recovery feature.
Supported the default algorithm for DDL, with options INPLACE/INSTANT.
Supported Fast Query Cache.
Supported the conversion of partition tables from MyISAM to InnoDB.
Supported the correlated subquery cache feature.
Performance Optimization
Optimized the BINLOG LOCK_done lock conflict.
Optimized thread pool performance.

https://intl.cloud.tencent.com/document/product/236/36816
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-29.html#mysqld-8-0-29-charset
https://dev.mysql.com/doc/relnotes/connector-net/en/news-8-0-28.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 156

Optimized the issue where disabling eq_ref cache in outer join leads to performance regression.
Enhanced parallel query:
Subquery \\derived table executed in parallel independently: Optimized and executed plan for
subquery \\derived table in parallel, independent of main query execution.
Nested loop join inner table in parallel: When the NLJ outer table is small, the inner table can be
selected as the parallel table for parallel execution with ROLL UP.
Hash join (in memory) executed in parallel: Work threads build complete hash tables
separately, with parallel scanning on the probe end.
Parallel query supports global aggregation optimization.
Parallel query supports pushdown parallelism under having condition.
Optimized binlog submission for large transactions.
Optimized performance fluctuation caused by binlog purge.
Supported for hot updates, merge and optimization.
Bug Fixes
Fixed the issue of assertion failure when rolling back transactions of Parallel Copy DDL.
Fixed the issue where EXPLAIN FORMAT=TREE does not print subqueries in the condition of
HashJoin.
Fixed the issue where redundant format causes instance running exception after instant add.
Fixed the issue of global transaction id rollback after upgrading from an older version.
Fixed the issue where index merge intersect causes incorrect query results.
Fixed the issue where cross-machine statistical information collection may block the shutdown
process.
Fixed the issue where historical histogram versions might crash in a primary-secondary
environment.
Fixed the issue of check index holding a large number of page locks.
Fixed the deadlock issue in cross-machine histograms under concurrent DDL operations.
Fixed the issue where the lock was not released when the cross-machine histogram task
included too many columns.
Fixed several instant DDL issues.
Fixed the issue where update returning caused the client to disconnect.
Fixed the null pointer dereference vulnerability found by the vulnerability scan.
Fixed the issue where changes in the storage layer table structure under parallel execution may
cause instance running exception.
Fixed the performance degradation issue caused by using WHERE column IN (list) in prepare
statements.
Fixed the issue where statistical information might be empty when importing mysqldump logical
backups.
Fixed the primary key conflict issue that occurs when using Parallel Copy DDL for table
changes that include auto-increment columns.
Fixed the issue where the build branch of the hash join in parallel queries cannot be parallelized
when the hash join is present.
Fixed the issue where the non-parallel branches of a parallel query join cannot be parallelized
when there is a UNION.
Fixed two memory leak issues in parallel queries.
Fixed the partition exit issue for empty range in parallel queries.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 156

Fixed the error issue with Outline IN-list.
Fixed the issue where partition_id overflow leads to truncate partition crash.
Fixed the issue in parallel queries where related subqueries referencing worker table fields
resulted in incorrect query results.
Fixed the issue in parallel DDLs regarding obtaining an incorrect offset.
Fixed the issue in parallel DDLs where adding a unique key to a column with duplicate data
caused the instance to run abnormally.
Fixed the issue of assertion in parallel hash join debug.
Fixed the issue in parallel cost calculation where NDV was 0.
Fixed the issue with JSON import accuracy.
FORCE INDEX ORDER BY statement skips the index dive bug.
Fixed the issue where the official subquery plan was displayed multiple times.
Fixed the issue where the disk-based temporary table quantity does not increase.
Fixed the deadlock issue caused by proxy change user.
Fixed the issue where calling a stored procedure in a trigger due to permission verification
optimization caused permission checks to be bypassed.

20221221

Note：
Starting from MySQL 8.0.29, the query results of tables in the Information Schema will use
utf8mb3 instead of utf8. Versions of Connector/Net earlier than 8.0.28 do not support utf8mb3;
encountering utf8mb3 will result in an error: Character Set 'utf8mb3' is not supported by .Net
Framework. If the application uses Connector/Net, please upgrade Connector/Net to 8.0.28 or
later before upgrading the TencentDB for MySQL version. For more details, see:
MySQL 8.0.29 Character Set Support
Changes in MySQL Connector/NET 8.0.28
Bug Fixes
Fixed the issue where after enabling log_slave_updates on a secondary node, the thread_id of
the event written to the binlog on the secondary node changed.

20221220

Note：
Starting from MySQL 8.0.29, the query results of tables in the Information Schema will use
utf8mb3 instead of utf8. Versions of Connector/Net earlier than 8.0.28 do not support utf8mb3;
encountering utf8mb3 will result in an error: Character Set 'utf8mb3' is not supported by .Net
Framework. If the application uses Connector/Net, please upgrade Connector/Net to 8.0.28 or
later before upgrading the TencentDB for MySQL version. For more details, see:
MySQL 8.0.29 Character Set Support
Changes in MySQL Connector/NET 8.0.28
Bug Fixes
Fixed the instant DDL bug.

20221215 Note：
Starting from MySQL 8.0.29, the query results of tables in the Information Schema will use
utf8mb3 instead of utf8. Versions of Connector/Net earlier than 8.0.28 do not support utf8mb3;
encountering utf8mb3 will result in an error: Character Set 'utf8mb3' is not supported by .Net
Framework. If the application uses Connector/Net, please upgrade Connector/Net to 8.0.28 or
later before upgrading the TencentDB for MySQL version. For more details, see:

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-29.html#mysqld-8-0-29-charset
https://dev.mysql.com/doc/relnotes/connector-net/en/news-8-0-28.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-29.html#mysqld-8-0-29-charset
https://dev.mysql.com/doc/relnotes/connector-net/en/news-8-0-28.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 156

MySQL 8.0.29 Character Set Support
Changes in MySQL Connector/NET 8.0.28
New Features
Merges official changes from 8.0.23 to 8.0.30.
Supported user connection status monitoring feature, which can be viewed through show detail
processlist for connection monitoring.
Supported the update wait N syntax.
Supported nvl(), to_number(), to_char() function feature syntax.
Supported cdb_kill_user_extra regular expression.
Performance Optimization
Optimized binlog rotate implementation method and improved binlog write speed.
Optimized TencentDB for MySQL startup speed.
Optimized binlog checksum calls, and reduced unnecessary CPU performance overhead.
Optimized ha_innopart::external_lock lock hotspots, and reduced lock holding time.
Optimized xa::Transaction_cache, and reduced lock conflicts.
Reduced ha_innopart::clear_blob_heaps time consumption.
Optimized purge threads lock hotspots, and reduced tasks_mutex and thread conflicts.
Optimized Buffer Pool initialization, supporting parallel initialization, and accelerating
initialization speed.
Optimized read_only and select performance under high concurrency.
Optimized permission validation for prepared statement and stored procedure.
Optimized access to change buffer.
Avoided unnecessary calls to fil_space_get, and reduced FAQs in extreme scenarios.
Optimized lock conflict for GTID during transaction commit when binlog_order_commits is
disabled.
Applied Lock Free Hash to optimize trx_sys mutex conflict.
Optimized the overhead of taking a snapshot in the transaction system.
Optimized Writeset and improved performance.
Replaced index drill-down with histogram.
Supports Parallel DDL.
Bug Fixes
Fixed issues with abnormal statistical values such as innodb_row_lock_current_waits.
Fixed the issue of excessively high memory usage with Group concat with group by.
Fixed the issue of statistical information being severely underestimated in long records.
Fixed the issue in parsing stored procedure syntax.
Fixed the issue in FAST DDL optimization of flush list to release page concurrency.

20220831 New features
Supported setting the MySQL version dynamically.
Supported transparent column encryption. When creating a table, you can specify the
encryption attribute for the `varchar` field, and the storage system will encrypt the column. This
capability is expected to be commercialized in 2023.
Fixed the exception of the third-party data subscription tool caused by subscription to the
comparison SQL for internal data consistency during tool usage.
Note：

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-29.html#mysqld-8-0-29-charset
https://dev.mysql.com/doc/relnotes/connector-net/en/news-8-0-28.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-23.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-30.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 156

After the database instance is migrated, upgraded, or recovered after failure, the system will
compare the data consistency to ensure the consistency of data. When comparison SQL is in
`statement` mode, exceptions are easy to occur in response of some third-party subscription
tools to the SQL in `statement` mode. When the instance is upgraded to its kernel, the third-
party data subscription tool can't subscribe the comparison SQL for internal data consistency.
Supported adding NO_WAIT | WAIT [n] for DDL operations. This enables such operations to be
rolled back immediately if they cannot obtain the MDL lock and must wait or if they have waited
the specified time for the MDL lock.
Supported the fast query cache feature, which is suitable for scenarios with more reads than
writes. If there are more writes than reads, the data is updated very frequently, or the result set
of the query is very large, we recommend that you not enable this feature.
Supported enhanced MTS deadlock detection.
Supported parallel query. After this feature is enabled, large queries can be automatically
identified. The parallel query capability leverages multiple compute cores to greatly shorten the
response time of large queries.
Performance optimizations
Optimized the overheads of the transaction system to take snapshots. The Copy Free Snapshot
method is adopted, the transaction delay is deleted from the global active transaction hash, and
the snapshot taking method is optimized to determine the logical timestamp of the snapshot
event. As tested by sysbench, the extreme performance is increased by 11% in the read-write
scenario.
Optimized permission check for prepared statements. A variable is used globally to indicate the
permission version number, a prepared statement records the version number after being
prepared, and the system checks whether the version number has changed during execution. If
there is no permission change, the system will skip the permission check; otherwise, it will
check the permission and record the version number again.
Optimized the accuracy of time acquisition in the thread pool.
Optimized record offset acquisition. A record offset is cached for each index. When the
conditions are met, the cached offset will be directly used, saving the computing overheads of
invoking the `rec_get_offsets()` function.
Optimized parallel DDL.
 1. When the index field is small, the sampled memory size is reduced to lower the sampling
frequency.
 2. The K-way merge algorithm is used for sorting, which effectively reduces the number of
rounds of merging and sorting to lower the number of IOs.
 3.When records are read, the fixed-length offset is cached in order to avoid generating offsets
for each record each time.
Optimized the undo log information recording logic to improve the INSERT performance.
Improved the performance after semi-sync was enabled.
Optimized the audit performance to reduce the system overheads.
Bug fixes
Fixed the issue where the displayed value of `Thread_memory` was abnormal sometimes.
Fixed the issue where the timestamp was inaccurate during batch statement audit.
Fixed issues related to column modification at the second level.

https://intl.cloud.tencent.com/document/product/236/52512

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 156

Fixed the issue where the `CREATE TABLE t1 AS SELECT
ST_POINTFROMGEOHASH("0123", 4326);` statement caused source-replica disconnection.
Fixed the issue where the replica failed to retry during concurrent requests at the table level.
Fixed the `Malformed packet` error reported when `show slave hosts` was executed.
Fixed recycle bin issues.
Fixed the issue where the jemalloc mechanism easily triggered OOM on ARM device models.
Fixed the issue where `truncate pfs account table` caused the failure to collect statistics.
Fixed the exception that occurred while restoring the child table first and then restoring the
parent table when the recycle bin had a foreign key constraint.
Fixed sql_mode log issues.
Fixed the occasional issue where a procedure became abnormal when `CREATE DEFINER`
was executed.
Fixed Copy Free Snapshot issues.
Fixed the performance fluctuation of the thread pool.
Fixed the issue where the result of `hash join+union` might be empty.
Fixed memory issues.

20220401

Bug fixes
Fixed the issue where the stage variable error in Parallel DDL caused the stage null pointer to
crash when creating FTS indexes.
Fixed the possible crash when adding full-text indexes.

20220331 Bug fixes
Fixed the crash caused by dereferencing wild pointers in the thread pool.

20220330 New features
Enabled writeset parallel replication by default.
Supported extended resource groups to control the I/O, memory utilization, and SQL timeout
policy by user.
Supported flashback query to query data at any time point within the UNDO time range.
Supported `RETURNING` in a `DELETE`, `INSERT`, or `REPLACE` statement to retrieve the
data rows modified by the statement.
Supported the GTID replication feature extension in row mode.
Supported transaction lock optimization.
Enhanced the recycle bin to support TRUNCATE TABLE and automatic cleanup of tables in the
recycle bin.
Supported parallel DDL to speed up DDL operations for which to create indexes through three-
phase parallel operations.
Supported quick index column modification.
Supported automatic statistics collection and cross-server statistics collection.
Performance optimizations
Optimized the GTID lock conflicts when transactions were committed if `binlog_order_commits`
was disabled.
Accelerated MySQL startup by changing the InnoDB startup phase from single-threaded
creation of Rsegs to multi-threaded creation.
Bug fixes

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 156

Fixed the issue where the transaction did not end when the connection was closed after
deadlock or lock wait.
Fixed the issue where the `innodb_row_lock_current_waits` value was abnormal.
Fixed the SQL type error in the audit plugin without USE DATABASE.
Fixed the issue where tables smaller than `innodb_async_table_size` were also renamed during
async drop of big tables.
Fixed the issue with incorrect escape characters in the audit plugin.
Fixed the issue of rollback after quick column modification.
Fixed the issue where the transaction system (trx_sys) may crash if it contains XA transactions
when it is closed.
Fixed the crash when merging derived tables.
Fixed the issue where `binlog_format` was modified after writeset was enabled.
Fixed the error (error code: 1032) caused by hash scans with A->B->A->C update on the same
row.
Fixed the issue where the sort index might be invalid in prepared statement mode.
Fixed the issue where the operator that consumed the materialized result might be merged into
the returned value path of the materialized operator and result in incorrect comprehension and
display of the execution plan.
Fixed exceptions in extreme cases for async drop of big tables.
Fixed the abnormal error message when setting a SQL filter.
Fixed the syntax error reported during stored procedure parsing.
Fixed the issue where historical histograms couldn't be applied.
Fixed the role column display compatibility issue caused by `SHOW SLAVE HOSTS(show
replicas)`.
Fixed the crash of `Item_in_subselect::single_value_transformer` when the number of columns
was incorrect.
Fixed the crash caused by memory leaks during cascading update if a subtable contained
virtual columns and foreign key columns.

20211202 New features
Supported quick column modification.
Supported histogram versioning.
Supported SQL:2003 TABLESAMPLE (single table) sampling control syntax for obtaining
random samples of physical tables.
Added non-reserved keywords: TABLESAMPLE BERNOULLI.
Added the `HISTOGRAM()` function to build a histogram for a given input field.
Supported compressed histograms.
Supported SQL throttling.
Supported MySQL cluster role configuration (default role: CDB_ROLE_UNKNOWN).
Added a new `Role` column to the `show replicas` command's display results to display roles.
Supported proxy.
Performance optimizations
Optimized the hotspot update problem caused by `insert on duplicate key update`.
Accelerated the application of hash scan by aggregating multiple identical binlog events.
Greatly reduced the memory usage by the `PREPARE` statement in point queries in the thread
pool mode when the plan cache was enabled.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 156

Bug fixes
Fixed the error of unstable performance after hotspot update optimization was enabled.
Fixed the issue where `select count(*)` parallel scans caused full-table scans in extreme cases.
Fixed performance issues caused by execution plan changes due to reading zero statistics in
various cases.
Fixed the bug where queries were in the `query end` status for a long time.
Fixed the bug where statistics were severely underestimated in long records.
Fixed the bug where an error was reported when the Temptable engine was used and the
number of aggregate functions in the selected column exceeded 255.
Fixed the case sensitivity issue of column names in the `json_table` function.
Fixed the bug that caused correctness issues in window functions because expressions
returned early during `return true`.
Fixed the correctness issue caused by the pushdown by `derived condition pushdown` when it
contained user variables.
Fixed the issue where SQL filters were prone to crash when no namespaces were added in a
rule.
Fixed the QPS jitters when the thread pool was enabled under high concurrency and high
conflict.
Fixed the issue where source-replica buffer pool sync leaked file handles in extreme cases
(when host file systems were corrupted).
Fixed the index mapping issue.
Fixed the statistics cache sync issue.
Fixed the crash when information was not cleared during execution of the `UPDATE` statement
or stored procedures.

20210830 New features
Supported limiting the number of preloaded rows.
Supported optimizing plan cache point query.
Supported extended ANALYZE syntax (UPDATE HISTOGRAM c USING DATA 'json') and
direct writes to histograms.
Performance optimizations
Replaced index seek with histogram to reduce evaluation errors and I/O overheads (this
capability is not enabled by default).
Bug fixes
Fixed the issue where there might be no statistics information during online DDL.
Fixed the issue where generated columns on replica instances were not updated.
Fixed the issue where the instance hung when binlog was compressed.
Fixed the issue of missing GTID in the previous_gtids event of the newly generated binlog file.
Fixed possible deadlocks when system variables were modified.
Fixed the issue where the information of the SQL thread of the replica instance in SHOW
PROCESSLIST was incorrectly displayed.
Implemented the bug fix related to hash join provided in MySQL 8.0.23.
Implemented the bug fix related to writeset provided in MySQL.
Implemented the bug fix related to the query optimizer provided in MySQL 8.0.24.
Fixed the concurrency bugs of optimizing flush list and releasing pages in FAST DDL.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 156

Optimized the memory usage during data dictionary update in instances with a large number of
tables.
Fixed the crash caused by new primary key creation after INSTANT ADD COLUMN.
Fixed the OOM caused by memory growth in full-text index query.
Fixed the issue where -1 was included in the TIME field in the result set returned by SHOW
PROCESSLIST.
Fixed the issue where tables might fail to be opened due to histogram compatibility.
Fixed the floating point accumulation error when Singleton histograms were constructed.
Fixed the replication interruption caused by using many Chinese characters in the table name of
a row format log.

