Cloud Block Storage
Product Introduction
Product Documentation
Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are subject to change. Specific products and services and the standards applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.
Contents

Product Introduction
 Overview
 Product Strengths
Use Cases
Regions and availability zones
Cloud Disk Instances
 Cloud Disk Types
 Cloud disk statuses
 Cloud Disk Encryption
 Enhanced SSD Performance
Cloud Disk Snapshots
 Snapshot Overview
 Snapshot Principles
Access Management
 An Overview of Access's Management
 Authorized resource types
 Authorization policy syntax
Related Products
Predecessor
What is Tencent Cloud Block Storage?

Cloud Block Storage (CBS) is a highly available, highly reliable, low-cost, and customizable block storage device. It can be used as an independent and scalable disk for CVM, providing efficient and reliable storage devices. CBS provides long-term storage at the data block level. It is typically used as the primary storage device for data that requires frequent and fine-grained updates (such as file system and database), featuring high availability, reliability, and performance. CBS uses a three-copy distribution mechanism to back up your data on different physical machines to avoid data loss caused by a single point of failure, improving data reliability.

You can easily purchase, adjust, and manage your cloud disk devices through the console, and build a file system to create storage space larger than that of a single cloud disk. Cloud disks can be classified according to different lifecycles as follows:

- Lifecycle of non-elastic cloud disk completely follows that of the CVM. It is purchased with the CVM and used as a system disk. It does not support mounting and unmounting.
- Lifecycle of elastic cloud disk is independent of that of the CVM. It can be purchased separately and manually mounted to the CVM. It can also be purchased with the CVM and automatically mounted to the CVM as a data disk. Elastic cloud disk supports mounting and unmounting on CVM in the same availability zone at any time. You can mount multiple elastic cloud disks to the same CVM, or unmount a cloud disk from CVM A and then mount it to CVM B.

Tencent Cloud places quota limits on users’ cloud disks. For more information, see Use Limits.

Typical use cases

- CVM discovers during use that disk space is insufficient. You can purchase a disk or mount multiple cloud disks to the CVM to meet the requirement for storage capacity.
- When purchasing the CVM, you do not need additional storage space. When you have storage requirements, you can expand the CVM storage capacity by purchasing a cloud disk.
- When there is a data exchange request between multiple CVMs, you can unmount cloud disks (data disks) and remount them to other CVMs.
- You can expand the maximum storage capacity of a single cloud disk by purchasing multiple cloud disks and configuring a Logical Volume Manager (LVM).
- You can expand the maximum I/O capacity of a single cloud disk by purchasing multiple cloud disks and configuring a Redundant Array of Independent Disks (RAID) policy.

Features

Tencent Cloud provides a variety of long-term storage devices, allowing the user to select an appropriate type of cloud disk to store files, build databases, etc.

- Three disk types: Premium Cloud Storage, SDD and Enhanced SSD.
- Elastic mounting and unmounting: all types of elastic cloud disks support elastic mounting and unmounting. You can mount multiple cloud disks on a CVM to build a file system with high capacity.
- Elastic expansion: you can perform elastic expansion on a cloud disk at any time, and a single disk supports a maximum capacity of 32TB.
- Snapshot backup: snapshot creation and rollback are supported to back up key data promptly. You can use snapshot to create the disk and achieve rapid business deployment.
Product Strengths

Last updated: 2020-10-14 15:04:41

Reliable

Cloud disks use a three-copy distribution mechanism, and the system ensures that data is written in three copies before returning a write successful response. If any of the copies fail, the backend data replication mechanism can quickly replicate a new copy by using methods such as data migration, ensuring the availability of three data copies at all times to provide you with a secure storage service. Data is stored across racks, and reliability reaches up to 99.9999999%.

Elastic

You can configure the storage capacity freely, and expand the capacity on demand without business interruption.

The maximum capacity of cloud disks is 32TB. A single CVM can mount up to 20 elastic cloud disks as data disks, to efficiently handle TB/PB-level big data processing scenarios.

High Performance

Premium Cloud Storage uses a cache mechanism to satisfy the normal business requirements of users. SSD uses NVMe standards and can provide 26,000 random read-write Input/Output Operations per Second (IOPS) on a single disk. This is suitable for scenarios with high requirements for I/O capability.

Ease of use

You can easily manage and use your cloud disks through simple operations such as creation, mounting, unmounting, and deletion, reducing both costs and business deployment time.

Snapshot Backup
You can create a snapshot of the cloud disk to back up data at any time, and you can also quickly create a cloud disk by using a snapshot file, achieving rapid business deployment.
Use Cases

Typical Use Cases

Delocalization

- **Data storage with high performance and high reliability**: Cloud Block Storage (CBS) efficiently supports hot migration of CVMs, preventing business interruption caused by physical failures. CBS uses the three-copy data redundancy mechanism to back up your data and snapshots, and recover data within seconds, making it suitable for high-load and mission-critical systems.

- **Elastic expansion**: cloud disks can be freely mounted and unmounted in the same availability zone without shutting down or restarting the CVM. Cloud disk capacity can be elastically configured, and expanded on demand.

Massive data analysis

In a typical Spark-HDFS offline data analytics framework, RDD reads/writes and shuffle writes of disks by are all sequential IO, except for the random shuffle read I/O. The sequential I/O accounts for 95%. CBS features an excellent multi-thread concurrent throughput performance, enabling efficient offline data processing at the terabyte and petabyte levels for Hadoop-Mapreduce, HDFS, and Spark. With multi-disk concurrency, a single HDFS cluster can achieve a throughput up to 1 GB/s.

CBS supports big data applications such as data analytics, data mining, and business intelligence for
companies like Xiaohongshu, Giant Interactive Group, Ele, Yoho!BUY, and wepiao.com.

Deployment environment: 5 CVM servers (with 12-Core 40 GB RAM), simulating offline data analysis of 1.5TB data volume.

Test performance:

- Each CVM has mounted one 1 TB HDD cloud disk. Five HDD cloud disks provide a read speed of 500 MB/s, allowing data to be read to memory in 50 minutes.
- Each CVM has mounted one 1 TB SSD, allowing data to be read to memory in 25 minutes.

Core database

SSD is ideal for scenarios with high requirements for IO performance and data reliability. It is particularly suitable for medium and large relational database applications like PostgreSQL, MySQL, Oracle, and SQL Server; for IO-intensive core business systems with high data reliability requirements; and for medium and large development and testing environments with high data reliability requirements.

