
TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 140

TencentDB for PostgreSQL

Practical Tutorial

Product Documentation

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 140

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 140

Contents

Practical Tutorial
postgres_fdw Extension for Cross-database Access
Automatically Creating Partition in PostgreSQL
Searching in High Numbers of Tags Based on pg_roaringbitmap
Querying People Nearby with One SQL Statement
Configuring TencentDB for PostgreSQL as GitLab's External Data Source
Supporting Tiered Storage Based on cos_fdw Extension
Implement Read/Write Separation via pgpool
Analyzing Slow SQL Using the auto_explain Plugin

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 140

Practical Tutorial
postgres_fdw Extension for Cross-database
Access
Last updated：2024-03-20 10:59:40

TencentDB for PostgreSQL provides a series of extensions for accessing external data sources, including data in
other libraries of this instance or data from other instances. Cross-database access extensions include homogenous
extensions such as dblink, postgresql_fdw, and heterogeneous extensions like mysql_fdw, cos_fdw. The steps to use

cross-database access are as follows:
1. Use the "CREATE EXTENSION" statement to install the extensions.
2. Create an external server object and a link map for each remote database that needs to be connected.
3. Use the corresponding command to access the external table to access data.
As the cross-database access extensions can access directly across instances or perform cross-database access

within the same instance, TencentDB for PostgreSQL has optimized permission control when creating external server
objects. It categorizes them based on the environment of the target instance. In addition to the features provided by
the open-source version, extra auxiliary parameters have been added to verify the user's identity and adjust network
policies. For more details, please refer to Auxiliary Parameters below.
Note:
Please note that the dblink extension is currently only supported by TencentDB for PostgreSQL kernels with major

version 10.

Extension Auxiliary Parameters

host
This is a compulsory parameter when accessing across instances. It refers to the IP address of the target instance.
port
This is a compulsory parameter when accessing across instances. It refers to the port of the target instance.

instanceid
Instance ID
It is used when accessing across instances in TencentDB for PostgreSQL. This parameter is mandatory when
accessing across instances. The format is similar to postgres-xxxxxx, pgro-xxxxxx, and can be viewed on the console.
If the target instance is on Tencent Cloud CVM, then it is the instance ID of the CVM, the format is similar to ins-xxxxx.

dbname
Refers to the name of the database in the remote PostgreSQL service to be accessed. For cross-database access in
the same instance, you only need to configure this parameter and can leave other parameters empty.

https://console.intl.cloud.tencent.com/postgres

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 140

access_type
Optional. Refers to the type of the target instance:
The target instance is a TencentDB instance, including TencentDB for PostgreSQL, TencentDB for MySQL, etc. If the

type is not specified, this is the default.
The target instance is on a Tencent Cloud CVM.
The target instance is a public network-based self-built instance in Tencent Cloud.
The target instance is a cloud VPN-based instance.
The target instance is a self-built VPN-based instance.

The target instance is a Direct Connect-based instance.
uin
Optional. Refers to the account ID to which the instance belongs. This information is used to identify user permissions,
and you can refer to View uin.
own_uin
Optional. Refers to the root account ID to which the instance belongs. This information is also needed to identify user

permissions.
vpcid
Optional. Refers to the Virtual Private Cloud ID. If the target instance is in the Tencent Cloud CVM's VPC network, this
parameter is required and can be found in the VPC Console.
subnetid

Optional. Refers to the Virtual Private Cloud Subnet ID. If the target instance is in the Tencent Cloud CVM's VPC
network, this parameter is required and can be found in the Subnets section of the VPC Console.
dcgid
Optional. Refers to the Direct Connect ID. If the target instance needs to connect via leased line network, you need to
provide this parameter value.

vpngwid
Optional. Refers to the VPN Gateway ID. If the target instance needs to connect through VPN, this parameter value
needs to be provided.
region
Optional. Refers to the region where the target instance is located. For example, "ap-guangzhou" represents
Guangzhou. If you need to access data across regions, this parameter value needs to be provided.

Examples of How to Use postgres_fdw

Using the postgres_fdw extension, you can access data from other databases or other Postgres instances in this
instance.

Step 1: Prerequisites

https://console.intl.cloud.tencent.com/developer
https://console.intl.cloud.tencent.com/vpc/vpc
https://console.intl.cloud.tencent.com/vpc/subnet

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 140

1. Create test data in the instance.

postgres=>create role user1 with LOGIN CREATEDB PASSWORD 'password1';

postgres=>create database testdb1;

CREATE DATABASE

Note:
 If an error occurs when creating an extension, please submit a ticket to contact Tencent Cloud after-sales for

assistance.
2. Create test data in the target instance.

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 140

postgres=>create role user2 with LOGIN CREATEDB PASSWORD 'password2';

postgres=> create database testdb2;

CREATE DATABASE

postgres=> \\c testdb2 user2

You are now connected to database "testdb2" as user "user2".

testdb2=> create table test_table2(id integer);

CREATE TABLE

testdb2=> insert into test_table2 values (1);

INSERT 0 1

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 140

Step 2. Create the postgres_fdw extension

Note:
If you encounter an issue stating 'extension does not exist' or 'insufficient privileges' while creating the extension,
please submit a ticket for assistance.

#Create

postgres=> \\c testdb1

You are now connected to database "testdb1" as user "user1".

testdb1=> create extension postgres_fdw;

CREATE EXTENSION

https://console.intl.cloud.tencent.com/workorder/category

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 140

#View

testdb1=> \\dx

 List of installed extensions

 Name | Version | Schema | Description

--------------+---------+------------+---

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

 postgres_fdw | 1.0 | public | foreign-data wrapper for remote PostgreSQL

(2 rows)

Step 3. Create a Server

Note:

Cross-instance access is supported only for kernel version v10.17_r1.2, v11.12_r1.2, v12.7_r1.2, v13.3_r1.2,
v14.2_r1.0, and later.
Cross-instance access.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 140

#Access data from the target instance `testdb2` from `testdb1` in this instance.

testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host 'x

CREATE SERVER

If not crossing instances, and only accessing across databases, you only need to specify the dbname parameter.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 140

#Access the data of `testdb2` from `testdb1` in this instance

create server srv_test1 foreign data wrapper postgres_fdw options (dbname 'testdb2'

The target instance is on a Tencent Cloud CVM, and the network type is classic network.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 140

 testdb1=>create server srv_test foreign data wrapper postgres_fdw options (host '

 CREATE SERVER

The target instance is on a Tencent Cloud CVM, and the network type is VPC.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 140

 testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host

 CREATE SERVER

The target instance is a public network-based self-built instance in Tencent Cloud.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 140

 testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host

 CREATE SERVER

The target instance is a Tencent Cloud VPN-based instance.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 140

 testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host

The target instance is a self-built VPN-based instance.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 140

 testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host

The target instance is a Direct Connect-based instance.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 140

 testdb1=>create server srv_test1 foreign data wrapper postgres_fdw options (host

 CREATE SERVER

Step 4. Create a User Mapping

Note:
 You can skip this step for cross-database access in the same instance.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 140

testdb1=> create user mapping for user1 server srv_test1 options (user 'user2',pass

CREATE USER MAPPING

Step 5. Creating a Foreign Table

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 140

testdb1=> create foreign table foreign_table1(id integer) server srv_test1 options(

CREATE FOREIGN TABLE

Step 6. Access Data from the Foreign Table

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 140

testdb1=> select * from foreign_table1;

 id

 1

(1 row)

Reference Link

postgres_fdw
PostgreSQL 9.3 > CREATE SERVER

https://www.postgresql.org/docs/9.5/postgres-fdw.html
https://www.postgresql.org/docs/9.3/static/sql-createserver.html

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 140

PostgreSQL 9.5 > CREATE SERVER
PostgreSQL 10 > CREATE SERVER
PostgreSQL 11 > CREATE SERVER

PostgreSQL 12 > CREATE SERVER
PostgreSQL 13 > CREATE SERVER
PostgreSQL 14 > CREATE SERVER

Example of How to Use dblink

Step 1: Create a dblink Extension

https://www.postgresql.org/docs/9.5/static/sql-createserver.html
https://www.postgresql.org/docs/10/sql-createserver.html
https://www.postgresql.org/docs/11/sql-createserver.html
https://www.postgresql.org/docs/12/sql-createserver.html
https://www.postgresql.org/docs/13/sql-createserver.html
https://www.postgresql.org/docs/14/sql-createserver.html

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 140

postgres=> create extension dblink;

postgres=> \\dx

 List of installed extensions

 Name | Version | Schema | Description

--------------------+---------+------------+---------------------------------------

 dblink | 1.2 | public | connect to other PostgreSQL databases

 pg_stat_log | 1.0 | public | track runtime execution statistics of

 pg_stat_statements | 1.6 | public | track execution statistics of all SQL

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

(4 rows)

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 140

Step 2: Establish a dblink Link

select dblink_connect('yunpg1','host=10.10.10.11 port=5432 instanceid=postgres-2123

 dblink_connect

 OK

(1 row)