20210330

New features
Supported source-replica buffer pool sync: After a high-availability (HA) source-replica switch
occurs, it usually takes a long time to warm up the replica, that is, to load hotspot data into its
buffer pool. To accelerate the replica's warmup, TXSQL now supports the buffer pool sync
between the source and the replica.
Supported sort-merge join.
Supported FAST DDL operations.
Supported querying the value of the `character_set_client_handshake` parameter.
Performance optimizations
Optimized the mechanism of scanning and flushing the dirty pages tracked in the flush list, so
as to solve the performance fluctuation issue while creating indexes and thus improve the
system stability.
Bug fixes
Fixed the deadlocks caused by the modification of the `offline_mode` and `cdb_working_mode`
parameters.
Fixed the persistent concurrency issue of the `max_trx_id` field in `trx_sys` table.

20201230

New features
Supported the official updates of MySQL 8.0.19, 8.0.20, 8.0.21, and 8.0.22.
Supported dynamic setting of thread pooling mode or connection pooling mode by using the
`thread_handling` parameter.
Performance optimizations
Optimized the `BINLOG LOCK_done` conflict to improve write performance.
Optimized the `trx_sys mutex` conflict by using lock-free hash to improve performance.
Optimized redo log flushing.
Optimized the buffer pool initialization time.
Optimized the clearing of adaptive hash indexes (AHI) during the `drop table` operations on big
tables.
Optimized audit performance.
Bug fixes
Fixed performance fluctuation when cleaning InnoDB temporary tables.
Fixed the read-only performance decrease when the instance has many cores.
Fixed the error (error code: 1032) caused by hash scans.
Fixed concurrency security issues caused by hotspot update.

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-19.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-20.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-21.html
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-22.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 156

20200630 New features
Supported async drop of big tables. You can clear files asynchronously and slowly to avoid
business performance fluctuation caused by dropping big tables. To apply for this feature,
submit a ticket.
Supported automatic killing of idle tasks to reduce resource conflicts. To apply for this feature,
submit a ticket.
Supported transparent data encryption (TDE).
Bug fixes
Fixed the issue where switch failed due to inconsistent positions between `relay_log_pos` and
`master_log_pos`.
Fixed the data file error caused by asynchronously storing data in the disk.
Fixed the hard error when `fsync` returned `EIO` and retries were made repeatedly.
Fixed the crash caused by phrase search under multi-byte character sets in full-text index.

Minor Version Description

20230601

New Features
Supports persistence for flashback query.
Supported drop table force, enabling drop innodb metadata.
Supported Parallel Copy DDL.
Supported limit in subquery.
Supported the conversion of partition tables from MyISAM to InnoDB.
Bug Fixes
Fixed the issue of index anomaly in primary-secondary BP synchronization feature.
Fixed the issue where killing connections during large transactions caused anomalies.
Fixed the issue of obtaining user-defined variable string errors in session track.
Fixed the issue of failure to create index when parallel DDL is enabled and
innodb_disable_sort_file_cache is set.
Fixed some errors with instant modify column.

20230115 New Features
Supported Nonblocking DDL feature.
Supported validate password plugin.
Supported for storing historical deadlock information.
Performance Optimization
Asynchronous deletion of large tables: Temporary tables also use the
innodb_async_table_size filter table, and only tables exceeding innodb_async_table_size are
deleted asynchronously, improving the processing efficiency.
Bug Fixes
Fixed the issue where creating a user with grant identified by failed, causing primary/standby
interruption.
Fixed the issue where GROUP_CONCAT did not correctly set USED_TABLES when the
DERIVED_MERGE switch was enabled.
Fixed the issue where the gtid_subset function failed to correctly handle null_value.
Fixed the issue where dummy index cache failed to initialize system columns.

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 156

Fixed the issue of instant add column in partition table exceeding the maximum number of
columns.
Fixed the issue where canal pulling binlog may cause OOM.
Fixed the error in proxy when reusing connections with different users.
Fixed the proxy's incorrect responses for row count, found rows, and db settings.
Fixed the issue where the error messages during binlog sending and receiving were
incomplete.
Fixed anomalies in paging and pushdown calculations.
Fixed potential invalidity of m_page after creating a subtree with Parallel DDL.
Fixed the crash issue with instant modify under certain character sets.

20220716 New features
Supported auto-increment column persistence for InnoDB.
Supported precise memory statistics.
Supported query-level memory monitoring.
Supported recycle bin.
Supported parallel DDL statements.
Supported flashback query.
Supported async rollback for internal XA transactions.
Performance optimizations
Optimized async drop of big tables.The original definition of big table is 50 GB, which can now
be controlled by the `innodb_async_table_size` to make it more flexible.
Bug fixes
Fixed the issue where `ERROR 1878 (HY000): Temporary file write failure` was reported when
`alter table` was executed to create indexes.
Fixed the issue where buf/buf/pool couldn't be viewed in PFS memory monitoring data.
Fixed the issue where the returning statement might cause exceptions in some scenarios due
to permission checks.
Fixed the issue where an error was reported because the parser did not correctly handle
semicolons in statements.
Fixed the issue where single quotation marks in audit statements were not escaped.
Fixed the issue of sudden memory usage increase on the ARM platform.
Fixed the issue of source-replica inconsistency caused by modifying `binlog_format` after
writeset was enabled.
Fixed the issue of high CPU usage caused by exiting a large number of threads at the same
time.
Fixed bugs related to `drop table partition force`.
Fixed the issue where binlog dump got stuck and caused the instance restart to become slow.
Fixed the issue where the source-replica sync failed because `create table like temporary
table` did not inherit the character set in the binlog.
Fixed the issue where `show detail processlist` displayed illegal characters.
Fixed the issue where the `thread_group` lock was not released when the thread pool was
closed in some cases.
Fixed the issue where updating the parent table at the parallel table level caused the instance
to run abnormally.
Fixed the issue where virtual columns were calculated incorrectly on the replica.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 156

Fixed the issue where `gtid_subset` did not set `null_value` to `false` after executing a row.

20211230

New features
Supported the official updates of MySQL 5.7.19–5.7.36.
Supported source-replica buffer pool sync to speed up the performance recovery after HA
switch (around 90 seconds faster than that in native mode).
Added the backup lock feature to provide lightweight metadata locks to improve the service
availability during backup.
Performance optimizations
Made functions related to `utf8/utf8mb4 my_charpos` inline to optimize the performance of
UTF_8 functions in read_write scenarios.
Upgraded jemalloc to v5.2.1.
Optimized file number acquisition during binlog rotation.
Optimized semi-sync replica I/O.
Optimized hash scan aggregation.
Accelerated the startup of crash recovery for large transactions.

20211102

New features
Fixed the exception of the third-party data subscription tool caused by subscription to the
comparison SQL for internal data consistency during tool usage.
Note：
After the database instance is migrated, upgraded, or recovered after failure, the system will
compare the data to ensure data consistency. When comparison SQL is in `statement` mode,
exceptions are prone to occur in response of some third-party subscription tools to the SQL in
`statement` mode. When the instance is upgraded to its kernel, the third-party data
subscription tool can't subscribe the comparison SQL for internal data consistency.

20211031 New features
Supported writeset replication.
Performance optimizations
Optimized the checkpoint mechanism to increase the backup success rate.
Optimized the hash scan index selection.
Optimized the hotspot update performance to support `insert on duplicate key update`.
Bug fixes
Fixed the error of unstable performance after hotspot update was enabled.
Fixed the crash caused by rolling back the UPDATE operation after an instant DDL.
Fixed the issue where the `CREATE TABLE AS SELECT` statement didn't inherit the
compression attribute after column compression was enabled.
Fixed the instance crash caused by the `show variables like 'tencent_root%'` statement after
the `skip-grant-table` option was enabled.
Fixed the crash of the Query Rewriter plugin in read-only mode.
Fixed the error (error code: 1032) caused by hash scans in partitioned tables.
Fixed the issue where the first large transaction's SBM was 0 in MTS mode.
Fixed the crash of `stop slave` caused by `slave_preserve_commit_order=ON,
slave_transaction_retries=0`.
Fixed several XA transaction bugs.

https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-19.html
https://dev.mysql.com/doc/relnotes/mysql/5.7/en/news-5-7-36.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 156

Fixed the issue where SQL splicing went wrong during `show create` after a JSON field with a
default value was created.
Fixed the issue where disconnected transactions could not be rolled back after transactions
were blocked.
Fixed the issue where there might be no statistics information for long records in InnoDB
persistent mode.
Ported 8.0 to fix the issue where `ANALYZE TABLE` might cause query retention.
Fixed the issue where the InnoDB statistics couldn't be synced to the server layer in time after
change.
Fixed the issue where statistical sampling might block writes for too long and cause a crash
(bug# 31889883).
Fixed the possibility of reading zero rows during the InnoDB statistics update process (bug#
105224).
Fixed the possible O(N^2) behavior in MVCC (bug# 28825617).
Fixed the crash caused by closing a temp table and triggering binlog rotation when a
connection was released.

20210630

New features
Added the new command SHOW SLAVE DETAIL [FOR CHANNEL channel] for displaying the
binlog timestamp that the current replica has replayed.
Supported transaction_read_only/transaction_isolation parameters.
Performance optimizations
Accelerated the application of hash scan on replicas by aggregating multiple identical binlog
events.
Bug fixes
Fixed the issue where duplicate primary keys existed, columns couldn't be found, and columns
were too long in temp tables caused by the `UPDATE` statement.
Fixed the issue where there might be no statistics information during the DDL process.
Fixed the inaccurate undo log size in connection status statistics.
Fixed the instance crash caused by querying the metadata_locks table.
Modified `of` as a non-reserved keyword.
Fixed the issue where the dynamically modified version number was not invalidly displayed in
new connections.
Fixed the issue where the wild pointer was accessed during page_cache cleanning.
Fixed the issue where the execution of ALTER TABLE might report the "Incorrect key file for
table" error.
Fixed the excessive memory usage by partitioned tables.
Fixed the issue where -1 was included in the TIME field in the result set returned by SHOW
PROCESSLIST.
Fixed the lock wait of XA transaction replication on replica nodes.
Fixed the incorrect lock of partitioned tables in equal range query.

20210331 New features
Supported `RETURNING` clause in a `DELETE`, `INSERT`, or `REPLACE` statement to return
information about the rows that were deleted or modified.by the statement. For `DELETE`,
undo data is returned, while for `INSERT` or `UPDATE`, redo data is returned.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 156

Supported column compression: Row compression and data page compression are already
supported, but if small fields in a table are read and written frequently while big fields are not,
both of the compression methods waste a lot of computing resources. In contrast, column
compression can compress big fields that are infrequently accessed and reduce the space for
storing whole rows of fields, so as to improve read and write access efficiency.
Supported querying the value of the `character_set_client_handshake` parameter.
Supported the manual cleaning of page cache occupied by log files by using the
`posix_fadvise()` function based on the sliding window technique, so as to lower the memory
pressure on the operating system and improve instance stability.
Performance optimizations
Optimized the parallelism of CREATE INDEX: A merge sort is needed in a temp table in the
process of creating indexes, which is time-consuming. The parallel temp-table merge sort
algorithm is now supported to reduce the time by more than 50%.
Optimized the mechanism of scanning and flushing the dirty pages tracked in the flush list, so
as to solve the performance fluctuation issue while creating indexes and thus improve the
system stability.
Bug fixes
Fixed the memory leak issue.
Implemented the JSON bug fixes provided in MySQL 8.0 to improve the stability of using
JSON.
Fixed the error (error code: 1032) caused by hash scans.
Fixed concurrency security issues caused by hotspot update.
Implemented the gcol bug fixes provided by MySQL in batches.
Fixed the failure to compare DateTime data with String data in some cases.
Fixed the bug where file handles cannot be released if source-replica buffer pool sync is
enabled.
Fixed the deadlocks caused by setting the `offline_mode` parameter and creating connections
at the same time.
Fixed the crashes caused by the `m_end_range` parameter incorrectly set in concurrent range
queries.
Fixed the issue where it takes a long time to execute an `UPDATE` statement on a temp table if
a JSON column appears in the `GROUP BY` clause.

20201231 New features
Supported using `NOWAIT` and `SKIP LOCKED` in `SELECT FOR UPDATE/SHARE`.
Supported dynamic setting of thread pooling mode or connection pooling mode by using the
`thread_handling` parameter.
Supported source-replica buffer pool sync.
Supported monitoring of user connection status. Monitoring items include sync/async IO,
memory, log size, CPU time, and lock duration.
Performance optimizations
Optimized the transaction subsystem to improve the high concurrency performance.
Optimized the time to start crash recovery for large transactions.
Optimized redo log flushing.
Optimized the buffer pool initialization time.
Optimized UTF8/UTF8MB4 string efficiency.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 156

Optimized audit performance.
Revoked the restriction on the value of `gtid_purged` being empty.
Optimized the backup lock. `LOCK TABLES FOR BACKUP`, `LOCK BINLOG FOR BACKUP`,
and `UNLOCK BINLOG` are supported. `FLUSH TABLES WITH READ LOCK` is used to take
a backup of the database, but it blocks the whole database from providing service. In contrast,
the three statements above use a lightweight backup lock to ensure data consistency during
physical/logical backup while allowing the database to providing service.
Optimized the `drop table` operations on big tables.
Bug fixes
Fixed the hang issue when querying `performance_schema`.
Fixed the overflow issue of the `digest_add_token` function.
Fixed the crash caused by ibuf access when the `TRUNCATE TABLE` command was
executed.
Fixed the query correctness issue caused by const propagation when `LEFT JOIN` statement
is used.

20200930

Performance optimizations
Optimized the backup lock. `FLUSH TABLES WITH READ LOCK` is used to take a backup of
the database, but it blocks the whole database from providing service. Therefore, a lightweight
backup lock is provided in this version.
Optimized the `drop table` operations on big tables. The
`innodb_fast_ahi_cleanup_for_drop_table` parameter helps significantly reduce the time it
takes to clean up adaptive hash indexes when dropping big tables.
Bug fixes
Fixed the crash caused by ibuf access when TRUNCATE TABLE was executed.
Fixed cold backup failures when the quick column adding feature was enabled.
Fixed performance degradation caused by frequently releasing InnoDB memory table objects.
Fixed the query correctness issue caused by const propagation when `LEFT JOIN` statement
is used.
Fixed the core issue caused by rule class name conflict between SQL throttling and query
rewrite.
Fixed the concurrent update issue caused by the `INSERT ON DUPLICATE KEY UPDATE`
statement in multiple sessions.
Fixed the `duplicate key error` caused by concurrent INSERTs when
`auto_increment_increment` is used.
Fixed the crashes caused by evicting InnoDB memory objects.
Fixed concurrency security issues caused by hotspot update.
Fixed the coredump issue when enabling the thread pool after jemalloc was upgraded to
v5.2.1.
Fixed the incomplete audit log issue caused by fwrite error-free handling.
Fixed the issue where `mysqld_safe` failed to print logs when it was started by a root user.
Fixed the increase in the size of the DDL log file caused by `ALTER TABLE EXCHANGE
PARTITION`.

20200701 Bug fixes
Fixed the INNOBASE_SHARE index mapping error.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 156

20200630

New features
Supported using `NOWAIT` and `SKIP LOCKED` in `SELECT FOR UPDATE/SHARE`
statements.
Supported large transaction optimization, which can solve such problems as source-replica
delay and backup failures caused by large transactions.
Optimized audit performance to support async audit.
Bug fixes
Fixed the overflow of the `digest_add_token` function.
Fixed the instance crash caused by `insert blob`.
Fixed the source-replica replication interruption when a hash scan failed to find the record
while updating the same row in an event.
Fixed the hang issue when querying `performance_schema`.

20200331

New features
Added the official MySQL 5.7.22 JSON series functions.
Supported the hotspot update feature as described in Real-Time Session for ecommerce flash
sale scenarios.
Supported the SQL throttling feature as described in Real-Time Session.
Supported encryption with custom KMS keys.
Bug fixes
Fixed the crash caused by phrase search under multi-byte character sets in full-text index.
Fixed the crash of the CATS lock scheduling module in high-concurrency scenarios.

20190830 New features
Supported skipping the corrupted data and continuing to parse when a binlog is corrupted. If
the source instance and binlog are both damaged, this feature helps restore data from the
replica database for use as much as possible.
Supported syncing data from non-GTID to GTID mode.
Supported querying the "user thread memory usage" by executing the `SHOW FULL
PROCESSLIST` statement.
Supported quick column adding for tables as described in Overview. This feature does not
replicate the data or use disk capacity/IO, and can implement changes in real time during peak
hours.
Supported persistent auto-increment values.
Bug fixes
Fixed the issue where replication would be interrupted if the column name in a `GRANT`
statement contained reserved words.
Fixed the issue where SQL execution efficiency dropped when reverse scan was performed on
a partitioned table.
Fixed the issue where the query result had an exception due to data inconsistency when using
virtual column index and primary key.
Fixed the issue where data was missing due to InnoDB primary key range queries.
Fixed the issue where the system crashed when a DDL statement was executed for a table
with spatial indexes.

https://intl.cloud.tencent.com/document/product/1035/48638
https://intl.cloud.tencent.com/document/product/1035/48638
https://intl.cloud.tencent.com/document/product/236/35988

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 156

Fixed the issue where source-replica disconnection occurred when the binlog size was too
large and the file length in the heartbeat information exceeded the limit.
Fixed the issue where other events could not be executed as scheduled when an event was
deleted.
Fixed the issue where the aggregate query result was incorrect.

20190615 New features
Supported transparent data encryption (TDE).

20190430

Bug fixes
Fixed the issue where null pointer reference occurred when the LONGTEXT feature was used
in subqueries.
Fixed the issue where source-replica disconnection occurred due to hash scan.
Fixed the issue where the replica I/O thread was interrupted due to source binlog switch.
Fixed the crash caused by the use of `NAME_CONST`.
Fixed the illegal mix of collation error caused by character set.

