
Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 9

Cloud Message Queue

Product Introduction

Product Documentation



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 9

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 9

Contents

Product Introduction
Overview
Product Features
Strengths



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 9

CMQ Overview

Cloud Message Queue (CMQ) is a distributed message queue system based on Tencent's proprietary message
engine. It ensures strong message consistency by leveraging Tencent's proprietary distributed Raft algorithm and
offers high message reliability by storing three synchronous copies of messages. Specifically, with its advantages of

high reliability, availability, performance, and scalability, it provides a rich set of services such as message queue,
publish/subscribe model, message rewind, delayed message sending, sequential message sending, and message
track. Over its development and iteration in more than seven years, CMQ asynchronously serves Tencent's major
businesses such as WeChat, WeBank, QQ Show, and Mobile QQ.

CMQ has been put into formal commercial use and provides a highly available cloud message service in multiple

Tencent Cloud regions around the globe. Its data center hardware is constructed in compliance with the high
standards of Tencent Cloud IDCs. In a single region, CMQ is deployed across multiple data centers, so that it can still
provide message services for applications even if a data center becomes entirely unavailable. In addition, it is also
deployed in the Shenzhen and Shanghai Finance Zones to provide finance-grade high-reliability message queue
services.

Currently, CMQ supports connection over HTTP, HTTPS, and TCP and can be integrated through SDKs for various

programming languages such as PHP, Java, and Python.

Connection
Method

HTTP/HTTPS Connection TCP Connection

Application
scenarios

It provides sync HTTP/HTTPS-
based connection and can be
simply and easily integrated
through RESTful APIs and SDKs
for multiple programming
languages.

It supports sync/async TCP-based connection and SDKs
for multiple programming languages, which improves the
producer and consumer efficiency and increases the
performance of the message queue service.

Strengths

It features unlimited message
retention, finance-grade
horizontal scalability and high
reliability, and messages can be
stored in disks in real time.

It features unlimited message retention, finance-grade
horizontal scalability and high reliability, and messages
can be stored in disks in real time. In addition, messages
can be received and sent in an async non-blocking TCP
method, which improves the efficiency.

Product Introduction
Overview
Last updated：2020-12-18 13:02:01



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 9

Use Case Overview

CMQ is recommended in scenarios where async communication is required; for example:

Your application requires guaranteed message transfer reliability. When a message is sent, even if the recipient is
unavailable due to problems such as power failure, server downtime, and CPU overload, the recipient can still

receive it once becoming available. Traditional message queues store messages in the memory and therefore
cannot achieve this effect. In the distributed message queues of CMQ, messages will be persistently stored until
the recipient successfully gets them.

Your business needs to run properly as the access traffic and number of messages retained in the queue soar. In
traditional message queues, messages are stored in the local memory, and since the processing capabilities and

memory capacity of a single server are limited, scalability is unavailable. In contrast, the distributed architecture of
CMQ guarantees easy scalability, and more importantly, scaling is completely imperceptible to users.

Two services need to communicate with each other when their networks cannot interconnect or the application
route information (such as IP and port) is variable. For example, if two Tencent Cloud services want communication
without knowing each other's address, they can agree on the queue name so that one service can send messages
to the queue and the other can receive messages from it.

The communication between system components or applications is frequent, they need to maintain the network
connections to each other, and there are multiple types of communicated content. In this case, the system design
will be very complicated if a traditional architecture is used. For example, when a central processing service needs
to assign tasks to multiple task processing services (similar to the master/worker mode), the master needs to
maintain connections with all workers and detect whether the workers start processing the tasks so as to determine

whether task reassignment is required. At the same time, workers need to report the task results to the master.
Maintaining such a system will result in complicated design and high implementation difficulty and costs. As shown
below, the system can be made much simpler and more efficient when CMQ is used to reduce the coupling

Note：

TCP-based connection to CMQ is currently in beta test. You can submit a ticket for application.
CMQ supports deployment in private cloud. You can submit a ticket for application.

https://console.intl.cloud.tencent.com/workorder/category?level1_id=876&level2_id=947&source=0&data_title=%E6%B6%88%E6%81%AF%E9%98%9F%E5%88%97%20CMQ&step=1
https://console.intl.cloud.tencent.com/workorder/category?level1_id=876&level2_id=947&source=0&data_title=%E6%B6%88%E6%81%AF%E9%98%9F%E5%88%97%20CMQ&step=1


Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 9

between the master and workers. 

The coupling between system components or applications is tight, and you want to reduce the coupling degree

especially when your control over the dependent components is weak. For example, the CGI of your business
receives contents submitted by users, stores some data in its own system, and forwards the processed data to
other business applications (such as data analysis and storage systems). In traditional solutions, services connect
to each other through sockets, and if the IP or port of the recipient changes or the recipient is replaced, the data
sender needs to modify the relevant information accordingly. In contrast, if CMQ is used, the recipient and sender

are imperceptible to each other's information, which greatly reduces the coupling degree.



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 9

Async Communication Protocol

The message sender can immediately get the returned result after sending a message to CMQ without the need to
wait for the recipient's response. The message will be saved in the queue until fetched out by the recipient. The
sending and processing of the message are completely async.