SSD offers both data reliability and high performance. It constantly provides reliable support for companies such as Heroes Evolved, Wendao, Yoho!BUY, wepiao.com, Xiaohongshu, etc.
Deployment environment: 4 CVM servers (with 4-Core 8 GB RAM). Each has one 800 GB SSD cloud disk mounted, with MySQL version 5.5.42 deployed.

Test performance: simulate OLTP performance testing using sysbench, with a test set of 10 million records. In this test, TPS and QPS reach 1,616 and 29,000 respectively, meaning a single disk is sufficient to support 10 thousand concurrent transactions per second.

Typical business scenarios for I/O models
• Hourly data persistence

Hourly data synchronization

Typical large-scale e-commerce business servers sync large amounts of data to the disk (asynchronous data placement) on the hour every day. Disk load is relatively high at that moment, with a read–write ratio of approximately 3:7.

Peak IOPS varies between 3,000–5,000, peak throughput varies between 10–120MB/s, and duration varies between 1–5 minutes. At other times, the load is relatively low. We recommend you use high-performance cloud disks.

Typical Users: Ele.me, XiaoHongShu
High load OLTP services

CBS hybrid cloud disks guarantee stable disk IO performance 99.5% of the time, avoiding unexpected fluctuations that impact user experience. This service meets the online transaction processing (OLTP) needs of the finance industry by working day and night to fulfill high-load IO read-write requirements.

Typical Users:
- webank
- Futu Securities
• Periodic ultra-high loads

Periodic ultra-high load

Users include top Chinese game developers such as 37Games, Wendao Games, and Heroes Evolved. Peak access is between 7–10 PM and 3–5 AM.

During peak hours, the application program is transmitted to the file system. The IO requests transmitted to the block device are random small amounts (either 4K, 8K or 16K), with peak demand and throughput exceeding 20,000 IOPS and 200MBps respectively. If disk performance can not meet this demand, problems such as `io await` or `%uti!` will occur, causing game players to experience stalling or disconnection. We recommend you use SSD hard disk for this scenario.

Typical Users:
- Wendao Games
- Feng Le Games
- Heroes Evolved
- Continuous sequential read-write

![Bandwidth Graph](image)

Continuous high sequential read-write

A typical Spark–HDFS offline data analysis framework for reading and writing to the disk. RDD read/write and shuffle write use sequential IO. Only shuffle read IO is random IO. 95% of disk IO is sequential IO. Log collection and distribution are dependent on Kafka.

When Kafka writes a message, it writes to page cache, and the thread is asynchronously flushed. When it reads a message, the message is directly transferred from page cache to the socket and sent (the sendfile function implements zero copy). When no corresponding data is found in page cache, disk IO is generated, messages are loaded from the disk to the page cache, and then directly sent from the socket. All I/O is sequential.

We recommend using hybrid cloud disk, which provides reliable long-term throughput performance that can reach up to 130MB/s on a single disk, and up to 1GB/s if a software RAID solution is overlaid.

Typical Users:
Wind Play
Netdragon
Regions and availability zones

Last updated: 2020-12-14 10:59:25

Regions

A region is the physical location of an IDC. In Tencent Cloud, different regions are fully isolated, ensuring cross-region stability and fault tolerance. When purchasing Tencent Cloud services, we recommend selecting the region closest to your end users to minimize access latency and improve download speed.

Regions have the following characteristics:

- The networks of different regions are fully isolated. Tencent Cloud services in different regions cannot communicate via a private network by default.
- Tencent Cloud services in different regions can access the Internet through public IPs, while those in a VPC can use peering connection to communicate with each other via Tencent Cloud’s high-speed network, which is faster and steadier.
- Cloud Load Balancer currently supports intra-region traffic forwarding by default. If cross-region binding is enabled, a CLB instance can be bound to CVM instances in another region.

Availability Zones

An availability zone is a physical IDC of Tencent Cloud with independent power supply and network resource in a single region. It can ensure business stability, as failures (except for large-scale disaster or major power failure) in one AZ are isolated without affecting other AZs in the same region. By starting an instance in an independent availability zone, users can protect their applications from being affected by a single point of failure.

Availability zones have the following characteristics:

- Tencent Cloud services under the same account in the same VPC are interconnected through the private network, meaning they can communicate using private IPs, even if they are in different availability zones.
- Resources under different Tencent Cloud accounts are availability zone-specific, meaning they cannot communicate via a private network, even if they are in the same region.