20190203

New features
Supported async drop of big tables. You can clear files asynchronously and slowly to avoid
business performance fluctuation caused by dropping big tables. To apply for this feature,
submit a ticket.
Supported CATS lock scheduling.
Supported creating and dropping temp tables and CTS syntax in transactions when GTID is
enabled. To apply for this feature, submit a ticket.
Supported implicit primary keys. To apply for this feature, submit a ticket.
Supported users without super privileges to kill sessions of other users by configuring the
`cdb_kill_user_extra` parameter (default value: `root@%`).
Supported enterprise-grade encryption functions. To apply for this feature, submit a ticket.
Bug fixes
Fixed the issue where replication was interrupted when binlog cache file ran out of space.
Fixed the hard error when `fsync` returned `EIO` and retries were made repeatedly.
Fixed the issue where replication was interrupted and could not be recovered due to GTID
holes.

20180918 New features
Supported automatic killing of idle transactions to reduce resource conflicts. To apply for this
feature, submit a ticket.
Supported automatically changing the storage engine from MEMORY to InnoDB: If the global
variable `cdb_convert_memory_to_innodb` is `ON`, the engine will be changed from MEMORY
to InnoDB when a table is created or modified.
Supported invisible indexes.
Supported memory management with jemalloc, which can replace the jlibc memory
management module to reduce memory usage and improve allocation efficiency.
Performance optimizations
Optimized binlog switch to reduce the `rotate` lock duration and improve system performance.
Accelerated the crash recovery.

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 156

Bug fixes
Fixed the issue where an event became invalid due to source-replica switch.
Fixed the crash caused by `REPLAY LOG RECORD`.
Fixed the issue where the query result was incorrect due to loose index scans.

20180530

New features
Supported SQL auditing.
Supported table-level concurrent replication. To apply for this feature, submit a ticket.
Performance optimizations
Optimized replica instance locks to improve the sync performance of replica instances.
Optimized the pushdown of the `SELECT ... LIMIT` statement.
Bug fixes
Fixed the issue where switch failed due to inconsistent positions between `relay_log_pos` and
`master_log_pos`.
Fixed the crash caused by `Crash on UPDATE ON DUPLICATE KEY`.
Fixed the `Invalid escape character in string.` error when a JSON column was imported.

20171130

New features
Supported the `information_schema.metadata_locks` view to query the MDL grant and wait
status in the current instance.Supported the `ALTER TABLE NO_WAIT | TIMEOUT` syntax to
grant DDL operations wait timeout. To apply for this feature, submit a ticket.
Supported thread pool. To apply for this feature, submit a ticket.
Bug fixes
Fixed the error of `innodb_buffer_pool_pages_data` parameter overflow by calculating it based
on `bytes_data`.
Fixed the issue where speed limit plugin became unavailable in async mode.

Minor
Version

Description

20220303
Bug fixes
Fixed the abnormal release when the memory allocated by `mem_strdup` was used for
`row_mysql_truncate_t::file_name` during async drop of big tables.

20220302 Bug fixes
Fixed the memory leak issue in `sql_update.cc`.

20220301 New features
Supported dynamically configuring the spin cycle (0–100) with the dynamic parameter
`innodb_spin_wait_pause_multiplier`. This parameter is used for temporary adjustment and does
not support fixing the change through the console.
Supported printing deadlock loop information.After this feature is enabled through the parameter
`innodb_print_dead_lock_loop_info`, when a deadlock occurs, you can run `show engine innodb
status` to view the deadlock loop information.
Bug fixes

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 156

Fixed the issue where anonymous GTID transactions were generated in memory tables after
replica restart.
Fixed the issue where upgrade failed due to the missing `root@localhost` permission.
Fixed the issue where the values of monitoring variables such as
`innodb_row_lock_current_waits` were abnormal.
Fixed the SQL type mapping error in the audit plugin.

20211030

New features
Supported large transaction replication optimization.
Performance optimizations
Accelerated the application of hash scan.
Bug fixes
Fixed the OOM caused by a large number of table queries.
Fixed the infinite loop error caused by setting `innodb_thread_concurrecy` to 0.
Fixed the issue where there were no statistics information for long records.
Fixed the SBM jump error.
Fixed the `LOCK_binlog_end_pos hang` error.

20210630

New features
Supported large transaction replication optimization.
Bug fixes
Fixed the incorrect copy when Index Merge was enabled.
Fixed the issue where the replication would be interrupted if the execution of CREATE TABLE
SELECT was interrupted when `cdb_more_gtid_feature_supported` was enabled in row mode.
Fixed the bug that `max(id)` was greater than AUTO_INCREMENT in SHOW CREATE TABLE.

20201231

Bug fixes
Fixed the error (error code: 1032) caused by hash scans.
Fixed the issue where the source-replica auto-increment values were inconsistent due to the
`REPLACE INTO` statement in `ROW` format.
Fixed the memory leak caused by not freeing up the memory requested for parsing SQL
statements.
Fixed the issue where the sql_mode check is skipped when running `CREATE TABLE AS
SELECT`.
Fixed the issue where the `sql_mode` check was skipped when inserting default values.
Fixed the issue where the `sql_mode` check was skipped when running UPDATE with bound
parameters.

20200915 New features
Supported the SQL throttling feature as described in Real-Time Session.
Performance optimizations
Optimized the initialization acceleration of buffer pool.
Bug fixes
Fixed the hang issue of `rename table` on both source and replica.
Fixed the crash when `event_scheduler` was set to `disable` and `cdb_skip_event_scheduler`
was changed from `on` to `off`.

https://intl.cloud.tencent.com/document/product/1035/48638

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 156

Fixed the `sync_wait_array` assertion failure when the maximum number of connections of
`tencentroot` was not counted in `srv_max_n_threads`.
Fixed the crash of source-replica parallel replication caused by the system table structure
inconsistency between TencentDB for MySQL 5.6 and other cloud vendors' MySQL 5.6.
Fixed the `INSERT ON DUPLICATE KEY UPDATE THE WRONG ROW` error.
Fixed the `index_mapping` error.
Fixed the MTR failure.
Fixed the source-replica replication interruption when a hash scan failed to find the record while
updating the same row in an event.

20190930

New features
Supported querying the user thread memory usage by executing the `SHOW FULL
PROCESSLIST` statement.
Bug fixes
Fixed GTID holes caused by the replication filter of the replica.
Fixed the issue where source-replica disconnection occurred when the binlog size was too large
and the file length in the heartbeat information exceeded the limit.
Fixed the illegal mix of collation error caused by character set.
Fixed the issue where the source-replica disconnection occurred due to hash scan.
Fixed the crash caused by the use of `NAME_CONST`.
Fixed the issue where the replica I/O thread was interrupted due to source binlog switch.
Fixed the error of incompatible backups due to `innodb_log_checusum`.

20190530

Bug fixes
Fixed the issue where dirty data might be read in RC mode.
Fixed the issue where replica instance replay might fail due to the drop of temp table.
Fixed the deadlock issue under high concurrency.

20190203

New features
Supported async drop of big tables. You can clear files asynchronously and slowly to avoid
business performance fluctuation caused by dropping big tables. To apply for this feature, submit
a ticket.
Supported users without super privileges to kill sessions of other users by configuring the
`cdb_kill_user_extra` parameter (default value: `root@%`).
Supported creating and dropping temp tables and CTS syntax in transactions when GTID is
enabled. To apply for this feature, submit a ticket.
Performance optimizations
Optimized the replication and replay of partitioned tables to improve efficiency.
Bug fixes
Fixed the source-replica data inconsistency issue caused by insufficient temporary space.
Fixed the issue of suspended hot record updates.
Fixed the issue where the value of `Seconds_Behind_Master` was abnormal during concurrent
replication.

20180915 New features

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 156

Supported automatically changing the storage engine from MEMORY to InnoDB: If the global
variable `cdb_convert_memory_to_innodb` is `ON`, the engine will be changed from MEMORY to
InnoDB when a table is created or modified.
Supported automatic killing of idle transactions to reduce resource conflicts. To apply for this
feature, submit a ticket.
Bug fixes
Fixed the crash caused by `REPLAY LOG RECORD`.
Fixed the error of time data inconsistency between source and replica due to decimal precision
issues.

20180130

New features
Supported thread pool. To apply for this feature, submit a ticket.
Supported dynamically modifying replication filtering rules for replica nodes.
Performance optimizations
Reduced performance fluctuation caused by `DROP TABLE`.
Bug fixes
Fixed the database crash caused by authentication password strings.

20180122

New features
Supported SQL auditing.
Bug fixes
Fixed the integer overflow issue.
Fixed the error caused by queries using full-text index.
Fixed the issue where the replica crashed during replication.

20170830

Bug fixes
Fixed the issue where binlog speed limit became invalid in async mode.
Fixed the issue where the `buffer_pool` status was abnormal.
Fixed the issue where `SEQUENCE` and implicit primary key conflicted.

20170228

Bug fixes
Fixed the character encoding bug in `DROP TABLE`.
Fixed the issue where a table contained symbols like decimal points or `replicate-wild-do-table`
couldn't be used to filter databases correctly.
Fixed the issue where SQL threads exited too early after the replica had a `rotate` event.

20161130

Performance optimizations
Split the `lock_log` lock to reduce the time used by lock logs and improve the concurrency
performance.
Separated the ACK thread of the source to reduce the response time.
Prohibited the user thread from being killed while waiting for ACK in order to prevent phantom
reads.
Fixed the unnecessary `lock_sync` lock when `sync_binlog != 1`.

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 156

TXRocks Kernel Release Notes
Last updated：2023-09-13 15:41:31

This document describes the version updates of the TXRocks kernel.
Note
For more information on how to upgrade the minor kernel version of a TencentDB for MySQL instance, see Upgrading

Kernel Minor Version.
When you upgrade the minor version, some minor versions may be under maintenance and cannot be selected. The
minor versions available in the console shall prevail.
MySQL 8.0 Kernel Version Release Notes
MySQL 5.7 Kernel Version Release Notes

Minor Version Note

20230401
New features:
By default, the TokuDB engine in the table creation statement is converted to the RocksDB
engine.

Minor Version Note

20230401
New features:
By default, the TokuDB engine in the table creation statement is converted to the RocksDB
engine.

https://intl.cloud.tencent.com/document/product/236/36816

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 156

Database Proxy Kernel Release Notes
Last updated：2024-07-22 11:10:10

 This document describes the kernel version updates of the TencentDB for MySQL database proxy.
Note:
If the MySQL kernel version requirements are not met, you can upgrade the kernel version of your database first as

instructed in Upgrading Kernel Minor Version.

Database
Proxy
Version

MySQL Kernel Version
Requirements Description

1.3.7

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Fixes
Fixed the routing error of the `select for update` statement in
some cases.
Modified the `select @@read_only` statement and made it
possible to be routed to the source database. This prevents
some frameworks that use read_only flags from misjudging the
database proxy as unwritable.
Fixed the database proxy node exceptions caused by a
database instance HA in some scenarios.

1.3.4

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Fixes
Fixed the issue where the 'show processlist' command returned
incomplete data.

1.3.3

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Fixes
Fixed the issue where an error was reported when the session
connection pool reused connections to send `change_user` to
the backend, and the issue where the PREPARE statement
was not correctly handled by the database proxy after a new
connection was established.

1.3.2

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Fixes
Fixed the issue where `execute` statement didn't have a
parameter type

1.3.1 MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Feature updates
Allowed instances with a weight of 0 to sustain read requests
when the weight of all valid instances under the database proxy
is 0.

https://intl.cloud.tencent.com/document/product/236/36816

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 156

Supported the multi-AZ deployment architecture where read-
only instances can be mounted across AZs.
Provided the read-only mode.
Supported transaction split.
Supported momentary disconnection prevention, i.e.,
connection persistence, where the client will not be
disconnected when a database instance HA switch occurs
because of a scheduled task.

1.2.1

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Feature updates
Supported the `db lower_case_table_names` parameter,
indicating not to verify the letter case by default.
Supported returning error messages in the query stage when
errors occur during database proxy connection establishment.

1.1.3

MySQL 5.7 20211030 and
later
MySQL 8.0 20211202 and
later

Feature updates
Supported the use of hint routing information in the
`COM_PREPARE` packet preprocessed by MySQL. After hint
is used in `PREPARE` to specify the routing target, subsequent
`execute` packets will be sent to the specified backend node.
Fixes
Fixed the issue where the frontend connection was reset
immediately after source-replica switch of the source instance
on the database proxy was performed.
Fixed the issue where load balancing might fail when read-only
instances exceeded the latency threshold. Routing will resume
normally when the read-only instance latency falls below the
threshold.
Fixed the issue where MySQL 8.0 might return incorrect
handshake information and cause connection failures.

1.1.2 MySQL 5.7 20211030 and
later
MySQL 8.0 20211130 and
later

Feature updates
Supported MySQL 8.0.
Supported the connection pool feature at the connection level,
which is useful in scenarios where non-persistent connections
to the database are frequently established. The database proxy
will save connections and reuse them during subsequent
connection establishments.
Supported the reconnection feature for read-only instances. In
persistent connection scenarios, when a read-only instance is
restarted or added, the database proxy will automatically
establish a connection and restore routing to it.
Updated the internal memory management mechanism to
reduce the memory usage.
Fixes

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 156

Fixed the issue where the client connection persisted after the
backend connection was closed due to timeout.
Fixed the issue where the internal cache might cause
excessively rapid increase of the memory utilization.
Fixed the occasional issue where packets in an incorrect format
were returned.

1.0.1
MySQL 5.7 20201230 and
later

Feature updates
Supported MySQL 5.7.
Supported read/write separation.
Supported read weight assignment in read/write separation.
Supported the configuration of source-replica replication delay
threshold. Routing to a read-only instance will be stopped if its
delay exceeds the thresholds and will be recovered after it
drops below the threshold. If the source-replica replication is
interrupted, disconnected read-only instances will be removed
directly.
Supported the configuration of the least number of read-only
instances. When read-only instances are removed, if the
number is set to N, at least N instance(s) will be retained for
routing.
Supported the failover configuration, which is enabled by
default. If it is disabled and the read weight of the source
instance is 0, after all read-only instances are removed, an error
will be reported for read requests. If failover is enabled and the
read weight of the source instance is not 0, requests will be
routed to the source instance.
Supported using the HINT syntax to specify routing nodes.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 156

Functionality Features
Killing Idle Transactions Automatically
Last updated：2024-07-22 11:12:05

Overview

This feature kills transactions that have been idle for the specified time period to release resources in time.

Supported Versions

Kernel version: MySQL 5.6 20180915 and above.
Kernel version: MySQL 5.7 20180918 and above.

Kernel version: MySQL 8.0 20200630 and above.

Use Cases

If a connection starts a transaction (explicitly using begin / start transaction or implicitly) but no new

statement has been executed for the specified threshold period, the connection will be killed.

Instructions

Use the cdb_kill_idle_trans_timeout parameter to enable or disable the feature. If it is 0 , the feature is

disabled; otherwise, a connection idle for cdb_kill_idle_trans_timeout or wait_timeout seconds,

whichever is smaller, will be killed. (wait_timeout is a session parameter.)

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Description

cdb_kill_idle_trans_timeout Yes ulong 0 [0,
31536000]

If it is 0 , the feature is dis
otherwise, a transaction idle
 cdb_kill_idle_trans

seconds will be killed.

Note:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 156

Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 156

Parallel Replication
Last updated：2024-07-22 11:30:52

Overview

Prior to MySQL 5.6, the source node syncs binlogs and the replica node replays binlogs, both in the single-thread
mode. MySQL 5.6 and later versions support the DATABASE/LOGICAL_CLOCK parallel replication scheme, but the
granularity is too large to achieve expected parallel replication in many cases.

Tencent Cloud's TXSQL kernel team has optimized the parallel replication scheme. Table parallel replication is now
supported, improving parallelism and reducing source-replica delay.

Supported Versions

Kernel version: MySQL 8.0 20201230 and later.
Kernel version: MySQL 5.7 20180530 and later.
Kernel version: MySQL 5.6 20170830 and later.

Use Cases

This feature is suitable for use cases where optimizing the parallelism of some loads can speed up the binlog replay at
the replica node, thus reducing the source-replica delay.

Instructions

For MySQL 5.6 and 5.7, you can enable this feature by setting the slave_parallel_type parameter to the

newly added value TABLE . MySQL 8.0 does not support the TABLE mode.

Additionally, the cdb_slave_thread_status table is added to the information_schema database to

display the thread status of the replica node.

MySQL 5.6 parameter description
MySQL 5.7 parameter description
MySQL 8.0 parameter description

Parameter Effective
Immediately

Type Default
Value

Valid
Values/Value
Range

Description

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 156

slave_parallel_type Yes char* SCHEMA SCHEMA/TABLE

The level of parallel
replication on the replica
node.
SCHEMA: Replication
events of different
schemas can be
executed in parallel.
TABLE: Replication
events of different tables
can be executed in
parallel.

Parameter Effective
Immediately

Type Default Value Valid Values/Value Range

slave_parallel_type Yes char* LOGICAL_CLOCK DATABASE/TABLE/LOGICAL_CLOCK

Parameter Effective
Immediately

Type Default Value Valid Values/Value Range Desc

slave_parallel_type Yes char* LOGICAL_CLOCK DATABASE/LOGICAL_CLOCK The
replic
replic
DAT
Repl
of diff

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 156

data
exec
LOG
Repl
of the
clock
can b
para

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 156

Dynamic Thread Pool
Last updated：2024-02-18 11:24:04

Overview

The thread pool (Thread_pool) uses a certain number of worker threads to process connection requests, which is
typically used in scenarios with online transaction processing (OLTP) workloads. However, when many requests are
slow queries, worker threads will be blocked by high-latency operations and fail to quickly respond to new requests.

As a result, the system throughput of the thread pool mode is lower than that of the traditional one-thread-per-
connection (Per_thread) mode.
The Per_thread and Thread_pool modes have their advantages and disadvantages, so the system needs to flexibly
switch between them based on business types. Unfortunately, the mode switch must be completed by restarting the
server (during peak hours in most cases), adversely affecting the business.

To allow users to flexibly switch between Per_thread and Thread_pool, TencentDB for MySQL has introduced the
optimization of thread pool dynamic switch, that is, to enable or disable the thread pool without restarting the database
service.