Step 3: Access External Data

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 140

postgres=> select * from dblink('yunpg1','select catalog_name,schema_name,schema_ow

 a | b | c

----------+--------------------+---------

 postgres | pg_toast | user_00

 postgres | pg_temp_1 | user_00

 postgres | pg_toast_temp_1 | user_00

 postgres | pg_catalog | user_00

 postgres | public | user_00

 postgres | information_schema | user_00

(6 rows)

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 140

Reference Link

dblink

Example of How to Use mysql_fdw

Step 1: Create mysql_fdw Extension

postgres=> create extension mysql_fdw;

CREATE EXTENSION

https://www.postgresql.org/docs/9.5/dblink.html

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 140

postgres=> \\dx;

 List of installed extensions

 Name | Version | Schema | Descripti

--------------------+---------+------------+---------------------------------------

 dblink | 1.2 | public | connect to other PostgreSQL databases

 mysql_fdw | 1.1 | public | Foreign data wrapper for querying a My

 pg_stat_log | 1.0 | public | track runtime execution statistics of

 pg_stat_statements | 1.9 | public | track planning and execution statistic

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

(5 rows)

Step 2: Create a SERVER

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 140

postgres=> CREATE SERVER mysql_svr FOREIGN DATA WRAPPER mysql_fdw OPTIONS (host '1

CREATE SERVER

Step 3: Create External User Map

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 140

postgres=> CREATE USER MAPPING FOR PUBLIC SERVER mysql_svr OPTIONS (username 'fdw_u

CREATE USER MAPPING

Step 4: Access External Data

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 140

postgres=> IMPORT FOREIGN SCHEMA hrdb FROM SERVER mysql_svr INTO public;

Reference Link

mysql_fdw

Examples of How to Use cos_fdw

https://github.com/EnterpriseDB/mysql_fdw

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 140

Please refer to the document Supporting Tiered Storage Based on cos_fdw Extension for cos_fdw usage examples.

Notes

Pay attention to the following for the target instance:
1. The HBA restrictions of PostgreSQL need to be loosen to allow mapped users created (such as user2) to access

via MD5. For HBA modification, please refer to 20.1. The pg_hba.conf File.
2. If the target instance is not a TencentDB instance and has hot standby mode enabled, after a failover, you'll need to
update the server connection address manually or recreate the server configuration.

https://intl.cloud.tencent.com/document/product/409/47390
https://www.postgresql.org/docs/10/static/auth-pg-hba-conf.html

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 140

Automatically Creating Partition in
PostgreSQL
Last updated：2024-01-24 11:20:59

In earlier versions of PostgreSQL, the table partitioning feature can be supported through inheritance; for example, a
table partition can be created monthly by time, and data can be recorded in particular partitions. PostgreSQL 10 and
later support declarative partitioning. This document describes how to create partitions in advance or in real time

based on the written data.
The following are several common schemes for PostgreSQL to automatically create partitioned tables.

Use Cases

In practical use cases of partitioned tables, the time field is generally used as the partition key; for example, if the
partition field type is timestamp, the partitioning method can be "list of values".
The table structure is as follows:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 140

CREATE TABLE tab

(

 id bigint GENERATED ALWAYS AS IDENTITY,

 ts timestamp NOT NULL,

 data text

) PARTITION BY LIST ((ts::date));

CREATE TABLE tab_def PARTITION OF tab DEFAULT;

Partition creation is generally divided into the following two scenarios:

1. Scheduled partition creation

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 140

You can create partitions in advance with the help of a task scheduling tool. Common tools and partition creation
methods are as follows:

Using system schedulers such as Crontab (Linux, Unix, etc.) and Task Scheduler (Windows)

Taking Linux as an example, create a partitioned table at 14:00 every day for the next day:

cat > /tmp/create_part.sh <<EOF

dateStr=\\$(date -d '+1 days' +%Y%m%d);

psql -c "CREATE TABLE tab_\\$dateStr (LIKE tab INCLUDING INDEXES); ALTER TABLE tab

EOF

(crontab -l 2>/dev/null; echo "0 14 * * * bash /tmp/create_part.sh ") | crontab -

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 140

Using built-in schedulers such as pg_cron and pg_timetable

Taking pg_cron as an example, create a partitioned table at 14:00 every day for the next day:

CREATE OR REPLACE FUNCTION create_tab_part() RETURNS integer

 LANGUAGE plpgsql AS

$$

DECLARE

 dateStr varchar;

BEGIN

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 140

 SELECT to_char(DATE 'tomorrow', 'YYYYMMDD') INTO dateStr;

 EXECUTE

 format('CREATE TABLE tab_%s (LIKE tab INCLUDING INDEXES)', dateStr);

 EXECUTE

 format('ALTER TABLE tab ATTACH PARTITION tab_%s FOR VALUES IN (%L)', dateSt

 RETURN 1;

END;

$$;

CREATE EXTENSION pg_cron;

SELECT cron.schedule('0 14 * * *', $$SELECT create_tab_part();$$);

Using dedicated partition management extensions such as pg_partman

Taking pg_partman as an example, create a partitioned table every day for the next day:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 140

CREATE EXTENSION pg_partman;

SELECT partman.create_parent(p_parent_table => 'public.tab',

 p_control => 'ts',

 p_type => 'native',

 p_interval=> 'daily',

 p_premake => 1);

2. On-demand real-time partition creation

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 140

If you want to create partitions according to the need of data insertion, so you can determine whether there is data in a
time range based on whether a partition exists, this generally can be implemented with triggers.
Note that there are two problems with this method:

Only PostgreSQL 13 and later provide BEFORE/FOR EACH ROW triggers for partitioned tables.

ERROR: "tab" is a partitioned table

DETAIL: Partitioned tables cannot have BEFORE / FOR EACH ROW triggers.

When data is inserted, the partitioned table definition cannot be modified due to the table lock; that is, child tables
cannot be attached. Therefore, another connection must be used to perform the ATTACH operation. Here, the

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 140

LISTEN/NOTIFY mechanism can be used to ask another connection to modify the partition definition.

ERROR: cannot CREATE TABLE .. PARTITION OF "tab"

 because it is being used by active queries in this session

Or

ERROR: cannot ALTER TABLE "tab"

 because it is being used by active queries in this session

Trigger (implementing child table creation and NOTIFY)

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 140

CREATE FUNCTION part_trig() RETURNS trigger

 LANGUAGE plpgsql AS

$$

BEGIN

 BEGIN

 /* try to create a table for the new partition */

 EXECUTE

 format('CREATE TABLE %I (LIKE tab INCLUDING INDEXES)', 'tab_' || to_cha

 /*

 * tell listener to attach the partition

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 140

 * (only if a new table was created)

 */

 EXECUTE

 format('NOTIFY tab, %L', to_char(NEW.ts, 'YYYYMMDD'));

 EXCEPTION

 WHEN duplicate_table THEN

 NULL; -- ignore

 END;

 /* insert into the new partition */

 EXECUTE

 format('INSERT INTO %I VALUES ($1.*)', 'tab_' || to_char(NEW.ts, 'YYYYMMDD'

 USING NEW;

 /* skip insert into the partitioned table */

 RETURN NULL;

END;

$$;

CREATE TRIGGER part_trig

 BEFORE INSERT

 ON TAB

 FOR EACH ROW

 WHEN (pg_trigger_depth() < 1)

EXECUTE FUNCTION part_trig();

Code (implementing LISTEN and ATTACH for child tables)

#!/usr/bin/env python3.9

encoding:utf8

import asyncio

import psycopg2

from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT

conn = psycopg2.connect('application_name=listener')

conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)

cursor = conn.cursor()

cursor.execute(f'LISTEN tab;')

def attach_partition(table, date):

 with conn.cursor() as cs:

 cs.execute('ALTER TABLE "%s" ATTACH PARTITION "%s_%s" FOR VALUES IN (\\'%s\

def handle_notify():

 conn.poll()

 for notify in conn.notifies:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 140

 print(notify.payload)

 attach_partition(notify.channel, notify.payload)

 conn.notifies.clear()

loop = asyncio.get_event_loop()

loop.add_reader(conn, handle_notify)

loop.run_forever()

Summary

This document describes two schemes for automatic partition creation as summarized below:
The solutions in the scheduled partition creation scenario are simple and easy to understand, but they depend on
the schedule management mechanism of the system or extension and incur additional management costs during Ops

and migration.
In the on-demand real-time partition creation scenario, the number of unnecessary partitions can be reduced
according to the actual data pattern, but a later version (≥13) and an additional connection are required, making the
scheme more complicated.
You can choose an appropriate automatic partition creation method based on your business conditions.

Scenario Version Implementation
Need of System
Scheduler or
Extension Required

Need of Additional
Connection
Mechanism Required

Cost

Scheduled
partition
creation

PostgreSQL
10 Easy Yes No High

On-demand
real-time
partition
creation

PostgreSQL
13 or later

Complicated No Yes Low

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 140

Searching in High Numbers of Tags Based on
pg_roaringbitmap
Last updated：2024-01-24 11:20:59

Many business use cases have the tag-based query feature. If the data volume and tag value quantity are high, a
large amount of storage capacity will be used, and the performance will be poor. Therefore, how to filter target
resources efficiently and quickly without taking up too much storage space has become a challenge for business

management optimization.
This document describes how to easily search in an ultra high number of tags based on the pg_roaringbitmap
extension.

pg_roaringbitmap Overview

pg_roaringbitmap is a compressed bitmap storage extension based on roaring bitmap. It supports roaring bitmap
access as well as set, aggregation, and other operations.

