
Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 127

Tencent Kubernetes Engine

Fault Handling

Product Documentation

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 127

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 127

Contents

Fault Handling
Disk Full
High Workload
Memory Fragmentation
Cluster DNS Troubleshooting
Cluster kube-proxy Troubleshooting
Cluster API Server Inaccessibility Troubleshooting
Service and Ingress Inaccessibility Troubleshooting
Common Service & Ingress Errors and Solutions
Troubleshooting for Pod Network Inaccessibility
Pod Status Exception and Handling

Overview
Pod exception troubleshooter

Use Systemtap to Identify Pod Exceptions
Use Exit Code to Identify Pod Exceptions

Pod Remains in ContainerCreating or Waiting
Pod Remains in ImagePullBackOff
Pod Remains in Pending
Pod Remains in Terminating
Pod Health Check Fails
Pod Remains in CrashLoopBackOff
Pod Kept Restarting with Traffic Exception
Container Process Exits

Authorizing Tencent Cloud OPS Team for Troubleshooting
Engel Ingres appears in Connechtin Reverside
CLB Loopback
CLB Ingress Creation Error

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 127

This article describes the causes of the TKE cluster disk full issue. It also provides instructions on how to troubleshoot
and solve this issue.

Possible Causes

kubelet uses gc and the eviction mechanism, along with parameters such as --image-gc-high-threshold ,

 --image-gc-low-threshold , --eviction-hard , --eviction-soft , and --eviction-

minimum-reclaim , to control and implement disk space reclamation. If not properly configured or if a non-

Kubernetes process continues to write data to the disk, the disk will run out of space.

A full disk impacts the operation of Kubernetes, specifically two of its major components: kubelet and container
runtime. Refer to the following instructions for troubleshooting:

1. Run df to check for kubelet and container runtime directories on the disk in question.

2. Use the results as a starting point for further troubleshooting.

Container runtime directory is on a full disk
kubelet directory is on a full disk

Troubleshooting

Container runtime directory is on a full disk

If the container runtime directory is on a full disk, it may lead to a non-responsive container runtime. For example, if
you are using dockerd, docker commands will hang and kubelet logs will show “PLEG unhealthy”. CRI will then invoke

timeout which leads to container creation or termination failures. In this case, the user will see that the Pod remains in
the ContainerCreating or Terminating status.

Default Docker directories

 /var/run/docker : used to store container runtime statuses. You can use dockerd –exec-root to specify

a different directory.
 /var/lib/docker : used to store persistent container data, such as container images, container writable layer

data, container standard log output, and volumes created through Docker.

Fault Handling
Disk Full
Last updated：2022-04-20 19:12:22

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 127

Pod launch process

The following is a sample Pod launch process:

Warning FailedCreatePodSandBox 53m kubelet, 172.22.0.44 Failed create pod sandbo

x: rpc error: code = DeadlineExceeded desc = context deadline exceeded

Warning FailedCreatePodSandBox 2m (x4307 over 16h) kubelet, 10.179.80.31 (combine

d from similar events): Failed create pod sandbox: rpc error: code = Unknown desc

= failed to create a sandbox for pod "apigateway-6dc48bf8b6-l8xrw": Error respons

e from daemon: mkdir /var/lib/docker/aufs/mnt/1f09d6c1c9f24e8daaea5bf33a4230de7db

c758e3b22785e8ee21e3e3d921214-init: no space left on device

Warning Failed 5m1s (x3397 over 17h) kubelet, ip-10-0-151-35.us-west-2.compute.in

ternal (combined from similar events): Error: container create failed: container_

linux.go:336: starting container process caused "process_linux.go:399: container

init caused \"rootfs_linux.go:58: mounting \\\"/sys\\\" to rootfs \\\"/var/lib/do

ckerd/storage/overlay/051e985771cc69f3f699895a1dada9ef6483e912b46a99e004af7bb4852

183eb/merged\\\" at \\\"/var/lib/dockerd/storage/overlay/051e985771cc69f3f699895a

1dada9ef6483e912b46a99e004af7bb4852183eb/merged/sys\\\" caused \\\"no space left

on device\\\"\""

Pod deletion process

The following is a sample Pod deletion process:

Normal Killing 39s (x735 over 15h) kubelet, 10.179.80.31 Killing container with i

d docker://apigateway:Need to kill Pod

kubelet directory is on a full disk

Default kubelet directories

 /var/lib/kubelet : used to store plugin information, Pod statuses, and mounted volumes, such as

 emptyDir , ConfigMap , and Secret . You can use kubelet --root-dir to specify a different directory.

Pod creation process

If the kubetlet directory is on a full disk (usually the system disk), the Pod creation process stops at mkdir, which
means Sandbox cannot be created. The following is a sample Pod creation process:

Warning UnexpectedAdmissionError 44m kubelet, 172.22.0.44 Update plugin resources

failed due to failed to write checkpoint file "kubelet_internal_checkpoint": writ

e /var/lib/kubelet/device-plugins/.728425055: no space left on device, which is u

nexpected.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 127

Directions

If you use dockerd as the container runtime, a full disk causes dockerd to be unresponsive and hang when you try to

stop it, which means you can’t restart dockerd to release storage space. In this case, you need to perform a manual
cleanup to free up enough space for dockerd to restart. The procedure is as follows:

1. Manually delete some of the log files or files on the writable layer, as shown below:

$ cd /var/lib/docker/containers

$ du -sh * # Find a directory that occupies a lot of space.

$ cd dda02c9a7491fa797ab730c1568ba06cba74cecd4e4a82e9d90d00fa11de743c

$ cat /dev/null > dda02c9a7491fa797ab730c1568ba06cba74cecd4e4a82e9d90d00fa11de7

43c-json.log.9 # Delete log files.

Note：

We recommend that you use cat /dev/null > to delete files rather than rm . Files deleted using

 rm are not released by docker processes and therefore the space they occupy is not released.

the larger the suffix number, the older the log file. We recommend that you delete older log files first.

2. Run the following command to mark the node as unschedulable and evict existing Pods to other nodes:

kubectl drain <node-name>

This ensures that the containers in the Pod of the original node are deleted, as well as their logs (standard output) and
container data (unmounted volumes and writable layer).
3. Run the following command to restart dockerd:

systemctl restart dockerd

or systemctl restart docker

4. After dockerd is restarted and the Pod is scheduled to another node, find the cause for the full disk, perform a data
cleanup, and take prevention measures.

5. Run the following command to remove the unschedulable mark from the node:

kubectl uncordon <node-name>

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 127

How to Prevent Disks from Filling Up

Make sure kubelet gc and eviction parameters are properly configured. Once you have done that, even if the disk
becomes full, the Pods on the problematic node can be evicted automatically to other nodes, which prevents them
from remaining in the ContainerCreating or Terminating status.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 127

This article describes how to troubleshoot TKE cluster issues caused by high loads.

Error Description

High loads prevent node processes from getting the CPU time they need to function properly, which can lead to
network timeout, health check failures, and service unavailability.

Troubleshooting

At times, a node’s load increases even though cpu ‘us’ (user) is low and cpu ‘id’ (idle) is high. This is usually caused
by file I/O bottlenecks, which results in excessive I/O wait. In turn, this leads to high loads and impacts the
performance of other processes.
This article uses top, atop, and iotop to diagnose if the performance issue is caused by disk I/O bottlenecks.

Query average load and wait time

1. Log in to your node and use top to query the current load. The following results are displayed:

Note：
High load average means the node is handling a large amount of requests. You can use values in the

 Cpu(s) , Mem , %CPU , and %MEM columns to see which processes are using a large portion of the

resources.

top - 19:42:06 up 23:59, 2 users, load average: 34.64, 35.80, 35.76

Tasks: 679 total, 1 running, 678 sleeping, 0 stopped, 0 zombie

Cpu(s): 15.6%us, 1.7%sy, 0.0%ni, 74.7%id, 7.9%wa, 0.0%hi, 0.1%si, 0.0%st

Mem: 32865032k total, 30989168k used, 1875864k free, 370748k buffers

Swap: 8388604k total, 5440k used, 8383164k free, 7982424k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

9783 mysql 20 0 17.3g 16g 8104 S 186.9 52.3 3752:33 mysqld

5700 nginx 20 0 1330m 66m 9496 S 8.9 0.2 0:20.82 php-fpm

6424 nginx 20 0 1330m 65m 8372 S 8.3 0.2 0:04.97 php-fpm

High Workload
Last updated：2022-04-20 19:13:54

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 127

6573 nginx 20 0 1330m 64m 7368 S 8.3 0.2 0:01.49 php-fpm

5927 nginx 20 0 1320m 56m 9272 S 7.6 0.2 0:12.54 php-fpm

5956 nginx 20 0 1330m 65m 8500 S 7.6 0.2 0:12.70 php-fpm

6126 nginx 20 0 1321m 57m 8964 S 7.3 0.2 0:09.72 php-fpm

6127 nginx 20 0 1319m 54m 9520 S 6.6 0.2 0:08.73 php-fpm

6131 nginx 20 0 1320m 56m 9404 S 6.6 0.2 0:09.43 php-fpm

6174 nginx 20 0 1321m 56m 8444 S 6.3 0.2 0:08.92 php-fpm

5790 nginx 20 0 1319m 54m 9468 S 5.6 0.2 0:17.33 php-fpm

6575 nginx 20 0 1320m 55m 8212 S 5.6 0.2 0:02.11 php-fpm

6160 nginx 20 0 1310m 44m 8296 S 4.0 0.1 0:10.05 php-fpm

5597 nginx 20 0 1310m 46m 9556 S 3.6 0.1 0:21.03 php-fpm

5786 nginx 20 0 1310m 45m 8528 S 3.6 0.1 0:15.53 php-fpm

5797 nginx 20 0 1310m 46m 9444 S 3.6 0.1 0:14.02 php-fpm

6158 nginx 20 0 1310m 45m 8324 S 3.6 0.1 0:10.20 php-fpm

5698 nginx 20 0 1310m 46m 9184 S 3.3 0.1 0:20.62 php-fpm

5779 nginx 20 0 1309m 44m 8336 S 3.3 0.1 0:15.34 php-fpm

6540 nginx 20 0 1306m 40m 7884 S 3.3 0.1 0:02.46 php-fpm

5553 nginx 20 0 1300m 36m 9568 S 3.0 0.1 0:21.58 php-fpm

5722 nginx 20 0 1310m 45m 8552 S 3.0 0.1 0:17.25 php-fpm

5920 nginx 20 0 1302m 36m 8208 S 3.0 0.1 0:14.23 php-fpm

6432 nginx 20 0 1310m 45m 8420 S 3.0 0.1 0:05.86 php-fpm

5285 nginx 20 0 1302m 38m 9696 S 2.7 0.1 0:23.41 php-fpm

2. Among the results is the CPU wa value. wa (wait) is the percent of CPU resources used by IO WAIT. By

default, the result shows the average value of all cores. Press 1 to view the wa value of each core, as shown

below:

Note：
 wa is usually 0%. If it constantly floats above 1%, this indicates a storage bottleneck has been reached

and storage cannot keep up with CPU processing speed.

top - 19:42:08 up 23:59, 2 users, load average: 34.64, 35.80, 35.76

Tasks: 679 total, 1 running, 678 sleeping, 0 stopped, 0 zombie

Cpu0 : 29.5%us, 3.7%sy, 0.0%ni, 48.7%id, 17.9%wa, 0.0%hi, 0.1%si, 0.0%st

Cpu1 : 29.3%us, 3.7%sy, 0.0%ni, 48.9%id, 17.9%wa, 0.0%hi, 0.1%si, 0.0%st

Cpu2 : 26.1%us, 3.1%sy, 0.0%ni, 64.4%id, 6.0%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu3 : 25.9%us, 3.1%sy, 0.0%ni, 65.5%id, 5.4%wa, 0.0%hi, 0.1%si, 0.0%st

Cpu4 : 24.9%us, 3.0%sy, 0.0%ni, 66.8%id, 5.0%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu5 : 24.9%us, 2.9%sy, 0.0%ni, 67.0%id, 4.8%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu6 : 24.2%us, 2.7%sy, 0.0%ni, 68.3%id, 4.5%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu7 : 24.3%us, 2.6%sy, 0.0%ni, 68.5%id, 4.2%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu8 : 23.8%us, 2.6%sy, 0.0%ni, 69.2%id, 4.1%wa, 0.0%hi, 0.3%si, 0.0%st

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 127

Cpu9 : 23.9%us, 2.5%sy, 0.0%ni, 69.3%id, 4.0%wa, 0.0%hi, 0.3%si, 0.0%st

Cpu10 : 23.3%us, 2.4%sy, 0.0%ni, 68.7%id, 5.6%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu11 : 23.3%us, 2.4%sy, 0.0%ni, 69.2%id, 5.1%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu12 : 21.8%us, 2.4%sy, 0.0%ni, 60.2%id, 15.5%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu13 : 21.9%us, 2.4%sy, 0.0%ni, 60.6%id, 15.2%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu14 : 21.4%us, 2.3%sy, 0.0%ni, 72.6%id, 3.7%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu15 : 21.5%us, 2.2%sy, 0.0%ni, 73.2%id, 3.1%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu16 : 21.2%us, 2.2%sy, 0.0%ni, 73.6%id, 3.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu17 : 21.2%us, 2.1%sy, 0.0%ni, 73.8%id, 2.8%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu18 : 20.9%us, 2.1%sy, 0.0%ni, 74.1%id, 2.9%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu19 : 21.0%us, 2.1%sy, 0.0%ni, 74.4%id, 2.5%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu20 : 20.7%us, 2.0%sy, 0.0%ni, 73.8%id, 3.4%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu21 : 20.8%us, 2.0%sy, 0.0%ni, 73.9%id, 3.2%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu22 : 20.8%us, 2.0%sy, 0.0%ni, 74.4%id, 2.8%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu23 : 20.8%us, 1.9%sy, 0.0%ni, 74.4%id, 2.8%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 32865032k total, 30209248k used, 2655784k free, 370748k buffers

Swap: 8388604k total, 5440k used, 8383164k free, 7986552k cached

Monitoring Disk I/O Statistics

1. Use atop to query disk I/O. In the following example, disk sda shows busy 100% , meaning it has

reached the bottleneck.

ATOP - lemp 2017/01/23 19:42:32 --------- 10s elapsed

PRC | sys 3.18s | user 33.24s | #proc 679 | #tslpu 28 | #zombie 0 | #exit 0 |

CPU | sys 29% | user 330% | irq 1% | idle 1857% | wait 182% | curscal 69% |

CPL | avg1 33.00 | avg5 35.29 | avg15 35.59 | csw 62610 | intr 76926 | numcpu 2

4 |

MEM | tot 31.3G | free 2.1G | cache 7.6G | dirty 41.0M | buff 362.1M | slab 1.2

G |

SWP | tot 8.0G | free 8.0G | | | vmcom 23.9G | vmlim 23.7G |

DSK | sda | busy 100% | read 4 | write 1789 | MBw/s 2.84 | avio 5.58 ms |

NET | transport | tcpi 10357 | tcpo 9065 | udpi 0 | udpo 0 | tcpao 174 |

NET | network | ipi 10360 | ipo 9065 | ipfrw 0 | deliv 10359 | icmpo 0 |

NET | eth0 4% | pcki 6649 | pcko 6136 | si 1478 Kbps | so 4115 Kbps | erro 0 |

NET | lo ---- | pcki 4082 | pcko 4082 | si 8967 Kbps | so 8967 Kbps | erro 0 |

PID TID THR SYSCPU USRCPU VGROW RGROW RDDSK WRDSK ST EXC S CPUNR CPU CMD 1/12

9783 - 156 0.21s 19.44s 0K -788K 4K 1344K -- - S 4 197% mysqld

5596 - 1 0.10s 0.62s 47204K 47004K 0K 220K -- - S 18 7% php-fpm

6429 - 1 0.06s 0.34s 19840K 19968K 0K 0K -- - S 21 4% php-fpm

6210 - 1 0.03s 0.30s -5216K -5204K 0K 0K -- - S 19 3% php-fpm

5757 - 1 0.05s 0.27s 26072K 26012K 0K 4K -- - S 13 3% php-fpm

6433 - 1 0.04s 0.28s -2816K -2816K 0K 0K -- - S 11 3% php-fpm

5846 - 1 0.06s 0.22s -2560K -2660K 0K 0K -- - S 7 3% php-fpm

5791 - 1 0.05s 0.21s 5764K 5692K 0K 0K -- - S 22 3% php-fpm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 127

5860 - 1 0.04s 0.21s 48088K 47724K 0K 0K -- - S 1 3% php-fpm

6231 - 1 0.04s 0.20s -256K -4K 0K 0K -- - S 1 2% php-fpm

6154 - 1 0.03s 0.21s -3004K -3184K 0K 0K -- - S 21 2% php-fpm

6573 - 1 0.04s 0.20s -512K -168K 0K 0K -- - S 4 2% php-fpm

6435 - 1 0.04s 0.19s -3216K -2980K 0K 0K -- - S 15 2% php-fpm

5954 - 1 0.03s 0.20s 0K 164K 0K 4K -- - S 0 2% php-fpm

6133 - 1 0.03s 0.19s 41056K 40432K 0K 0K -- - S 18 2% php-fpm

6132 - 1 0.02s 0.20s 37836K 37440K 0K 0K -- - S 11 2% php-fpm

6242 - 1 0.03s 0.19s -12.2M -12.3M 0K 4K -- - S 12 2% php-fpm

6285 - 1 0.02s 0.19s 39516K 39420K 0K 0K -- - S 3 2% php-fpm

6455 - 1 0.05s 0.16s 29008K 28560K 0K 0K -- - S 14 2% php-fpm

2. Use one of the following methods to view process disk I/O usage:

Press d to view process disk I/O usage, as shown below:

ATOP - lemp 2017/01/23 19:42:46 --------- 2s elapsed

PRC | sys 0.24s | user 1.99s | #proc 679 | #tslpu 54 | #zombie 0 | #exit 0 |

CPU | sys 11% | user 101% | irq 1% | idle 2089% | wait 208% | curscal 63% |

CPL | avg1 38.49 | avg5 36.48 | avg15 35.98 | csw 4654 | intr 6876 | numcpu 2

4 |

MEM | tot 31.3G | free 2.2G | cache 7.6G | dirty 48.7M | buff 362.1M | slab

1.2G |

SWP | tot 8.0G | free 8.0G | | | vmcom 23.9G | vmlim 23.7G |

DSK | sda | busy 100% | read 2 | write 362 | MBw/s 2.28 | avio 5.49 ms |

NET | transport | tcpi 1031 | tcpo 968 | udpi 0 | udpo 0 | tcpao 45 |

NET | network | ipi 1031 | ipo 968 | ipfrw 0 | deliv 1031 | icmpo 0 |

NET | eth0 1% | pcki 558 | pcko 508 | si 762 Kbps | so 1077 Kbps | erro 0 |

NET | lo ---- | pcki 406 | pcko 406 | si 2273 Kbps | so 2273 Kbps | erro 0 |

PID TID RDDSK WRDSK WCANCL DSK CMD 1/5

9783 - 0K 468K 16K 40% mysqld

1930 - 0K 212K 0K 18% flush-8:0

5896 - 0K 152K 0K 13% nginx

880 - 0K 148K 0K 13% jbd2/sda5-8

5909 - 0K 60K 0K 5% nginx

5906 - 0K 36K 0K 3% nginx

5907 - 16K 8K 0K 2% nginx

5903 - 20K 0K 0K 2% nginx

5901 - 0K 12K 0K 1% nginx

5908 - 0K 8K 0K 1% nginx

5894 - 0K 8K 0K 1% nginx

5911 - 0K 8K 0K 1% nginx

5900 - 0K 4K 4K 0% nginx

5551 - 0K 4K 0K 0% php-fpm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 127

5913 - 0K 4K 0K 0% nginx

5895 - 0K 4K 0K 0% nginx

6133 - 0K 0K 0K 0% php-fpm

5780 - 0K 0K 0K 0% php-fpm

6675 - 0K 0K 0K 0% atop

You can also use iotop -oPa to view process disk I/O usage, as shown below:

Total DISK READ: 15.02 K/s | Total DISK WRITE: 3.82 M/s

PID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

1930 be/4 root 0.00 B 1956.00 K 0.00 % 83.34 % [flush-8:0]

5914 be/4 nginx 0.00 B 0.00 B 0.00 % 36.56 % nginx: cache manager process

880 be/3 root 0.00 B 21.27 M 0.00 % 35.03 % [jbd2/sda5-8]