China
<table>
<thead>
<tr>
<th>Region</th>
<th>Availability Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>South China (Guangzhou)</td>
<td>Guangzhou Zone 1 (sold out)</td>
</tr>
<tr>
<td></td>
<td>ap-guangzhou-1</td>
</tr>
<tr>
<td></td>
<td>Guangzhou Zone 2 (sold out)</td>
</tr>
<tr>
<td></td>
<td>ap-guangzhou-2</td>
</tr>
<tr>
<td></td>
<td>Guangzhou Zone 3</td>
</tr>
<tr>
<td></td>
<td>ap-guangzhou-3</td>
</tr>
<tr>
<td></td>
<td>Guangzhou Zone 4</td>
</tr>
<tr>
<td></td>
<td>ap-guangzhou-4</td>
</tr>
<tr>
<td></td>
<td>Guangzhou Zone 6</td>
</tr>
<tr>
<td></td>
<td>ap-guangzhou-6</td>
</tr>
<tr>
<td>East China (Shanghai)</td>
<td>Shanghai Zone 1</td>
</tr>
<tr>
<td></td>
<td>ap-shanghai-1</td>
</tr>
<tr>
<td></td>
<td>Shanghai Zone 2</td>
</tr>
<tr>
<td></td>
<td>ap-shanghai-2</td>
</tr>
<tr>
<td></td>
<td>Shanghai Zone 3</td>
</tr>
<tr>
<td></td>
<td>ap-shanghai-3</td>
</tr>
<tr>
<td></td>
<td>Shanghai Zone 4</td>
</tr>
<tr>
<td></td>
<td>ap-shanghai-4</td>
</tr>
<tr>
<td></td>
<td>Shanghai Zone 5</td>
</tr>
<tr>
<td></td>
<td>ap-shanghai-5</td>
</tr>
<tr>
<td>North China (Nanjing)</td>
<td>Nanjing Zone 1</td>
</tr>
<tr>
<td></td>
<td>ap-nanjing-1</td>
</tr>
<tr>
<td></td>
<td>Nanjing Zone 2</td>
</tr>
<tr>
<td></td>
<td>ap-nanjing-2</td>
</tr>
<tr>
<td></td>
<td>Nanjing Zone 3</td>
</tr>
<tr>
<td></td>
<td>ap-nanjing-3</td>
</tr>
<tr>
<td>North China (Beijing)</td>
<td>Beijing Zone 1</td>
</tr>
<tr>
<td></td>
<td>ap-beijing-1</td>
</tr>
<tr>
<td></td>
<td>Beijing Zone 2</td>
</tr>
<tr>
<td></td>
<td>ap-beijing-2</td>
</tr>
<tr>
<td></td>
<td>Beijing Zone 3</td>
</tr>
<tr>
<td>Region</td>
<td>Availability Zone</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ap-beijing-3</td>
<td>Beijing Zone 4</td>
</tr>
<tr>
<td></td>
<td>ap-beijing-4</td>
</tr>
<tr>
<td></td>
<td>Beijing Zone 5</td>
</tr>
<tr>
<td></td>
<td>ap-beijing-5</td>
</tr>
<tr>
<td>Southwest China (Chengdu)</td>
<td>Chengdu Zone 1</td>
</tr>
<tr>
<td>ap-chengdu</td>
<td>ap-chengdu-1</td>
</tr>
<tr>
<td></td>
<td>Chengdu Zone 2</td>
</tr>
<tr>
<td></td>
<td>ap-chengdu-2</td>
</tr>
<tr>
<td>Southwest China (Chongqing)</td>
<td>Chongqing Zone 1</td>
</tr>
<tr>
<td>ap-chongqing</td>
<td>ap-chongqing-1</td>
</tr>
<tr>
<td>Hong Kong/Macao/Taiwan (Hong Kong, China)</td>
<td>Hong Kong Zone 1 (Hong Kong nodes cover services in the China regions of Hong Kong, Macao, and Taiwan)</td>
</tr>
<tr>
<td>ap-hongkong</td>
<td>ap-hongkong-1</td>
</tr>
<tr>
<td></td>
<td>Hong Kong Zone 2 (Hong Kong nodes cover services in the China regions of Hong Kong, Macao, and Taiwan)</td>
</tr>
<tr>
<td></td>
<td>ap-hongkong-2</td>
</tr>
<tr>
<td>Southeast Asia (Singapore)</td>
<td>Singapore Zone 1 (Singapore nodes cover services in Southeast Asia)</td>
</tr>
<tr>
<td>ap-singapore</td>
<td>ap-singapore-1</td>
</tr>
<tr>
<td></td>
<td>Singapore Zone 2 (Singapore nodes cover services in Southeast Asia)</td>
</tr>
<tr>
<td></td>
<td>ap-singapore-2</td>
</tr>
<tr>
<td>Northeast Asia (Seoul)</td>
<td>Seoul Zone 1 (Seoul nodes cover services in Northeast Asia)</td>
</tr>
<tr>
<td>ap-seoul</td>
<td>ap-seoul-1</td>
</tr>
<tr>
<td></td>
<td>Seoul Zone 2 (Seoul nodes cover services in Northeast Asia)</td>
</tr>
<tr>
<td></td>
<td>ap-seoul-2</td>
</tr>
<tr>
<td>Northeast Asia (Tokyo)</td>
<td>Tokyo Zone 1 (Tokyo nodes cover services in Northeast Asia)</td>
</tr>
</tbody>
</table>
How to Select Regions and Availability Zones

When selecting a region and availability zone, you need to consider the following factors:

- The limits on where cloud disks can be mounted. A cloud disk can only be mounted to a CVM in the same availability zone.
- The region of the CVM on which the cloud disk will be used, your location, and the location of your users. We recommend that you choose the region closest to your users when purchasing the Tencent Cloud services to minimize access latency and improve access speed.

<table>
<thead>
<tr>
<th>Region</th>
<th>Availability Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-tokyo</td>
<td>ap-tokyo-1</td>
</tr>
<tr>
<td>South Asia (Mumbai)</td>
<td></td>
</tr>
<tr>
<td>ap-mumbai</td>
<td>Mumbai Zone 1 (Mumbai nodes cover services in South Asia) ap-mumbai-1</td>
</tr>
<tr>
<td></td>
<td>Mumbai Zone 2 (Mumbai nodes cover services in South Asia) ap-mumbai-2</td>
</tr>
<tr>
<td>Southeast Asia (Bangkok)</td>
<td></td>
</tr>
<tr>
<td>ap-bangkok</td>
<td>Bangkok Zone 1 (Bangkok nodes cover services in Southeast Asia) ap-bangkok-1</td>
</tr>
<tr>
<td>North America (Toronto)</td>
<td></td>
</tr>
<tr>
<td>na-toronto</td>
<td>Toronto Zone 1 (Tokyo nodes cover services in North America) na-toronto-1</td>
</tr>
<tr>
<td>Western US (Silicon Valley)</td>
<td></td>
</tr>
<tr>
<td>na-siliconvalley</td>
<td>Silicon Valley Zone 1 (Silicon Valley nodes cover services in Western US) na-siliconvalley-1</td>
</tr>
<tr>
<td></td>
<td>Silicon Valley Zone 2 (Silicon Valley nodes cover services in Western US) na-siliconvalley-2</td>
</tr>
<tr>
<td>Eastern US (Virginia)</td>
<td></td>
</tr>
<tr>
<td>na-ashburn</td>
<td>Virginia Zone 1 (Virginia nodes cover services in Eastern US) na-ashburn-1</td>
</tr>
<tr>
<td></td>
<td>Virginia Zone 2 (Virginia nodes cover services in Eastern US) na-ashburn-2</td>
</tr>
<tr>
<td>Europe (Frankfurt)</td>
<td></td>
</tr>
<tr>
<td>eu-frankfurt</td>
<td>Frankfurt Zone 1 (Frankfurt nodes cover services in Europe) eu-frankfurt-1</td>
</tr>
<tr>
<td>Europe (Moscow)</td>
<td></td>
</tr>
<tr>
<td>eu-moscow</td>
<td>Moscow Zone 1 (Moscow nodes cover services Europe) eu-moscow-1</td>
</tr>
</tbody>
</table>
The relationship between the CVM on which the cloud disk will be used and other Tencent Cloud services. We recommend that, when you select other Tencent Cloud products, you try to locate them all in the same region and availability zone to allow them to communicate with each other through the private network, reducing access latency and increasing access speeds.

Business high availability and disaster recovery considerations. Even if you have just one VPC, we still recommend that you deploy your businesses in different availability zones to prevent a single point of failure and enable cross-AZ disaster recovery.

There may be higher network latency among different availability zones. We recommend that you assess your business requirements and find the optimal balance between high availability and low latency.