Roaring Bitmap Usage

Roaring bitmap is often used to store user attribute tags in business use cases. You can create, read, update, and
delete these attribute tags and filter specific users by tag union, intersection, etc. In this way, you can quickly find what
you want from a massive amount of attribute data. This not only improves the performance, but also reduces the used
storage space, making it very useful for big data analysis scenarios.
For example, in traditional mode, a music application has a user tag list as follows:

User ID Username Interest Tag

1 John {Classical, jazz, R&B, country}

2 Jane {Folk, instrumental}

3 Harry {Hip hop, jazz, R&B, reggae}

...

1000000000 Text 2 {Rock}

To find all users who like instrumental music, the system needs to search for them against the interest tag column, find

rows with "instrumental" in the tag, and return the data to the application.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 140

Generally, the simplest way is to create a user interest table in the database according to the structure of the above
table first, and then run an array query statement to find interest tags for inclusion search. However, if there are high
volumes of data and tag values, more storage space will be used, and the performance will be very poor. Therefore,

you need to find an alternative. You can split this table into three tables, use the interest tag as the primary key, and
store tagged users as bitmaps as shown below:
User table:

User ID Username

1 John

2 Jane

N ...

Tag table:

Tag ID Username

1 Classical

2 Folk

N ...

User tag table:

Tag ID Username

1 [1,3,7,123,423]

2 [5,31]

N ...

When you need to find users who like listening to classical and folk music at the same time, you can directly perform a
bitmap query by user ID in the user tag table. This can greatly improve the performance and reduce the capacity
usage.

Query Performance Comparison Between Traditional Method and
Roaring Bitmap Method

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 140

Preparing test scenario

1. Create a function for random character generation.

create or replace function random_string(length integer) returns text as

$$

declare

chars text[] := '{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W

result text := '';

i integer := 0;

length2 integer := (select trunc(random() * length + 1));

begin

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 140

if length2 < 0 then

raise exception 'Given length cannot be less than 0';

end if;

for i in 1..length2 loop

result := result || chars[1+random()*(array_length(chars, 1)-1)];

end loop;

return result;

end;

$$ language plpgsql;

2. Create a function that generates an array of random integers.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 140

create or replace function random_int_array(int, int)

returns int[] language sql as

$$

select array_agg(round(random()* $1)::int)

from generate_series(1, $2)

$$;

3. Create a function that generates an array of random characters.

create or replace function random_string_array(int, int)

returns TEXT[] language sql as

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 140

$$

select array_agg(random_string($1)) from generate_series(1, $2);

$$;

Scheme 1: Traditional method

One table does it all.
1. Create a table containing all the data.

create table account(

uin bigint primary KEY,

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 140

name varchar,

tag TEXT []

);

2. Insert the data of ten million simulated accounts with the function as described in the preparations, and then create
a GIN index.

insert into account select generate_series(1,10000000), random_string(20),random_st

create index tag_inx on account USING GIN(tag);

3. Run a query to list users with tags GN and o .

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 140

explain analyze select uin,name from account where tag @>ARRAY['GN','o'];

QUERY PLAN

Bitmap Heap Scan on account (cost=52.81..466.86 rows=105 width=19) (actual time=4.2

184 loops=1)

Recheck Cond: (tag @> '{GN,o}'::text[])

Heap Blocks: exact=184

-> Bitmap Index Scan on tag_inx (cost=0.00..52.78 rows=105 width=0) (actual time=4.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 140

ows=184 loops=1)

Index Cond: (tag @> '{GN,o}'::text[])

Planning Time: 0.108 ms

Execution Time: 4.528 ms

4. Run a query to list xx users with tags lvXe and Zt (the query will be slow when executed for the first time).

explain analyze select count(uin) from account where tag && ARRAY['lvXe','Zt'];

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 140

Aggregate (cost=21816.39..21816.40 rows=1 width=8) (actual time=8.236..8.238 rows=1

-> Bitmap Heap Scan on account (cost=109.08..21800.56 rows=6332 width=8) (actual ti

901 rows=5390 loops=1)

Recheck Cond: (tag && '{lvXe,Zt}'::text[])

Heap Blocks: exact=5327

-> Bitmap Index Scan on tag_inx (cost=0.00..107.49 rows=6332 width=0) (actual time=

.0.962 rows=5390 loops=1)

Index Cond: (tag && '{lvXe,Zt}'::text[])

Planning Time: 0.110 ms

Execution Time: 8.270 ms

Scheme 2: Optimized scheme

In order to reduce the performance loss caused by the types of tag fields in the query, change the actual tag in the

above table to tagid .

1. Introduce a new tag dictionary table.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 140

create table tag_dict (

tagid int primary key,

taginfo text

);

2. Suppose there are 100,000 dictionary types in total.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 140

insert into tag_dict select generate_series(1,100000), md5(random()::text);

3. Create another table to store user and tag information.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 140

create table account1(

uin bigint primary KEY,

name varchar,

tag INT []

);

4. Insert the data of ten million accounts.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 140

insert into account1 select generate_series(1,10000000), random_string(20),random_i

5. List users with both tag IDs 100 and 5711.

Before indexing:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 140

test=> explain analyze select uin,name from account1 where tag @> ARRAY[100,5711];

QUERY PLAN

Gather (cost=1000.00..191007.68 rows=250 width=19) (actual time=982.585..1000.806 r

Workers Planned: 2

Workers Launched: 2

-> Parallel Seq Scan on account1 (cost=0.00..189982.68 rows=104 width=19) (actual t

Filter: (tag @> '{100,5711}'::integer[])

Rows Removed by Filter: 3333333

Planning Time: 0.205 ms

JIT:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 140

Functions: 12

Options: Inlining false, Optimization false, Expressions true, Deforming true

Timing: Generation 2.280 ms, Inlining 0.000 ms, Optimization 1.176 ms, Emission 14.

Execution Time: 1001.574 ms

(12 rows)

Add an index:

create index tag_inx_2 on account1 USING GIN(tag);

After indexing:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 140

test=> explain analyze select uin,name from account1 where tag @> ARRAY[100,5711];

QUERY PLAN

Bitmap Heap Scan on account1 (cost=49.94..1021.13 rows=250 width=19) (actual time=0

Recheck Cond: (tag @> '{100,5711}'::integer[])

-> Bitmap Index Scan on tag_inx_2 (cost=0.00..49.87 rows=250 width=0) (actual time=

Index Cond: (tag @> '{100,5711}'::integer[])

Planning Time: 0.410 ms

Execution Time: 0.171 ms

(6 rows)

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 140

6. List users with both tag IDs 61568 and 97350.

test=> explain analyze select uin,name from account1 where tag @> ARRAY[61568,97350

QUERY PLAN

Bitmap Heap Scan on account1 (cost=49.94..1021.13 rows=250 width=19) (actual time=0

Recheck Cond: (tag @> '{61568,97350}'::integer[])

Heap Blocks: exact=1

-> Bitmap Index Scan on tag_inx_2 (cost=0.00..49.87 rows=250 width=0) (actual time=

Index Cond: (tag @> '{61568,97350}'::integer[])

Planning Time: 0.071 ms

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 140

Execution Time: 0.151 ms

(7 rows)

7. List xx users who share interests with xx users (tag IDs 100 and 5711).

test=> explain analyze select count(uin) from account1 where tag && ARRAY[61568,973

QUERY PLAN

Gather (cost=1961.06..173801.15 rows=99750 width=19) (actual time=5.020..28.885 row

Workers Planned: 2

Workers Launched: 2

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 140

-> Parallel Bitmap Heap Scan on account1 (cost=961.06..162826.15 rows=41562 width=1

ps=3)

Recheck Cond: (tag && '{61568,97350}'::integer[])

Heap Blocks: exact=2053

-> Bitmap Index Scan on tag_inx_2 (cost=0.00..936.12 rows=99750 width=0) (actual ti

Index Cond: (tag && '{61568,97350}'::integer[])

Planning Time: 0.082 ms

JIT:

Functions: 12

Options: Inlining false, Optimization false, Expressions true, Deforming true

Timing: Generation 2.078 ms, Inlining 0.000 ms, Optimization 0.270 ms, Emission 3.4

Execution Time: 29.725 ms

(14 rows)

Scheme 3: Roaring bitmap

1. Create the extension first. It is integrated in TencentDB for PostgreSQL natively, so you don't need to care about
compilation and other operations. You can directly create it in the database.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 140

create extension roaringbitmap;

2. Create a tag-user mapping table.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 140

create table tag_uin_list(

tagid int primary key,

uin_offset int,

uinbits roaringbitmap

);

3. Insert 100,000 tags and corresponding user data according to the previously created tag table.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 140

insert into tag_uin_list

select tagid, uin_offset, rb_build_agg(uin::int) as uinbits from

(

select

unnest(tag) as tagid,

(uin / (2^31)::int8) as uin_offset,

mod(uin, (2^31)::int8) as uin

from account1

) t

group by tagid, uin_offset;