5913 be/2 nginx 36.00 K 1000.00 K 0.00 % 8.94 % nginx: worker process

5910 be/2 nginx 0.00 B 1048.00 K 0.00 % 8.43 % nginx: worker process

5896 be/2 nginx 56.00 K 452.00 K 0.00 % 6.91 % nginx: worker process

5909 be/2 nginx 20.00 K 1144.00 K 0.00 % 6.24 % nginx: worker process

5890 be/2 nginx 48.00 K 692.00 K 0.00 % 6.07 % nginx: worker process

5892 be/2 nginx 84.00 K 736.00 K 0.00 % 5.71 % nginx: worker process

5901 be/2 nginx 20.00 K 504.00 K 0.00 % 5.46 % nginx: worker process

5899 be/2 nginx 0.00 B 596.00 K 0.00 % 5.14 % nginx: worker process

5897 be/2 nginx 28.00 K 1388.00 K 0.00 % 4.90 % nginx: worker process

5908 be/2 nginx 48.00 K 700.00 K 0.00 % 4.43 % nginx: worker process

5905 be/2 nginx 32.00 K 1140.00 K 0.00 % 4.36 % nginx: worker process

5900 be/2 nginx 0.00 B 1208.00 K 0.00 % 4.31 % nginx: worker process

5904 be/2 nginx 36.00 K 1244.00 K 0.00 % 2.80 % nginx: worker process

5895 be/2 nginx 16.00 K 780.00 K 0.00 % 2.50 % nginx: worker process

5907 be/2 nginx 0.00 B 1548.00 K 0.00 % 2.43 % nginx: worker process

5903 be/2 nginx 36.00 K 1032.00 K 0.00 % 2.34 % nginx: worker process

6130 be/4 nginx 0.00 B 72.00 K 0.00 % 2.18 % php-fpm: pool www

5906 be/2 nginx 12.00 K 844.00 K 0.00 % 2.10 % nginx: worker process

5889 be/2 nginx 40.00 K 1164.00 K 0.00 % 2.00 % nginx: worker process

5894 be/2 nginx 44.00 K 760.00 K 0.00 % 1.61 % nginx: worker process

5902 be/2 nginx 52.00 K 992.00 K 0.00 % 1.55 % nginx: worker process

5893 be/2 nginx 64.00 K 972.00 K 0.00 % 1.22 % nginx: worker process

5814 be/4 nginx 36.00 K 44.00 K 0.00 % 1.06 % php-fpm: pool www

6159 be/4 nginx 4.00 K 4.00 K 0.00 % 1.00 % php-fpm: pool www

5693 be/4 nginx 0.00 B 4.00 K 0.00 % 0.86 % php-fpm: pool www

5912 be/2 nginx 68.00 K 300.00 K 0.00 % 0.72 % nginx: worker process

5911 be/2 nginx 20.00 K 788.00 K 0.00 % 0.72 % nginx: worker process

Use man iotop to view the descriptions of the following parameters:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 127

-o, --only

Only show processes or threads actually doing I/O, instead of showing all process

es or threads. This can be dynamically toggled by pressing o.

-P, --processes

Only show processes. Normally iotop shows all threads.

-a, --accumulated

Show accumulated I/O instead of bandwidth. In this mode, iotop shows the amount o

f I/O processes have done since iotop started.

Other Reasons

Deploying non-Kubernetes services, such as databases, on the node may also cause high loads.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 127

This article describes how to identify if a TKE cluster issue is caused by memory fragmentation and how to
troubleshoot it.

Problem Analysis

If memory page allocation fails, the memory kernel outputs the following error message:

mysqld: page allocation failure. order:4, mode:0x10c0d0

 mysqld : application requesting memory.

 order : number of requested sequential memory pages (2^order). This example has an order of 4, which means

2^4 = 16 sequential pages.
 mode : memory allocation mode marker. This is defined in the kernel source code file

 include/linux/gfp.h and usually the result of the AND operation on multiple markers. Different kernels

have different mode markers. For example, GFP_KERNEL in the new kernel is the result of __GFP_RECLAIM |

__GFP_IO | __GFP_FS , and __GFP_RECLAIM is the result of ___GFP_DIRECT_RECLAIM |

___GFP_KSWAPD_RECLAIM .

Note：

When the value of order is 0, the system has no available memory.
When the value of order is large, the memory is fragmented, and no sequential large memory page can be
allocated.

Error Description

Container fails to launch

Kubernetes creates netns for each Pod to isolate the network namespace. When the kernel initializes netns, it creates
a cache for the nf_conntrack table, which needs large memory pages. If system memory is already fragmented, kernel
will output the following error message due to the failure to allocate large memory pages (v2.6.33 - v4.6):

runc:[1:CHILD]: page allocation failure: order:6, mode:0x10c0d0

Memory Fragmentation
Last updated：2022-04-18 14:35:05

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 127

The pod remains in the ContainerCreating status and dockerd fails to launch containers. The following are the related
log entries:

Jan 23 14:15:31 dc05 dockerd: time="2019-01-23T14:15:31.288446233+08:00" level=er

ror msg="containerd: start container" error="oci runtime error: container_linux.g

o:247: starting container process caused \"process_linux.go:245: running exec set

ns process for init caused \\\"exit status 6\\\"\"\n" id=5b9be8c5bb121264899fac8d

9d36b02150269d41ce96ba6ad36d70b8640cb01c

Jan 23 14:15:31 dc05 dockerd: time="2019-01-23T14:15:31.317965799+08:00" level=er

ror msg="Create container failed with error: invalid header field value \"oci run

time error: container_linux.go:247: starting container process caused \\\"process

_linux.go:245: running exec setns process for init caused \\\\\\\"exit status 6

\\\\\\\"\\\"\\n\""

kubelet log entries are as follows:

Jan 23 14:15:31 dc05 kubelet: E0123 14:15:31.352386 26037 remote_runtime.go:91] R

unPodSandbox from runtime service failed: rpc error: code = 2 desc = failed to st

art sandbox container for pod "matchdataserver-1255064836-t4b2w": Error response

from daemon: {"message":"invalid header field value \"oci runtime error: containe

r_linux.go:247: starting container process caused \\\"process_linux.go:245: runni

ng exec setns process for init caused \\\\\\\"exit status 6\\\\\\\"\\\"\\n\""}

Jan 23 14:15:31 dc05 kubelet: E0123 14:15:31.352496 26037 kuberuntime_sandbox.go:

54] CreatePodSandbox for pod "matchdataserver-1255064836-t4b2w_basic(485fd485-1ed

6-11e9-8661-0a587f8021ea)" failed: rpc error: code = 2 desc = failed to start san

dbox container for pod "matchdataserver-1255064836-t4b2w": Error response from da

emon: {"message":"invalid header field value \"oci runtime error: container_linu

x.go:247: starting container process caused \\\"process_linux.go:245: running exe

c setns process for init caused \\\\\\\"exit status 6\\\\\\\"\\\"\\n\""}

Jan 23 14:15:31 dc05 kubelet: E0123 14:15:31.352518 26037 kuberuntime_manager.go:

618] createPodSandbox for pod "matchdataserver-1255064836-t4b2w_basic(485fd485-1e

d6-11e9-8661-0a587f8021ea)" failed: rpc error: code = 2 desc = failed to start sa

ndbox container for pod "matchdataserver-1255064836-t4b2w": Error response from d

aemon: {"message":"invalid header field value \"oci runtime error: container_linu

x.go:247: starting container process caused \\\"process_linux.go:245: running exe

c setns process for init caused \\\\\\\"exit status 6\\\\\\\"\\\"\\n\""}

Jan 23 14:15:31 dc05 kubelet: E0123 14:15:31.352580 26037 pod_workers.go:182] Err

or syncing pod 485fd485-1ed6-11e9-8661-0a587f8021ea ("matchdataserver-1255064836-

t4b2w_basic(485fd485-1ed6-11e9-8661-0a587f8021ea)"), skipping: failed to "CreateP

odSandbox" for "matchdataserver-1255064836-t4b2w_basic(485fd485-1ed6-11e9-8661-0a

587f8021ea)" with CreatePodSandboxError: "CreatePodSandbox for pod \"matchdataser

ver-1255064836-t4b2w_basic(485fd485-1ed6-11e9-8661-0a587f8021ea)\" failed: rpc er

ror: code = 2 desc = failed to start sandbox container for pod \"matchdataserver-

1255064836-t4b2w\": Error response from daemon: {\"message\":\"invalid header fie

ld value \\\"oci runtime error: container_linux.go:247: starting container proces

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 127

s caused \\\\\\\"process_linux.go:245: running exec setns process for init caused

\\\\\\\\\\\\\\\"exit status 6\\\\\\\\\\\\\\\"\\\\\\\"\\\\n\\\"\"}"

Jan 23 14:15:31 dc05 kubelet: I0123 14:15:31.372181 26037 kubelet.go:1916] SyncLo

op (PLEG): "matchdataserver-1255064836-t4b2w_basic(485fd485-1ed6-11e9-8661-0a587f

8021ea)", event: &pleg.PodLifecycleEvent{ID:"485fd485-1ed6-11e9-8661-0a587f8021e

a", Type:"ContainerDied", Data:"5b9be8c5bb121264899fac8d9d36b02150269d41ce96ba6ad

36d70b8640cb01c"}

Jan 23 14:15:31 dc05 kubelet: W0123 14:15:31.372225 26037 pod_container_deletor.g

o:77] Container "5b9be8c5bb121264899fac8d9d36b02150269d41ce96ba6ad36d70b8640cb01

c" not found in pod's containers

Jan 23 14:15:31 dc05 kubelet: I0123 14:15:31.678211 26037 kuberuntime_manager.go:

383] No ready sandbox for pod "matchdataserver-1255064836-t4b2w_basic(485fd485-1e

d6-11e9-8661-0a587f8021ea)" can be found. Need to start a new one

Use cat /proc/buddyinfo to view slab. If there is no large memory available, you will see a lot of 0s, as shown

below:

$ cat /proc/buddyinfo

Node 0, zone DMA 1 0 1 0 2 1 1 0 1 1 3

Node 0, zone DMA32 2725 624 489 178 0 0 0 0 0 0 0

Node 0, zone Normal 1163 1101 932 222 0 0 0 0 0 0 0

System OOM

Memory fragmentation leads to a lack of large memory pages. This causes application memory allocation failures

even though there is plenty of system memory available. The system will assume it is out of memory and try to
terminate processes in order to release memory, which leads to system OOM errors.