Relevant Operations

Actions such as the use and viewing of cloud disks are availability zone and region-specific. To easily migrate data and services to other regions or construct a cross-region disaster recovery system, you can copy snapshots to other regions. For more information, see Cross-region Snapshot Replicating.
Cloud Block Storage (CBS) provides highly available, highly reliable, low-cost, and customizable network block device that can be used as a standalone and expandable disk for CVMs. CBS stores data at the data block level in a three-copy distributed mechanism, so as to ensure data reliability. CBS is classified into three types: **Premium**, **SSD**, and **Enhanced SSD**. Each type offers unique performance and features at different prices, making CBS suitable for different use cases.

Note:
- Currently, Enhanced SSD is only available in Guangzhou Zone 3, Guangzhou Zone 4, Shanghai Zone 2, Shanghai Zone 3, Shanghai Zone 5, Beijing Zone 3, Beijing Zone 4, Chengdu Zone 1, Chongqing Zone 1, Nanjing Zone 1, and Nanjing Zone 2. It will be supported in more availability zones.
- The performance of Enhanced SSD is only guaranteed when it’s mounted to S5, M5, SA2, IT3, and D3 models created after August 1, 2020, and all later generation models.
- Enhanced SSD cannot be used as the system disk.
- Enhanced SSD cannot be encrypted.
- Enhanced SSD cannot be upgraded from other disk types.

- **Premium Cloud Storage**: Tencent Cloud Premium Cloud Storage is a hybrid storage type. It adopts the Cache mechanism to provide a high-performance SSD-like storage, and employs a three-copy distributed mechanism to ensure data reliability. Premium Cloud Storage is suitable for small and medium applications with high requirements for data reliability and general requirements for performance, such as Web/App servers, business logical processing, as well as small and medium sites.

- **SSD**: SSD uses NVMe SSD as the storage media, and employs a three-copy distributed mechanism. It provides storage service with low latency, high random IOPS, high throughput I/O, and data security up to 99.9999999%, making it suitable for applications with high requirements for I/O performance.

- **Enhanced SSD**: Enhanced SSD is based on Tencent Cloud’s latest storage engine, NVMe SSD storage media and the latest network infrastructure. It employs a three-copy distributed mechanism to provide high-performance storage with low latency, high random IOPS, high throughput I/O, and data security up to 99.9999999%, making it suitable for I/O-intensive applications with high requirements for latency, such as large databases and NoSQL.
The table below compares the performances of the three CBS services.

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Enhanced SSD Cloud Storage</th>
<th>SSD Cloud Storage</th>
<th>Premium Cloud Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum size (GB)</td>
<td>32,000</td>
<td>32,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Maximum IOPS</td>
<td>50,000</td>
<td>26,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Random IOPS</td>
<td>Maximum random IOPS = 1800 + storage capacity (GB) × 50, Maximum random IOPS does not exceed 50,000</td>
<td>Maximum random IOPS = 1800 + storage capacity (GB) × 30, Maximum random IOPS does not exceed 26,000</td>
<td>Maximum random IOPS = 1,800 + storage capacity (GB) × 8, Maximum random IOPS does not exceed 6,000.</td>
</tr>
<tr>
<td>Maximum throughput (MB/sec)</td>
<td>350 MB/sec</td>
<td>260 MB/sec</td>
<td>150 MB/sec</td>
</tr>
<tr>
<td>Throughput (MB/sec)</td>
<td>Maximum throughput = 120 + storage capacity (GB) × 0.5, Maximum throughput does not exceed 350 MB/sec</td>
<td>Maximum throughput = 120 + storage capacity (GB) × 0.2, Maximum throughput does not exceed 260 MB/sec</td>
<td>Maximum throughput = 100 + storage capacity (GB) × 0.15, Maximum throughput does not exceed 150 MB/sec</td>
</tr>
<tr>
<td>Random 1-round read/write latency</td>
<td>0.3-1 ms</td>
<td>0.5-3 ms</td>
<td>0.8-4 ms</td>
</tr>
</tbody>
</table>

The main difference among Enhanced SSD, SSD and Premium Cloud Storage is the I/O performance.

Enhanced SSD is more suitable for latency-sensitive or I/O-intensive scenarios, including:

- High performance and high data reliability: suitable for high-load, mission-critical business systems. SSD provides three-copy data redundancy and is equipped with comprehensive capabilities for data backup, snapshots, and data restoration within seconds.
- Medium and large databases: support medium and large relational database applications that contain tables with millions of rows, such as MySQL, Oracle, SQL Server, and MongoDB.
- Large NoSQL: support NoSQL businesses such as HBase and Cassandra.
- ElasticSearch: support low-latency ES storage.
• Video service: suitable for applications with high requirements for storage bandwidth, such as audio/video encoding and decoding, live streaming and recording playback.

• Core business systems: suitable for I/O-intensive applications and other core business systems with high requirements for data reliability.

• Big data analysis: suitable for data analysis, data mining, business intelligence, and other fields. Provide distributed processing capabilities for data at TB and PB levels.

SSD is applicable for applications with high and medium loads, including:

• Medium and large databases: medium and large relational database applications, such as MySQL.

• Image processing: support data analysis and storage businesses, such as image processing.

Premium Cloud Storage is mainly suitable for the following data scenarios:

• Small and medium databases and Web/App servers. Provide long-term and stable I/O performance.

• Scenarios that require balanced storage capacity and performance, such as enterprise office services.

• Core business testing and the front and back end debugging

For pricing details of cloud disks, see Price Overview.
Cloud disk statuses

Last updated: 2019-10-17 17:02:00

Cloud disk has the following status:

<table>
<thead>
<tr>
<th>Status</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be mounted</td>
<td>Stable status</td>
<td>The status after the cloud disk has been created and before it is mounted to a CVM.</td>
</tr>
<tr>
<td>Mounting</td>
<td>Interim status</td>
<td>When the cloud disk is being mounted, it enters the mounting status.</td>
</tr>
<tr>
<td>Mounted</td>
<td>Stable status</td>
<td>The status when the cloud disk has been mounted to a CVM in the same availability zone.</td>
</tr>
<tr>
<td>Unmounting</td>
<td>Interim status</td>
<td>When the cloud disk is being unmounted, it enters the unmounting status.</td>
</tr>
<tr>
<td>To be repossessed</td>
<td>Stable status</td>
<td>The status when a cloud disk that has not been renewed within the specified period after expiration, or a cloud disk with monthly subscription that has been manually terminated, is sent to the recycle bin after being suspended (the disk is unavailable, and can only store data) and forced to unmount.</td>
</tr>
<tr>
<td>Terminated</td>
<td>Stable status</td>
<td>The cloud disk is not renewed and retrieved before its storage time in the recycle bin expires, or the termination operation is completed. The original cloud disk no longer exists, and data has been completely erased.</td>
</tr>
</tbody>
</table>
The conversion relationship between cloud disk statuses is shown in the following figure:
Cloud Disk Encryption

When you need to encrypt the data stored in a cloud disk due to business security or compliance reasons, you can enable cloud disk encryption and use the infrastructure provided by Key Management Service (KMS) of Tencent Cloud to effectively protect data privacy.