Supported Versions

Kernel version: MySQL 8.0 20201230 and above.
Kernel version: MySQL 5.7 20201230 and above.

Use Cases

This feature is suitable for the business which is sensitive to performance and needs to flexibly change the database

working mode based on the business type.

Performance Impact

Switching from the thread pool mode to the one-thread-per-connection mode won't block queries or affect database
performance.
Switching from the one-thread-per-connection mode to the thread pool mode under extremely high QPS and
persistent high pressure may block requests because the thread pool is disabled before the switch.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 156

Solution 1: you can increase the thread_pool_oversubscribe parameter and decrease the

 thread_pool_stall_limit parameter to quickly enable the thread pool. After the blocked SQL queries are

processed, you can restore the parameters to their original values as needed.

Solution 2: if SQL queries start to be blocked, you can suspend or reduce service traffic for a few seconds, wait for
thread pool enablement to complete, and then resume the continuous high-pressure service traffic.

Instructions

You can use the thread_handling_switch_mode parameter to control whether to dynamically change the

thread working mode. Parameter values are described as follows:

Valid
Value

Description

disabled The mode cannot be changed dynamically.

stable The mode can only be changed for new connections.

fast (Default value) The mode can be changed for new connections and new requests.

sharp Active connections will be killed in order to force the user to reconnect so that the mode can be
changed quickly.

The show threadpool status command displays the following new status:

connections_moved_from_per_thread: the number of connections switched from Per_thread to Thread_pool.
connections_moved_to_per_thread: the number of connections switched from Thread_pool to Per_thread.
events_consumed: the total number of events consumed by the worker thread group in each thread pool. After the
thread working mode is switched from Thread_pool to Per_thread, the total number of events won't increase any
more.
average_wait_usecs_in_queue: the average time each event waits in the queue.

The show full processlist command displays the following new status:

Moved_to_per_thread: the number of times that the connection is switched to Per_thread.
Moved_to_thread_pool: the number of times that the connection is switched to Thread_pool.

Parameter Status Description

Thread pool parameters are described as follows:

Parameter Effective
Immediately

Type Default
Value

Valid Values/Value Range

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 156

thread_pool_idle_timeout Yes uint 60 [1, UINT_MAX]

thread_pool_oversubscribe Yes uint

High
Stability
Parameter
Template:
10
High
Performance
Parameter
Template:
16

[3,32]

thread_pool_size Yes uint

The number
of CPUs on
the current
machine

[1,1000]

thread_pool_stall_limit Yes uint 500 [10, UINT_MAX]

thread_pool_max_threads Yes uint 100000 [1,100000]

thread_pool_high_prio_mode Yes,
session

enum transactions transactions\\statement\\none

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 156

thread_pool_high_prio_tickets
Yes,
session uint UINT_MAX [0, UINT_MAX]

threadpool_workaround_epoll_bug Yes bool false true/false

The show threadpool status command displays the following status:

Status Description

groupid Thread group ID

connection_count The number of user connections in the thread group

thread_count The number of worker threads in the thread group

havelistener Whether the thread group has a listener

active_thread_count The number of active worker threads in the thread group

waiting_thread_count The number of worker threads calling wait_begin in the thread group

waiting_threads_size

The number of sleeping worker threads waiting to be woken up in the
thread group when there is no network event to handle (such worker
threads will wait for thread_pool_idle_timeout seconds
before being automatically killed)

queue_size The length of the ordinary queue of the thread group

high_prio_queue_size The length of the high priority queue of the thread group

get_high_prio_queue_num The total number of times that events in the thread group are removed
from the high priority queue

get_normal_queue_num The total number of times that events in the thread group are removed
from the ordinary queue

create_thread_num The total number of worker threads created in the thread group

wake_thread_num The total number of worker threads in the thread group awakened
from the waiting_threads queue

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 156

oversubscribed_num The number of times that worker threads are ready to go to sleep
because the thread group is oversubscribed

mysql_cond_timedwait_num The total number of times that worker threads in the thread group
enter the waiting_threads queue

check_stall_nolistener The total number of times that no listener is detected in the thread
group in the stall check performed by the timer thread

check_stall_stall The total number of times that the thread group is considered stalled in
the stall check performed by the timer thread

max_req_latency_us The maximum time in milliseconds for a user connection to wait in the
queue in the thread group

conns_timeout_killed
The total number of times that user connections in the thread group
are killed because there has been no new message on the client for
the threshold period (net_wait_timeout)

connections_moved_in The total number of connections migrated from other thread groups to
this thread group

connections_moved_out The total number of connections migrated from this thread group to
other thread groups

connections_moved_from_per_thread The total number of connections switched from the one-thread-per-
connection mode to this thread group

connections_moved_to_per_thread The total number of connections switched from this thread group to
the one-thread-per-connection mode

events_consumed The total number of events processed by the thread group

average_wait_usecs_in_queue The average waiting time of all events in the queue in the thread group

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 156

NOWAIT
Last updated：2024-07-22 11:31:50

Overview

DDL statements support NO_WAIT and WAIT options. If a DDL statement with WAIT enabled fails to obtain

an MDL lock, it will wait for WAIT seconds before it directly returns the query result. If a DDL statement with

 NO_WAIT enabled, it will directly return the query result without waiting for the MDL lock.

SELECT FOR UPDATE statements support NOWAIT and SKIP LOCKED options. If target rows are locked by

another transaction, a SELECT FOR UPDATE statement is supposed to wait for the transaction to release the lock.
But in some use cases like flash sales, you do not want to wait for a lock. You can use SKIP LOCKED to skip

locked rows (as a result, the locked rows won't be returned in the query result set) or NOWAIT to return an error

without waiting for the lock.

Note that NO_WAIT and NOWAIT are different keywords.

Supported Versions

 NO_WAIT and WAIT in DDL statements are supported in kernel version MySQL 5.7 20171130 and above.

 NOWAIT and SKIP LOCKED in SELECT FOR UPDATE statements are supported in kernel version MySQL 5.7

20200630 and above (not just limited to MySQL 8.0 that natively supports the feature).

Use Cases

Currently, DevAPI/XPlugin does not support using SKIP LOCKED or NOWAIT in SELECT FOR

UPDATE/SHARE statements. Note that NO_WAIT in DDL statements and NOWAIT in SELECT FOR UPDATE

statements are different keywords for historical reasons.

Instructions

SELECT FOR UPDATE NOWAIT/SKIP LOCKED

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 156

###############session 1###############

MySQL [test]> create table t1(seat_id int, state int, primary key(seat_id)) engine=

Query OK, 0 rows affected (0.03 sec)

MySQL [test]> INSERT INTO t1 VALUES(1,0), (2,0), (3,0), (4,0);

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

MySQL [test]> begin;

Query OK, 0 rows affected (0.01 sec)

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 156

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR SHARE;

+---------+-------+

| seat_id | state |

+---------+-------+

| 1 | 0 |

| 2 | 0 |

+---------+-------+

2 rows in set (0.00 sec)

###############session 2###############

MySQL [test]> SET SESSION innodb_lock_wait_timeout=1;

Query OK, 0 rows affected (0.00 sec)

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR UPDATE;

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR UPDATE NOWAIT;

ERROR 5010 (HY000): Do not wait for lock.

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR UPDATE SKIP LOCKED;

+---------+-------+

| seat_id | state |

+---------+-------+

| 3 | 0 |

| 4 | 0 |

+---------+-------+

2 rows in set (0.00 sec)

MySQL [test]> SELECT * FROM t1 WHERE seat_id > 0 LIMIT 2 FOR UPDATE NOWAIT;

ERROR 5010 (HY000): Do not wait for lock.

MySQL [test]> SELECT * FROM t1 WHERE seat_id > 0 LIMIT 2 FOR UPDATE SKIP LOCKED;

+---------+-------+

| seat_id | state |

+---------+-------+

| 3 | 0 |

| 4 | 0 |

+---------+-------+

2 rows in set (0.00 sec)

MySQL [test]> commit;

Query OK, 0 rows affected (0.00 sec)

SELECT FOR SHARE NOWAIT/SKIP LOCKED

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 156

###############session 1###############

MySQL [test]> begin;

Query OK, 0 rows affected (0.01 sec)

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR UPDATE;

+---------+-------+

| seat_id | state |

+---------+-------+

| 1 | 0 |

| 2 | 0 |

+---------+-------+

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 156

2 rows in set (0.00 sec)

###############session 2###############

MySQL [test]> SET SESSION innodb_lock_wait_timeout=1;

Query OK, 0 rows affected (0.00 sec)

MySQL [test]> begin;

Query OK, 0 rows affected (0.00 sec)

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 LOCK IN SHARE MODE;

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR SHARE;

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR SHARE NOWAIT;

ERROR 5010 (HY000): Do not wait for lock.

MySQL [test]> SELECT * FROM t1 WHERE state = 0 LIMIT 2 FOR SHARE SKIP LOCKED;

+---------+-------+

| seat_id | state |

+---------+-------+

| 3 | 0 |

| 4 | 0 |

+---------+-------+

2 rows in set (0.00 sec)

MySQL [test]> commit;

Query OK, 0 rows affected (0.00 sec)

NO_WAIT and WAIT in DDL statements

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 156

ALTER TABLE `table` [NO_WAIT | WAIT [n]] `command`;

DROP TABLE `table` [NO_WAIT | WAIT [n]];

TRUNCATE TABLE `table` [NO_WAIT | WAIT [n]];

OPTIMIZE TABLE `table` [NO_WAIT | WAIT [n]];

RENAME TABLE `table_src` [NO_WAIT | WAIT [n]] TO `table_dst`;

CREATE INDEX `index` ON `table.columns` [NO_WAIT | WAIT [n]];

CREATE FULLTEXT INDEX `index` ON `table.columns` [NO_WAIT | WAIT [n]];

CREATE SPATIAL INDEX `index` ON `table.columns` [NO_WAIT | WAIT [n]];

DROP INDEX `index` ON `table` [NO_WAIT | WAIT [n]];

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 156

RETURNING
Last updated：2024-07-22 11:32:19

Overview

In some scenarios, you need to retrieve the rows manipulated by DML statements. There are generally two ways to do
so:
Add a SELECT statement after the DML statement if the transaction is enabled.

Use a trigger or other complex operations.
However, running a SELECT statement increases query costs, and creating a trigger makes SQL implementation
more complex and inflexible.
Therefore, TXSQL supports the RETURNING keyword to optimize such scenarios. The above requirements can be
flexibly and efficiently met by appending RETURNING to a DML statement.

Supported Versions

Kernel version: MySQL 5.7 20210330 and above.

Use Cases

MySQL 5.7 20210330 and above support INSERT ... RETURNING, REPLACE ... RETURNING, and DELETE ...
RETURNING. The RETURNING keyword returns all rows that have been manipulated by an
INSERT/REPLACE/DELETE statement. RETURNING can also be used in prepared statements and stored
procedures.
Notes:

1. For DELETE ... RETURNING, the returned data rows are pre-images, while for INSERT/REPLACE ...
RETURNING, they are post-images.
2. Currently, UPDATE ... RETURNING is not supported.
3. For INSERT/REPLACE ... RETURNING, columns in the outer table are currently invisible to the subquery in the
RETURNING clause.

4. INSERT/REPLACE ... RETURNING only returns the value of last_insert_id() before the statement is

executed successfully. To obtain the true value of last_insert_id() , you should use RETURNING to return

the auto-increment column ID of the table.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 156

Instructions

INSERT ... RETURNING

MySQL [test]> CREATE TABLE `t1` (id1 INT);

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> CREATE TABLE `t2` (id2 INT);

Query OK, 0 rows affected (0.03 sec)

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 156

MySQL [test]> INSERT INTO t2 (id2) values (1);

Query OK, 1 row affected (0.00 sec)

MySQL [test]> INSERT INTO t1 (id1) values (1) returning *, id1 * 2, id1 + 1, id1 *

+------+---------+---------+-------+--------------------+

| id1 | id1 * 2 | id1 + 1 | alias | (select * from t2) |

+------+---------+---------+-------+--------------------+

| 1 | 2 | 2 | 1 | 1 |

+------+---------+---------+-------+--------------------+

1 row in set (0.01 sec)

MySQL [test]> INSERT INTO t1 (id1) SELECT id2 from t2 returning id1;

+------+

| id1 |

+------+

| 1 |

+------+

1 row in set (0.01 sec)

REPLACE ... RETURNING

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 156

MySQL [test]> CREATE TABLE t1(id1 INT PRIMARY KEY, val1 VARCHAR(1));

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> CREATE TABLE t2(id2 INT PRIMARY KEY, val2 VARCHAR(1));

Query OK, 0 rows affected (0.03 sec)

MySQL [test]> INSERT INTO t2 VALUES (1,'a'),(2,'b'),(3,'c');

Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

MySQL [test]> REPLACE INTO t1 (id1, val1) VALUES (1, 'a');

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 156

Query OK, 1 row affected (0.00 sec)

MySQL [test]> REPLACE INTO t1 (id1, val1) VALUES (1, 'b') RETURNING *;

+-----+------+

| id1 | val1 |

+-----+------+

| 1 | b |

+-----+------+

1 row in set (0.01 sec)

DELETE ... RETURNING

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 156

MySQL [test]> CREATE TABLE t1 (a int, b varchar(32));

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> INSERT INTO t1 VALUES

 -> (7,'ggggggg'), (1,'a'), (3,'ccc'),

 -> (4,'dddd'), (1,'A'), (2,'BB'), (4,'DDDD'),

 -> (5,'EEEEE'), (7,'GGGGGGG'), (2,'bb');

Query OK, 10 rows affected (0.03 sec)

Records: 10 Duplicates: 0 Warnings: 0

MySQL [test]> DELETE FROM t1 WHERE a=2 RETURNING *;

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 156

+------+------+

| a | b |

+------+------+

| 2 | BB |

| 2 | bb |

+------+------+

2 rows in set (0.01 sec)

MySQL [test]> DELETE FROM t1 RETURNING *;

+------+---------+

| a | b |

+------+---------+

| 7 | ggggggg |

| 1 | a |

| 3 | ccc |

| 4 | dddd |

| 1 | A |

| 4 | DDDD |

| 5 | EEEEE |

| 7 | GGGGGGG |

+------+---------+

8 rows in set (0.01 sec)

Stored procedure

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 156

MySQL [test]> CREATE TABLE `t` (id INT);

Query OK, 0 rows affected (0.03 sec)

MySQL [test]> delimiter $$

MySQL [test]> CREATE PROCEDURE test(in param INT)

 -> BEGIN

 -> INSERT INTO t (id) values (param) returning *;

 -> END$$

Query OK, 0 rows affected (0.00 sec)

MySQL [test]> delimiter ;

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 156

MySQL [test]> CALL test(100);

+------+

| id |

+------+

| 100 |

+------+

1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 156

Column Compression
Last updated：2024-07-22 11:34:21

Overview

Row compression and data page compression are already supported, but if small fields in a table are read and written
frequently while big fields are not, both of the compression methods waste a lot of computing resources.
In contrast, column compression can compress big fields that are infrequently accessed while ignoring the frequently

accessed small fields, which not only reduces the space for storing whole rows of fields but also improves the read
and write access efficiency.
For example, in the employee table create table employee(id int, age int, gender boolean,

other varchar(1000) primary key (id)) , if access is frequent for small fields such as id , age , and

 gender but infrequent for the large field other , you can compress the other column. Generally, only

read/write of the other column rather than other columns will trigger the compression and decompression of this

column, which further reduces the size of the stored row data. In this way, frequently accessed small fields can be
accessed more quickly, while infrequently accessed large fields can be compress to use less storage space.

Supported Versions

Kernel version: MySQL 5.7 20210330 and above.
Note:
 Column compression for closed by default, if you want to use, please submit a ticket to open.

Use Cases

If a table has many frequently accessed small fields and infrequently accessed large fields, you can compress the
large field columns.

Instructions

Supported data types

1. BLOB (including TINYBLOB , MEDIUMBLOB , and LONGBLOB)

2. TEXT (including TINYTEXT , MEDIUMTEXT , and LONGTEXT)

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 156

3. VARCHAR

4. VARBINARY

Note:

Here, the maximum length of LONGBLOB and LONGTEXT is $2^{32}-2$ bytes, which is one byte less than

$2^{32}-1$ supported by native MySQL as described in String Type Storage Requirements.

Supported DDL syntax types

Different from the table creation syntax of native MySQL, the definition of COLUMN_FORMAT in

 column_definition is changed in TencentDB for MySQL. In addition, column compression is supported only

for tables with the InnoDB storage engine.

https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 156

 column_definition:

 data_type [NOT NULL | NULL] [DEFAULT default_value]

 [AUTO_INCREMENT] [UNIQUE [KEY]] [[PRIMARY] KEY]

 [COMMENT 'string']

 [COLLATE collation_name]

 [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}|COMPRESSED=[zlib]] # `COMPRESSED`

 [STORAGE {DISK|MEMORY}]

 [reference_definition]

Below is a simple example:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 156

CREATE TABLE t1(

 id INT PRIMARY KEY,

 b BLOB COMPRESSED

);

Here, as the compression algorithm is not specified, the zlib algorithm will be selected by default. You can also

specify the compression algorithm keyword, but only zlib is supported currently.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 156

CREATE TABLE t1(

 id INT PRIMARY KEY,

 b BLOB COMPRESSED=zlib

);

The following DDL syntaxes are supported:

CREATE TABLE:

DDL Whether the Compression Attribute is Inherited

 CREATE TABLE t2 LIKE t1; Yes

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 156

 CREATE TABLE t2 SELECT * FROM t1; Yes

 CREATE TABLE t2(a BLOB) SELECT * FROM

t1;
No

ALTER TABLE:

DDL Description

 ALTER TABLE t1 MODIFY COLUMN a BLOB;
Alters a compressed column into a non-compressed
one

 ALTER TABLE t1 MODIFY COLUMN a BLOB

COMPRESSED;

Alters a non-compressed column into a compressed
one

New variable description

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Descripti

innodb_column_compression_zlib_wrap Yes bool TRUE TRUE/FALSE

If it is set
data zlib
be gener
check wi

innodb_column_compression_zlib_strategy Yes Integer 0 [0, 4]

Column c
policy. Va
Z_DEFA
1: Z_FILT
Z_HUFF
Z_RLE; 4
Generally
 Z_DEFA

is the bes
data, whi
image da

innodb_column_compression_zlib_level Yes Integer 6 [0, 9] Column c
Value ran
indicates
The high
smaller th
compres

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 156

longer th
duration.

innodb_column_compression_threshold Yes Integer 256 [0, 0xffffffff]

Column c
threshold
range: 1–
whose le
this thres
compres
original d
unchange
compres
added.

innodb_column_compression_pct Yes Integer 100 [1, 100]

Column c
in percen
range: 1–
compres
size afte
compres
before c
below thi
the origin
unchange
compres
added.