Directions

1. Periodically drop the cache or do so when there is a shortage of large memory pages.

echo 3 > /proc/sys/vm/drop_caches

2. Run the following command to compact the memory:

Note：
This operation is resource intensive and may cause business interruptions.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 127

echo 1 > /proc/sys/vm/compact_memory

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 127

Troubleshooting Approaches

1. Make sure that the cluster DNS runs normally

Container DNS passes through cluster DNS (usually CoreDNS). First, make sure that the cluster DNS runs normally.
You can see the cluster IP of the DNS in the --cluster-dns startup parameter of kubelet:

$ ps -ef | grep kubelet

... /usr/bin/kubelet --cluster-dns=172.16.14.217 ...

Find the DNS Service:

$ kubectl get svc -n kube-system | grep 172.16.14.217

kube-dns ClusterIP 172.16.14.217 <none> 53/TCP,53/UDP 47d

Check for the endpoint:

$ kubectl -n kube-system describe svc kube-dns | grep -i endpoints

Endpoints: 172.16.0.156:53,172.16.0.167:53

Endpoints: 172.16.0.156:53,172.16.0.167:53

Check whether the Pod of the endpoint is normal:

$ kubectl -n kube-system get pod -o wide | grep 172.16.0.156

kube-dns-898dbbfc6-hvwlr 3/3 Running 0 8d 172.16.0.156 10.0.0.3

2. Make sure that the Pod can communicate with the cluster DNS

Check whether the Pod can connect to the cluster DNS. You can run the telnet command in the Pod to view port

53 of the DNS:

Cluster IP for connecting to the DNS Service

$ telnet 172.16.14.217 53

Note：

Cluster DNS Troubleshooting
Last updated：2023-10-08 17:53:41

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 127

If there are no testing tools such as telnet in the container, you can use nsenter to enter netns for packet
capturing and use telnet on the host for testing.

If the network is found to be disconnected, check the following network settings:

Check the security group settings of the node and the container IP range of the cluster that needs to be opened.
Check for firewall rules and check the iptables.
Check whether kube-proxy runs normally. The cluster DNS IP is the cluster IP, which is forwarded through the
iptables or IPVS rules generated by kube-proxy.

3. Capture packets

If the cluster DNS runs normally and the Pod can communicate with the cluster DNS, capture packets for further

checks. If the problem can be easily reproduced, you can use nsenter to enter netns to capture container packets:

tcpdump -i any port 53 -w dns.pcap

tcpdump -i any port 53 -nn -tttt

If the cause still cannot be identified, you can capture packets at multiple points along the request linkage for analysis,
such as Pod container, host cbr0 bridge, primary ENI of the host (eth0), primary ENI of the host of the CoreDNS Pod,

cbr0, and container. Wait for the problem to recur and locate the point where the packet is lost.

Issue and Cause

Latency of five seconds

If it often takes five seconds to return a DNS query result, packets are usually lost due to kernel conntrack conflicts.
The root cause is the bug in the conntrack module, where some packets are discarded due to resource competition
when netfilter is used for NAT.

It may possibly occur when multiple threads or processes send the same quintuple UDP packet through the same

socket concurrently.
Both glibc and musl (Alpine Linux's libc) use "parallel query", i.e., multiple query requests are sent concurrently,
which tends to cause conflicts and request discarding.
As IPVS also uses conntrack, this problem cannot be avoided in IPVS mode of kube-proxy.

Workaround

Use local DNS. DNS requests of the container are sent to the local DNS cache service (dnsmasq, nscd, etc.), without

DNAT or conntrack conflicts. In addition, the DNS service will not be a performance bottleneck.
You can use local DNS in two ways:

https://imroc.cc/kubernetes/troubleshooting/skill/enter-netns-with-nsenter

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 127

Each container comes with a DNS cache service.
Each node runs a DNS cache service, and all containers use the DNS cache of the node as their nameserver.

Timeout of the resolution of an external domain name

Possible reasons:

The upstream DNS fails.
The ACL or firewall of the upstream DNS blocks the packet.

Timeout of all resolutions

If a cluster Pod fails to resolve both Services and external domain names, there is generally a problem with the
communication between the Pod and the cluster DNS.
Possible reasons:

The node firewall doesn't open the cluster IP range; therefore, the Pod cannot communicate with that of the cluster
DNS when they are on different nodes, and DNS requests cannot be received.
kube-proxy is abnormal.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 127

TKE cluster access may fail in some cases. If you have confirmed that the backend Pod is normal, the cause may be
that the kube-proxy add-on version is earlier than required, preventing iptables or IPVS forwarding rules on the node
from being delivered successfully. This document describes some problems due to earlier kube-proxy versions and

offers fixes. If you still have problems, contact us for assistance.

kube-proxy was not correctly adapted to the iptables backend of the
node

Sample error message

Failed to execute iptables-restore: exit status 2 (iptables-restore v1.8.4 (legac

y): Couldn't load target 'KUBE-MARK-DROP':No such file or directory

Cause

1. When iptables-restore is executed in kube-proxy, the dependent KUBE-MARK-DROP chain doesn't

exist, leading to the rule sync failure and exit. The KUBE-MARK-DROP chain is maintained by kubelet.

2. On some later OS versions, the iptables backend is nft; while on earlier kube-proxy versions, the iptables backend
is legacy. When kube-proxy on an earlier version runs on OS on a later version, the iptables backend cannot be
matched, and the KUBE-MARK-DROP chain cannot be read. Later OS versions include:

TLinux 2.6 (TK4)
TLinux 3.1

TLinux 3.2
CentOS 8
Ubuntu 20

Fix guide

Upgrade kube-proxy. Below is the sample logic:

TKE Cluster Version Fix Policy

> 1.18 No fixes are required, as the problem doesn't exist.

1.18 Upgrade kube-proxy to v1.18.4-tke.26 or later.

Cluster kube-proxy Troubleshooting
Last updated：2022-11-02 14:35:48

https://intl.cloud.tencent.com/document/product/457/46720

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 127

TKE Cluster Version Fix Policy

1.16 Upgrade kube-proxy to v1.16.3-tke.28 or later.

1.14 Upgrade kube-proxy to v1.14.3-tke.27 or later.

1.12 Upgrade kube-proxy to v1.12.4-tke.31 or later.

1.10 Upgrade kube-proxy to v1.10.5-tke.20 or later.

Note：

For more information on the latest TKE versions, see TKE Kubernetes Revision Version History.

iptables lock of kube-proxy

Concurrent write failure due to no iptables lock mounted to another add-on

Sample error message

Failed to execute iptables-restore: exit status 1 (iptables-restore: line xxx fai

led)

Cause

1. When writing iptables rules to the kernel, iptables commands (such as iptables-restore) will use a file lock

for sync to avoid concurrent writes of multiple instances. On Linux, the file is generally /run/xtables.lock .

2. For a Pod that needs to call iptables commands, such as kube-proxy, kube-router, or HostNetwork Pod on the
client, if the file is not mounted, the above problem of concurrent writes may occur.

Fix guide

For a Pod that needs to call iptables commands, you need to mount the host /run/xtables.lock file to the Pod

as follows:

volumeMounts:

- mountPath: /run/xtables.lock

name: xtables-lock

readOnly: false

volumes:

https://intl.cloud.tencent.com/document/product/457/9315

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 127

- hOStPath:

path: /run/xtables.lock

type: FileOrCreate

name: xtables-lock

Writes are blocked due to an earlier iptables-restore version

Sample error message

Failed to execute iptables-restore: exit status 4 (Another app is currently holdi

ng the xtables lock. Perhaps you want to use the -w option?)

Cause

1. When writing iptables rules to the kernel, iptables commands (such as iptables-restore) will use a file lock

for sync to avoid concurrent writes of multiple instances. When iptables-restore is executed, it tries getting

a file lock or exits if the lock is held by another process.
2. The error is a soft error, and kube-proxy will try getting the lock again in the next sync cycle (or when the next

Service event is triggered). If the lock cannot be obtained after several attempts, a high latency will occur during
rule sync.

3. The iptables-restore on later versions provide a -w(--wait) option. If -w=5 , iptables-

restore will be blocked for five seconds when getting the lock. If another process releases the lock during this

period, iptables-restore can continue its operation.

Fix guide

1. If kube-proxy is a binary deployment on the node, you can upgrade iptables-restore by upgrading the

node OS. Below is the sample logic:

Node OS Target Version

CentOS 7.2 or later

Ubuntu 20.04 or later

Tencent Linux 2.4 or later

2. If kube-proxy is a DaemonSet deployment in the cluster, you can upgrade iptables-restore by upgrading

kube-proxy. Below is the sample logic:

TKE Cluster Version Fix Policy

> 1.12 No fixes are required, as the problem doesn't exist.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 127

TKE Cluster Version Fix Policy

1.12 Upgrade kube-proxy to v1.12.4-tke.31 or later.

< 1.12 Upgrade the TKE cluster.

Note：
For more information on the latest TKE versions, see TKE Kubernetes Revision Version History.

Another add-on holding the iptables lock for too long

Sample error message

Failed to ensure that filter chain KUBE-SERVICES exists: error creating chain "KU

BE-EXTERNAL-SERVICES": exit status 4: Another app is currently holding the xtable

s lock. Stopped waiting after 5s.

Cause

1. When writing iptables rules to the kernel, iptables commands (such as iptables-restore) will use a file lock

for sync to avoid concurrent writes of multiple instances. When iptables-restore is executed, it tries getting

a file lock. If the lock is held by another process, iptables-restore will be blocked for a certain period of

time (subject to the -w value, which is five seconds by default) before getting the lock. It will continue after

getting the lock or exit.
2. The error indicates that the iptables file lock is held by another add-on for more than five seconds.

Fix guide

Reduce the time when other add-ons hold the iptables file lock as much as possible. In particular, the NetworkPolicy
(kube-router) add-on provided on the add-on management page in the TKE console on an earlier version holds the
iptables lock for a long time. You can upgrade it to the latest version v1.3.2 .

kube-proxy to kube-apiserver connection exception

Sample error message

Failed to list *core.Endpoints: Stream error http2.StreamError{StreamID:0xea1, Co

de:0x2, Cause:error(nil)} when reading response body, may be caused by closed con

https://intl.cloud.tencent.com/document/product/457/9315

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 127

nection. Please retry.

Cause

There is a bug when Kubernetes on an earlier version calls the go HTTP/2 package, which causes the client to use a
disabled connection of the API server. When this bug occurs in kube-proxy, rule sync will fail. For more information,

see (1.17) Kubelet won't reconnect to Apiserver after NIC failure (use of closed network connection) #87615 and
Enables HTTP/2 health check #95981.