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 140

4. Query the number of users with tags 1, 3, 10, and 200.

explain analyze select sum(ub) from

(

select uin_offset,rb_or_cardinality_agg(uinbits) as ub

from tag_uin_list

where tagid in (1,3,10,200)

group by uin_offset

) t;

QUERY PLAN

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 140

Aggregate (cost=32.47..32.48 rows=1 width=32) (actual time=0.964..0.966 rows=1 loop

-> GroupAggregate (cost=32.42..32.46 rows=1 width=12) (actual time=0.955..0.956 row

Group Key: tag_uin_list.uin_offset

-> Sort (cost=32.42..32.43 rows=4 width=22) (actual time=0.107..0.109 rows=4 loops=

Sort Key: tag_uin_list.uin_offset

Sort Method: quicksort Memory: 25kB

-> Bitmap Heap Scan on tag_uin_list (cost=17.20..32.38 rows=4 width=22) (actual tim

)

Recheck Cond: (tagid = ANY ('{1,3,10,200}'::integer[]))

Heap Blocks: exact=4

-> Bitmap Index Scan on tag_uin_list_pkey (cost=0.00..17.20 rows=4 width=0) (actual

=4 loops=1)

Index Cond: (tagid = ANY ('{1,3,10,200}'::integer[]))

Planning Time: 0.289 ms

Execution Time: 1.083 ms

(13 rows)

5. View the list of users with tags 1, 3, 10, and 200.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 140

explain analyze select uin_offset,rb_or_agg(uinbits) as ub

from tag_uin_list

where tagid in (1,3,10,200)

group by uin_offset;

QUERY PLAN

GroupAggregate (cost=32.42..32.46 rows=1 width=36) (actual time=0.246..0.246 rows=1

Group Key: uin_offset

-> Sort (cost=32.42..32.43 rows=4 width=22) (actual time=0.043..0.045 rows=4 loops=

Sort Key: uin_offset

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 140

Sort Method: quicksort Memory: 25kB

-> Bitmap Heap Scan on tag_uin_list (cost=17.20..32.38 rows=4 width=22) (actual tim

Recheck Cond: (tagid = ANY ('{1,3,10,200}'::integer[]))

Heap Blocks: exact=4

-> Bitmap Index Scan on tag_uin_list_pkey (cost=0.00..17.20 rows=4 width=0) (actual

Index Cond: (tagid = ANY ('{1,3,10,200}'::integer[]))

Planning Time: 0.119 ms

Execution Time: 0.310 ms

(12 rows)

6. Viewing index size and table size

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 140

test=> select relname, pg_size_pretty(pg_relation_size(relid)) from pg_stat_user_tab

 relname | pg_size_pretty

--------------+----------------

account | 1545 MB

account1 | 1077 MB

t_user | 651 MB

tag_dict | 6672 kB

tag_uin_list | 5888 kB

(5 rows)

test=> select indexrelname, pg_size_pretty(pg_relation_size(relid)) from pg_stat_us

 indexrelname | pg_size_pretty

-------------------+----------------

tag_inx | 1545 MB

account_pkey | 1545 MB

tag_inx_2 | 1077 MB

account1_pkey | 1077 MB

t_user_pkey | 651 MB

tag_dict_pkey | 6672 kB

tag_uin_list_pkey | 5888 kB

(7 rows)

Conclusion

The query performance comparison of different schemes is as follows:

Query Item Scheme 1 Scheme 2 Roaring Bitmap Scheme

Query the list of users with the specified tag 4.528 ms 0.151 ms 0.310 ms

Query the number of users with the same tag 8.27 ms 29.725 ms 1.083 ms

Storage capacity statistics 4,635 MB 3,244.344
MB

1,237.12 MB

As can be clearly seen from the above three schemes, the optimization effect is very obvious. The roaring bitmap
scheme works very well in terms of query speed and storage capacity usage.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 140

Querying People Nearby with One SQL
Statement
Last updated：2024-01-24 11:20:59

PostGIS is an extension of the PostgreSQL relational database. It follows the specifications of OpenGIS and provides
the following spatial information service features: spatial objects, indexes, operation functions, and operators.
PostGIS supports all spatial data types, including POINT, LINESTRING, POLYGON, MULTIPOINT,

MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION.
PostGIS is also the most comprehensive and powerful spatial and geographic database engine in the industry. Many
business use cases nowadays require the "XXX nearby" feature. PostGIS and PostgreSQL can work together to
implement this feature quickly.
This document describes how to implement the "objects nearby" feature with PostGIS.

Prerequisites

You have a PostgreSQL instance.
This instance supports the PostGIS extension.

Step 1. Create the extension

Log in to the business database instance and run the following commands. For the login methods, see Connecting to
TencentDB for PostgreSQL Instance.

https://intl.cloud.tencent.com/document/product/409/34626

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 140

\\c test

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_topology;

Step 2. Create a test table and an index

Run the following commands in the business database. You can customize the name after TABLE .

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 140

CREATE TABLE t_user(uid int PRIMARY KEY,name varchar(20),location geometry);

CREATE INDEX t_user_location on t_user USING GIST(location);

Step 3. Insert test data

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 140

Create an automatic name generation function

create or replace function random_string(length integer) returns text as

$$

declare

chars text[] := '{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W

result text := '';

i integer := 0;

length2 integer := (select trunc(random() * length + 1));

begin

if length2 < 0 then

raise exception 'Given length cannot be less than 0';

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 140

end if;

for i in 1..length2 loop

result := result || chars[1+random()*(array_length(chars, 1)-1)];

end loop;

return result;

end;

$$ language plpgsql;

Insert ten million rows of test data

insert into t_user select generate_series(1,10000000), random_string(20),st_setsrid

Step 4. Query people nearby

1. Select a random coordinate here. The coordinate of Tiananmen Square (116.404177,39.909652) is used as an
example.
2. Use it as the coordinate for query to find the five objects closest to it in the database, and then output the distances

of these objects from it (in 00' km).
Note:
WGS 84 is the most popular geographic coordinate system. Internationally, each coordinate system is assigned an
EPSG code, which is 4326 for WGS 84. GPS is based on WGS 84, so the coordinate data obtained is usually in WGS
84 and generally stored as WGS 84.
Run the following command:

http://api.map.baidu.com/lbsapi/getpoint/

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 140

select uid, name, ST_AsText(location), ST_Distance(ST_GeomFromText('POINT(116.40417

3. View all objects within 1000 meters of this coordinate object and their distances.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 140

select uid, name, ST_AsText(location),ST_Distance(ST_GeomFromText('POINT(116.404177

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 140

Configuring TencentDB for PostgreSQL as
GitLab's External Data Source
Last updated：2024-01-24 11:20:59

Background

GitLab is a GitHub-like self-hosting Git repository management system service for you to implement internal
management of Git repositories. It helps you keep your code confidential and easily modify the deployed code, with
the following strengths:

It provides GitLab Community Edition for you to locate code on servers.
It provides an unlimited number of private and public repositories free of charge.
It allows you to share a small amount of code in your project as needed instead of the entire project.
The latest GitLab version (12.1) currently supports only PostgreSQL rather than MySQL as the metadatabase for the
following reasons:

MySQL doesn't support WITH until version 8.

To increase MySQL's limits on columns, the operations will be extremely complicated, which may cause MySQL to
reject storing data.
MySQL doesn't allow you to restrict the length of fields of TEXT type.
MySQL doesn't support partition indexes.
In contrast, PostgreSQL supports all the above scenarios. Therefore, GitLab integrates PostgreSQL in its installation

package. However, integrated database services may have certain security risks for some enterprises, and their
database reliability and availability cannot be guaranteed. To ensure the reliability of the code hosting service, some
businesses and enterprises choose to use stable external database services. However, GitLab supports Patroni-
based high-availability databases only on GitLab HA Repmgr edition, and it incurs high costs to maintain the cluster
on your own. In this case, you can use TencentDB for PostgreSQL to greatly simplify such maintenance operations.

This document describes how to replace the embedded database service in GitLab with TencentDB for PostgreSQL.

Step 1. Install GitLab

1. Prepare resources
CentOS Linux release 7.6.1810 (Core).
gitlab-ce 14.9.3.
One CVM instance with over 4 GB memory and over 50 GB disk. We recommend you use /opt to mount an

independent data disk.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 140

One TencentDB for PostgreSQL instance. Configure its specification based on your actual conditions. You can use an
instance with a low specification initially and scale it up later as needed. Select the instance version based on the
GitLab version.

2. Download GitLab
Click here and find the target GitLab installation package, download it, and upload it to the target server.
3. Install GitLab
Use the root account to run the following statements to install GitLab. If a message indicating that the dependency

packages are not installed is displayed in the last step, you can directly use yum or other installation tools to install

them.

https://mirrors.tencent.com/gitlab-ce/

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 140

curl https://packages.gitlab.com/install/repositories/gitlab/gitlab�ce/script.rpm.s

sh gitlab-ee_install.sh

export EXTERNAL_URL=https://gitlab.example.com

yum install -y curl policycoreutils-python openssh-server cronie

rpm -ivh gitlab-ce-13.10.2-ce.0.el7.x86_64.rpm

Step 2. Initialize the PostgreSQL data source

1. You can directly use a cloud database service, such as TencentDB for PostgreSQL. To create a TencentDB for

PostgreSQL instance, see Creating TencentDB for PostgreSQL Instance.
Note:
The database must be created or installed with the same version as GitLab; otherwise, a version mismatch error will
be reported during GitLab initialization, causing database creation to fail.