This feature is currently in beta test. To use it, you need to submit a ticket to apply.

Key Management

Tencent Cloud encrypts data in your cloud disks using a data encryption key based on the standard AES-256 algorithm. When you use cloud disk encryption for the first time, the system automatically creates a customer master key (CMK) that allows you to use the cloud disk encryption feature in the corresponding region in the KMS. Only one CMK is automatically created and stored in the KMS, which is protected by strict physical and logical security controls.

In each region, a unique 256-bit data key (DK) is used to encrypt the cloud disk. Snapshots created through encrypted cloud disks and encrypted cloud disks created through encrypted snapshots are all associated with this DK. The DK is protected by the key management infrastructure provided by KMS, which effectively blocks unauthorized access. The DK of a cloud disk is used only in the memory of the host where the instance resides, and is not stored in any persistent medium (including the cloud disk itself) in a plaintext form.

Operating Principles

When you configure your cloud disk as encrypted, the KMS encrypts the data and automatically decrypts it during the read operation. The encryption and decryption processes are performed on the host where the CVM instance resides, with minimal impact on the read and write performance of the cloud disk. To test the performance of cloud disks, refer to Measuring cloud disk performance.

Once the encrypted cloud disk is created and mounted to the instance, the system encrypts the following data:

- Static data in the cloud disk;
- Data transmitted between the cloud disk and instance (data in the operating system of the instance is not encrypted);
- All snapshots created through encrypted cloud disks;

Use Limits

The cloud disk encryption feature is subject to the following limitations:

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Cloud disk limitations** | - Cloud disk encryption supports all cloud disk types and instance types.
- Only cloud disks can be encrypted, not local disks.
- Only data disks can be encrypted, not system disks.
- An existing non-encrypted disk cannot be directly converted to an encrypted disk.
- An encrypted cloud disk cannot be converted to a non-encrypted cloud disk.
- If an encrypted cloud disk is expanded, you need to unmount and remount it on your CVM instance for its new capacity to be recognized.
- An encrypted disk cannot be mounted to an instance with local storage. |
| **Snapshots and images limitations** | - A snapshot generated by an existing non-encrypted disk cannot be directly converted to an encrypted snapshot.
- An encrypted snapshot cannot be converted to a non-encrypted snapshot.
- An image with an encrypted snapshot cannot be shared.
- The encrypted snapshot and images created by it cannot be replicated across regions. |
| **Other Limitations** | - The cloud disk encryption feature relies on the KMS in the same region. If you have no other operation requests, you do not need to perform additional operations in the KMS console.
- When you use the cloud disk encryption feature for the first time, you must activate KMS as instructed on the page. Otherwise, you cannot purchase the encrypted cloud disk.
- You can query the CMK created specifically by the system for cloud disk encryption in KMS console, but you cannot specify, delete, or change the CMK. |

Billing
Cloud disk encryption, CMK, and reads/writes of cloud disk data do not incur additional charges. When you manage the encrypted cloud disk either in the console or through an API, however, KMS is used as an API and your management operation will be counted as a KMS call in this region. You will be billed based on the number of KMS calls. For details, see KMS Billing Overview.

Management operations on an encrypted cloud disk include:

- Create an encrypted cloud disk
- Mount a cloud disk
- Unmount a cloud disk
- Create a snapshot
- Roll back a snapshot

Make sure you have sufficient account balance, otherwise the operation will fail.

Creating an encrypted cloud disk

You can create an encrypted cloud disk through the following three methods:

Creating an encrypted cloud disk in the console

1. Log in to CBS Console, select a region, and click Create.
2. In the Purchase Data Disk dialog box, select Enable disk encryption.

 If you are using cloud disk encryption in this region for the first time, first authorize the key management service.

3. Select the cloud disk configuration based on your actual needs and click Submit.
4. Once you have purchased the cloud disk, you can view encrypted cloud disks that have already been created on the Cloud Disk List page. The new encrypted cloud disk is in to be mounted status, you can refer to Mounting cloud disks to mount the cloud disk to a CVM instance in the same availability zone.

Creating an encrypted cloud disk from a snapshot

Refer to Creating cloud disks using snapshots. By selecting an encrypted snapshot to create a cloud disk, you can create a cloud disk that contains relevant data and is encrypted.
Creating an encrypted cloud disk through an API

You can create an encrypted cloud disk using the CreateDisks API by the following two methods:

- Configure `Encrypt` as `true`.
- Specify a `SnapshotId` for the encrypted snapshot.

Changing data encryption status

To change the status of existing data in the cloud disk from non-encrypted to encrypted, we recommend you run the `rsync` command in Linux system or the `robocopy` command in Windows system to copy the data from the non-encrypted disk to the new encrypted disk.

If you need to change the status of existing data in the cloud disk from encrypted to non-encrypted, we recommend you run the same commands to copy the data from the encrypted disk to the new non-encrypted disk.
Enhanced SSD Performance

Last updated : 2021-06-24 15:50:07

Starting from January 2021, a single Enhanced SSD disk performance consists of **basic performance** and **extra performance**:

- Basic performance varies linearly with cloud disk capacity and reaches the maximum value at the critical point.
- If you have a higher performance requirement, you can enable and configure extra performance.

This document introduces basic performance and extra performance.

Overall Performance

For a single Enhanced SSD disk, its performance consists of two parts: **basic performance** and **extra performance**. The following table specifies the maximum performance, regardless of the performance proportion.

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IOPS</td>
<td>100000</td>
</tr>
<tr>
<td>Max throughput (MB/s)</td>
<td>1000</td>
</tr>
</tbody>
</table>

Basic Performance

For Enhanced SSD, its basic performance varies linearly with the disk capacity. The basic performance cannot be adjusted independently, which is calculated by the following formula.

<table>
<thead>
<tr>
<th>Basic Performance Metric</th>
<th>Calculation Formula</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IOPS</td>
<td>(\min {1800 + \text{capacity (GB)} \times 50, 50000})</td>
<td>50000</td>
</tr>
<tr>
<td>Max throughput (MB/s)</td>
<td>(\min {120 + \text{capacity (GB)} \times 0.5, 350})</td>
<td>350</td>
</tr>
</tbody>
</table>

According to the formula,

- If the disk capacity is 460 GB, the throughput reaches the maximum value and its basic performance is: random IOPS: 24,800; max throughput: 350 MB/s.
If the disk capacity is 964 GB, the random IOPS reaches the maximum value and its basic performance is: random IOPS: 50,000; max throughput: 350 MB/s.