Fix guide

Upgrade kube-proxy. Below is the sample logic:

TKE Cluster Version Fix Policy

> 1.18 No fixes are required, as the problem doesn't exist.

1.18 Upgrade kube-proxy to v1.18.4-tke.26 or later.

< 1.18 Upgrade the TKE cluster.

Note：
For more information on the latest TKE versions, see TKE Kubernetes Revision Version History.

kube-proxy panicked after the first startup and became normal after
restart

Sample error message

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x50 pc=0x1514fb8]

Cause

1. The community code of kube-proxy has a bug, where the kernel module for statistics loading is missing during
initialization, leading to the use of uninitialized variables.

2. The log is not detailed enough and failed to output the result regarding whether the IPVS mode can be used. For
more information, see kube-proxy panics with SIGSEGV on first run #89729, Do not forget recording loaded
modules #89823, and ipvs: log err from CanUseIPVSProxier #89785.

https://github.com/kubernetes/kubernetes/issues/87615
https://github.com/kubernetes/kubernetes/pull/95981
https://intl.cloud.tencent.com/document/product/457/9315
https://github.com/kubernetes/kubernetes/issues/89729
https://github.com/kubernetes/kubernetes/pull/89823
https://github.com/kubernetes/kubernetes/pull/89785

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 127

Fix guide

Upgrade kube-proxy. Below is the sample logic:

TKE Cluster Version Fix Policy

> 1.18 No fixes are required, as the problem doesn't exist.

1.18 Upgrade kube-proxy to v1.18.4-tke.26 or later.

< 1.18 No fixes are required, as the problem doesn't exist.

Note：
For more information on the latest TKE versions, see TKE Kubernetes Revision Version History.

kube-proxy kept panicking

Sample error message

Observed a panic: "slice bounds out of range" (runtime error: slice bounds out of

range)

Cause

There is a bug in the community code of kube-proxy. When iptables-save is executed, the standard output and

standard error are targeted at the same buffer, and the sequence of the two is uncertain, leading to an unexpected

data format in the buffer and thereby a panic during processing. For more information, see kube-proxy panics when
parsing iptables-save output #78443 and Fix panic in kube-proxy when iptables-save prints to stderr #78428.

Fix guide

Upgrade kube-proxy. Below is the sample logic:

TKE Cluster Version Fix Policy

> 1.14 No fixes are required, as the problem doesn't exist.

1.14 Upgrade kube-proxy to v1.14.3-tke.27 or later.

1.12 Upgrade kube-proxy to v1.12.4-tke.31 or later.

https://intl.cloud.tencent.com/document/product/457/9315
https://github.com/kubernetes/kubernetes/issues/78443
https://github.com/kubernetes/kubernetes/pull/78428

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 127

TKE Cluster Version Fix Policy

< 1.12 No fixes are required, as the problem doesn't exist.

Note：
For more information on the latest TKE versions, see TKE Kubernetes Revision Version History.

kube-proxy occupied high CPU periodically in IPVS mode

Cause

This is because kube-proxy frequently refreshes the node Service forwarding rules, specifically:

kube-proxy frequently performs periodic rule syncs.
The business Service or Pod is frequently changed.

Fix guide

If the problem is caused by frequent periodic rule syncs by kube-proxy, you need to modify relevant parameters.
Below are default parameters of kube-proxy on an earlier version:

--ipvs-min-sync-period=1s (minimum refresh interval of one second)

--ipvs-sync-period=5s (periodic refresh every five seconds)

Therefore, kube-proxy refreshes the node iptables rules once every five seconds, consuming many CPU resources.
You can change the configuration to:

--ipvs-min-sync-period=0s (real-time refresh upon event occurrence)

--ipvs-sync-period=30s (periodic refresh every 30 seconds)

The above configured values are default values and can be configured as needed.

https://intl.cloud.tencent.com/document/product/457/9315

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 127

Inaccessibility After Private Network Access Is Enabled

You can enable private network access in the TKE console. If resources still cannot be accessed, check the following
based on your cluster type:

Managed cluster

Check whether the security group of the node in the cluster correctly opens the port range of 30000–32768 as

instructed in "Viewing node security group configurations".

Self-deployed cluster

1. Check whether the security group of the node in the cluster correctly opens the port range of 30000–32768 as
instructed in "Viewing node security group configurations".

When enabling private network access, you set the VPC subnet IP range in the console. Check whether the Master
node in the cluster allows this VPC subnet IP range.

Check whether the security group of the Master node in the cluster correctly opens the VPC IP range and VPC
subnet IP range where the Master node is located.

Inaccessibility After Public Network Access Is Enabled

You can enable public network access in the TKE console. If resources still cannot be accessed, check the following
based on your cluster type:

Managed cluster

Check whether the source CIDR block of the security group is configured correctly. You can also set the source
 0.0.0.0/0 to be fully open to the public network, and test the Internet access again.

Self-deployed cluster

When public network access is enabled for the self-deployed cluster, the default/kubelb-internet Service

object will be automatically created in the cluster. This Service will be automatically bound to a public network CLB

Cluster API Server Inaccessibility
Troubleshooting
Last updated：2022-11-02 11:43:23

https://intl.cloud.tencent.com/document/product/457/30639
https://intl.cloud.tencent.com/document/product/457/30639

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 127

instance. By default, this CLB instance will not be bound to a security group (that is, fully open to the internet), and the
 EXTERNAL-IP field shows the VIP of the CLB instance.

$ kubectl get service kubelb-internet

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubelb-internet LoadBalancer 172.16.252.94 152.136.8.98 443:32750/TCP 3m4s

1. Check whether the CLB bound to the default/kubelb-internet Service object has a security group

configured correctly.

Check whether the security group of the master node in the cluster correctly opens the port range of 30000–32768
as instructed in "Viewing node security group configurations".
Check whether the security group of the Master node in the cluster correctly opens the VPC IP range and VPC
subnet IP range where the Master node is located.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 127

Inaccessibility of the Public Network or Private Network Service
Provided by a Service

For a Service that has enabled provides public network or private network access, if the access fails or the CLB port
status is abnormal, please check the following:

1. Check whether the security group of the node in the cluster correctly opens the port range of 30000–32768 as

instructed in "Viewing node security group configurations".
2. For public network services, further check whether the node has public network bandwidth (only for bill-by-CVM

accounts).
3. If the type of the Service is loadbalancer, you can ignore the CLB and directly check whether the NodeIP +

NodePort are accessible.

4. Check whether Service can be accessed normally in the cluster.

Inaccessibility of the Public Network Service Provided by an Ingress

If Ingress that provides public network services cannot be accessed, please check the following:

1. If the request returns 504, check whether the security group of the node in the cluster opens the port range of
30000–32768 as instructed in "Viewing node security group configurations".

2. Check whether the CLB bound to the Ingress is configured with a security group that does not open port 443.
3. Check whether the Ingress backend Service can be accessed normally in the cluster.

4. If the request returns 404, check whether Ingress forwarding rules are correctly configured.

Inaccessibility of a Service in the Cluster

In the TKE cluster, mutual access between Pods is usually implemented through the DNS name my-svc.my-

namespace.svc.cluster.local of the Service. If the Service cannot be accessed in the Pod, check the

following:

1. Check whether the spec.ports field of the Service is correct.

Service and Ingress Inaccessibility
Troubleshooting
Last updated：2022-12-27 15:36:26

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 127

2. Test whether the ClusterIP of the Service is accessible, and if so, the cluster DNS is abnormal. For detailed
directions, see Cluster DNS Troubleshooting.

3. Test whether the endpoint of the Service is accessible, and if not, further check as instructed in "Pods on different

nodes in the same cluster cannot access each other".
4. Check whether iptables or ipvs forwarding rules of the node where the Pod is located are complete.

Service Inaccessibility or Latency During Access to an Ingress Due
to a CLB Loopback

Background

In order to shorten the linkage and improve the performance when the business in a cluster accesses a Service of the
LoadBalancer type through CLB, the community edition of kube-proxy binds the CLB IP to the local dummy ENI in
IPVS mode, so that the traffic short-circuits on the node instead of going through CLB and thus is directly forwarded to

the endpoint locally. However, this optimization conflicts with the health check mechanism of CLB. The following offers
a detailed analysis and solutions. When you use TKE, you may experience service inaccessibility or several seconds
of latency during access to an Ingress due to a CLB loopback.

Issue description

CLB loopback may cause the following symptoms:

No matter whether you are in iptables or IPVS mode, when you access an Ingress over the cluster private network,
a 4-second latency or inaccessibility occurs.

In IPVS mode, when you access a private network Service of the LoadBanacer type in your cluster, it is completely
inaccessible, or the connection is unstable.

Workaround

Avoiding a L4 loopback
Avoiding a L7 loopback

Note

CLB is required to support the non-VIP health check source IP to avoid a L4 loopback. This feature is currently
in beta test. To try it out, submit a ticket for application.

To solve the loopback problem that may be encountered when using the Service, follow the steps below:

https://intl.cloud.tencent.com/document/product/457/50848
https://intl.cloud.tencent.com/document/product/214/44863
https://console.intl.cloud.tencent.com/workorder/category

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 127

1. Check whether kube-proxy is on the latest version, and if not, upgrade it as follows:
i. To solve this problem, kube-proxy needs to support binding the LB address to the IPVS ENI. You can find

version IDs that support this capability in TKE Kubernetes Revision Version History, such as v1.20.6-tke.12,

v1.18.4-tke.20, v1.16.3-tke.25, v1.14.3-tke.24, and v1.12.4-tke.30. Later versions also support this capability.

ii. Determine the cluster version: You can log in to the TKE console and view the version ID of the current cluster on
the Basic information page in the cluster. The following shows a cluster on v1.22.5:

iii. Find the DaemonSet named kube-proxy under the kube-system namespace, update the version number of its
image, and select a version that supports this capability or a later version. For example, for a cluster on v1.18,
you need to select an image version later than v1.18.4-tke.20.

2. Annotate all Services:

 service.cloud.tencent.com/prevent-loopback: "true"

Output image:

kube-proxy will bind the CLB VIP to the local system based on this information to solve the loopback problem.
The service-controller will call the CLB API and change its health check IP to an IP in the 100.64 IP range to solve
the health check problem.