Note:
Currently, you cannot directly modify the values of the above parameters. If needed, submit a ticket for assistance.

New status description

Name Type Description

 Innodb_column_compressed Integer Number of column compressions, including compressions
for non-compressed data and compressed data.

 Innodb_column_decompressed Integer
Number of column decompressions, including
decompressions for non-compressed data and
compressed data.

New error description

Name Scope Description

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 156

 Compressed column

'%-.192s' can't be

used in key

specification

Name of the column
specified for
compression

The compression attribute cannot be specified for a
column with an index.

 Unknown compression

method: %s"

Name of the
compression
algorithm specified in
the DDL statement

An invalid compression algorithm other than
 zlib is specified in the CREATE TABLE or
 ALTER TABLE statement.

 Compressed column

'%-.192s' can't be

used in column format

specification

Name of the column
specified for
compression

If the COLUMN_FORMAT attribute has been
specified for a column, other attributes cannot be
specified, and COLUMN_FORMAT can be used
only in NDB.

 Alter table ...

discard/import

tablespace not support

column compression

\\
The ALTER TABLE ... DISCARD/IMPORT
TABLESPACE statement cannot be executed for
tables with column compression enabled.

Performance

The performance varies by DDL and DML statements:

For DDL statements, sysbench is used for testing:
Column compression compromises much performance of DDL statements with the COPY algorithm, and the
performance after compression is 7–8 times lower than before.
The impact of column compression on INPLACE DDL statements is subject to the data volume after compression. If
the overall data size is reduced after compression, the DDL performance will be improved; otherwise, it will be
compromised.

Column compression almost has no impact on INSTANT DDL statements.
For DML statements, in an 8-column table with the most common compression ratio of 1:1.8 (where the length of the
inserted data varies randomly from 1 to 6,000, the inserted characters are random within 0–9 and a–b, a column
contains a large volume of varchar data, and the data types of other columns are either char(60) or int), the
performance of insertion, deletion, and query of non-compressed columns in this table is improved by below 10%, but

the performance of update of non-compressed and compressed columns is reduced by below 10% and 15%
respectively. This is because that TencentDB for MySQL first reads the value of a row and then writes the updated
value, which triggers one decompression/compression process, while insertion and query only trigger one
compression or decompression.

Notes

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 156

1. During logic export, CREATE TABLE statements will carry the COMPRESSED keyword. Therefore, TencentDB for

MySQL supports such statements during import. Below are notes on official MySQL versions:
If the official MySQL version is below 5.7.18, data can be imported directly.

If the official MySQL version is 5.7.18 or above, the COMPRESSED keyword must be removed after logic export.

2. When DTS exports data from other cloud service providers or users, incompatibility may occur during binlog sync.
In this case, you can skip DDL statements with the COMPRESSED keyword.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 156

Flashback Query
Last updated：2024-07-22 11:35:35

Overview

Maloperations may occur in the process of database Ops and severely affect the business. Rollback and cloning are
common recovery methods for maloperations, but they are error-prone and time-consuming in case of minor data
changes and urgent troubleshooting, and are uncontrollable in recovery time when dealing with major data changes.

The TXSQL team has developed and implemented the flashback query feature for the InnoDB engine. It allows you to
query the historical data before a maloperation with a simple SQL statement and query the data at a specified time
point through specific SQL syntax. This greatly saves the data query and recovery time and enables fast data recovery
for better business continuity.

Supported Versions

Kernel version: MySQL 5.7 20220715 and later.

Kernel version: MySQL 8.0 20220331 and later.
For more information on how to view or upgrade the minor kernel version, see Upgrading Kernel Minor Version.

Use Cases

The flashback query feature is used to quickly query the historical data after a maloperation during database Ops.
Notes:
Flashback query is supported only for InnoDB physical tables but not views, other engines, or functions without actual
columns such as last_insert_id() .

Only second-level flashback query is supported, and the accuracy cannot be fully guaranteed. If there are multiple
changes within one second, any of them may be returned.
Flashback query is supported only for primary keys (or GEN_CLUST_INDEX).
Flashback query cannot be used in prepared statements or stored procedures.
Flashback query does not support DDL. If you perform DDL on a table (such as TRUNCATE TABLE, which should be

recovered through the recycle bin), the results obtained by flashback query may not be as expected.
In the same statement, if multiple flashback query times are specified for the same table, the earliest time will be
selected.

https://intl.cloud.tencent.com/document/product/236/36816

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 156

Due to the time difference between the source and replica instances, if you specify the same time for flashback query,
the results obtained for the instances may be different.
Enabling the flashback query feature will delay undo log cleanup and increase the memory usage. We recommend you

not set Innodb_backquery_window to a large value (preferably between 900 and 1,800), especially for

instances with frequent business access requests.
If the database instance restarts or crashes, the historical information before the restart or crash cannot be queried.
The specified time should be within the supported range (which can be viewed through the status variables
 Innodb_backquery_up_time and Innodb_backquery_low_time by running show status like

'%backquery%').

Instructions

Flashback query provides a new AS OF syntax. You can set the Innodb_backquery_enable parameter to

 ON to enable the flashback query feature and then query data at the specified time through the following syntax:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 156

SELECT ... FROM <table name>

AS OF TIMESTAMP <time>;

Example of querying data at the specified time

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 156

MySQL [test]> create table t1(id int,c1 int) engine=innodb;

Query OK, 0 rows affected (0.06 sec)

MySQL [test]> insert into t1 values(1,1),(2,2),(3,3),(4,4);

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

MySQL [test]> select now();

+---------------------+

| now() |

+---------------------+

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 156

| 2022-02-17 16:01:01 |

+---------------------+

1 row in set (0.00 sec)

MySQL [test]> delete from t1 where id=4;

Query OK, 1 row affected (0.00 sec)

MySQL [test]> select * from t1;

+------+------+

| id | c1 |

+------+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

+------+------+

3 rows in set (0.00 sec)

MySQL [test]> select * from t1 as of timestamp '2022-02-17 16:01:01';

+------+------+

| id | c1 |

+------+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

| 4 | 4 |

+------+------+

4 rows in set (0.00 sec)

Example of creating a table from historical data

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 156

create table t3 select * from t1 as of timestamp '2022-02-17 16:01:01';

Example of inserting historical data into a table

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 156

insert into t4 select * from t1 as of timestamp '2022-02-17 16:01:01';

Parameters

The following table lists the configurable parameters of the flashback query feature.

Parameter Scope Type Default
Value

Value Range/Valid
Values

Restart
Required

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 156

Innodb_backquery_enable Global Boolean OFF ON/OFF No

Innodb_backquery_window Global Integer 900 1–86400 No

Innodb_backquery_history_limit Global Integer 8000000 1–
9223372036854476000

No

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 156

Performance Features
Parallel Query
Overview
Last updated：2024-07-22 12:34:17

TencentDB for MySQL supports parallel query. After this feature is enabled, large queries can be automatically
identified. The parallel query capability leverages multiple compute cores to greatly shorten the response time of large
queries.

Concept

Parallel query uses more computing resources to complete the query workload. The traditional query method is
relatively friendly to small amounts of data (hundreds of gigabytes), but as the business grows, the data volume has
reached the TB level in many cases, which exceeds the processing capacity of traditional databases. Parallel query is
designed to solve this problem. During parallel query, the data is distributed to different threads at the storage layer,
multiple threads on a single node process the data in parallel, the result pipelines are aggregated to the main thread,

and the main thread performs a simple merge and returns the result. This greatly improves the query efficiency.

Feature background

TencentDB for MySQL goes beyond traditional MySQL databases in terms of computing, storage, disaster recovery,
and elastic expansion; however, it still faces the following challenges:
As the internet develops, databases become more capable of storing data, and forms are carrying more and more
data. When it comes to big table queries, SQL statements tend to be slow due to existing technical bottlenecks, which
adversely affects the business process.

The current market environment sees an increasing number of report statistics and other analytical queries. Although
not large in number, they involve a high data volume and are quite sensitive to query time. Gradually, data analysis
capability, especially heterogeneous data processing, has become a must-have.
The above challenges are caused by the traditional technical implementation mode in the MySQL ecosystem. In
particular, open-source releases support only the single-thread query mode, where only one thread (called user

thread) is responsible for the parsing, optimization, and execution of a SQL statement. This mode cannot make full
use of the hardware resources of modern multi-core CPUs and large memory devices, leading to a resource waste.
Therefore, it is important to streamline analysis and enhance performance by using multi-core services in the query of
a large amount of data, which is also the key to query acceleration, cost reduction, and efficiency improvement.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 156

Strengths

Performance enhancement at no extra costs: You can upgrade the kernel capabilities at no extra costs, so that
you can get the most out of the instance CPU computation for quicker statement response and higher computing
performance.

Support for common statements: You can use most common SQL statements in virtually any business scenarios.
This helps you accelerate your business smoothly.
Flexible parameter settings: You have many parameters at hand to control the conditions of enabling or disabling
parallel query. This helps you make queries smarter and more adaptable to your business scenarios with no
transformation needed.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 156

Supported Statement Scenarios and
Restricted Scenarios
Last updated：2024-07-22 12:34:38

This document describes the supported statement scenarios and restricted scenarios of the parallel query.

Supported statement scenarios

TencentDB for MySQL has implemented the parallel query feature for SQL statements with the following
characteristics, with more to come.

Single-table scan: Full-table scan, index scan, index range scan, and index REF query in ascending or descending
order are supported.
Multi-table join: The nested-loop join (NLJ) algorithm as well as semi join, anti join, and outer join are supported.
Subquery: Parallel query is supported for derived tables.
Data type: Different data types can be queried, such as integer, string, floating point, time, and overflow (with a runtime

size limit).
There are no restrictions on common operators and functions.
COUNT, SUM, AVG, MIN, and MAX aggregate functions are supported.
UNION and UNION ALL queries are supported.
Traditional (default), JSON, and tree EXPLAIN formats are supported.

Restricted scenarios

The parallel query feature of TencentDB for MySQL is not supported in the following scenarios.

Restriction Description

Statement compatibility
restriction

Parallel query is not supported for non-query statements, including `INSERT
... SELECT` and `REPLACE ... SELECT`.

Parallel query is not supported for statements in a stored program.

Parallel query is not supported for prepared statements.

Parallel query is not supported for statements in serial isolation-level
transactions.

Parallel query is not supported for locking reads, such as `SELECT FOR

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 156

UPDATE` and `SELECT ... FOR SHARE`.

Parallel query is not supported for CTEs.

Table/Index compatibility
restriction

Parallel query is not supported for system, temp, and non-InnoDB tables.

Parallel query is not supported for space index.

Parallel query is not supported for full-text index.

Parallel query is not supported for partitioned tables.

Parallel query is not supported for tables in `index_merge` scan mode.

Expression/Field compatibility
restriction

Parallel query is not supported for tables containing generated columns or
BLOB, TEXT, JSON, BIT, and GEOMETRY fields.

Parallel query is not supported for aggregate functions of the BIT_AND,
BIT_OR, or BIT_XOR type.

Parallel query is not supported for DISTINCT aggregations, such as
SUM(DISTINCT) and COUNT(DISTINCT).

Parallel query is not supported for GIS functions such as
SP_WITHIN_FUNC and ST_DISTANCE.

Parallel query is not supported for custom functions.

Parallel query is not supported for JSON functions such as JSON_LENGTH,
JSON_TYPE, and JSON_ARRAYAGG.

Parallel query is not supported for XML functions such as XML_STR.

Parallel query is not supported for user-lock functions such as
IS_FREE_LOCK, IS_USED_LOCK, RELEASE_LOCK,
RELEASE_ALL_LOCKS, and GET_LOCK.

Parallel query is not supported for SLEEP, RANDOM, GROUP_CONCAT,
SET_USER_VAR, and WEIGHT_STRING functions.

Parallel query is not supported for certain statistical functions such as STD,
STDDEV, STDDEV_POP, VARIANCE, VAR_POP, and VAR_SAMP.

Parallel query is not supported for subqueries.

Parallel query is not supported for window functions.

Parallel query is not supported for ROLLUP.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 156

Besides the above examples in Supported statement scenarios, you can also check the parallel query execution plan
and thread working status to see whether a statement can be queried parallelly. For more information, see Viewing
Parallel Query.

https://intl.cloud.tencent.com/document/product/236/53411

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 156

Enabling/Disabling Parallel Query
Last updated：2024-07-22 12:34:53

This document describes how to enable or disable the parallel query feature of TencentDB for MySQL via the console
or command line.

Prerequisites

Database version: MySQL 8.0 on kernel version 20220831 or later.

Parameters

Note:
The parallel query feature can be enabled for both source and read-only instances, as long as their number of CPU
cores is greater than or equal to 4.
You can enable the parallel query feature for the current instance by setting the
 txsql_max_parallel_worker_threads and txsql_parallel_degree parameters to a value other

than 0 via the console or command line. Parameters and suggested settings are as follows:

Parameter information

Parameter Variable
Type

Scope Default Value Value Range

txsql_max_parallel_worker_threads Integer Global {MIN(DBInitCpu,0)} 0–
{MAX(DBInitCpu-
2,2)}

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 156

txsql_parallel_degree Integer Global/session 4 0–64

Suggested settings
Parallelism limit: txsql_parallel_degree indicates the maximum number of threads for the parallel query of a

single statement, i.e., the default parallelism. We recommend that you limit this value to half of the CPU core quantity
of the instance. To ensure the stability, the parallel query feature is disabled for small clusters with fewer than four

CPU cores, and you cannot adjust parallel query parameters via the console or command line.
During the parallel query of a SQL statement, the parallelism set by txsql_parallel_degree will be used by

default, which can be adjusted through the HINT statement. For more information, see HINT Statement Control.
 txsql_max_parallel_worker_threads indicates the number of threads of the instance that can be used for

parallel query, and txsql_max_parallel_worker_threads / txsql_parallel_degree indicates the

maximum number of SQL statements allowed in a parallel query.
 txsql_max_parallel_worker_threads and txsql_parallel_degree control the status of the parallel

query feature. When either of them is 0 , the feature is disabled.

TencentDB for MySQL offers various parameters for you to set the execution conditions of parallel query for business
adaptation and stability. After conditions are set, the database will check whether each SQL statement can be

executed against such conditions like execution cost, number of table rows, and memory usage for the parallel
statement execution. Parameters are described as follows:

https://intl.cloud.tencent.com/document/product/236/53410

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 156

Parameter Variable
Type

Scope Default Value

innodb_txsql_parallel_partitions_per_worker Integer Global/Session 13

txsql_optimizer_context_max_mem_size Integer Global/Session {MIN(DBInitMemory*52429,83886

txsql_parallel_cost_threshold Integer Global/Session 50000

txsql_parallel_exchange_buffer_size Integer Global/Session 1048576

txsql_parallel_table_record_threshold Integer Global/Session 5000

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 156

Note:
Parallel query parameters take effect immediately after being set, with no instance restart required.
If the scope of a parameter is session, it takes effect only for the statement.

Enabling or disabling parallel query in the console

You can enable or disable the feature by setting parameters on the Parameter Settings page in the TencentDB for

MySQL console.
Set txsql_max_parallel_worker_threads and txsql_parallel_degree to a value other than 0 to

enable parallel query.
Set txsql_max_parallel_worker_threads or txsql_parallel_degree to 0 to disable parallel

query.

You can also set execution conditions on the Parameter Settings page. For detailed directions, see Setting Instance
Parameters.

Specifying the parallel execution mode of a SQL statement through the HINT statement

TencentDB for MySQL allows you to specify the parallel execution mode of a SQL statement through the HINT
statement. For detailed directions, see HINT Statement Control.

References

Viewing Parallel Query

HINT Statement Control

https://intl.cloud.tencent.com/document/product/236/35793
https://intl.cloud.tencent.com/document/product/236/53410
https://intl.cloud.tencent.com/document/product/236/53411
https://intl.cloud.tencent.com/document/product/236/53410

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 156

HINT Statement Control
Last updated：2024-07-22 12:35:02

TencentDB for MySQL allows you to enable or disable the parallel query feature by adjusting parameters. Specifically,
you can enable or disable the feature for all SQL statements, set execution conditions, or specify the execution mode
of a specific SQL statement through the HINT statement in the console.

Note:
 The HINT statement can specify whether to execute a SQL statement and apply session parameters to the
statement. In addition, it also supports querying the specified parallel table.

HINT statement usage

Feature Command Line Description

Enable parallel
query

 SELECT /*+PARALLEL(x)*/ ... FROM ...;

 x indicates the
parallelism for the SQL
statement, which should
be greater than 0 .

Disable parallel
query

 SELECT /*+PARALLEL(x)*/ ... FROM ...;

If x is set to 0 , it
indicates to disable parallel
query.

Specify the parallel
table

You can specify the table to be included in or excluded
from the parallel query execution plan in either of the
following ways:
Specify the table to be included in the plan through
 PARALLEL . SELECT /*+PARALLEL(t)*/ ...
FROM ...;

Specify the table to be excluded from the plan through
 NO_PARALLEL . SELECT /*+NO_PARALLEL(t)*/
... FROM ...;

 t is the table name.