Extra Performance

If you have a higher performance requirement, you can enable extra performance.

Prerequisites

The following requirements must be met to enable extra performance:

- Currently, this feature is only available to Enhanced SSD and Tremendous SSD disks.
- The extra performance can be configured only after either basic performance metric reaches its maximum value. In other words, the disk capacity must be greater than 460 GB according to the basic performance formula.

Extra performance formula

Refer to the following formula to configure the extra performance.

<table>
<thead>
<tr>
<th>Extra Performance Metric</th>
<th>Calculation Formula</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IOPS</td>
<td>min {configured value \times 128, 50000}</td>
<td>50000</td>
</tr>
<tr>
<td>Max throughput (MB/s)</td>
<td>min {configured value \times 1, 650}</td>
<td>650</td>
</tr>
</tbody>
</table>

Extra performance price

For more information on extra performance prices, see Price Overview.

Examples

Sample 1: an Enhanced SDD disk requires a capacity of 2,000 GB and throughput of 500 MB/s

This capacity configuration reaches the throughput limit of basic performance and needs to configure extra throughput performance: \((500-350)/1 = 150\). Therefore, you need to purchase an Enhanced SSD disk with a capacity of 2,000 GB and extra throughput performance of 150 MB/s.

Sample 2: an Enhanced SDD disk requires a capacity of 1,000 GB and IOPS of 50,000

This capacity configuration reaches the random IOPS limit of basic performance, and the required
IOPS is met. Therefore, you only need to purchase an Enhanced SSD disk with a capacity of 1,000 GB.
Cloud Disk Snapshots

Snapshot Overview

Last updated: 2020-03-04 17:28:24

Feature Overview

- **Real-time replica of online data**
 Snapshots are fully usable copies of cloud disks. When a problem occurs to a cloud disk for which a snapshot has been created, the status before the problem occurred can be quickly restored using the snapshot. We recommend you create a snapshot of the related cloud disk before making major changes to your businesses, so that data can be quickly restored if business changes fail.

- **Persistent backup of critical milestones**
 Snapshots can be used as persistent backups of business data to keep the milestone status of business data.

- **Fast deployment of business**
 You can use the snapshot of your business to quickly clone multiple cloud disks, achieving quick deployment of servers.

Scenarios

A convenient and efficient data protection service, snapshots are recommended for the following business scenarios:

- **Daily data backup**
 You can use snapshots to regularly back up important business data to counter data loss caused by misoperations, attacks, viruses, etc.

- **Fast restoration of data**
 Before performing major operations such as switching operating systems, upgrading applications, or migrating business data, you can create one or more snapshots. If any problem occurs when making these changes, you can restore the business data using the snapshot you have created.

- **Application of multiple replicas of production data**
 You can provide actual production data in near real time for applications such as data mining, report query, and development testing by creating snapshots of production data.

- **Fast deployment of environments**
 You can create a snapshot of a CVM and use the snapshot to create a custom image. You can use
this image to quickly create one or more CVM instances, deploying multiple CVMs with the same environment in a batch to save the time spent on duplicate configurations.

Billing

For detailed billing information on snapshot service, please see Snapshot billing overview and Billing Overview.

Quota Limits

For details on snapshot quota limits, refer to Service Limits.

Snapshot Types

- Manual Snapshot
 You can manually create a snapshot for cloud disk data at a certain point in time. This snapshot can be used to create more cloud disks with identical data, or to restore the cloud disk to the status at this point in time later. For more information, see Creating Snapshots.

- Scheduled Snapshot
 For continuously updated business, you can use scheduled snapshots to create continuous data backups. To achieve continuous backups of cloud disk data over a certain period, you just need to configure a backup policy and associate it with cloud disks, significantly enhancing data security.

> During snapshot creation, application data saved in the memory may not be persistently stored, causing snapshots to be unable to capture the latest and most complete cloud disk data. Refer to [Notes] to ensure the consistency of snapshot data.

Case Review

Case 1: Failing to manually create snapshots before a high-risk operation, causing data loss

Details: Customer A never created a snapshot for the cloud disk. In May 2019, an operator performed a fio test on the cloud disk. The file system was corrupted and data could not be
recovered.

Analysis: If customer A has created a snapshot for the cloud disk before testing, he can enable snapshot rollback after data damage occurred to restore the business right away.

Case 2: Failing to create scheduled snapshots for important data disk, causing data loss

Details: Customer B created snapshots for multiple cloud disks, but not for cloud disks newly purchased after January 2019 due to cost concerns. In June 2019, a cloud disk not protected by snapshots had an unrecoverable data loss due to an accidental deletion of system-layer file data.

Analysis: If customer B has created scheduled snapshots for this cloud disk, he can restore the data to the status at the time point of the previous snapshot, thereby minimizing loss after the accidental data deletion. After the incident, customer B has created a snapshot for that cloud disk to enhance data protection.

Case 3: Rolling back with scheduled snapshot to restore business after a misoperation

Details: Customer C created snapshots for all cloud disks. In May 2019, a startup exception occurred due to a misoperation.

Analysis: Customer C promptly restored data using scheduled snapshots taken two days ago, and the business was not affected.

In these above cases, operating errors lead to data loss. By comparison, we find that:

- In the situation where **a snapshot hasn’t been created**, data recovery is difficult when a server or cloud disk exception occurs, causing major loss.
- In the situation where **a snapshot has been created**, data can be recovered when a server or cloud disk exception occurs, minimizing loss.

We recommend you regularly create snapshots for businesses based on their types, enhancing data security and achieving low-cost, high-efficiency disaster recovery.

Others

For other questions, please refer to [Snapshot FAQs](#).
Snapshot Principles

Last updated: 2020-12-03 11:44:36

Relationship between a snapshot and the source cloud disk

A snapshot is the data backup of a cloud disk at a certain point in time. Data writing and modification to the cloud disk do not affect snapshots that are already created. Based on this feature, users can use snapshots to record cloud disk data at different points in time, which can be used to fulfill requirements for system recovery, disaster recovery, and cloud disk replication. As shown in the following figure, Snapshot 1 retains data block information of the cloud disk at 10:00 (the snapshot creation time), regardless of any changes to the disk that occur after the snapshot is created.
Relationship between snapshot size and the source cloud disk

Snapshot only saves data blocks in the cloud disk that have been written to or modified. Therefore, the size of the snapshot corresponding to the cloud disk will be smaller than the size of the cloud disk.