Causes

The root cause is that when CLB forwards a request to the real server, the packet source and destination IPs are both
on the same node, but Linux will ignore the received packets whose source IP is the local IP by default, causing the

https://intl.cloud.tencent.com/document/product/457/9315
https://console.intl.cloud.tencent.com/tke2/cluster?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 127

data packet to be looped within the CVM instance, as shown below:

Analyzing a L7 loopback

Analyzing a L4 loopback

If you use a TKE CLB Ingress, a CLB instance and layer-7 listener rules (HTTP/HTTPS) for ports 80 and 443 will be
created for each Ingress resource, and the same NodePort of each corresponding TKE node will be bound to each
Ingress location as the real server (a location corresponds to a Service, and each Service uses the same NodePort of
each node to expose the traffic). CLB forwards the request to the corresponding real server (i.e., NodePort) according

to the location matched by the request, and the traffic will be forwarded to the corresponding backend Pod after
passing the NodePort and the Kubernetes iptables or IPVS. When a Pod in the cluster accesses the private network

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 127

Ingress in the cluster, CLB will forward the request to the corresponding NodePort of a node in the cluster.

As shown above, when the node whose traffic is forwarded is the node of the client that sends the request:

1. A Pod in the cluster accesses CLB, and CLB forwards the request to the corresponding NodePort of any node.
2. When the packet reaches the NodePort, the target IP is the node IP, and the source IP is the actual IP of the client

Pod. As CLB does not perform SNAT, it will pass through the actual source IP.

3. As the source and target IPs are both on the same server, loopback will occur, and CLB cannot receive response
from the real server.

The most frequent fault of access to an Ingress in the cluster is a latency of several seconds. It is because if a layer-7
CLB instance's request to a real server times out (in about 4 seconds), the instance will try the next real server.
Therefore, if you set a long timeout period on the client, loopback may occur with a symptom of slow request response

with a several-second latency. If your cluster has only one node, CLB has no real server for retry, and the symptom will
be inaccessibility.

FAQs

Why public network CLB does not have a loopback?

There is no loopback issue if you use a public network Ingress or public network LoadBalancer Service. This is
because the source IP of the packets received by public network CLB is the public network egress IP of a CVM
instance, but the CVM instance cannot sense its own public network IP internally. When a packet is forwarded to the
CVM instance, the public network source IP will not be considered as the local server IP, so there will not be loopback.

Does CLB have any mechanism to avoid a loopback?

Yes. CLB will determine the source IP and will not consider forwarding the request to the real server with the same IP;
instead, it will forward the request to another real server. However, the source Pod IP is different from the real server

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 127

IP, and CLB does not know whether the two IPs are on the same node, so the request may still be forwarded and
cause loopback.

Can anti-affinity deployment of the client and server avoid a loopback?

If you deploy a client and a server through anti-affinity so that they are not on the same node, can CLB loopback be

avoided?

By default, LB is bound to a real server through a node NodePort, and a request may be forwarded to NodePort of any
node. In this case, no matter whether the client and server are on the same node, loopback may occur. However, if
 externalTrafficPolicy: Local is set for the Service, LB will forward them to only the node with a Server

Pod. If the client and server are scheduled to different nodes through anti-affinity, no loopback will occur. Therefore,

anti-affinity and externalTrafficPolicy: Local can avoid the loopback issue (including private network

Ingress and private network LoadBalancer Service).

Does the direct LB-Pod connection of VPC-CNI have the CLB loopback issue?

TKE generally uses the Global Router network mode, and another mode is VPC-CNI (elastic network interface).
Currently, direct LB-Pod connection supports only the Pods of VPC-CNI; that is, LB is directly bound to the backend
Pod rather than NodePort as the real server as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 127

In this case, requests can bypass the NodePort instead of possibly being forwarded to any node like before. However,
if the client and server are on the same node, loopback may still occur, which can be avoided through anti-affinity.

Are there any suggestions?

The anti-affinity and externalTrafficPolicy: Local methods are not very graceful. Generally, you should

avoid accessing the CLB instance in the cluster for a service in the cluster, as the service is already in the cluster, and
forwarding through CLB not only lengthens the network linkage but also may cause loopback.

When you access a service in the cluster, use the service name such as server.prod.svc.cluster.local

as much as possible. In this way, requests will not pass CLB, and loopback will not be caused.

If your business has a coupled domain name and cannot use a Service name, you can use the rewrite plugin of

CoreDNS to point the domain name to a Service in the cluster. Below is the sample CoreDNS configuration:

apiVersion: v1

kind: ConfigMap

metadata:

name: coredns

namespace: kube-system

data:

Corefile: |2-

.:53 {

rewrite name roc.example.com server.prod.svc.cluster.local

...

If multiple Services share the same domain name, you can deploy an Ingress Controller (such as nginx-ingress) by
yourself:

1. Use the aforementioned rewrite method to point the domain name to the self-built Ingress Controller.

2. Match the self-built Ingress with a Service according to the request location (domain name + path) and forward the
request to the backend Pod. The entire linkage will not pass CLB, so loopback can be avoided.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 127

Common Service & Ingress Errors and
Solutions
Last updated：2024-08-09 10:23:41

Kubernetes manages resources declaratively. Declarative APIs only require declaring a desired state, to make the
system adjust itself to suit the state. However, declarative APIs also introduce new problems: inability to perceive the
current state information of resources and insufficient understanding of task processes.

To ensure the consistency of CLB instance configuration information, the entire Service/Ingress is synchronized as a
whole resource. If there is any listener-level configuration error in a CLB-type Service/Ingress, it will cause the entire
CLB synchronization to fail, and the problem will be reported as an Event for the user to handle. When Resource
synchronization is correct, there will also be an Event update indicating the resource has been successfully
synchronized.

As the Service/Ingress resource offers services directly to users, any exception can lead to service unavailability,
affecting service quality. This document describes the common causes of Service/Ingress errors and solutions.

How to View the Error Messages of Service/Ingress Events?

Through the Console
Through the Command Line
1. Log in to the Tencent Kubernetes Engine console, and select Cluster in the left sidebar.
2. On the Cluster Management page, select the cluster ID for which you need to update the YAML to go to the page

of basic cluster information.
3. Select Service and Routing > Service or Ingress to go to the Service or Ingress information page.
4. Click a specific Service or Ingress name.
5. On the Event tab, you can view the event information of the current Service or Ingress. As shown below, you can
view the Event error code of the current Service/Ingress.

Note:
Only resource events that occurred within the last 1 hour are saved. Check them as soon as possible.
Obtain the Ingress resource exception list and error message:

https://console.intl.cloud.tencent.com/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 127

kubectl get event | grep ingress

Obtain the Service resource exception list and error message:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 127

kubectl get event | grep service

Causes of Service Event Errors and Solutions

Error
Code

Description Solutions Potential Risk if not
Corrected

E4001 TKE_QCSRoles Log in to the CAM console, check TKE service In the cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 127

authorization account authorization, and re-add authorization.
For details, see the description of role permissions
related to service authorization.

dimension,
components cannot
operate properly.

E4004
The number of
CLBs exceeds the
upper limit.

Submit a ticket to apply for a CLB quota.
New resources have
no traffic access.

E4005
There is an error
in created CLB
parameters.

Check the created parameters:
service.kubernetes.io/service.extensiveParameters.
For details, see the description of service
annotation.

New resources have
no traffic access.

E4008 Insufficient subnet
IPs

Three solutions:
1. Replace the subnet with another subnet with
enough IPs and create a subnet.
2. Update the Service annotation and use a new
subnet ID.
3. Use the public network type CLB instead.

New resources have
no traffic access.

E4009 Overdue payment You need to top up your account. New resources have
no traffic access.

E4011 An existing CLB
does not exist.

Log in to the CLB console, find the CLB instance
under the same VPC as the current cluster, confirm
the CLB ID, and use a real and valid CLB ID. For
details, see the use of an existing CLB in a Service.

New resources have
no traffic access.

E4012

An existing CLB is
a resource
managed by
another TKE.

An existing CLB must have been created by the
user on the CLB console. For details, see the use of
an existing CLB in a Service.

New resources have
no traffic access.

E4013
An existing CLB is
a resource used
by another cluster.

The cross-cluster use of a CLB is not supported.
Use another CLB or delete this resource. For
details, see the sharing of a CLB by multiple
Services.

New resources have
no traffic access.

E4014 An existing CLB
has a port conflict.

Multiple Service declarations use the same port.
Modify the port declaration of the Service with an
error, and use another port to avoid the conflict. For
details, see the use of an existing CLB in a Service.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4016 The user has not
enabled the

Apply to enable Services' sharing capability. For
details, see the sharing of a CLB by multiple

Resource
synchronization is

https://intl.cloud.tencent.com/document/product/457/37808
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/457/39142
https://intl.cloud.tencent.com/document/product/457/36835
https://intl.cloud.tencent.com/document/product/457/36835
https://intl.cloud.tencent.com/document/product/457/38336
https://intl.cloud.tencent.com/document/product/457/36835
https://intl.cloud.tencent.com/document/product/457/38336

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 127

sharing feature. Services. blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4026
The external
configuration fails
to be found.

The user configuration is not blocked. For details,
see the Service CLB configuration. There are two
solutions:
1. Delete the external configuration feature in the
Service.
2. Add a TkeServiceConfig resource with the
corresponding name to the annotation.

N/A

E4033

Direct connection
is enabled, but no
workload backend
supports direct
access.

Use the ENI network mode for the workload, and
disable HostNetwork. Delete the direct connection
annotation, and use NodePort for access. For
instructions on using direct Service connection, see
the use of LoadBalancer to directly connect a
Service in Pod mode.

Backend updates may
fail, causing possible
interruption during the
user's rolling updates.

E4036 Backend
quadruplet conflict

The quadruplet, including CLB VIP, listener
protocol, backend IP and backend port, must
remain unique. With CLB restrictions, the user
needs to listen to multiple ports on the Pod and
bind them separately to solve this problem.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4037 The subnet does
not exist.

Three solutions:
1. Replace the subnet with another subnet with
enough IPs and create a subnet.
2. Update the Service annotation and use a new
subnet ID.
3. Use the public network type CLB instead.

New resources have
no traffic access.

E4062 The certificate has
expired.

Add a new certificate to the certificate service and
update the Secret resource content declared in the
extension protocol annotation. Fill in the certificate
ID according to the document format. For details,
see the Service extension protocol.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4075

In the cross-
regional feature,
the region ID is
incorrect.

Check the cross-regional annotation in the Service.
For the region ID, see the regions and availability
zones.

New resources have
no traffic access.

https://intl.cloud.tencent.com/document/product/457/38336
https://intl.cloud.tencent.com/document/product/457/36834
https://intl.cloud.tencent.com/document/product/457/36837
https://intl.cloud.tencent.com/document/product/457/39141
https://intl.cloud.tencent.com/document/product/215/31786

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 127

Causes of Ingress Event Errors and Solutions

Error
Code

Description Solutions Potential Risk if not
Corrected

E4003 The number of CLBs has
reached the upper limit.