Specify both the
parallel table and
parallelism

 SELECT /*+PARALLEL(t x)*/ * ... FROM

...;

 x indicates the
parallelism for the SQL
statement, which should
be greater than 0 . t
is the table name.

Set the session
parameter through

 SELECT /*+SET_VAR(var=n)*/ * ... FROM

...;

 var is the parallel query
parameter in the

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 156

the HINT
statement, which
takes effect only
for the specified
SQL statement

 session scope.

HINT statement use cases

Use case 1: select /*+PARALLEL()*/ * FROM t1,t2;

Set the parallelism to the value of txsql_parallel_degree (default) for the parallel query. If a statement does

not meet the parallel query execution condition, serial query will be used.
Use case 2: select /*+PARALLEL(4)*/ * FROM t1,t2;

Set the parallelism of the statement to 4 regardless of the default value, i.e., txsql_parallel_degree = 4 .

If the statement does not meet the parallel query execution condition, serial query will be used.
Use case 3: select /*+PARALLEL(t1)*/ * FROM t1,t2;

Include the t1 table in the parallel query and use the default parallelism. If t1 is smaller than the value of

 txsql_parallel_table_record_threshold , serial query will be used.

Use case 4: select /*+PARALLEL(t1 8)*/ * FROM t1,t2;

Include the t1 table in the parallel query and set the parallelism to 8 . If t1 is smaller than the value of

 txsql_parallel_table_record_threshold , serial query will be used.

Use case 5: select /*+NO_PARALLEL(t1)*/ * FROM t1,t2;

Exclude the t1 table from the parallel query. If t1 is greater than the value of

 txsql_parallel_table_record_threshold , serial query will be used.

Use case 6: select /*+SET_VAR(txsql_parallel_degree=8)*/ * FROM t1,t2;

Set the parallelism of the statement to 8 regardless of the default value, i.e., txsql_parallel_degree = 8 .

Use case 7: select /*+SET_VAR(txsql_parallel_cost_threshold=1000)*/ * FROM t1,t2

Set txsql_parallel_cost_threshold=1000 for the statement. If its execution penalty is greater than

 1000 , parallel query can be used.

Use case 8: select /*+SET_VAR(txsql_optimizer_context_max_mem_size=500000)*/ * FROM

t1,t2

Set txsql_optimizer_context_max_mem_size=500000 for a statement, which means to adjust the

maximum memory size it can apply for in the parallel query plan environment to 500000 .

References

Enabling/Disabling Parallel Query

https://intl.cloud.tencent.com/document/product/236/52512

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 156

Viewing Parallel Query

https://intl.cloud.tencent.com/document/product/236/53411

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 156

Viewing Parallel Query
Last updated：2024-07-22 12:35:17

TencentDB for MySQL allows you to view the parallel query execution plan and threads in the plan, so that you can
clearly know how parallel query takes effect in a database and quickly troubleshoot issues.
This document describes two common methods for viewing parallel queries.

Option 1: Using the EXPLAIN statement

Sample SQL statement:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 156

SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty

FROM lineitem

WHERE l_shipdate <= '1998-09-02'

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

This sample is a simplified version of TPC-H Q1, a typical report operation.
EXPLAIN statement:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 156

EXPLAIN SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty

FROM lineitem

WHERE l_shipdate <= '1998-09-02'

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

Query result:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 156

MySQL [tpch100g]> explain SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum

+----+-------------+-------------+------------+------+---------------+------+------

| id | select_type | table | partitions | type | possible_keys | key | key_l

+----+-------------+-------------+------------+------+---------------+------+------

| 1 | SIMPLE | lineitem | NULL | ALL | i_l_shipdate | NULL | NULL

| 1 | SIMPLE | <sender1> | NULL | ALL | NULL | NULL | NULL

| 1 | SIMPLE | <receiver1> | NULL | ALL | NULL | NULL | NULL

+----+-------------+-------------+------------+------+---------------+------+------

3 rows in set, 1 warning (0.00 sec)

EXPLAIN format=tree:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 156

EXPLAIN format=tree query SELECT l_returnflag, l_linestatus, sum(l_quantity) as su

FROM lineitem

WHERE l_shipdate <= '1998-09-02'

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

Query result:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 156

MySQL [tpch100g]> explain format=tree SELECT l_returnflag, l_linestatus, sum(l_quan

*************************** 1. row ***************************

EXPLAIN: -> Sort: lineitem.L_RETURNFLAG, lineitem.L_LINESTATUS

 -> Table scan on <temporary>

 -> Final Aggregate using temporary table

 -> PX Receiver (slice: 0; workers: 1)

 -> PX Sender (slice: 1; workers: 4)

 -> Table scan on <temporary>

 -> Aggregate using temporary table

 -> Filter: (lineitem.L_SHIPDATE <= DATE'1998-09-02') (

 -> Parallel table scan on lineitem (cost=65449341.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 156

1 row in set (0.00 sec)

As can be seen from the above result:
The parallel query plan assigns the statement to four worker threads for computing.
Aggregate operations are split into two segments that are executed by the user and parallel threads respectively.
The parallel scan operator is used for the lineitem table.

EXPLAIN format=tree query works better than the traditional EXPLAIN.

Option 2: Viewing in the thread list

The result of the show processlist command displays which threads are running. You can view not only the

total number of current connections but also the connection status to identify abnormal query statements.
Based on the show processlist command, TencentDB for MySQL offers the proprietary show parallel

processlist statement, which displays only the threads related to parallel query and filters out irrelevant threads.

Sample SQL statement:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 156

SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty

FROM lineitem

WHERE l_shipdate <= '1998-09-02'

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

This sample is a simplified version of TPC-H Q1, a typical report operation.
 show processlist query result:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 156

mysql> show processlist;

+--------+-------------+-----------------+-----------+---------+-------+-----------

| Id | User | Host | db | Command | Time | State

+--------+-------------+-----------------+-----------+---------+-------+-----------

| 7 | tencentroot | 127.0.0.1:49238 | NULL | Sleep | 0 |

| 11 | tencentroot | 127.0.0.1:49262 | NULL | Sleep | 0 |

| 13 | tencentroot | 127.0.0.1:49288 | NULL | Sleep | 1 |

| 237062 | tencentroot | localhost | tpch100g | Query | 24 | Scheduling

| 237107 | tencentroot | localhost | NULL | Query | 0 | init

+--------+-------------+-----------------+-----------+---------+-------+-----------

6 rows in set (0.00 sec)

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 156

 show parallel processlist query result:

mysql> show parallel processlist;

+--------+-------------+-----------+----------+---------+------+-------------+-----

| Id | User | Host | db | Command | Time | State | Info

+--------+-------------+-----------+----------+---------+------+-------------+-----

| 237062 | tencentroot | localhost | tpch100g | Query | 18 | Scheduling | SELE

| 237110 | | | | Task | 18 | Task runing | conn

| 237111 | | | | Task | 18 | Task runing | conn

| 237112 | | | | Task | 18 | Task runing | conn

| 237113 | | | | Task | 18 | Task runing | conn

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 156

+--------+-------------+-----------+----------+---------+------+-------------+-----

5 rows in set (0.00 sec)

As can be seen from the above result:
The parallel query plan assigns queries to four worker threads. There is only one data item in the user thread (ID:
237062). The SQL statement is pushed down to four worker threads. As indicated in info , all these four threads

are executing task 1 .

Each thread can be identified and located precisely.

Compared to show processlist , show parallel processlist can precisely find all running threads of

parallel query and will not be affected by other threads.

References

Enabling/Disabling Parallel Query
HINT Statement Control

https://intl.cloud.tencent.com/document/product/236/52512
https://intl.cloud.tencent.com/document/product/236/53410

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 156

Large Transaction Replication
Last updated：2024-07-22 12:35:36

Overview

If multi-row large transaction is updated by a single statement in row format, an event will be generated for each row.
As a result, a large number of binlogs are created, and APPLY operations in the replica database become slower
during replication, causing replication delays.

After analyzing and optimizing the large transaction replication scenarios, the Tencent Cloud kernel team developed
the large transaction replication optimization feature. With this feature, large transactions are automatically identified
and binlogs are converted from row format into statement format, thus reducing the quantity of binlogs and increasing
the replication performance.

Supported Versions

Kernel version: MySQL 5.6 20210630 and above.

Kernel version: MySQL 5.7 20200630 and above.
Kernel version: MySQL 8.0 20200830 and above.

Use Cases

This feature accelerates large transaction replay for tables without a primary key in row format. It can be enabled if
you are sure that the delay is caused by slow replay due to the lack of primary key.
This feature aims to solve slow replication when there are large transactions in row format.

Performance Data

The replication time is reduced by 85% for UPDATE operations and about 30% for INSERT operations.

Instructions

The large transaction replication optimization feature judges whether a transaction is large based on the historical
execution statistics of the SQL statement. If a transaction is identified as large and optimizable, its isolation level will

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 156

be automatically upgraded to repeatable read (RR), and the binlogs will be stored in statement format to reduce the
time of executing the large transaction in the replica database. Here:
 cdb_optimize_large_trans_binlog is the switch of this feature.

 cdb_sql_statistics is the switch of SQL statement execution statistics collection.

 cdb_optimize_large_trans_binlog_last_affected_rows_threshold and

 cdb_optimize_large_trans_binlog_aver_affected_rows_threshold are the thresholds for judging a

large transaction.
 cdb_sql_statistics_info_threshold is the number of legacy data entries retained in the memory.

To better monitor the transaction execution, the CDB_SQL_STATISTICS table is added in the

 information_schema database for you to query the statistics of the current transaction.

New parameters

Parameter Status Type Default
Value

Descripti

cdb_optimize_large_trans_binlog true bool false
Switch of
transactio
optimizat

cdb_optimize_large_trans_binlog_last_affected_rows_threshold true ulonglong 10000

Large tra
replicatio
condition
number o
time

cdb_optimize_large_trans_binlog_aver_affected_rows_threshold true ulonglong 10000

Large tra
replicatio
condition
average
rows

cdb_sql_statistics true bool false
Switch of
execution
collection

cdb_sql_statistics_info_threshold true ulonglong 10000

Maximum
statemen
of
 CDB_SQ

Note:
Currently, you cannot directly modify the values of the above parameters. If needed, submit a ticket for assistance.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 156

Newly added information_schema.CDB_SQL_STATISTICS table

Name Type Description

DIGEST_MD5 MYSQL_TYPE_STRING MD5 value calculated from the
digest of the SQL statement.

DIGEST_TEXT MYSQL_TYPE_STRING SQL statement digest text
format.

SQL_COMMAND MYSQL_TYPE_STRING SQL command type.

FIRST_UPDATE_TIMESTAMP MYSQL_TYPE_DATETIME

The time when the statistics
information of the SQL
statement is generated for the
first time.

LAST_UPDATE_TIMESTAMP MYSQL_TYPE_DATETIME
The time when the statistics
information of the SQL
statement is last updated.

LAST_ACCESS_TIMESTAMP MYSQL_TYPE_DATETIME
The time when the statistics
information of the SQL
statement is last accessed.

EXECUTE_COUNT MYSQL_TYPE_LONGLONG The number of executions of
this SQL statement.

TOTAL_AFFECTED_ROWS MYSQL_TYPE_LONGLONG Total number of affected rows.

AVER_AFFECTED_ROWS MYSQL_TYPE_LONGLONG Average number of affected
rows.

LAST_AFFECTED_ROWS MYSQL_TYPE_LONGLONG The number of rows affected
last time.

STMT_BINLOG_FORMAT_IF_POSSIBLE MYSQL_TYPE_STRING

Whether binlogs for this SQL
statement can be stored in
statement format. Valid
values: TRUE, FALSE.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 156

Execution Plan Cache for Optimizing UK/PK
Queries
Last updated：2024-07-22 12:35:46

Overview

In MySQL, SQL statement execution is divided into four stages: parsing, preparation, optimization, and execution. The
execution plan cache feature is only available for prepared statements. After the feature is enabled, the first three
stages will be skipped when executing a prepared statement, greatly boosting query performance.

In MySQL 8.0 20210830, the execution plan cache takes effect only for queries using unique keys (UKs) or primary
keys (PKs). We will cover more types of queries in later versions.

Supported Versions

Kernel version: MySQL 8.0 20210830 and later.

Use Cases

This feature is mainly used to improve the query performance when executing short prepared statements with UKs or
PKs on TencentDB instances. However, the extent to which performance may improved depends on your business.

Performance Impact

For UK and PK SQL statements, the delay is reduced by 20%-30% and the throughput is improved by 20%-30% after
the execution plan cache is enabled (according to the sysbench test using the point_select.lua script).
Memory usage will increase after the execution plan cache is enabled.

Instructions

You can use the cdb_plan_cache parameter to enable or disable the execution plan cache and the

 cdb_plan_cache_stats parameter to query information about cache hits. Note that only accounts with the

tencentroot permission can use the two parameters.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 156

Parameter Effective
Immediately

Type Default
Value

Valid
Values/Value
Range

Description

cdb_plan_cache Yes bool false true/false
Whether to enable the feature. Only
accounts with the feature
permission can use the parameter.

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.
You can run the show cdb_plan_cache command to query information about execution plan cache hits. The

command will return the following fields:

Field Description

sql A SQL statement with the question mark (?) which represents that the execution plan of this statement
has been cached.

mode SQL cache mode. Currently, only the prepare mode is supported.

hit Number of hits for this session.

After cdb_plan_cache_stats is enabled, cache hit information will be recorded, affecting database

performance.

SQL Execution Status

You can run show profile to show the status at each stage of SQL statement execution. But when the execution

plan cache is hit, the status of optimizing , statistics , and preparing will be omitted.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 156

fdatasync()
Last updated：2024-07-22 12:35:56

Overview

The fsync() system call flushes redo logs to disk, including metadata and data. But metadata contains

unimportant information such as the last modified time. You can enable the fdatasync() system call to skip

metadata when flushing redo logs in order to reduce costs.

Supported Versions

Kernel version: MySQL 5.7 20201230 and above.
Kernel version: MySQL 8.0 20201230 and above.

Use Cases

This feature is suitable for use cases with heavy write pressure.

Performance Data

TPS is improved by about 10%, according to the sysbench test in a high-concurrency continuous write scenario using
the oltp_write_only.lua script.

Instructions

Use the innodb_flush_redo_using_fdatasync parameter to enable or disable fdatasync() . Valid

values: true (enable), false (disable). Default value: false . If fdatasync() is enabled, metadata of

redo logs won't be flushed to disk in real time.

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Description

innodb_flush_redo_using_fdatasync Yes bool false true/false Whether to call
 fdatasync()

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 156

to flush redo logs

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 156

Auto-Increment Column Persistence
Last updated：2024-07-22 12:36:06

Overview

The auto-increment column persistence feature can persist an auto-increment column into a page to avoid duplicate
auto-increment values.

Supported Versions

Kernel version: MySQL 5.7 20190830 and above.

Use Cases

This feature is suitable for scenarios where you don't want duplicate auto-increment values, such as legacy data
archive.

Instructions

This feature is enabled in the kernel by default.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 156

Buffer Pool Initialization
Last updated：2024-07-22 12:36:19

Overview

This feature speeds up the initialization of the buffer pool, reducing the startup time of the database instance.

Supported versions

Kernel version: MySQL 5.6 20200915 and above.
Kernel version: MySQL 5.7 20200630 and above.

Use Cases

This feature is used to speed up the startup of the database instance.

Performance Test Data

Performance test data collected from eight instances:

buffer_pool_size Buffer Pool Initialization Time (Before
Optimization)

Buffer Pool Initialization Time (After
Optimization)

Increase
(%)

50 GB 2.55 s 0.13 s 1,962%

200 GB 10.28 s 0.52 s 1,977%

500 GB 25.72 s 1.32 s 1,948%

Instructions

This feature is enabled in the kernel by default.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 156

FAST DDL
Last updated：2024-07-22 12:36:36

Overview

This feature speeds up the creation of secondary index. After the feature is enabled, secondary indexes can be
concurrently sorted in a temp table using multiple threads. The feature also optimizes the operation of locking the flush
list when loading bulk data, effectively reducing the time consumed by CREATE INDEX and the impact on concurrent

DML operations.

Supported Versions

Kernel version: MySQL 8.0 20210330 and above.
Kernel version: MySQL 5.7 20210331 and above.

Use Cases

You need to perform DDL operations frequently on your database and may encounter the following DDL-related
problems:

Why does database performance fluctuate when I add indexes, which even affects business writes and reads?
Why does it sometimes take more than 10 minutes to execute a DDL operation on a table less than one GB in size?
Why does database performance fluctuate when I exit a connection where a temp table is used?
To solve the above common problems, the TXSQL kernel team has optimized the operation of locking the flush list
when loading bulk data, based on in-depth analysis and testing in multiple scenarios. The optimization effectively
reduces the time consumed by CREATE INDEX, the impact on concurrent DML operations, and the impact caused by

DDL operations.

Performance Data

Use sysbench to test database performance when importing two billion rows of data (about 453 GB) before and after
FAST DDL is enabled.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 156

mysql> set global innodb_fast_ddl=ON;

Query OK, 0 rows affected (0.00 sec)

When the feature is disabled, the operation takes 4,395 seconds; when the feature is enabled, the operation takes
2,455 seconds.

Instructions

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 156

Use the innodb_fast_ddl parameter to enable or disable this feature.

Parameter Effective
Immediately

Type Default
Value

Valid Values/Value
Range

Description

innodb_fast_ddl Yes bool OFF {ON,OFF} Enable or disable FAST
DDL

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 156

Invisible Index
Last updated：2024-07-22 12:36:47

Overview

Many users require the invisibility of an index to assess if it can be deleted. By making an index as invisible, you can
test the impact of its deletion on query performance before deleting it. If the index is being used by any program or
database user, an error will occur or be reported. This feature is now available to MySQL 5.7 and later versions, not

just limited to MySQL 8.0.

Supported Versions

Kernel version: MySQL 5.7 20180918 and above.

Use Cases

Before deleting an index, you can make it invisible to see if it is still in use. If not, it can be securely deleted.