GitLab Version Earliest Supported PostgreSQL Version

13.0 11

14.0 12

2. Use the client to log in to TencentDB for PostgreSQL. You can use psql to check whether the database can be
directly accessed, and if not, check the network connection and security group configuration.

https://intl.cloud.tencent.com/document/product/409/40724

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 140

psql -U <database admin> -p <port> -d postgres -h <access address>

3. First, create an account to be used by GitLab in the database, such as gitlab . Note that the account must have

the superuser privileges or admin privileges granted by TencentDB such as pg_tencentdb_superuser .

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 140

create user gitlab login password 'gitlab_****_password#123';

grant gitlab to <current admin account>; grant pg_tencentdb_superuser to gitlab;

4. Create a database to be managed and used by gitlab .

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 140

create database gitlab owner=gitlab ENCODING = 'UTF8';

Note:

The GitLab database must support the pg_trgm , btree_gist , and plpgsql extensions, which don't need

to be created in advance. They will be automatically created during GitLab initialization, but you should ensure that
they can be created successfully.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 140

Step 3. Modify the GitLab metadatabase to TencentDB for
PostgreSQL

1. Log in to the server where GitLab is installed, find the GitLab configuration file, which is
 /etc/gitlab/gitlab.rb by default. The file has no configuration information by default. You can run the

following command to view it:

cat /etc/gitlab/gitlab.rb |grep -v ^# | grep -v ^$

external_url 'http://gitlab.example.com'

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 140

2. Add the following information at the end of the file to add the TencentDB for PostgreSQL data source to GitLab:

postgresql connect

Set this parameter to `false`, indicating to disable the embedded PostgreSQL dat

postgresql['enable'] = false

gitlab_rails['db_adapter'] = "postgresql"

gitlab_rails['db_encoding'] = "utf8"

Database name

gitlab_rails['db_database'] = "gitlab"

gitlab_rails['db_pool'] = 100 ## Database user

gitlab_rails['db_username'] = "gitlab"

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 140

Password, which can be changed as needed

gitlab_rails['db_password'] = "gitlab_Test_password#123" ## Access address

gitlab_rails['db_host'] = "gz-tdcpg-ep-6kvx6p19.sql.tencentcdb.com" ## Access port

gitlab_rails['db_port'] = "25870"

Note that if the access address is set to a domain name, the following message will be displayed during initialization:
 ActiveRecord::ConnectionNotEstablished: could not translate host name "gz-tdcpg�ep-

6kvx6p19.sql.tencentcdb.com " to address: Name or service not known

If the database access address is a domain name, run the ping command to find the IP address of the domain

name or a DNS server that can resolve it. We recommend you not directly modify an access domain name to an IP
address, as in scenarios where a domain name is used, the database backend is usually configured with load
balancing or high availability. In this case, you can directly configure the DNS server or host on the server. If the

database service changes, you can directly modify the DNS service or host to avoid modifying the GitLab service.

Step 4. Initialize, log in to, and use GitLab

1. Run the following command to use GitLab, which may take a while, so wait patiently. When gitlab

Reconfigured! is displayed, GitLab has been initialized.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 140

gitlab-ctl reconfigure

2. Run the following command to start GitLab:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 140

gitlab-ctl startok

3. You can access GitLab at the following URL. If access fails, it may be caused by the server firewall.

Sample address: http://{accessible server IP address}/users/sign_in

The login page is as shown below:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 140

4. The initial login account is root . The following message will be displayed for the initial password upon the

completion of initialization:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 140

Password stored to /etc/gitlab/initial_root_password. This file will be

cleaned up in first reconfigure run after 24 hours.

Note:
You can find the initial password in this file on the server. After login, remember to change the password.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 140

At this point, GitLab has been installed and can be used normally.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 140

Supporting Tiered Storage Based on cos_fdw
Extension
Last updated：2024-01-24 11:20:59

Background

As the core component for data storage and processing, a database will have an increasing data volume as the
business develops. Some historical or archived data may exist over time or because of the business design logic.
Such data is seldom accessed by the business but cannot be deleted, as it may be used in some scenarios. To

improve the database's processing performance, you need to store such data in a cold storage class.
For databases, it is very important to store as much data as possible and provide better unified data processing APIs.
For such user requirements, TencentDB for PostgreSQL offers a tiered data storage scheme. Its core principle is to
offer storage media at different costs for your choice. For example, you can store cold data in a storage class with a
lower performance but at lower costs and store hot data in high-performance SSDs at higher costs. This scheme

guarantees smooth operations of your business and reduces the storage costs, making it extremely cost-effective.

Overview

COS is an object storage service provided by Tencent Cloud. Currently, tiered storage is mainly implemented by
connecting to and parsing COS data through the cos_fdw extension.
You can use the cos_fdw extension to load COS data into TencentDB for PostgreSQL tables and access COS data
just like a regular table, thereby implementing hot/cold data separation. You don't need to care about how different
storage media are accessed. You only need to configure COS data files to TencentDB for PostgreSQL.

Solution Strengths

Unified engine: It provides multiple types of storage media with no need to modify the code at the business layer.
You can implement unified access directly over the PostgreSQL protocol.
Lower costs: Compared with high-performance SSDs, its overall costs are 86.25% lower.
Ease of use: You only need to export the source data to a CSV file in COS and create a foreign table in TencentDB
for PostgreSQL based on the extension. Then, you can use the foreign table just like the original table.

Unlimited storage: COS offers an unlimited storage capacity. You can dynamically store data as needed without
worrying about the capacity.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 140

Support for joined table queries: You can query joined tables in multiple storage media and join tables across
partitions. As such operations require a unified data fusion node, they cannot be directly performed in other
databases.

Supported Versions

Currently, tiered storage is supported for the following TencentDB for PostgreSQL versions:
PostgreSQL 10
PostgreSQL 11
PostgreSQL 12
PostgreSQL 13

PostgreSQL 14

Using cos_fdw

Use cos_fdw in the following steps:
1. Export the data.
2. Upload the data to COS.
3. Create the cos_fdw extension.
4. Create a foreign server.

5. Create a foreign table.
6. Query the foreign table.

Initializing Environment

First, you need to apply for a relay server, such as a CVM instance, with a low specification in the same region and AZ
as the database and COS bucket.
Recommended OS: CentOS 7.

1. Install the PostgreSQL client as instructed in Linux downloads (Red Hat family).

https://www.postgresql.org/download/linux/redhat/

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 140

sudo yum install -y

https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-

x86_64/pgdg-redhat-repo-latest.noarch.rpm

sudo yum install -y postgresql13

2. After the installation is completed, run the psql command to access the database and check whether the client

is installed successfully:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 140

psql -Uroot -p 5432 -h 10.x.x.8 -d postgres

Password for user root:

psql (13.6, server 13.3)

Type "help" for help.

postgres=>

3. After the PostgreSQL client is installed, mount COS. You can use COSFS to mount COS to the server, which
eliminates the need to use a larger CVM instance for data dumping and upload. For more information, see COSFS.
4. Run the following command to install dependency packages for your current environment:

https://intl.cloud.tencent.com/document/product/436/6883

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 140

sudo yum install libxml2-devel libcurl-devel -y

5. Download the COSFS installation package from GitHub.

6. After the download is completed, upload the package to the server and run the following command to install
COSFS:

https://github.com/tencentyun/cosfs/releases/download/v1.0.19/cosfs-1.0.19-centos7.0.x86_64.rpm

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 140

rpm -ivh cosfs-1.0.19-centos7.0.x86_64.rpm

Note:

If dependency packages are installed, but COSFS still cannot be installed successfully, add the --force

parameter to the command to forcibly install it.
7. After installing COSFS, run the following command to mount the COS bucket to the relay server.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 140

echo <BucketName-APPID>:<SecretId>:<SecretKey> > /etc/passwd-cosfs

chmod 640 /etc/passwd-cosfs

cosfs <BucketName-APPID> <MountPoint> -ourl=http://cos.<Region>.myqcloud.c

om -odbglevel=info -oallow_other

 BucketName-APPID is the format of the bucket name.

 SecretId and SecretKey are the key information.