Submit a ticket to apply for a CLB quota. New resources have
no traffic access.

E4005
The number of forwarding
rules has reached the
upper limit.

Submit a ticket to apply for a CLB quota.
New resources have
no traffic access.

E4008
The TKE_QCSRole
authorization has been
deleted

Log in to the CAM console, check TKE
service account authorization, and re-add
authorization. For details, see the
description of role permissions related to
service authorization.

In the cluster
dimension,
components cannot
operate properly.

E4009
The Secret name is not
configured in the TLS field.

If you need the forwarding rules of the
HTTPS protocol, modify the TLS field in
the Ingress and configure the certificate
required for the HTTPS listener. For
details, see the Ingress certificate
configuration. If you do not need the
forwarding rules of the HTTPS protocol,
delete the TLS field and use the HTTP
protocol for service exposure.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4010
The Secret configured in
the TLS field cannot be
found.

Create the Secret resource declared in
the Ingress, and fill in the certificate ID
according to the document format. For
details, see the Ingress certificate
configuration.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4011

The Secret content
configured in the TLS field
is erroneous, with no
certificate ID.

Update the Secret resource content
declared in the TLS, and fill in the
certificate ID according to the document
format. For details, see the Ingress
certificate configuration.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4012 Abnormal certificate status Add a new certificate to the certificate
service and update the Secret resource
content declared in TLS. Fill in the
certificate ID according to the document

Resource
synchronization is
blocked. The user's
update may cause the

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/457/37808
https://intl.cloud.tencent.com/document/product/457/37016
https://intl.cloud.tencent.com/document/product/457/37016
https://intl.cloud.tencent.com/document/product/457/37016

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 127

format. For details, see the Ingress
certificate configuration.

CLB backend to fail to
be updated properly.

E4018 The specified existing CLB
does not exist.

Go to the CLB console to find the CLB
instance under the same VPC as the
current cluster, confirm the CLB ID, and
use a real and valid CLB ID. For details,
see the use of an existing CLB in an
Ingress.

New resources have
no traffic access.

E4019 The specified existing CLB
has been created by TKE.

The existing CLB must have been
created by the user on the CLB Console.
For details, see the use of an existing
CLB in an Ingress.

New resources have
no traffic access.

E4020 The specified existing CLB
is used by another Ingress

The existing CLB must have been
created by the user on the CLB Console.
For details, see the use of an existing
CLB in an Ingress.

New resources have
no traffic access.

E4021
The specified existing CLB
listener has not been
emptied.

Log in to the CLB console, and remove all
listeners of this CLB.

New resources have
no traffic access.

E4022
The annotation format of
kubernetes.io/ingress.http-
rules is incorrect.

Refer to the description of Ingress
annotations to confirm if the annotation
content is valid. It is recommended to use
the console to update the resources.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4023
The annotation format of
kubernetes.io/ingress.https-
rules is incorrect.

Refer to the description of Ingress
annotations to confirm if the annotation
content is valid. It is recommended to use
the console to update the resources.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4027 Overdue payment for
account

You need to top up your account. New resources have
no traffic access.

E4031 Forwarding rules contain
invalid characters.

Modify the Rule field of forwarding rules.
The CLB forwarding path does not
support regular expressions.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

https://intl.cloud.tencent.com/document/product/457/37016
https://intl.cloud.tencent.com/document/product/457/37014
https://intl.cloud.tencent.com/document/product/457/37014
https://intl.cloud.tencent.com/document/product/457/37014
https://intl.cloud.tencent.com/document/product/457/43504
https://intl.cloud.tencent.com/document/product/457/43504

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 127

E4034

The Host field of the IPv6
CLB is not declared. (Host
is not required for IPv4, and
it is VIP by default, which is
not supported by IPv6)

Complete all Host fields in the Ingress,
with no blank left.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4035 Incorrect certificate ID
format

Update the Secret resource content
declared in TLS, and fill in the certificate
ID according to the document format. For
details, see the Ingress certificate
configuration.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4039 The certificate has expired.

Add a new certificate to the certificate
service and update the Secret resource
content declared in TLS. Fill in the
certificate ID according to the document
format. For details, see the renewal of a
TKE Ingress certificate.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4040

The Ingress contains a
domain name with the
corresponding certificate
not declared.

Modify the TLS field and configure the
certificate required for the HTTPS
listener. For details, see the Ingress
certificate configuration.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4041
The Service specified by
forwarding rules in the
Ingress does not exist.

If your Service indeed does not exist, you
need to delete the forwarding rules in the
Ingress that use the Service. If you need
to use the Service, create a Service
resource with the same name in the
namespace as the Ingress.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4042

The Service specified by
forwarding rules in the
Ingress does not have a
corresponding forwarding
port.

If your Service does not have such a port,
you need to delete the forwarding rules in
the Ingress that use the Service. If the
problem involves port configuration, a
port update is required.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4043 The TkeServiceConfig
resource specified in the
Ingress does not exist.

Does not block user configuration. For
details, see the use of TKEServiceConfig
to configure CLBs in an Ingress. There
are two solutions: delete the external

N/A

https://intl.cloud.tencent.com/document/product/457/37016
https://intl.cloud.tencent.com/document/product/457/38552
https://intl.cloud.tencent.com/document/product/457/37016
https://intl.cloud.tencent.com/document/product/457/37015

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 127

configuration feature annotation in the
Service, and add the TKEServiceConfig
resource with the corresponding name.

E4044
Invalid
kubernetes.io/ingress.rule-
mix value

Change it to true or false. For details, see
the mixed use of HTTP and HTTPS
protocols in an Ingress.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4046

Resource bandwidth
annotation configuration
error, format error or
bandwidth range error

Valid bandwidth values: 1-2048 New resources have
no traffic access.

E4047

In the Ingress, the Service
specified by forwarding
rules is of the ClusterIP
type and has no forwarding
port access.

Modify the Service with an error to the
NodePort type.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4048

The Ingress contains a
domain name with multiple
default certificates
declared.

Multiple Secrets with no Host
configuration are declared in the TLS
field. Delete them until only one remains.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4049

The Ingress contains a
fixed domain name with
multiple certificates
declared.

Multiple Secrets are declared for a
domain in the TLS field. Delete them until
only one remains.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4051

The configuration
generated automatically by
the system is specified for
the user's manual external
configuration.

For details, see the use of
TKEServiceConfig to configure CLBs in
an Ingress. Use a resource with a
different name instead.

N/A

E4052 The domain name specified
by forwarding rules in the
Ingress does not meet the

Check and correct the erroneous domain
name. Common errors include domain
names without a ''.'', such as Host: test,
and domain names with any uppercase

Resource
synchronization is
blocked. The user's
update may cause the

https://intl.cloud.tencent.com/document/product/457/43504
https://intl.cloud.tencent.com/document/product/457/37015

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 127

regular expression
requirements.

letter, such as Host: Test.com. Regular
expression: (*|[a-z0-9]([-a-
z0-9]*[a-z0-9])?)(\\.[a-z0-9]

([-a-z0-9]*[a-z0-9])?)+

CLB backend to fail to
be updated properly.

E4053
Unable to create a CLB due
to the exhaustion of subnet
IPs

Three solutions:
1. Replace the subnet with another
subnet with enough IPs and create a
subnet.
2. Update the Service annotation and use
a new subnet ID.
3. Use the public network type CLB
instead.

New resources have
no traffic access.

E4054 The number of backends
has reached the upper limit.

Submit a ticket to apply for a CLB
backend quota.

Backend updates may
fail, causing possible
interruption during the
user's rolling updates.

E4055
Unable to create a CLB due
to the absence of the
subnet or a format error

Three solutions:
1. Replace the subnet with another
subnet with enough IPs and create a
subnet.
2. Update the Service annotation and use
a new subnet ID.
3. Use the public network type CLB
instead.

New resources have
no traffic access.

E4060

Unable to enable the SNAT
Pro feature for the user due
to no granting of allowlist
authorization to the account

Submit a ticket to apply for the granting of
allowlist authorization to enable the SNAT
Pro capability for the CLB.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4066
The cluster initialization
failed, and CRD cannot be
created.

There is a problem with the user cluster.
It is necessary to submit a ticket.

In the cluster
dimension,
components cannot
operate properly.

E4068
The automatic redirection
rules conflict with other
user-declared rules.

When the automatic redirection feature is
used, it is recommended not to declare
other forwarding rules. For details, see
the Ingress redirection.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/457/42592

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 127

E4071 Cross-regional
configuration error: the
CLB's VPC and the current
cluster's VPC are not in the
same CCN.

Use the CCN to associate two VPCs and
replace VPCs in other CCNs. For details,
see the cross-regional binding for an
Ingress.

New resources have
no traffic access.

E4074
Overdue payment for a
node may cause backend
binding failure.

The CLB's backend binding problem may
be due to node blockage.

Backend updates may
fail, causing possible
interruption during the
user's rolling updates.

E4081

The annotation format of
kubernetes.io/ingress.https-
rules is incorrect
(configuration conflict).

It is recommended to modify the
configuration through the console. For
details, see the description of Ingress
annotations.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4082

The NoSelector Service
does not support binding. In
direct connection
scenarios, the Ingress
declares the use of similar
resources.

The backend of the NoSelector Service
does not support direct access, so
NodePort needs to be used instead.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4084

Under cross-regional
binding solution 1.0, the
SNAT Pro feature cannot
be used.

The technical solution needs to be
adjusted due to system limitations.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

E4098
The CLB ID format of the
specified existing CLB is
incorrect.

Log in to the CLB console, find the CLB
instance under the same VPC as the
current cluster, confirm the CLB ID, and
use a real and valid CLB ID. For details,
see the use of an existing CLB in an
Ingress.

New resources have
no traffic access.

E4101 The listener of the specified
existing CLB has a conflict.

Check if port 80/443 is already occupied
by other resources.

Resource
synchronization is
blocked. The user's
update may cause the
CLB backend to fail to
be updated properly.

https://intl.cloud.tencent.com/document/product/457/41870
https://intl.cloud.tencent.com/document/product/457/40675
https://intl.cloud.tencent.com/document/product/457/37014

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 127

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 127

Troubleshooting for Pod Network
Inaccessibility
Last updated：2023-10-19 17:53:44

This document describes common network issues that may occur in various scenarios in TKE clusters and provides
troubleshooting methods. When encountering such issues, you are advised to follow the inspection suggestions below
to perform troubleshooting. If you still cannot access networks normally after confirming that the inspection items are

correct, contact us for help.

