
TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 20

TencentDB for PostgreSQL

PostgreSQL for Serverless

Product Documentation

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 20

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 20

Contents

PostgreSQL for Serverless
Overview
Strengths
Use Cases
Getting Started
Importing Data

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 20

PostgreSQL for Serverless
Overview
Last updated：2024-01-24 11:20:59

Overview

PostgreSQL for Serverless (ServerlessDB) is a PostgreSQL-based database product that enables on-demand
allocation of resources. It can automatically allocate resources according to the actual number of requests.
With a traditional database instance, you need to manually adjust the database specification and capacity according

to the actual business usage, which not only takes up your time but also may cause resource waste due to the
underuse of database resources.
With PostgreSQL for Serverless, you can create a database instance for easy use without caring about the instance
specifications. You only need to pay for the actual usage when the database is active.
Note:

PostgreSQL for Serverless is currently in beta test free of charge. You can create an instance directly through the
CreateServerlessDBInstance API.

System Architecture

After users are connected to a database, requests will be forwarded uniformly through the PostgreSQL for Serverless
proxy layer before data operations are performed. When the number of user requests increases, the database will
automatically respond. Currently, up to 40,000 QPS is supported for one single user.

https://intl.cloud.tencent.com/document/product/409/38880

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 20

Features

High availability

PostgreSQL for Serverless supports the architecture of one primary instance and one secondary instance for high
availability. When the primary instance becomes unavailable due to an exception, the database will automatically start
the secondary instance, to which business connections will be transferred so as to prevent business interruption.

Automatic backup

PostgreSQL for Serverless automatically backs up the entire database at 1:00 AM every day and backs up database
logs once every 15 minutes or when the number of log files reaches 60. All backups are retained for 7 days.
Backup is automatically performed on the backend. Currently, you cannot view, download, or restore data from
backups.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 20

Strengths
Last updated：2024-01-24 11:20:59

Automatic Database Capacity Management

PostgreSQL for Serverless can automatically respond to resources based on the busyness of business requests, so
you don't need to pay for the database during idle time; instead, you only need to pay for the actually used data
capacity and response resources when the database is active, which helps your save database costs. If there are no

user requests to the database, the database will automatically close all resource responses.

High Availability

PostgreSQL for Serverless supports the architecture of one primary instance and one secondary instance for high
availability. When the primary instance becomes unavailable due to an exception, the database will automatically start
the secondary instance, to which business connections will be transferred so as to prevent business interruption.

Automatic Backup

PostgreSQL for Serverless automatically backs up the entire database at 1:00 AM every day and backs up database

logs once every 15 minutes or when the number of log files reaches 60. All backups are retained for 7 days.
Backup is automatically performed on the backend. Currently, you cannot view, download, or restore data from
backups.

Cost Savings

With PostgreSQL for Serverless, you can create a database instance for easy use without caring about the instance
specifications. You only need to pay for the actual usage when the database is active.

Support for Features of PostgreSQL

In addition to supporting the serverless architecture, PostgreSQL for Serverless also enjoys the functional advantages

of standard PostgreSQL database instances, such as rich extensions, backup and restoration, and high availability.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 20

Use Cases
Last updated：2024-01-24 11:20:59

Infrequently Used Application

Some applications are used only a few times a day or a week for only a few minutes each time, such as a low-volume
blog website. If you choose a traditional database, you need to pay for the database even when it is idle.
With PostgreSQL for Serverless, you can create a cost-effective database and only pay for it when it is active.

Unpredictable Workload

If your program needs to use the database around the clock and has unpredictable activity peaks, or when the
program load changes rapidly, unpredictable business peaks may occur at any time, then PostgreSQL for Serverless
is an ideal choice for you.
With PostgreSQL for Serverless, the capacity of your database will be automatically expanded to sustain peak loads
of your application and reduced after activity surges end. There is no need to provision the peak capacity, so you don't

have to pay for infrequently used resources, and there is no need to evenly allocate the capacity, so an optimal
balance can be achieved between the performance and cost.