Relationship between snapshot size and data disk is shown in the following figure:

Incremental snapshot creation process

Tencent Cloud snapshots use an incremental snapshot mechanism. When you continuously create multiple snapshots of the same cloud disk, only the first snapshot is a full snapshot, and subsequent snapshots only contain data that has been modified relative to the previous snapshot (incremental snapshot). This can minimize the total storage capacity occupied when users continuously create snapshots, reducing user costs.

For example: Assume a cloud disk has three data blocks, A, B, and C. You make snapshots at 10:00, 11:00, and 12:00 respectively. Changes of data blocks on the disk between these points in time are shown in the following figure, and each snapshot should save the following data:

- **Snapshot 1** (initial snapshot): Contains data backups of all data blocks on the cloud disk at that time.
- **Snapshot 2**: During the period, data block A on the cloud disk changes. Snapshot 2 only contains backup of block A’s newest data (usually called an incremental snapshot).
- **Snapshot 3**: During the period, data block B on the cloud disk changes. Snapshot 3 only contains backup of block B’s newest data (usually called an incremental snapshot).
Incremental snapshot rollback process

Based on the previous example, when you use Snapshot 3 to perform data rollback, the system will merge the data in Snapshot 1, Snapshot 2, and Snapshot 3. If there is a data block in the same location, data in the newest snapshot will be taken. During final rollback, the merged data will be written to the cloud disk to be rolled back.
Incremental snapshot rollback process is as shown in the following figure:

Incremental snapshot deletion and merging process

- When deleting a full snapshot (that is, the first snapshot), the system automatically merges the full snapshot with the next incremental snapshot.
- When deleting an incremental snapshot, the system automatically merges the incremental snapshot with the next incremental snapshot. If there is no next incremental snapshot, it is directly deleted.

Based on the previous example, if you delete Snapshot 1, the system will merge Snapshot 1 and Snapshot 2, and will use Snapshot 2’s data to overwrite Snapshot 1’s data in the same location. After merging, Snapshot 2 is the new full snapshot.
Incremental snapshot deletion process is as shown in the following figure:

- **Snapshot 1** contains backups of all the data blocks.
 - Data backup for data block A (version 1)
 - Data backup for data block B (version 1)
 - Data backup for data block C (version 1)

- **Snapshot 1** (actively deleted by the user)
 - Data backup for data block A (version 1)
 - Data backup for data block B (version 1)
 - Data backup for data block C (version 1)

- **Snapshot 2** contains only backups of the data blocks that have changed during this period.
 - Data backup for data block A (version 2)
 - Data backup for data block B (version 1)
 - Data backup for data block C (version 1)

- **Snapshot 3** contains only backups of the data blocks that have changed during this period.
 - Data backup for data block B (version 2)
 - Data backup for data block C (version 2)

Snapshot 1 and Snapshot 2 data is merged into a new Snapshot 2.
If you are using multiple Tencent Cloud services such as CVM, CBS, VPC, and TencentDB that are managed by different users who share your Tencent Cloud account key, you may face the following problems.

- Your key is shared by multiple users, leading to a high risk of disclosure.
- You cannot control the access permissions of other users, which poses a security risk due to potential misoperations.

In this case, you can use sub-accounts to allow different users to manage different services to avoid these problems. By default, a sub-account does not have the permission to use CVMs or CVM-related resources. Therefore, you need to create a policy to grant the required resources or permissions to the sub-account.

Cloud Access Management (CAM) is a set of web-based Tencent Cloud services that helps you securely manage and control access permissions to your Tencent Cloud resources. By using CAM, you can create, manage, and delete users (groups) and control who can use Tencent Cloud resources and which Tencent Cloud resources they can use through identity and policy management.

When using CAM, you can associate a policy with a user or a user group, which grants or denies them permission to use specified resources to perform specified tasks. For more information on CAM policy basics, see **Policy Syntax**. For more information on the use of CAM policies, see **Policies**.

If you do not need to manage the access permissions of sub-accounts to CBS resources, you can skip this section. This will not affect your understanding and application of the remaining sections of this document.

Getting Started

A CAM policy must grant or deny the permission to one or more CBS operations. At the same time, it must specify the resources that can be operated on (which can be all resources or some resources for certain operations). A policy can also include the conditions set for the operations of the resources.

<table>
<thead>
<tr>
<th>Task</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn the basic structure of a policy</td>
<td>Policy Syntax</td>
</tr>
<tr>
<td>Task</td>
<td>Link</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Define operations in a policy</td>
<td>CBS Operations</td>
</tr>
<tr>
<td>Define resources in a policy</td>
<td>CBS Resource Paths</td>
</tr>
<tr>
<td>Restrict a policy by conditions</td>
<td>CBS Condition Keys</td>
</tr>
<tr>
<td>Learn the resource-level permissions supported by CBS</td>
<td>Resource-Level Permissions Supported by CBS</td>
</tr>
<tr>
<td>View console examples</td>
<td>Console Examples</td>
</tr>
</tbody>
</table>
Authorized resource types

Resource-level permissions refer to the ability to specify which resources users are allowed to perform operations on. CBS supports resource-level permissions. That is, you can specify when users are allowed to perform some CBS operations that support resource-level permissions or which resources users are allowed to use.

The types of resources that can be authorized in Cloud Access Management (CAM) are as follows:

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Resource Description Method in Authorization Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS APIs</td>
<td>qcs::cvm:$region::volume/*</td>
</tr>
</tbody>
</table>

CBS APIs describe CBS API operations that currently support resource-level permissions as well as resources and condition keys supported by each operation. **When configuring the resource path,** you need to replace variable parameters such as `$region` and `$account` with your actual parameters. You can also use the `*` wildcard in the path. For more information, see Console Example.

⚠️ **Note:**

CBS API operations not listed in the table do not support resource-level permissions. You can still authorize users to perform these operations, but the resource element of the policy statement must be specified as `*`.