Instructions

Run the following statements to create an invisible index or make an index invisible:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 156

CREATE TABLE t1 (

 i INT,

 j INT,

 k INT,

 INDEX i_idx (i) INVISIBLE

) ENGINE = InnoDB;

CREATE INDEX j_idx ON t1 (j) INVISIBLE;

ALTER TABLE t1 ADD INDEX k_idx (k) INVISIBLE;

Run the following statements to make an index visible:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 156

ALTER TABLE t1 ALTER INDEX i_idx INVISIBLE;

ALTER TABLE t1 ALTER INDEX i_idx VISIBLE

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 156

CATS Transaction Scheduling Algorithm
Last updated：2024-07-22 12:37:00

Overview

TXSQL supports the Contention-Aware Transaction Scheduling (CATS) algorithm. This new algorithm automatically
detects lock contention between transactions and schedules them based on their scheduling weights.
MySQL supports another transaction scheduling algorithm, aka First In First Out (FIFO), which was introduced earlier

than CATS. When multiple transactions are waiting for the same lock, CATS prioritizes them by assigning a
scheduling weight which is computed based on the number of transactions that a transaction blocks. The transaction
with a higher scheduling weight will be executed sooner. Thus, transaction throughput is improved.

Supported Versions

Kernel version: MySQL 5.7 20190230 and above.
Kernel version: MySQL 8.0 20200630 and above.

Use Cases

This feature is suitable for use cases under high concurrency and heavy lock contention.

Performance Data

TPS is improved by more than 50% under high concurrency and heavy lock contention.
Test method: use the oltp_read_write.lua script of sysbench (pareto random type enabled) to test TPS on eight tables
(10 MB data) at the REPEATABLE READ transaction isolation level
Test environment: TencentDB instance with 32 cores and 128 GB memory

Thread Count FCFS (FIFO) CATS Performance Improvement

128 11,999 12,005 0%

256 6,609 10,137 53%

512 3,453 9,365 171%

1,024 2,196 7,015 219%

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 156

Instructions

In MySQL 5.7, you can use the global parameter innodb_trx_schedule_algorithm to specify the transaction

scheduling algorithm. The default value is auto .

Valid values:
auto: Automatically adjust the transaction scheduling algorithm based on current system status. If the number of
threads waiting for a lock exceeds 32, adopt CATS; otherwise, adopt First Come First Serve (FCFS), an algorithm
similar to FIFO.

fcfs: Adopt the FCFS algorithm.
cats: Adopt the Contention-Aware Transaction Scheduling algorithm.

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Description

innodb_trx_schedule_algorithm Yes string auto [auto,fcfs,cats]

Specify the
transaction
scheduling
algorithm

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.
In MySQL 8.0, auto is the only valid value.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 156

Computation Pushdown
Last updated：2024-07-22 12:37:15

Overview

This feature pushes LIMIT/OFFSET and SUM operations down to the storage engine InnoDB when querying single
tables, effectively reducing query latency.
When LIMIT/OFFSET is executed using secondary indexes, this feature can avoid using the clustered index values as

pointers to find the full table rows, effectively cutting the cost of scanning table data.
This feature pushes SUM operations down to InnoDB. In other words, instead of sending rows to the MySQL server,
InnoDB calculates data itself and returns the final result to the MySQL server.

Supported Versions

LIMIT/OFFSET optimization applies to kernel version MySQL 5.7 20180530.
SUM optimization applies to kernel version MySQL 5.7 20180918.

Use Cases

This feature is mainly used to optimize single-table queries with LIMIT/OFFSET or SUM clauses, such as Select

from tbl Limit 10”, “Select from tbl Limit 10,2 , and Select sum(c1) from tbl .

This feature cannot optimize the following queries:
Queries with DISTINCT, GROUP BY, or HAVING clauses
Nested subqueries
Queries with FULLTEXT indexes

Queries with ORDER BY clauses, where the optimizer fails to use indexes to implement ORDER BY
Queries with multi-range read (MRR)
Queries with SQL_CALC_FOUND_ROWS.

Performance Data

Import one million rows of data and test query performance in sysbench:
The execution time of select * from sbtest1 limit 1000000,1; decreases from 6.3 to 2.8 seconds.

The execution time of select sum(k) from sbtest1; decreases from 5.4 to 1.5 seconds.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 156

Instructions

During the execution of an SQL statement, the optimizer automatically modifies the query execution plan to implement
computation pushdown according to the following parameters.
Parameters are as follows:

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Description

cdb_enable_offset_pushdown Yes bool ON {ON,OFF}

Enable or disable
LIMIT/OFFSET
pushdown. It is
enabled by default.

cdb_enable_sumagg_pushdown Yes bool OFF {ON,OFF}

Enable or disable
SUM pushdown. It
is disabled by
default.

Note:
Currently, you cannot directly modify the values of the above parameters. If needed, submit a ticket for assistance.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 156

Security Features
Transparent Data Encryption
Last updated：2024-07-22 12:38:10

Overview

TXSQL inherits the transparent data encryption mechanism of MySQL and provides another implementation of the
keyring plugin: keyring KMS, which integrates keyring with Tencent Cloud's enterprise-grade Key Management
Service (KMS) service.

KMS is a data and key security protection service of Tencent Cloud, where all involved processes use high-security
communication protocols to guarantee high service security. In addition, it provides distributed cluster management
and hot backup capabilities to ensure high service reliability and availability.
KMS uses a two-layer key system, which involves two types of keys: customer master key (CMK) and data encryption
key (DEK). A CMK is used to encrypt small packet data (up to 4 KB in size), such as DEK, password, certificate, and

configuration file. A DEK is used to encrypt massive amounts of business data in symmetric encryption method during
storage or communication and is encrypted and protected in asymmetric encryption method with a CMK. In this way,
data can be encrypted both in the memory and files.

Supported Versions

Kernel version: MySQL 5.7 20171130 and later.
Kernel version: MySQL 8.0 20200630 and later.

Use Cases

Transparent data encryption means that data encryption/decryption operations are imperceptible to users. It supports

real-time I/O encryption/decryption of data files; that is, data will be encrypted before being written to the disk and
decrypted when being read from the disk into the memory. This helps meet the compliance requirements for static
data encryption.

Instructions

For more information, see Enabling Transparent Data Encryption.

https://intl.cloud.tencent.com/zh/document/product/1030
https://intl.cloud.tencent.com/document/product/236/38491

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 156

Audit
Last updated：2024-07-22 12:38:22

Overview

Tencent Cloud offers database auditing for TencentDB MySQL instances. With this feature, database access and
SQL statement execution information, including the start time of statement execution, the number of scanned rows,
lock wait time, CPU time, client IP, username, and SQL statement, will be audited, assisting enterprises in risk

management and data protection.

Use Cases

This feature is suitable for the use cases where risky database behaviors (such as SQL injection and abnormal
operation) need to be recorded and alarmed.

Performance Impact

There are two audit modes: sync and async. Sync audit synchronously records all audit logs with an average impact of
less than 6% on instance performance. But async audit has almost no impact (less than 3%, to be precise), which is

industry-leading.

Instructions

For more information on how to enable TencentDB for MySQL audit, see Enabling TencentDB for MySQL Audit.

https://intl.cloud.tencent.com/document/product/1102/41311

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 156

Stability Features
Second-Level Column Addition
Last updated：2024-07-22 12:42:01

Overview

The quick column addition feature allows you to quickly add columns to a big table by only modifying the data
dictionary, which eliminates the need of data replication during column adding and greatly reduces the column adding
time for big tables and the impact on the system.

Supported Versions

Kernel version: MySQL 5.7 20190830 and later.
Kernel version: MySQL 8.0 20200630 and later.

Use Cases

This feature is suitable for adding columns to a table with a high volume of data.

Performance Data

In tests with a table of 5 GB data, the time for adding a column is reduced from 40 seconds to below 1 second.

Instructions

INSTANT ADD COLUMN syntax

Add the algorithm=instant clause to ALTER TABLE to add a column as follows:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 156

ALTER TABLE t1 ADD COLUMN c INT, ADD COLUMN d INT DEFAULT 1000, ALGORITHM=INSTANT;

The innodb_alter_table_default_algorithm parameter is added, which can be set to inplace or

 instant .

This parameter is inplace by default and can be configured to adjust the default algorithm of ALTER TABLE

as follows:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 156

SET @@global.innodb_alter_table_default_algorithm=instant;

If no algorithm is specified, the default algorithm configured by this parameter will be used for ALTER TABLE

operations.

Restrictions on INSTANT ADD COLUMN

A statement can contain only column addition operations.
A new column will be added to the end, and column order cannot be changed.
INSTANT ADD COLUMN is not supported in tables with the COMPRESSED row format.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 156

INSTANT ADD COLUMN is not supported in tables with a full-text index.
INSTANT ADD COLUMN is not supported for temp tables.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 156

Second-Level Column Modification
Last updated：2024-06-18 14:39:37

Description of the Feature

Second-level Column Modification operations are only recorded in the Data Dictionary Table to log Column
Modification Information, avoiding the data copying that was previously necessary for column modification operations.
This significantly reduces the time required for Large Table Column Modifications, minimizing the impact on

Application Systems and resource consumption.

Supported Versions

Kernel version MySQL 8.0 20230630 and above.

Applicable Scenario

This feature is suitable for modifying columns in Tables with Large Data Volumes.

Test Results

Number of
table rows

Modification Duration without using Second-level
Column Modification Feature

Modification Duration with Second-level
Column Modification Feature

1 million 22.9 seconds 0.01 seconds

10 Million 13 minutes and 39.72 seconds 0.01 seconds

100 million 3 hours, 51 minutes, 16.40 seconds 0.01 seconds

Use Instructions

Second-level Column Modification Syntax ALTER TABLE add algorithm = instant Clause, column modification can be
performed with the following statement:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 156

ALTER TABLE modify_tab_col MODIFY COLUMN c1 BIGINT,ALGORITHM=INSTANT;

Add the parameter cdb_instant_modify_column_enabled to control the Second-level Column Modification feature,

which can be set to ON/OFF.

Parameter Name Status Type Default
Value

Valid
Values/Value
Range

Description

cdb_instant_modify_column_enabled yes bool OFF ON/OFF Feature Toggle,
determining whether

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 156

to enable the
Second-level
Column Modification
feature.

Note:
Users cannot directly modify the parameter values mentioned above. To make changes, submit a ticket.

Second-level Column Modification Restrictions

Support is limited to modifying column types only; changes to the field's nullable, unsigned/signed, charset are not
supported, but modifying the default property is allowed.

Only certain type modifications are supported, and only length can be increased. Currently, conversions are only
supported between char and varchar, binary and varbinary, and amongst tinyint/smallint/mediumint/int/bigint.
For example:
char(10) → char(100)
char(10) → varchar(100)

varchar(10) → char(100)
varchar(10) → varchar(100)
binary(10) → binary(100)
binary(10) → varbinary(100)
varbinary(10) → binary(100)
varbinary(10) → varbinary(100)

tinyint/smallint/mediumint/int → bigint
tinyint/smallint/mediumint → int
tinyint/smallint → mediumint
tinyint → smallint
Note:

Modifications between char/varchar and binary/varbinary, as well as integer types, are not supported. For example,
changing from char to binary, binary to varchar, or reducing the range of integer types, such as from bigint to int or int
to smallint, is not allowed.
A single column can only be modified using INSTANT MODIFY COLUMN once, but multiple columns can be modified
with it simultaneously.

After a single column is added/modified using INSTANT ADD/MODIFY COLUMN for the first time, any subsequent
modifications to that column must be done in a non-instant manner.
INSTANT ADD COLUMNS and INSTANT MODIFY COLUMNS operations must be executed separately. You may
first execute INSTANT ADD COLUMNS, then INSTANT MODIFY COLUMNS, or vice versa. You cannot perform

https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/236/43501

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 156

INSTANT MODIFY COLUMN on a column that has been added with INSTANT ADD COLUMN.
You cannot modify the column name and column type at the same time. Instead, you can modify the column name first
and then column type.

Import/export is not supported.
Encryption and compression are not supported.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 156

Async Deletion of Big Tables
Last updated：2024-07-22 12:42:20

Overview

This feature is used to drop tables with large data files to avoid I/O fluctuation.
 DROP TABLE renames the original database file (.ibd) to make a new temp file and returns a success. The temp file

is stored in the directory specified by the innodb_async_drop_tmp_dir parameter and is truncated in batches

on the backend. The size of the file to be truncated each time is specified by the
 innodb_async_truncate_size parameter. The status of the async table drop feature is controlled by the

 innodb_async_truncate_work_enabled parameter.

This feature does not require user operations and is automatically completed by the kernel. The principle is to create a
hard link in another directory for the data file of the table when the table is dropped, so when DROP TABLE is

executed, only the hard link to the file is deleted. After that, the backend thread will scan the files that need to be
deleted in the hard-linked directory and automatically truncate the data file of the dropped table.

Supported Versions

Kernel version: MySQL 5.6 20200303 and later.
Kernel version: MySQL 5.7 20220715 and later.
Kernel version: MySQL 8.0 20200630 and later.

Use Cases

This feature is used to drop tables with large data files.

Instructions

For MySQL 5.6, you can set the innodb_async_truncate_work_enabled parameter to ON to enable the

async mode of DROP TABLE . The default value is OFF .

For MySQL 5.7 and 8.0, you can set the innodb_table_drop_mode parameter to ASYNC_DROP to enable

the async mode of DROP TABLE . The default value is SYNC_DROP .

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 156

The size of the file to be truncated each time is specified by the innodb_async_truncate_size parameter.

This is not supported for MySQL 5.6.
You can make the async drop of big tables more efficient by enabling the innodb_fast_ddl parameter as

instructed in FAST DDL.
MySQL 5.6 parameter description
MySQL 5.7 parameter description
MySQL 8.0 parameter description

Parameter
Effective
Immediately Type

Default
Value

Valid
Values/Value
Range

Description

innodb_async_truncate_work_enabled Yes string OFF ON/OFF
Whether to drop
big tables
asynchronously

Parameter Effective
Immediately

Type Default Value Valid Values/Value Range D

innodb_table_drop_mode Yes string SYNC_DROP SYNC_DROP/ASYNC_DROP
W
b
a

innodb_async_truncate_size Yes int 128 128–168

T
fi
tr
ti
b
th
o
T

e
M

Parameter Effective
Immediately

Type Default Value Valid Values/Value Range D

innodb_table_drop_mode Yes string SYNC_DROP SYNC_DROP/ASYNC_DROP
W
b
a

innodb_async_truncate_size Yes int 128 128–168 T
fi

https://intl.cloud.tencent.com/document/product/236/43489

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 156

tr
ti
b
th
o
T

e
M

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 156

Hotspot Update
Last updated：2024-07-22 12:42:32

Overview

For businesses with frequent updates or flash sales, the hotspot update feature greatly optimizes the performance of
the UPDATE operation on frequently updated rows. If automatic hotspot update detection is enabled, the system will
automatically detect whether there is a single row of hotspot update, and if so, it will queue the large number of

concurrent UPDATE operations and execute them in sequence, so as to reduce the risk of concurrency performance
being compromised by many row locks.

Supported Versions

Kernel version: MySQL 5.7 20200630 and above.
Kernel version: MySQL 8.0 20200830 and above.

Use Cases

This feature is suitable for scenarios where the pressure of updating a single row or multiple rows with the primary key

specified is very high, such as flash sales.

Performance Data

For high-concurrency UPDATE operations on a single row with the primary key specified, the performance is
improved by over 10 times.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 156

Instructions

For more information, see Hotspot Update Protection.

https://intl.cloud.tencent.com/document/product/1035/36037

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 156

SQL Throttling
Last updated：2024-06-18 17:24:18

Overview

The SQL throttling feature enables you to set a keyword to limit the number of concurrent executions of the specified
SQL statement.

Supported Versions

Kernel Version MySQL 8.0 20211202 and Later

Kernel Version MySQL 5.7 20200331 and Later
Kernel Version MySQL 5.6 20200915 and Later

Use Cases

This feature is suitable for SQL statements with high concurrency and resource usage that compromise system
performance.

Instructions

For more information, see SQL Throttling.

https://intl.cloud.tencent.com/document/product/1035/36037

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 156

Statement Outline
Last updated：2024-07-22 12:42:52

Overview

SQL optimization is a crucial step in improving database performance. To avoid the impact when the optimizer fails to
select an appropriate execution plan, TXSQL provides the outline feature for you to bind execution plans. MySQL
allows you to use hints to manually bind execution plans. The hint information contains the optimization rule for SQL

statements, algorithm to be used, and index for data scan, and an outline relies on hints to specify execution plans.
Tencent Cloud provides the mysql.outline system table for you to add plan binding rules and the

 cdb_opt_outline_enabled switch for you to enable/disable the outline feature.

Supported Versions

Kernel version: MySQL 8.0 20201230 and above.

Use Cases

This feature is suitable for scenarios where an execution plan in the production environment has poor performance (for

example, the index in the execution plan is incorrect), but you don't want to modify SQL statements and release a new
version to fix this problem.

Performance Impact

If cdb_opt_outline_enabled is enabled, the execution efficiency of SQL statements missing the outline will not

be affected.
The execution efficiency of SQL statements hitting the outline will be lower than that of general execution, but the
performance after outline binding is generally improved by several times.

To use cdb_opt_outline_enabled , you should consult the OPS or kernel engineers to avoid faulty binding and

consequential performance compromise.

Instructions

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 156

The outline syntax uses a new syntax form:
Configure outline information: outline "sql" set outline_info "outline";

Clear outline information: outline reset ""; outline reset all;

Refresh outline information: outline flush;

Below are the outline use methods with the following schemas as examples:

create table t1(a int, b int, c int, primary key(a));

create table t2(a int, b int, c int, unique key idx2(a));

create table t3(a int, b int, c int, unique key idx3(a));

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 156

Parameter Effective
Immediately

Type Default
Value

Valid
Values

Description

cdb_opt_outline_enabled Yes bool false true/false Whether to enable the outline
feature.