Development and Test Databases

Software development and quality assurance (QA) teams need to use databases during working hours but not at night
or on weekends.
With PostgreSQL for Serverless, your database will be automatically shut down when not in use and started up faster
when you start working in it the next day.

Low-Traffic Application

If your application has low traffic, it is usually impossible for you to make the most out of the standard instance with the
lowest specification, but you still need to pay for the surplus performance.
PostgreSQL for Serverless eliminates your need to pay for the surplus performance.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 20

Getting Started
Last updated：2024-01-24 11:20:59

This document describes how to create and connect to a PostgreSQL for Serverless instance.

Use Limits

During the beta period, a single user can enjoy up to 40,000 QPS and 100 GB disk capacity.
Currently, PostgreSQL for Serverless instances can be created only with APIs.

Currently, only Beijing Zone 3, Shanghai Zone 2, and Guangzhou Zone 2 are supported.

Directions

Step 1. Create an instance

Using Serverless Framework to create an instance

Create an instance quickly with Serverless Framework.

Using APIs to create an instance

Create an instance with the CreateServerlessDBInstance API.
Some important input parameters are listed as follows. For more information, please see
CreateServerlessDBInstance.

Parameter Name Required Type Description

Zone Yes string Availability zone ID. Valid values: ap-shanghai-2, ap-beijing-3, ap-
guangzhou-2

DBInstanceName Yes string TencentDB instance name. This value must be unique for the same
account.

DBVersion Yes string Database version. Valid value: 10.4

DBCharset Yes string PostgreSQL database character set. Valid values: UTF8, LATIN1

VpcId No string VPC ID. If this parameter is left empty, the instance will be
assigned with a classic network IP.

SubnetId No string
VPC subnet ID. This parameter should be used together with
 VpcId .

https://intl.cloud.tencent.com/document/product/1040/36821
https://intl.cloud.tencent.com/document/product/409/38880
https://intl.cloud.tencent.com/document/product/409/38880

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 20

After successful execution, the output sample is as follows:

{

 "Response": {

 "RequestId": "20304c-6fd7-4427-8e09-2b081e1",

 "DBInstanceId": "postgres-xxxxxxx"

 }

}

Where, DBInstanceId refers to the instance ID.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 20

Step 2. Connect to the instance

1. Use the DescribeServerlessDBInstances API to query the information of the PostgreSQL for Serverless instance
you just created, including instance IP, port, username, and initial password.

{

 "Response": {

 "TotalCount": 1,

 "DBInstanceSet": [

 {

 "DBInstanceId": "postgres-xxxxxxx",

 "DBInstanceName": "test",

https://intl.cloud.tencent.com/document/product/409/38878

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 20

 "DBInstanceStatus": "running",#TencentDB instance status

 "Region": "ap-shanghai",

 "Zone": "ap-shanghai-2",

 "ProjectId": 0,

 "VpcId": "vpc-test",

 "SubnetId": "subnet-test",

 "DBCharset": "UTF8",

 "DBVersion": "10.4",

 "CreateTime": "2020-03-23 11:43:56",

 "DBInstanceNetInfo": [

 {

 "Address": "",

 "Ip": "10.1.1.2", #This IP is used as an example. The IP can be accessed o

 "Port": 5432, #Connect to the port

 "Status": "opened",

 "NetType": "private"

 },

 {

 "Address": "",

 "Ip": "",

 "Port": 0,

 "Status": "0",

 "NetType": "public"

 }

],

 "DBAccountSet": [

 {

 "DBUser": "tencentdb_xxxxxxx",

 "DBPassword": "**************",#Database password. After the password has

 "DBConnLimit": 100

 }

],

 "DBDatabaseList": [

 "tencentdb_xxxxxxx"

]

 }

],

 "RequestId": "89583d-cfdd-4db1-bd32-64eb1dbfa"

 }

}

2. Taking a CVM instance on CentOS 7.2 (64-bit) as an example, run the following command to install the
PostgreSQL client.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 20

yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg

yum install postgresql10 postgresql10.x86_64

3. Run the following command to connect to the database.
Note:
To connect over a private network, you need to use a CVM instance to access the private IP of the TencentDB
instance, and the two instances must be under the same account and in the same VPC in the same region.