CBS APIs

<table>
<thead>
<tr>
<th>API Operation</th>
<th>Resource Path</th>
<th>Condition Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td>AttachDisks</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Create a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>CreateDisks</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Query the list of cloud disk operation logs</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>DescribeDiskOperationLogs</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>API Operation</td>
<td>Resource Path</td>
<td>Condition Key</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Query the list of cloud disks</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>DescribeDisks</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Unmount a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>DetachDisks</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Modify the attributes of cloud disks</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>ModifyDiskAttributes</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Modify the billing mode of a cloud</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>disk ModifyDisksChargeType</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Modify the renewal flag of a cloud</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>disk ModifyDisksRenewFlag</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Renew a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>RenewDisk</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Expand the capacity of a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>ResizeDisk</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
<tr>
<td>Return a cloud disk</td>
<td>qcs::cvm:$region:$account:volume/*</td>
<td>cvm:region</td>
</tr>
<tr>
<td>TerminateDisks</td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:zone</td>
</tr>
<tr>
<td></td>
<td>qcs::cvm:$region:$account:volume/$diskId</td>
<td>cvm:disk_type</td>
</tr>
</tbody>
</table>
Authorization policy syntax

Last updated: 2020-04-22 12:15:11

Policy Syntax

CAM policy:

```
{
    "version":"2.0",
    "statement": [
        {
            "effect": "allow",
            "action": ["action"],
            "resource": ["resource"],
            "condition": {"key": "value"}
        }
    ]
}
```

- **version**: is required. Currently, the only valid value is "2.0".
- **statement**: describes the detailed information of one or more permissions. Each permission is composed of a set of elements including effect, action, resource, and condition. A policy has only one statement element.
 i. **action**: is required. It describes the operations to be allowed or denied, which can be APIs (described with the "name" prefix) or a feature set (a set of specific APIs described with the "permid" prefix).
 ii. **resource**: is required. It describes the specific data to be authorized in a six-segment format. Detailed resource definitions vary by product.
 iii. **condition**: is optional. It describes the conditions for the policy to take effect. A condition consists of an operator, operation key, and operation value. A condition value may contain information such as a time and IP address. Some services allow you to specify other information in conditions.
 iv. **effect**: is required. It describes the result returned by the statement, that is, whether the permission is allowed ("allow") or denied ("deny").

CBS Operations
In a CAM policy statement, you can specify any API operation from any service that supports CAM. For CBS, use the APIs prefixed with `name/cvm:`, for example, `name/cvm:CreateDisks` or `name/cvm:DescribeDisks`.

To specify multiple operations in a single statement, separate them with commas, as shown below.

```
"action":["name/cvm:action1","name/cvm:action2"]
```

You can also use a wildcard to specify multiple operations. For example, you can specify all operations whose names begin with "Describe", as shown below.

```
"action":["name/cvm:Describe*"]
```

To specify all operations in CVM, use the wildcard `*` as follows.

```
"action":["name/cvm:*"]
```

CBS Resource Paths

Every CAM policy statement contains the resources applicable to the policy itself. The general format of a resource path is shown below.

```
qcs::project_id:service_type:region:account:resource
```

- **project_id**: indicates project information, which is only used to enable compatibility with earlier CAM logics. This element can be left empty.
- **service_type**: indicates the short name of a product, for example, "CVM".
- **region**: indicates region information, for example, "bj".
- **account**: indicates the root account of a resource owner, for example, "uin/164256472".
- **resource**: indicates the specific resources of a product, for example, "volume/diskid1" or "volume/*".

You can specify a CBS resource in the statement, for example, "disk-abcdefg", as shown below.

```
"resource":[ "qcs::cvm:bj:uin/164256472:volume/disk-abcdefg"]
```

You can also use the wildcard `*` to specify all CBS resources under an account, as shown below.

```
"resource":[ "qcs::cvm:bj:uin/164256472:volume/*"]
```
To specify all resources, or if an API operation does not support resource-level permission control, you can use the wildcard `*` in the resource element, as shown below.

```
"resource": ["*"]
```

To specify multiple resources in one statement, separate them with commas. In the following example, two resources are specified.

```
"resource": ["resource1", "resource2"]
```

CBS Condition Keys

In a policy statement, you can choose to specify the conditions for the policy to take effect. Each condition contains one or more key-value pairs. Condition keys are case-insensitive.

- If you specify multiple conditions or keys in one condition, the condition is evaluated with the "AND" logical operator.
- If you specify a key with multiple values in one condition, the condition is evaluated with the "OR" logical operator. The permission can be granted only after all conditions are met.

The following table describes the CBS condition keys that are used for specific services.

<table>
<thead>
<tr>
<th>Condition Key</th>
<th>Reference Type</th>
<th>Key-Value Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>cvm:region</td>
<td>String</td>
<td>cvm:region=region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- where region indicates a region (for example, "ap-guangzhou").</td>
</tr>
<tr>
<td>cvm:disk_type</td>
<td>String</td>
<td>cvm:disk_type=disk_type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- where disk_type indicates a disk type (for example, "CLOUD_PREMIUM").</td>
</tr>
</tbody>
</table>
Related Products

Last updated: 2019-10-16 19:12:07

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Relationship to CBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Virtual Machine</td>
<td>Cloud Block Storage can act as system disks and data disks for CVMs, providing block storage devices that can be elastically scaled.</td>
</tr>
<tr>
<td>GPU Cloud Computing</td>
<td>SSD cloud disks and premium cloud storage can act as system disks and data disks for GPU Cloud Computing, providing block storage devices that can be easily scaled.</td>
</tr>
<tr>
<td>Cloud Monitor</td>
<td>You can use Cloud Monitor to view the performance indicators of CBS, including the disk read IOPS, disk read traffic, disk write IOPS, disk write traffic, disk I/O wait time, disk I/O service time, and disk I/O utilization ratio.</td>
</tr>
<tr>
<td>Tags</td>
<td>Tags are used to identify cloud resources. They can be used to categorize and search for CBS resources.</td>
</tr>
</tbody>
</table>
HDD Cloud Disk

The HDD cloud disk is phased out currently. The following guide is only for reference when you are using the HDD cloud disk.

HDD cloud disks are the first generation of cloud disks provided by Tencent Cloud. It is suitable for business scenarios with low I/O loads where data is not accessed frequently. It uses magnetic storage, and a three-copy distributed mechanism to implement highly reliable data storage.

Performance metrics

<table>
<thead>
<tr>
<th>Metrics</th>
<th>HDD Cloud Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IOPS</td>
<td>Offers the capacity options of 10 GB - 16000 GB, and hundreds of random IOPs choices.</td>
</tr>
<tr>
<td>Throughput (MB/s)</td>
<td>Supports the I/O throughputs up to 50 MB/s.</td>
</tr>
<tr>
<td>Latency</td>
<td>-</td>
</tr>
</tbody>
</table>

Price overview

For more information about the price of HDD cloud disks, see Pricing List.

Use cases

For scenarios with infrequent requests, such as system logs, enterprise work files, data warehouses, small-sized blogs, and BBS, we recommend using HDD cloud disks to reduce costs.