8. After mounting, go to the mounted directory and copy a file to check whether the mounting succeeds. You can also
run df -h to view the mounting status.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 140

[root@VM-4-17-centos ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 1.9G 0 1.9G 0% /dev

tmpfs 1.9G 0 1.9G 0% /dev/shm

tmpfs 1.9G 472K 1.9G 1% /run

tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup

/dev/vda1 50G 3.0G 44G 7% /

tmpfs 379M 0 379M 0% /run/user/0

cosfs 256T 0 256T 0% /mnt/pgstorage

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 140

Exporting Data

After mounting is completed, export the data.
If the sensor_log table exists, it needs to be in the following structure:

CREATE TABLE sensor_log (

 sensor_log_id SERIAL PRIMARY KEY,

 location VARCHAR NOT NULL,

 reading BIGINT NOT NULL,

 reading_date TIMESTAMP NOT NULL

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 140

);

CREATE INDEX idx_sensor_log_location ON sensor_log (location);

CREATE INDEX idx_sensor_log_date ON sensor_log (reading_date);

insert into sensor_log(location,reading,reading_date) values('38c-

1401',293857,current_timestamp);

insert into sensor_log(location,reading,reading_date) values('38c-

1402',293858,current_timestamp);

insert into sensor_log(location,reading,reading_date) values('34c-

1401',293859,current_timestamp);

insert into sensor_log(location,reading,reading_date) values('18c-

1401',2938510,current_timestamp);

If you use psql to export the data, follow the steps below (do not carry the header during export):
Export the entire table:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 140

psql -U root -p 5432 -h 10.0.4.8 -d hehe -c \\COPY sensor_log

(sensor_log_id,location, reading,reading_date) TO '/mnt/xxx/sensor_log.csv' WITH

csv;

Export specified data (for scenarios such as data filtering, multi-table join, and view):

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 140

psql -U root -p 5432 -h 10.0.4.8 -d hehe -c '\\COPY (select * from sensor_log

where location='18c-1401') TO '/mnt/pgstorage/sensor_log.csv' WITH csv;'

After the above statement is executed, you can find the exported file in the corresponding directory in the COS bucket.
The CSV file exported to COS doesn't need to contain column names.

Creating Extension

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 140

The cos_fdw extension will encrypt the secret ID and secret key of COS. The encryption algorithm relies on the
pgcrypto extension. Therefore, you need to install pgcrypto first.

CREATE EXTENSION pgcrypto;

CREATE EXTENSION cos_fdw;

Creating Foreign Server

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 140

CREATE SERVER cos_server FOREIGN DATA WRAPPER cos_fdw OPTIONS(

 host 'xxxxxx.cos.ap-nanjing.myqcloud.com',

 bucket 'xxxxxxxx',

 id 'xxxxxxxx',

 key 'xxxxxxxxxx'

);

Note:
The domain name configured in host is the access address of the COS bucket. The address doesn't need to

contain the http or https prefix as the protocol.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 140

 id and key of the foreign server are sensitive information, which will be encrypted and stored by cos_fdw.

Different instances use different keys to maximize the user information protection. You can run SELECT * FROM

pg_foreign_server; to view the information.

Creating COS Foreign Table

CREATE FOREIGN TABLE test_csv (

 word1 text OPTIONS (force_not_null 'true'),

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 140

 word2 text OPTIONS (force_not_null 'off')) SERVER cos_server OPTIONS (

 filepath '/test.csv',

 format 'csv',

 null 'NULL'

);

 cos_fdw allows you to map multiple COS files to the same foreign table. To do so, enter multiple filenames in the

 filepath parameter and separate them with commas (do not add spaces).

CREATE FOREIGN TABLE multi_csv (

 word1 text OPTIONS (force_not_null 'true'),

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 140

 word2 text OPTIONS (force_not_null 'off')) SERVER cos_server OPTIONS (

 filepath '/a.csv,/b.csv,/c.csv.2',

 format 'csv',

 null 'NULL'

);

Querying Foreign Table

Scheduling query plan

cos_fdw can estimate the size of foreign files for scheduling the query plan. For a foreign table mapped to multiple

COS files, cos_fdw can print out the size of each file and calculate the total size of all files.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 140

-- Single file

postgres=# EXPLAIN SELECT * FROM test_csv;

 QUERY PLAN

Foreign Scan on test_csv (cost=0.00..1.10 rows=1 width=128)

 Foreign COS Url: https://xxxxxxx.cos.ap-nanjing.myqcloud.com

 Foreign COS File Path: /test_csv.csv

 Foreign each COS File Size(Bytes): 86

 Foreign total COS File Size(Bytes): 86

(5 rows)

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 140

-- Multiple files

postgres=# EXPLAIN SELECT * FROM multi_csv;

 QUERY PLAN

Foreign Scan on multi_csv (cost=0.00..1.20 rows=2 width=128)

 Foreign COS Url: https://xxxxxxxxxx.cos.ap-nanjing.myqcloud.com

 Foreign COS File Path: /a.csv,/b.csv,/c.csv.2

 Foreign each COS File Size(Bytes): 15,172,86

 Foreign total COS File Size(Bytes): 273

(5 rows)

Querying data

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 140

postgres=# SELECT * FROM test_csv;

word1 | word2 | word3 | word4

-------+-------+-------+-------

AAA | aaa | 123 |

XYZ | xyz | | 321

NULL | | |

NULL | | |

ABC | abc | | (5 rows)

Importing data from foreign table to local table

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 140

You can use statements similar to insert into ... select * from ...; to import data from a foreign

table to a local table.

postgres=# CREATE TABLE local_test_csv (

postgres(# a text,

postgres(# b text,

postgres(# c text,

postgres(# d text

postgres(#);

CREATE TABLE

postgres=# INSERT INTO local_test_csv SELECT * FROM test_csv;

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 140

INSERT 0 5

postgres=# SELECT * FROM local_test_csv;

 a | b | c | d

------+-----+-----+-----

AAA | aaa | 123 |

XYZ | xyz | | 321

NULL | | |

NULL | | |

ABC | abc | | (5 rows)

Querying partitioned table

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 140

postgres=# CREATE TABLE pt (a int, b text) partition by list (a);

CREATE TABLE

postgres=# CREATE FOREIGN TABLE p1 partition of pt for values in (1) SERVER

cos_server

postgres-# OPTIONS (format 'csv', filepath '/list1.csv', delimiter ',');

CREATE FOREIGN TABLE

postgres=# CREATE TABLE p2 partition of pt for values in (2);

CREATE TABLE

-- Partitioned tables can be queried

postgres=# SELECT tableoid::regclass, * FROM pt;

tableoid | a | b

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 140

----------+---+-----

p1 | 1 | foo

p1 | 1 | bar

(2 rows)

postgres=# SELECT tableoid::regclass, * FROM p1;

tableoid | a | b

----------+---+-----

p1 | 1 | foo

p1 | 1 | bar

(2 rows)

postgres=# SELECT tableoid::regclass, * FROM p2;

tableoid | a | b

----------+---+---

(0 rows)

-- Currently, data cannot be written to foreign tables

postgres=# INSERT INTO pt VALUES (1, 'xyzzy'); -- ERROR

ERROR: cannot route inserted tuples to a foreign table

-- As local tables are not affected, data can be written to local partitioned table

postgres=# INSERT INTO pt VALUES (2, 'xyzzy');

INSERT 0 1

postgres=# SELECT tableoid::regclass, * FROM pt;

tableoid | a | b

----------+---+-------

p1 | 1 | foo

p1 | 1 | bar

p2 | 2 | xyzzy

(3 rows)

postgres=# SELECT tableoid::regclass, * FROM p1;

tableoid | a | b

----------+---+-----

p1 | 1 | foo

p1 | 1 | bar

(2 rows)

postgres=# SELECT tableoid::regclass, * FROM p2;

tableoid | a | b

----------+---+-------

p2 | 2 | xyzzy

(1 row)

Dropping Extension

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 140

DROP EXTENSION cos_fdw;

Parameters

 CERATE SERVER parameters

Parameter Description

host

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 140

Address for accessing COS over the private network. Note that host cannot contain the
 http or https prefix.

bucket Bucket name in the format of BucketName-APPID

id Account secret ID

key Account secret key

 CREATE FOREIGN TABLE parameters

Parameter Description

filepath Sample

format Data format, which currently can only be CSV.

delimiter Data delimiter

quote Data quote character

escape Data escape character

encoding Data encoding

null
Specifies that the column matching the corresponding string is null . For example, null
'NULL' indicates to specify the string of the column value 'NULL' to null

force_not_null
Specifies that the column's value should not match an empty string. For example,
 force_not_null 'id' indicates that if the value of the id column is empty, the value
queried from the foreign table is an empty string but not null .

force_null
Specifies that the column's value matches an empty string. For example, force_null
'id' indicates that if the value of the id column is empty, the value queried from the
foreign table is null .