To connect over a public network, you need to enable public access for the instance.

https://intl.cloud.tencent.com/document/product/213/10517

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 20

psql -U database username -h IP address -p port number

In this example, the prompt tencentdb_xx> indicates successful connection.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 20

4. After successful connection, you can manage database data with SQL statements. For more information, please
see Official Document.

Note:
PostgreSQL for Serverless does not support the following operations:
Create a database
Access the postgres system database

View database parameters

SET/RESET statements
LOAD statements
PRESERVE/DELETE ROWS temp tables+
LISTEN/NOTIFY
WITH HOLD CURSOR
PREPARE/DEALLOCATE

Appendix. Enabling Public Network Access for Instances

To access an instance over a public network, you can use the OpenServerlessDBExtranetAccess API to enable the
public network access for the instance.
Note:
After public network access is enabled, the database can be connected and accessed over a public network, which
poses security risks. We recommend you access your database instances over a private network.

References

You can use the CloseServerlessDBExtranetAccess API to disable public network access for an instance.
You can use the DeleteServerlessDBInstance API to terminate an instance.

https://www.postgresql.org/docs/10/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS
https://intl.cloud.tencent.com/document/product/409/39712
https://intl.cloud.tencent.com/document/product/409/39713
https://intl.cloud.tencent.com/document/product/409/38879

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 20

Note:
Please note that once an instance is terminated, its data cannot be restored.
If you want to import data to a PostgreSQL for Serverless instance, please see Importing Data.

You can use Serverless Framwork to quickly create PostgreSQL for Serverless-based web applications.

https://intl.cloud.tencent.com/document/product/409/41580
https://intl.cloud.tencent.com/document/product/1040/36989

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 20

Importing Data
Last updated：2024-01-24 11:20:59

Currently, you can import data backed up from pg_dump to PostgreSQL for Serverless through the psql

command.

Directions

If your data is already in a self-built PostgreSQL database, you can use the psql command to easily migrate the

data to PostgreSQL for Serverless.
The data migration is mainly divided into two steps:
1. Perform logical backup by using the pg_dump command to create dump data.

2. Restore the data backed up in the previous step to PostgreSQL for Serverless.

Prerequisites

You have prepared a PostgreSQL for Serverless instance. If not, please see Getting Started.

Step 1. Export data

Connect to the local database by using the PostgreSQL client and run the following command to back up the data.

https://intl.cloud.tencent.com/document/product/409/39715

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 20

pg_dump -U username -h hostname -p port -O databasename -f filename

Note:

In order to avoid execution permission problems, you need to add the -O parameter.

Parameter Description

username Local database username

hostname Local database host name

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 20

port Local database port number

databasename Name of the local database to be backed up

filename Name of the backup file to be generated, such as mydump.sql

Step 2. Import data to PostgreSQL for Serverless

Preparations: upload the data backed up to a CVM instance in the same VPC as the PostgreSQL for Serverless
instance, and then restore the data over the private network to ensure network stability and data security.
Log in to the CVM instance and run the following command in the PostgreSQL client to restore the data.

https://intl.cloud.tencent.com/zh/document/product/213/10517

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 20

psql -U username -h hostname -d desintationdb -p port -f dumpfilename

Note:

During the import, there may be some errors reported. You can find the specific causes according to the error
messages. Some errors don't affect the data import.

Parameter Description

username PostgreSQL for Serverless database username

hostname PostgreSQL for Serverless database address

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 20

desintationdb PostgreSQL for Serverless database name

port PostgreSQL for Serverless database port number

dumpfilename Backup file name, such as mydump.sql