Improved Reliability

In traditional modes, a message request may fail due to long waits; however, if the recipient is unavailable when a
message is sent in CMQ, CMQ will retain the message until it is successfully delivered.

Process Decoupling

CMQ helps reduce the degree of coupling between two processes. As long as the message format stays unchanged,
no changes will be made to the sender even if the recipient's API, location, or configuration changes. Moreover, the
message sender does not have to know who the recipient is, making the system design clearer; in contrast, if a remote

procedure call (RPC) or socket connection is used between processes, when one party's API, IP, or port changes, the
other party must modify the request configuration.

Message Routing

A direct connection is not required between the sender and the recipient, as CMQ guarantees that the message can
be routed from the former to the latter. Message routing is even available for two services that are not easily
interconnectable.

Multi-Device Interconnection

Messages can be sent or received among multiple parts in a system, and CMQ controls the availability of messages

through message status.

Diversity

Each queue can be configured independently and not all of them must be identical. Queues in different business
scenarios can be customized. For example, if a queue has a longer message processing time, it can be optimized for
queue properties.

SCF Trigger

The CMQ topic model can pass messages to SCF and invoke functions by using the message content and relevant

information as parameters. 
SCF product documentation >>

Product Features
Last updated：2020-05-12 21:11:43

https://intl.cloud.tencent.com/document/product/583


Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 9

Advantages over RabbitMQ

QPS: CMQ features higher QPS. When high reliability is ensured and the same physical device is used, the
throughput of CMQ is four times higher than that of RabbitMQ, with a single CMQ cluster providing over 100,000
QPS.

Message rewind: RabbitMQ does not support message rewind, while CMQ allows you to rewind messages by
time; for example, messages can be consumed again from a specified time point on the day before. In a typical
scenario where a consumer needs to analyze orders, if the messages consumed today have all become invalid due
to problems such as program logic errors or dependent system faults, then the messages need to be consumed
again from 00:00 yesterday on, and message rewind will be much helpful in this case.

Consistency algorithm: CMQ and RabbitMQ both support hot backup with multiple servers to improve
availability. CMQ implements this feature based on the Raft algorithm which is simpler and easier to be maintained.
RabbitMQ uses its proprietary Guaranteed Multicast (GM) algorithm which is difficult to learn.

OPS difficulty: OPS in RabbitMQ is more difficult, as it is developed in Erlang, a less popular programming
language that has higher learning costs.

Advantages over RocketMQ

Data loss: in extreme cases, data may be lost in RocketMQ. Because RocketMQ allows ACK to be returned to the

client before data flushing, messages will be lost when the server is down due to exceptions.

Multiple masters and slaves: multiple masters and slaves need to be set up for RocketMQ to ensure high
business availability. RocketMQ can ensure availability and reliability only when there are healthy nodes in ISR;
otherwise, the availability and reliability cannot be guaranteed, and the overheads will be high.

Therefore, compared with traditional open-source message queue applications, Tencent Cloud CMQ has the

following advantages:

Strengths
Last updated：2021-08-17 11:25:32



Cloud Message Queue

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 9

Comparison
Items

Tencent Cloud CMQ Open-Source Messaging
Middleware

Comparison
Items

Tencent Cloud CMQ Open-Source Messaging
Middleware

High
performance

High performance and reliability can be guaranteed at the
same time, and the QPS of a single CMQ instance reaches
5,000

High performance and
reliability cannot be
guaranteed at the same
time

High
scalability

The number of queues and queue storage capacity are
highly scalable

The underlying system can be automatically scaled based
on the business volume, which is imperceptible to upper-layer
businesses

Hundreds of millions of messages can be received, sent,
pushed, and retained efficiently with an unlimited capacity

The message service is provided in multiple regions:
Beijing, Shanghai, and Guangzhou

The numbers of queues
and retained messages are
limited

Each IDC needs to have
devices purchased and
deployed, which is
complicated

High
reliability

Backed by Tencent's proprietary Cloud Reliable Message
Queue (CRMQ) distributed framework, CMQ has been widely
used in Tencent businesses such as QQ and WeChat red
packet systems and lottery

CMQ ensures that data is replicated to different physical
servers in three copies before a successful write of each
message is returned to the user, and the backend data
replication mechanism guarantees that data can be quickly
migrated when any physical server fails, so that the three
copies of user data are always available with a reliability of
99.999999%

The improved Raft consistency algorithm is integrated to
delivery a strong data consistency

The business availability is guaranteed at 99.95%

Data is stored in single
servers or a simple
master/slave architecture,
where data cannot be
rewound once lost due to
single points of failure

The open-source replica
algorithm will cause
rebalancing of global data
when a server is added to
or removed from the cluster,
drastically bringing down
the availability

If Kafka flushes and
replicates data
asynchronously, strong
data consistency cannot be
ensured

Business
security

Multi-dimensional security protection and anti-DDoS
services are provided

Each message service has an independent namespace to
strictly isolate data of different customers

HTTPS access is supported
Cross-region secure message service is supported

The security protection
features are limited

To avoid public network
threats, cross-region and
cross-IDC services over the
public network usually
cannot be provided