Error Handling

When a data request sent by cos_fdw to COS times out, the following will be displayed:
code: HTTP status code of the abnormal request.
HTTP header: Error information. For more information on the format, see Common Response Headers. You can
submit a ticket with the x-cos-request-id for assistance. If the field is empty, the request failed to be sent to

COS.

https://intl.cloud.tencent.com/document/product/436/7729
https://console.intl.cloud.tencent.com/workorder/category

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 140

• postgres=# SELECT * FROM test_csv; • ERROR: COS api return error. • DETAIL: COS a

• HTTP/1.1 403 Forbidden

• Content-Type: application/xml

• Content-Length: 0 • Connection: keep-alive

• Date: Thu, 07 Apr 2022 09:00:22 GMT

• Server: tencent-cos

• x-cos-request-id: NjI0ZWE4MjZfNDc1NGU0MDlfMjI3ZTJfMTI3YTJjMWM=

• x-cos-trace-id:

OGVmYzZiMmQzYjA2OWNhODk0NTRkMTBiOWVmMDAxODc0OWRkZjk0ZDM1NmI1M2E2MTRlY2MzZDhmNmI5MWI

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 140

Implement Read/Write Separation via pgpool
Last updated：2024-03-27 17:08:19

1. Install pgpool
Download pgpool and install it, download address.
 $./configure

 $ make

 $ make install

2. Configuration File
Note:
Use pgpool to implement the Cloud Load Balancer access. All authentication occurs between the client and pgpool,
and the client still needs to continue the PostgreSQL's authentication process.
Configure the pool_passwd password file

The pool_passwd password file is required when connecting to the database through pgpool. You can generate the
password file using the following command:

https://www.pgpool.net/mediawiki/download.php?f=pgpool-II-4.4.5.tar.gz

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 140

[root@VM-0-15-tencentos ~]# cd /usr/local/bin

[root@VM-0-15-tencentos bin]# pg_md5 --md5auth --username=dbadmin password

[root@VM-0-15-tencentos bin]# more /usr/local/etc/pool_passwd

dbadmin:md50b0cdb5c1d1f30fe83e5a72061749681

Configure the pgpool.conf file

After installing pgpool-II, pgpool.conf.sample is automatically created. We recommend copying or renaming it to
pgpool.conf, then you can edit it freely.
 $ cp /usr/local/etc/pgpool.conf.sample /usr/local/etc/pgpool.conf

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 140

pgpool-II only accepts local connections to port 9999 by default. If you want to accept connections from other hosts,
please set up.
 listen_addresses = 'localhost'

 port = 9999

The important pgpool configurations are as follows, please refer to:
 #--

 # BACKEND CLUSTERING MODE

 # Choose one of: 'streaming_replication', 'native_replication',

 # 'logical_replication', 'slony', 'raw' or 'snapshot_isolation'

 # (change requires restart)

 #--

 backend_clustering_mode = 'streaming_replication'

 #--

 # CONNECTIONS

 #--

 # - pgpool Connection Settings -

 listen_addresses = '0.0.0.0'

 # what host name(s) or IP address(es) to listen

on;

 # comma-separated list of addresses;

 # defaults to 'localhost'; use '*' for all

 # (change requires restart)

 port = 9989

 # Port number

 # (change requires restart)

 unix_socket_directories = '/tmp'

 # Unix domain socket path(s)

 # The Debian package defaults to

 # /var/run/postgresql

 # (change requires restart)

 #unix_socket_group = ''

 # The Owner group of Unix domain socket(s)

 # (change requires restart)

 reserved_connections = 0

 # Number of reserved connections.

 # Pgpool-II does not accept connections if over

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 140

 # num_init_children - reserved_connections.

 # - pgpool Communication Manager Connection Settings -

 pcp_listen_addresses = ''

 # what host name(s) or IP address(es) for pcp

process to listen on;

 # comma-separated list of addresses;

 # defaults to 'localhost'; use '*' for all

 # (change requires restart)

 pcp_port = 9898

 # Port number for pcp

 # (change requires restart)

 pcp_socket_dir = '/tmp'

 # Unix domain socket path for pcp

 # The Debian package defaults to

 # /var/run/postgresql

 # (change requires restart)

 listen_backlog_multiplier = 2

 # Set the backlog parameter of listen(2) to

 # num_init_children * listen_backlog_multiplier.

 # (change requires restart)

 serialize_accept = off

 # whether to serialize accept() call to avoid

thundering herd problem

 # (change requires restart)

 # - Backend Connection Settings -

 backend_hostname0 = '172.16.0.3'

 # Host name or IP address to connect to for

backend 0

 backend_port0 = 5432

 # Port number for backend 0

 backend_weight0 = 1

 # Weight for backend 0 (only in load balancing

mode)

 #backend_data_directory0 = '/data'

 # Data directory for backend 0

 backend_flag0 = 'ALWAYS_PRIMARY'

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 140

 # Controls various backend behavior

 # ALLOW_TO_FAILOVER, DISALLOW_TO_FAILOVER

 # or ALWAYS_PRIMARY

 backend_application_name0 = 'server0'

 # walsender's application_name, used for "show

pool_nodes" command

 backend_hostname1 = '172.16.0.12'

 backend_port1 = 5432

 backend_weight1 = 1

 #backend_data_directory1 = '/data1'

 backend_flag1 = 'DISALLOW_TO_FAILOVER'

 backend_application_name1 = 'server1'

 # - Authentication -

 enable_pool_hba = on

 # Use pool_hba.conf for client authentication

 pool_passwd = 'pool_passwd'

 # File name of pool_passwd for md5

authentication.

 # "" disables pool_passwd.

 # (change requires restart)

 allow_clear_text_frontend_auth = off

 # Allow Pgpool-II to use clear text password

authentication

 # with clients, when pool_passwd does not

 # contain the user password

 # - SSL Connections -

 ssl =off

 # Enable SSL support

 # (change requires restart)

 #--

 # POOLS

 #--

 num_init_children = 32

 # Maximum Number of concurrent sessions allowed

 # (change requires restart)

 max_pool = 4

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 140

 # Number of connection pool caches per

connection

 # (change requires restart)

 # - Life time -

 child_life_time = 5min

 # Pool exits after being idle for this many

seconds

 child_max_connections = 0

 # Pool exits after receiving that many

connections

 # 0 means no exit

 connection_life_time = 0

 # Connection to backend closes after being idle

for this many seconds

 # 0 means no close

 client_idle_limit = 0

 # Client is disconnected after being idle for

that many seconds

 # (even inside an explicit transactions!)

 # 0 means no disconnection

 #--

 # FILE LOCATIONS

 #--

 pid_file_name = '/var/run/pgpool/pgpool.pid'

 # PID file name

 # Can be specified as relative to the"

 # location of pgpool.conf file or

 # as an absolute path

 # (change requires restart)

 logdir = '/tmp'

 # Directory of pgPool status file

 # (change requires restart)

 #--

 # CONNECTION POOLING

 #--

 connection_cache = on

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 140

 # Activate connection pools

 # (change requires restart)

 # Semicolon separated list of queries

 # to be issued at the end of a session

 # The default is for 8.3 and later

 reset_query_list = 'ABORT; DISCARD ALL'

 # The following one is for 8.2 and before

 #--

 # LOAD BALANCING MODE

 #--

 load_balance_mode = on

 # Activate load balancing mode

 # (change requires restart)

 ignore_leading_white_space = on

 # Ignore leading white spaces of each query

 write_function_list = ''

 # Comma separated list of function names

 # that write to database

 # Regexp are accepted

 # If both read_only_function_list and

write_function_list

 # is empty, function's volatile property is

checked.

 # If it's volatile, the function is regarded as

a

 # writing function.

 allow_sql_comments = off

 # if on, ignore SQL comments when judging if

load balance or

 # query cache is possible.

 # If off, SQL comments effectively prevent the

judgment

 # (pre 3.4 behavior).

 disable_load_balance_on_write = 'transaction'

 # Load balance behavior when write query is

issued

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 140

 # in an explicit transaction.

 #

 # Valid values:

 #

 # 'transaction' (default):

 # if a write query is issued, subsequent

 # read queries will not be load balanced

 # until the transaction ends.

 #

 # 'trans_transaction':

 # if a write query is issued, subsequent

 # read queries in an explicit transaction

 # will not be load balanced until the

session ends.

 #

 # 'dml_adaptive':

 # Queries on the tables that have already

been

 # modified within the current explicit

transaction will

 # not be load balanced until the end of the

transaction.

 #

 # 'always':

 # if a write query is issued, read queries

will

 # not be load balanced until the session

ends.

 #

 # Note that any query not in an explicit

transaction

 # is not affected by the parameter except

'always'.

 statement_level_load_balance = off

 # Enables statement level load balancing

 #--

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 140

 # HEALTH CHECK GLOBAL PARAMETERS

 #--

 health_check_period = 0

 # Health check period

 # Disabled (0) by default

 health_check_timeout = 20

 # Health check timeout

 # 0 means no timeout

 health_check_user = 'nobody'

 # Health check user

 health_check_password = ''

 # Password for health check user

 # Leaving it empty will make Pgpool-II to first

look for the

 # Password in pool_passwd file before using the

empty password

 health_check_database = ''

 # Database name for health check. If '', tries

'postgres' frist,

 health_check_max_retries = 60

 # Maximum number of times to retry a failed

health check before giving up.

 health_check_retry_delay = 1

 # Amount of time to wait (in seconds) between

retries.

 connect_timeout = 10000

 # Timeout value in milliseconds before giving up

to connect to backend.

 # Default is 10000 ms (10 second). Flaky network

user may want to increase

 # the value. 0 means no timeout.

 # Note that this value is not only used for

health check,

 # but also for ordinary conection to backend.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 140

3. Configure the PCP Command
pgpool-II has an interface for management purposes, used to access database node information, shut down pgpool-II,
etc. To use the PCP command, user authentication is required. This kind of authentication is different from
PostgreSQL user authentication. It requires defining a username and password in the pcp.conf file. In this file, a

username and password appear in pairs on each line, separated by a colon (:). Passwords are in MD5-hashed format.