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.

Binding outline

To bind an outline, replace the SQL statement with another where the SQL syntax is not changed but some hint

information is added to tell the optimizer how to execute the statement.
The syntax is in the format of outline "sql" set outline_info "OUTLINE"; . Note that the string after

 outline_info must start with "OUTLINE:" , which is followed by the SQL statement with the hint information

added. For example, you can add the index in column a to table t2 in the SQL statement select *from

t1, t2 where t1.a = t2.a as follows:

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 156

outline "select* from t1, t2 where t1.a = t2.a" set outline_info "OUTLINE:select *

Binding optimizer hint

To make the feature more flexible, TXSQL allows you to add optimizer hints incrementally to SQL statements. You

can also implement the same feature by directly binding an outline.
The syntax is in the format of outline "sql" set outline_info "outline"; . Note that the string after

 outline_info must start with "OPT:" , which is followed by the optimizer hint information to be added. For

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 156

example, you can specify SEMIJOIN of MATERIALIZATION/DUPSWEEDOUT for the SQL statement select

*from t1 where t1.a in (select b from t2) as follows:

outline "select* from t1 where t1.a in (select b from t2)" set outline_info "OPT:2#

outline "select * from t1 where t1.a in (select b from t2)" set outline_info "OPT:1

You can add only one optimizer hint to the original SQL statement at a time and must comply with the following rules:
The OPT keyword must follow ".

':' must be placed before the new statement to be bound.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 156

You must add two fields (query block number#optimizer hint string), which must be separated with "#" (e.g.,
 "OPT:1#max_execution_time(1000)").

Binding index hint

To make the feature more flexible, TXSQL allows you to add index hints incrementally to SQL statements. You can

also implement the same feature by directly binding an outline.
The syntax is in the format of outline "sql" set outline_info "outline"; . Note that the string after

 outline_info must start with "INDEX:" , which is followed by the index hint information to be added.

For example, you can add the index idx1 of USE INDEX in FOR JOIN type to the table t1 in the

database test in query block 3 for the SQL statement select *from t1 where t1.a in (select t1.a

from t1 where t1.b in (select t1.a from t1 left join t2 on t1.a = t2.a)) as follows:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 156

outline "select* from t1 where t1.a in (select t1.a from t1 where t1.b in (select t

You can add only one index hint to the original SQL statement at a time and must comply with the following rules:

The INDEX keyword must follow ".

':' must be placed before the new statement to be bound.
You must add five fields (query block number#db_name#table_name#index_name#index_type#clause).
Here, index_type has three valid values (0: INDEX_HINT_IGNORE; 1: INDEX_HINT_USE; 2:

INDEX_HINT_FORCE), and clause also has three valid values (1: FOR JOIN; 2: FOR ORDER BY; 3: FOR

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 156

GROUP BY), which must be separated by "#" (e.g., "INDEX:2#test#t2#idx2#1#0" , indicating to bind the

index idx1 in USE INDEX FOR JOIN type to the table test.t2 in the second query block).

Deleting the outline information of SQL statement

TXSQL allows you to delete the outline binding information from an SQL statement.

The syntax is in the format of outline reset "sql"; . For example, to delete the outline information from

 select *from t1, t2 where t1.a = t2.a , run the following statement: outline reset "select*

from t1, t2 where t1.a = t2.a"; .

Clearing all outline information

TXSQL allows you to clear all outline binding information in the kernel. The syntax is outline reset all , and

the execution statement is outline reset all; .

There may be some specific problems in the production environment where you must bind an index. In this case, you
can directly configure an outline for binding.
You should analyze the possible performance compromise after configuring an outline and bind an outline only if the
compromised performance is acceptable. You can consult kernel engineers if necessary.

Parameter Status Description

TXSQL provides multiple methods to view the outline binding of your SQL statements. You can use the
 mysql.outline table to view the information of configured outlines. You can also use the show

cdb_outline_info and select * from information_schema.cdb_outline_info APIs to view the

outline information in the memory. Whether the entered SQL statement is bound to the specified outline is subject to
whether the outline information is in the memory. Therefore, you can use the two APIs for debugging.
The mysql.outline system table is added to store the records of configured outline information, which has the

following fields:

Field Name Description

Id Outline number.

Digest Hash value of the original SQL statement.

Digest_text Fingerprint information text of the original SQL statement.

Outline_text Fingerprint information text of the SQL statement after the outline is bound.

You can use show cdb_outline_info or select * from

information_schema.cdb_outline_info to view the outline records in the memory, and execution of the

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 156

corresponding SQL statement will hit the bound plan in the outline. The parameters are as follows:

Field Name Description

origin Original SQL statement fingerprint.

outline SQL statement fingerprint after the outline is bound.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 156

TXRocks Engine
Overview
Last updated：2024-07-22 12:48:36

TXRocks Overview

TXRocks is a transactional storage engine developed by Tencent's TXSQL team based on RocksDB, a very popular
high-performance persistent key-value (KV) store.

Why TXRocks?

By leveraging the LSM tree storage structure of RocksDB, the TXRocks transactional storage engine not only reduces

wastes caused by InnoDB's half-full pages and fragments, but also uses the compact storage format. Therefore, it has
a performance comparable to that of InnoDB but requires only a half or even smaller storage space. It is more suitable
for businesses with a large data volume and high requirements for the transactional read/write performance.

RocksDB's LSM Tree Architecture

RocksDB uses the LSM tree storage structure, where data is organized as a set of MemTables in the memory and
multi-level SST files on the disk.

For a write request, the new version of the record is first written to an active MemTable, and then WAL is written for
data durability. After the MemTable and WAL file are written for the request, a response can be returned.
When the volume of data written into an active MemTable reaches a certain threshold, the MemTable will be switched
to a frozen immutable MemTable. The backend thread flushes the immutable MemTable to the disk to generate an
SST file. SST files are sorted at L0 to L6 levels in the flush order. At each level, the records of different SST files are
sequential and don't overlap. However, to release the memory space occupied by immutable MemTables promptly,

such records are allowed to overlap at L0.
When a record is read, it will be searched for in the active MemTable, immutable MemTable, SST files at L0, and SST
files at L1–6 in sequence. Once the record is found in any component, the latest version of the record is found and will
be returned immediately.
When a range scan is performed, an iterator will be generated at each level of data containing MemTables. The

iterators perform a merge sort to find the next record. As shown in the read process, if the LSM tree has too many
levels, the read performance, especially the performance of range scan will drop significantly. Therefore, to maintain a

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 156

better LSM tree shape, the backend continuously performs compaction operations to merge low-level data to a higher
level and thus reduce the number of levels.

TXRocks Architecture

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 156

TXRocks Strengths

Less storage space

Compared with the B+tree structure used by InnoDB, the LSM tree can save a considerable amount of storage space.
InnoDB's B+tree split often results in half-full pages, idle pages, and space waste; therefore, InnoDB has a lower
effective page utilization.

The size of TXRocks SST files is generally set to dozens or hundreds of MB or a greater value. Therefore, TXRocks
has much fewer wastes caused by 4K alignment. Although an SST file is divided into blocks, those blocks don't need
to be aligned.
In addition, TXRocks SST files use prefix compression, so that only one record will be generated for data records with
the same prefix. SST files at different levels can adopt different compression algorithms, further reducing the storage

space overheads. For transaction overheads, InnoDB records must contain trx id and roll_ptr fields. By

contrast, other transaction overheads don't need to be stored for SST files at the lowest level of TXRocks (containing
most data); for example, the version number in a record can be erased after a long enough period of time.

Lower write amplification

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 156

InnoDB uses the in-place change mode, where the entire page may be flushed to the disk even when only one row of
data is changed, causing a high write amplification and more random writes.
TXRocks uses the append-only change mode, which has a lower write amplification; therefore, it is more friendly to

devices such as SSD with a limited number of write cycles.

Use Cases

TXRocks is very suitable for businesses that are sensitive to the storage costs, have much more writes than reads and
a large data volume, and require a high transaction read/write performance.

How to Use TXRocks

For more information, see Instructions.

Optimization and Subsequent Development

The TXSQL team has been optimizing TXRocks based on business needs; for example, they have improved the SUM

query performance by over 30 times. They are also actively exploring the integration with new hardware to uses AEP
as the L2 cache for higher performance and cost-effectiveness.
As the storage engine of TencentDB for MySQL, TXRocks will be continuously optimized and improved with regard to
problems encountered during use. The TXSQL team will also make technical explorations based on new hardware
and release TXRocks in more key services as an important supplement to InnoDB.

https://intl.cloud.tencent.com/document/product/236/47014

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 156

Instructions
Last updated：2024-07-22 12:50:43

TXRocks is a transactional storage engine developed by Tencent's TXSQL team based on RocksDB. It saves more
storage space and has a lower write amplification.

Product Overview

By leveraging the LSM tree storage structure of RocksDB, the TXRocks transactional storage engine not only reduces

wastes caused by InnoDB's half-full pages and fragments, but also uses the compact storage format. Therefore, it has
a performance comparable to that of InnoDB but requires only a half or even smaller storage space. It is more suitable
for businesses with a large data volume and high requirements for the transactional read/write performance.

Prerequisites

The database version must be MySQL 5.7 or 8.0 on a two-node architecture.

Purchasing TencentDB for MySQL Instance (with RocksDB Engine)

You can select RocksDB as the engine when purchasing an instance on the TencentDB for MySQL purchase page.

For more information on other parameters, see Creating MySQL Instance.

Note:
RocksDB is a key-value storage engine, with efficient writing and high compression. Currently, only TencentDB for
MySQL 5.7 and 8.0 instances can use the RocksDB engine.

Creating RocksDB Table

https://buy.intl.cloud.tencent.com/cdb?payType=0®ionId=1&netType=2&goodsNum=1&isAutoRenew=1&cdbType=Z3&engineVersion=8.0&engineType=InnoDB&projectId=0&protectMode=0&timeSpan=1¶mTemplateId=HIGH_STABILITY&subnetId=subnet-itrwwpw8&backupZone=&port=3306&charset=UTF8&sensitive=1&collation=UTF8_GENERAL_CI&vpcId=vpc-ouistkq5&slaveZone=ap-guangzhou-3&zoneId=100003&memory=8000&cpu=4&volume=200&securityGroupId=sg-lah6fbgt
https://intl.cloud.tencent.com/document/product/236/37785

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 156

If RocksDB is selected as the default engine during instance creation, it will be the default engine used for table
creation. You can run the following command to view the default engine:

show variables like '%default_storage_engine%';

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 156

If the default engine is RocksDB, you cannot specify a storage engine in table creation statements:

After a table is created, its data will be stored in RocksDB and can be used in the same way as in InnoDB.

Engine Feature Limits

TXRocks has certain limits on engine features as detailed below:

Category Feature TXRocks Limit

DDL Online DDL

Not supported. For example, `ALTER TABLE ...
ALOGRITHM=INSTANT` is not supported. Only the
`COPY` algorithm is supported for partition management
operations.

SQL Foreign key Not supported.

Partitioned table Not supported.

Generated column Not supported.

Explicit DEFAULT Not supported. For example, `CREATE TABLE t1(c1

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 156

expression FLOAT DEFAULT(RAND()))ENGINE=ROCKSDB` will fail,
with the error `'Specited storage engine' is not supported for
default value expressions` reported.

Encrypted table Not supported.

Index

Spatial index The spatial index and spatial data types such as
`GEOMETRY` and `POINT` are not supported.

Full-text index Not supported.

Multi-valued index Not supported.

Replication

Group replication Not supported.

Binlog format Only the `ROW` format is supported, while `STMT` and
`MIXED` formats are not.

Clone plugin Not supported.

Transportable tablespace Not supported.

Transaction
and lock

LOCK NOWAIT and SKIP
LOCKED

Not supported.

Gap lock Not supported.

Savepoint Not supported.

Partial LOB field update Not supported.

XA transaction Not recommended.

Parameter Description

Note:
When creating a TencentDB for MySQL instance, you can select RocksDB as the default storage engine. You can
also customize the parameter template to suit your needs by following the parameter descriptions below.

MySQL 5.7 parameter list

Parameter
Restart
Required

Default
Value

Value
Range/Valid
Values

Description

rocksdb_use_direct_io_for_flush_and_compaction Yes ON ON/OFF Whether to use D

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 156

rocksdb_flush_log_at_trx_commit No 1 0/1/2

Controls when to
It is similar to
 innodb_flush

and indicates whe
be synced when b
0: Transactions a
committed.
1: Transactions a
committed.
2: Transactions a
second.

rocksdb_lock_wait_timeout No 1 1–
1073741824

Lock wait timeout

rocksdb_deadlock_detect No ON ON/OFF
Whether to enable
it is enabled, all d
recorded in mys

rocksdb_manual_wal_flush Yes ON ON/OFF

If the total size of
 rocksdb_max_

RocksDB will forc
to the disk to ensu
can be deleted.

MySQL 8.0 parameter list

Parameter Restart
Required

Default Value Value Range/Valid
Values

Descriptio

rocksdb_flush_log_at_trx_commit No 1 0/1/2

Controls w
It is simila
 innodb_

and indica
be synced
0: Transac
committed
1: Transac
committed
2: Transac
second.

rocksdb_lock_wait_timeout No 1 1–1073741824 Lock wait

rocksdb_merge_buf_size No 524288(=512K) 100– Size of the

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 156

18446744073709551615 secondary

rocksdb_merge_combine_read_size No 8388608 (=8M) 524288(=512K)–
18446744073709551615

Size of the
during sec

rocksdb_deadlock_detect No ON ON/OFF Whether t

rocksdb_manual_wal_flush Yes ON ON/OFF

If the total
 rocksd

RocksDB
to the disk
can be de

RocksDB Monitoring Metrics

RocksDB monitoring metrics are as listed below:

Metric Description

rocksdb_bytes_read Data read from disk

rocksdb_bytes_written Data written to disk

rocksdb_block_cache_bytes_read Blocks read

rocksdb_block_cache_bytes_write Blocks written

rocksdb_wal_log_capacity Data written to WAL log

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 156

Cost Performance
Last updated：2024-07-22 12:50:55

TXRocks has a performance comparable to that of InnoDB; however, its LSM tree structure reduces wastes caused
by InnoDB half-full pages and fragments, saving more storage space and delivering an ultra high cost performance.

Background

TXRocks is used in TencentDB products as an important supplement to InnoDB. With a similar performance, it is

further optimized and improved to save more storage space. Below is the comparison between the two engines in
terms of space usage and performance.

TXRocks Uses Less Space than InnoDB

Test scenario: Both storage engines use the default configuration and the default table structure of sysbench. Each
table contains 800,000 records, and the total number of tables gradually increases from 4 to 512.
The space usage of TXRocks and InnoDB under the specified test conditions is as shown above. The disk usage is

displayed on the Y axis.
As shown in the test data, the greater the data volume, the slower the increase of disk usage by TXRocks, and the
higher the storage space utilization of TXRocks (it uses only 42.71% of the space used by InnoDB in the best case).
For data records with highly repetitive prefixes, TXRocks has a higher compression rate and storage cost
performance.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 156

TXRocks and InnoDB Have a Similar Performance

Test scenario: An 8-core 32 GB MEM instance and six tables containing five million rows of data each are used for
testing. Each test case is performed after cold instance restart and runs for 1,200 seconds.
The performance comparison between TXRocks and InnoDB under the specified test conditions is as shown above.

You can see that TXRocks and InnoDB have a similar performance.
Key parameters in the sysbench command:

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 156

sysbench --table-size=5000000 --tables=6 --threads=32 --time=1200

Summary

TXRocks is a TencentDB for MySQL storage engine that has a performance comparable to that of InnoDB but uses

less space. It not only guarantees the business performance, but also reduces the storage costs. For more
information, see Overview.

https://intl.cloud.tencent.com/document/product/236/47015

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 156

Practical Tutorial of TXRocks
Last updated：2024-07-31 10:00:32

This document describes how to accelerate the import of massive amounts of data to a database with the TXRocks
practical tutorial.

Background

Scenario: The import of massive amounts of data to a database with the TXRocks engine needs to be accelerated.

Impact: The Rows inserted during bulk load must not overlap existing rows error may be

reported when massive amounts of data are imported.

Option 1

1. Delete secondary indexes and retain only the primary key index.
2. Adjust memory parameters based on the specification and data volume.
Note:

Appropriately increase the values of rocksdb_merge_buf_size and

 rocksdb_merge_combine_read_size parameters based on the specification and data volume.

 rocksdb_merge_buf_size indicates the data volume of each way in k-way merge during index creation.

 rocksdb_merge_combine_read_size indicates the total memory used in k-way merge.

 rocksdb_block_cache_size indicates the size of rocksdb_block_cache . We recommend you decrease

its value temporarily during k-way merge.

3. Use bulk load to import the data.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 156

SET session rocksdb_bulk_load_allow_unsorted=1;

SET session rocksdb_bulk_load=1;

...

Import the data

...

SET session rocksdb_bulk_load=0;

SET session rocksdb_bulk_load_allow_unsorted=0;

Note:
If the imported data is sorted, you don't need to configure rocksdb_bulk_load_allow_unsorted .

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 156

4. Recreate secondary indexes one by one after all data is imported.
Note:
Secondary index creation involves k-way merge. rocksdb_merge_buf_size indicates the data volume of each

way, and rocksdb_merge_combine_read_size indicates the total memory used in k-way merge.

For example, we recommend you set rocksdb_merge_buf_size to 64 MB or higher and set

 rocksdb_merge_combine_read_size to 1 GB or higher to avoid OOM. After all data is imported, you must

modify the parameters to their original values.
As a lot of memory is used during the creation of each secondary index, we recommend you not create many of them

at the same time.

Option 2

You can disable unique_check during data import to improve the import performance.

TencentDB for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 156

SET unique_checks=OFF;

...

Import the data.

...

SET unique_checks=ON;

Note:
After the operation is completed, you must set unique_checks back to ON ; otherwise, the uniqueness of

INSERT operations in subsequent normal transaction writes will not be checked.