4. Configure Database Nodes
 # - Backend Connection Settings -

 backend_hostname0 = '172.16.0.30'

 # Host name or IP address to connect to for

backend 0

 backend_port0 = 5432

 # Port number for backend 0

 backend_weight0 = 1

 # Weight for backend 0 (only in load balancing

mode)

 #backend_data_directory0 = '/data'

 # Data directory for backend 0

 backend_flag0 = 'ALWAYS_PRIMARY'

 # Controls various backend behavior

 # ALLOW_TO_FAILOVER, DISALLOW_TO_FAILOVER

 # or ALWAYS_PRIMARY

 backend_application_name0 = 'server0'

 # walsender's application_name, used for "show

pool_nodes" command

 backend_hostname1 = '172.16.0.16'

 backend_port1 = 5432

 backend_weight1 = 1

 #backend_data_directory1 = '/data1'

 backend_flag1 = 'DISALLOW_TO_FAILOVER'

 backend_application_name1 = 'server1'

When load_balance_mode is set to true, pgpool-II will distribute SELECT queries among database nodes.

 load_balance_mode = on

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 140

 # Activate load balancing mode

 # (change requires restart)

 ignore_leading_white_space = on

 # Ignore leading white spaces of each query

 write_function_list = ''

 # Comma separated list of function names

 # that write to database

 # Regexp are accepted

 # If both read_only_function_list and

write_function_list

 # is empty, function's volatile property is

checked.

 # If it's volatile, the function is regarded as

a

 # writing function.

 allow_sql_comments = off

 # if on, ignore SQL comments when judging if

load balance or

 # query cache is possible.

 # If off, SQL comments effectively prevent the

judgment

 # (pre 3.4 behavior).

 disable_load_balance_on_write = 'transaction'

 # Load balance behavior when write query is

issued

 # in an explicit transaction.

 #

 # Valid values:

 #

 # 'transaction' (default):

 # if a write query is issued, subsequent

 # read queries will not be load balanced

 # until the transaction ends.

 #

 # 'trans_transaction':

 # if a write query is issued, subsequent

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 140

 # read queries in an explicit transaction

 # will not be load balanced until the

session ends.

 #

 # 'dml_adaptive':

 # Queries on the tables that have already

been

 # modified within the current explicit

transaction will

 # not be load balanced until the end of the

transaction.

 #

 # 'always':

 # if a write query is issued, read queries

will

 # not be load balanced until the session

ends.

 #

 # Note that any query not in an explicit

transaction

 # is not affected by the parameter except

'always'.

 statement_level_load_balance = off

 # Enables statement level load balancing

5. Start pgpool-II and Verify Read-Write
Separation
 $ pgpool -n -d > /tmp/pgpool.log 2>&1 &

Note:
Connect and query pg_is_in_recovery(), then disconnect and reconnect to query pg_is_in_recovery() again. If
alternating responses of false and true are returned, it indicates that requests are being alternately sent to the master
and slave servers, thereby indicating successful read-write separation.
Use the psql client to connect to pgpool, showing status as normal.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 140

[root@VM-0-15-tencentos ~]# /usr/local/pgsql/bin/psql -h127.0.0.1 -p9989 -Udbadmin

Password for user dbadmin:

psql (15.1)

Type "help" for help.

postgres=> show pool_nodes;

 node_id | hostname | port | status | pg_status | lb_weight | role | pg_role

atus_change

---------+-------------+------+--------+-----------+-----------+---------+---------

 0 | 172.16.0.30 | 5432 | up | unknown | 0.500000 | primary | unknown

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 140

-27 20:04:13

 1 | 172.16.0.16 | 5432 | up | unknown | 0.500000 | standby | unknown

-27 20:04:13

(2 rows)

postgres=>

Use read-write SQL on the client side. Due to the prior distinction between read-write and read-only instances, it can
be seen that the read-write separation is successful.

postgres=> insert into pgpool1(id,name)values(3,'b');

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 140

INSERT 0 1

postgres=> select * from pgpool1;

 id | name

----+------

 1 | a

 2 | b

 3 | a

 4 | b

 3 | a

(5 rows)

postgres=>

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 140

Analyzing Slow SQL Using the auto_explain
Plugin
Last updated：2024-08-09 15:21:37

Note:
Enabling auto_explain requires restarting the database. Plan the operation and maintenance time window in advance.
Enabling auto_explain will incur a certain performance loss, which is related to the specific service. Test thoroughly

beforehand.
Enabling auto_explain may result in more occupied disk space due to the generation of excessive logs. Be aware of
this.
If you need to enable auto_explain and download logs, submit a ticket to contact us.

Description of Key Parameters

The auto_explain plugin provides a feature for automatically recording SQL execution plans. After enabling this plugin

in your instance, you can achieve this capability by setting several parameters. Some key parameters are described
below. For a detailed description, refer to the official document.
auto_explain.log_min_duration
This parameter is mainly used to determine the execution duration threshold for SQL statements beyond which their
execution plan will be recorded. The default value is -1, meaning no statement will be recorded. The unit is
milliseconds.

auto_explain.log_analyze
This parameter can be added to enable the explain analyze value. It is disabled by default.
auto_explain.log_timing
This parameter can be added to print the statement execution time. It is disabled by default.
auto_explain.log_verbose

This parameter can be added to increase verbose information output in explain. It is disabled by default.

Examples

Assume the instance has a database named a_all, and this database has 10 tables under the public schema, namely:
 student_info_b0, student_info_b1, student_info_b2, student_info_b3,

student_info_b4, student_info_b5, student_info_b6, student_info_b7, student_info_b8,

student_info_b9

https://console.intl.cloud.tencent.com/workorder/category
https://www.postgresql.org/docs/current/auto-explain.html

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 140

The current TencentDB for PostgreSQL instance has enabled the auto_explain plugin. Its parameter values are as
follows:

a_all=> show auto_explain.log_min_duration;

 auto_explain.log_min_duration

 10ms

(1 row)

a_all=> show auto_explain.log_analyze;

 auto_explain.log_analyze

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 140

 on

(1 row)

a_all=> show auto_explain.log_verbose;

 auto_explain.log_verbose

 on

(1 row)

a_all=> show auto_explain.log_timing;

 auto_explain.log_timing

 on

(1 row)

The following statements are executed:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 140

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 140

SELECT user_id, COUNT(*) OVER (PARTITION BY user_id) as countFROM (SELECT user_

The slow logs recorded on the TencentDB for PostgreSQL console are shown below:

https://console.intl.cloud.tencent.com/postgres

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 140

The execution plan in the downloaded auto_explain logs are as follows:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 140

duration: 147.603 ms plan:

Query Text: SELECT user_id, COUNT(*) OVER (PARTITION BY user_id) as count

FROM (

 SELECT user_id FROM student_info_b0

 UNION ALL

 SELECT user_id FROM student_info_b1

 UNION ALL

 SELECT user_id FROM student_info_b2

 UNION ALL

 SELECT user_id FROM student_info_b3

 UNION ALL

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 140

 SELECT user_id FROM student_info_b4

 UNION ALL

 SELECT user_id FROM student_info_b5

 UNION ALL

 SELECT user_id FROM student_info_b6

 UNION ALL

 SELECT user_id FROM student_info_b7

 UNION ALL

 SELECT user_id FROM student_info_b8

 UNION ALL

 SELECT user_id FROM student_info_b9

) AS all_students;

WindowAgg (cost=19181.71..21924.66 rows=156740 width=14) (actual time=56.009..116.

 Output: student_info_b0.user_id, count(*) OVER (?)

 -> Sort (cost=19181.71..19573.56 rows=156740 width=6) (actual time=55.956..72.7

 Output: student_info_b0.user_id

 Sort Key: student_info_b0.user_id

 Sort Method: external merge Disk: 2448kB

 -> Append (cost=0.00..3511.10 rows=156740 width=6) (actual time=0.010..20

 -> Seq Scan on public.student_info_b0 (cost=0.00..272.74 rows=15674

 Output: student_info_b0.user_id

 -> Seq Scan on public.student_info_b1 (cost=0.00..272.74 rows=15674

 Output: student_info_b1.user_id

 -> Seq Scan on public.student_info_b2 (cost=0.00..272.74 rows=15674

 Output: student_info_b2.user_id

 -> Seq Scan on public.student_info_b3 (cost=0.00..272.74 rows=15674

 Output: student_info_b3.user_id

 -> Seq Scan on public.student_info_b4 (cost=0.00..272.74 rows=15674

 Output: student_info_b4.user_id

 -> Seq Scan on public.student_info_b5 (cost=0.00..272.74 rows=15674

 Output: student_info_b5.user_id

 -> Seq Scan on public.student_info_b6 (cost=0.00..272.74 rows=15674

 Output: student_info_b6.user_id

 -> Seq Scan on public.student_info_b7 (cost=0.00..272.74 rows=15674

 Output: student_info_b7.user_id

 -> Seq Scan on public.student_info_b8 (cost=0.00..272.74 rows=15674

 Output: student_info_b8.user_id

 -> Seq Scan on public.student_info_b9 (cost=0.00..272.74 rows=15674

 Output: student_info_b9.user_id

Thus, we can clearly view the detailed execution plan for the slow SQL and conduct subsequent service analysis.