Inaccessibility Between Containers (Pods) on Different Nodes in a
Cluster

Pods on different nodes in the same cluster can directly access each other. If a pod on a node cannot access a pod on
another node, you are advised to perform the following checks:
1. Check whether the above nodes can access each other.
2. Check whether the node security group correctly allows the container network segment and the VPC network

segment or VPC subnet segment where the peer node is located.

Inaccessibility Between a Node and a Container (Pod) in the Same
VPC

A node and a pod in the same VPC can directly access each other. If an inaccessibility issue occurs, you are advised
to perform the following checks:
1. Check whether the peer node and the node where the pod is located can access each other.
2. Check whether the security group of the node where the pod is located correctly allows the VPC subnet segment
where the peer node is located.

3. Check whether the security group of the peer node correctly allows the container segment.

Inaccessibility Between a Node and a Container (Pod) or Between
Containers (Pods) in Different VPCs

The mutual access between different VPCs must be completed through Cloud Connect Network or Peering
Connection. If inaccessibility issues persist after the connection is established, you are advised to perform the

https://intl.cloud.tencent.com/document/product/457/46720
https://intl.cloud.tencent.com/document/product/1003/31985
https://intl.cloud.tencent.com/document/product/553/18836

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 127

following checks:
1. Check whether the nodes can access each other.
2. Check whether the security group of the peer node correctly allows the VPC network segment and container

network segment.
3. Check whether the security group of the node where the pod is located correctly allows the VPC network segment
or VPC subnet segment of the peer node.
If containers (pods) cannot access each other, perform the following checks:
1. Check whether the security group of the node where the pod is located correctly allows the peer VPC network

segment (or the VPC subnet segment where the node is located) and the container network segment.
2. To view the source IP address of the pod, run the following command to modify the configuration of
 ip_masq_agent and add the container network segment of each other.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 127

kubectl -n kube-system edit configmap ip-masq-agent-config

Inaccessibility Between an IDC and a Container (Pod)

The mutual access between an IDC and a pod must be completed through Cloud Connect Network or Direct Connect

Gateway. If inaccessibility issues persist after the connection is established, you are advised to perform the following
checks:

https://intl.cloud.tencent.com/document/product/1003/31985
https://intl.cloud.tencent.com/document/product/216/19255

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 127

Check whether the IDC firewall allows the container network segment and CVM network segment.
Check whether the CVM security group allows the IDC network segment.
Check whether the IDC uses the BGP protocol:

If the BGP protocol is not used, you need to configure the next-hop route to the direct connect gateway in the IDC for
accessing the container network segment.
If the BGP protocol is used, automatic synchronization will be performed and typically no configuration is required. If
the IDC has special static configurations, you can contact the O&M personnel to configure the next-hop to the direct
connect gateway for accessing the container network segment.

Note
To view the IP address of a pod in an IDC, you need to allow the IDC network segment.
By default, the access to packets outside of VPCs will be converted to NodeIP through SNAT processing. When
allowing an IDC network segment, you need to implement the configuration of bypassing SNAT processing.
The method of allowing an IDC network segment is as follows: Run the kubectl -n kube-system edit

configmap ip-masq-agent-config command, modify the ip-masq-agent configuration, and add the IDC

network segment to the NonMasqueradeCIDRs list.

Related Operations

Viewing iptables or IPVS Forwarding Rules on a Node

You can run the following commands to view the iptables or IPVS forwarding rules on a node.
Run the following command to view the iptables forwarding rules.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 127

iptables-save

Run the following command to view the IPVS forwarding rules.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 127

ipvsadm -Ln -t/-u ip:port

Running Packet Capture Commands

The following packet capture commands can be used to analyze situations where containers (pods) on different nodes

in a cluster cannot access each other.
Run the following command to capture packets of the NIC eth0 on the node of the source pod.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 127

tcpdump -nn -vv -i eth0 host <IP address of the peer pod>

Run the following command to capture packets of the NIC eth0 on the node of the peer pod.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 127

tcpdump -nn -vv -i eth0 host <IP address of the source pod>

Run the following command to capture packets of the NIC eth0 in the netns of the peer pod.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 127

 tcpdump -nn -vv -i eth0 port <Requested port number>

Locating Network Issues by Capturing Packets in a Container

When running applications by using Kubernetes, you may encounter some network issues, the most common of which

are server unresponsiveness (timeout) and abnormal packet return content. If you cannot locate an issue in the related
configurations, you need to check whether the data packets are ultimately routed to the container, or whether the
content of the packets arriving at and leaving the container aligns with expectations, and further narrow down the

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 127

issue scope by analyzing the packets. This topic provides a script that allows one-click access to the container
network namespace (netns) and uses tcpdump on the host for packet capturing.

Using a Script to Access the Pod netns in One-Click Mode for Packet Capturing

If a service cannot be accessed, you are advised to set the number of replicas to 1 and perform the following steps to

capture packets.
1. Run the following command to obtain the node where the replica is located and the pod name.

kubectl get pod -o wide

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 127

2. Log in to the node where the pod is located, and paste the following script into the Shell to register the function to
the currently logged-in Shell.

function e() {

 set -eu

 ns=${2-"default"}

 pod=`kubectl -n $ns describe pod $1 | grep -A10 "^Containers:" | grep -Eo 'dock

 pid=`docker inspect -f {{.State.Pid}} $pod`

 echo "entering pod netns for $ns/$1"

 cmd="nsenter -n --target $pid"

 echo $cmd

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 127

 $cmd

}

You can learn the script by referring to Script Principles and then use the script.
3. Run the following command to enter the netns where the pod is located in one-click mode.

e POD_NAME NAMESPACE

An example is as follows:

https://intl.cloud.tencent.com/document/product/457/57278#f4371ba6-30e0-44e9-a236-d8e6cd2c1bb0

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 127

e istio-galley-58c7c7c646-m6568 istio-system

e proxy-5546768954-9rxg6 # Omit the namespace and use the defaut value.

Note
After entering the netns of the pod, you can run the ip a or ifconfig command on the host to view the NIC of

the container and run the netstat -tunlp command to view the listening port of the current container.

4. Run the following command to capture packets using tcpdump.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 127

tcpdump -i eth0 -w test.pcap port 80

Analyzing Packets by Using Wireshark

You can stop packet capturing by running the Ctrl+C command, and then run the scp or sz command to

download the captured packets for analysis by using wireshark . During the analysis process, you may use the

following common wireshark filtering syntax:

Establish a Telnet connection and send test text, such as "lbtest" . Run the following command to check whether

the sent test packet is delivered to the container.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 127

tcp contains "lbtest"

If the container offers the HTTP service, you can use curl to send test path requests.

Run the following command to filter the URI, and check whether the packet is delivered to the container.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 127

http.request.uri=="/mytest"

Script Principles

View the container ID for which the specified pod runs.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 127

kubectl describe pod <pod> -n mservice

Obtain the PID of the container process.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 127

docker inspect -f {{.State.Pid}} <container>

Enter the network namespace of the container.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 127

nsenter -n --target <PID>

The host names that the above script depends on include: kubectl, docker, nsenter, grep, head, and sed.

Viewing the Node Security Group Configuration

1. Log in to the TKE console and choose Cluster in the navigation bar.
2. Click the cluster ID to go to the cluster details page.
3. In the navigation bar, choose Node management > Node.
4. On the node list page, click the ID of the node for which you want to view the security group.

https://intl.cloud.tencent.com/en/account/login?s_url=https%3A%2F%2Fconsole.tencentcloud.com%2Ftke2%2Fcluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 127

5. On the node management page, click the Details tab and click the node ID under Node information.

6. On the basic information page of the node, click the Security group tab, and check whether the security group of
the node correctly allows the port range of 30000 to 32768.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 127

Users often have to perform complex customization tasks on TKE clusters in order to accommodate their businesses.
When Pods do not function properly, it is hard to pinpoint the exact cause. This article aims to provide a starting point
for troubleshooting these issues.

Pod Exceptions is a great series of articles that describes how to troubleshoot and solve these issues.

Common Commands

The following is a list of commands commonly used for troubleshooting Pod issues:

Query Pod status

kubectl get pod <pod-name> -o wide

Query Pod YAML configuration

kubectl get pod <pod-name> -o yaml

Query Pod events

kubectl describe pod <pod-name>

Query container logs

kubectl logs <pod-name> [-c <container-name>]

Pod Statuses

The following table provides a list of Pod statuses:

Status Description

 Error Error occurred during Pod launch.

 NodeLost The node on which the Pod resides is unreachable.

Pod Status Exception and Handling
Overview
Last updated：2020-05-25 09:43:06

https://intl.cloud.tencent.com/document/product/457/35760#.E9.97.AE.E9.A2.98.E5.AE.9A.E4.BD.8D

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 127

 Unkown Pod is unreachable or other unknown exception.

 Waiting Pod is waiting to launch.

 Pending Pod is waiting to be scheduled.

 ContainerCreating Pod containers are being created.

 Terminating Pod is being terminated.

 CrashLoopBackOff Container exited. Kubelet is restarting it.

 InvalidImageName Unable to resolve image name.

 ImageInspectError Unable to verify image.

 ErrImageNeverPull Policy prohibits image pull.

 ImagePullBackOff Trying to pull the image again.

 RegistryUnavailable Unable to connect to the image registry.

 ErrImagePull General image pull error.

 CreateContainerConfigError Unable to create the container configuration used by kubelet.

 CreateContainerError Failed to create container.

 RunContainerError Failed to launch container.

 PreStartHookError preStart hook execution error.

 PostStartHookError postStart hook execution error.

 ContainersNotInitialized Container not initialized.

 ContainersNotReady Container not ready.

 ContainerCreating Container is being created.

 PodInitializing Pod being initialized.

 DockerDaemonNotReady Docker is not ready.

 NetworkPluginNotReady Network plugin not ready.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 127

Troubleshooting

Use one of the following articles to troubleshoot your Pod exceptions:

Pod remains in ContainerCreating or Waiting Status
Pod Remains in ImagePullBackOff Status

Pod Remains in Pending Status
Pod Remains in Terminating Status
Pod Health Check Fails
Pod Remains in CrashLoopBackOff Status
Container Exits

https://intl.cloud.tencent.com/document/product/457/35761
https://intl.cloud.tencent.com/document/product/457/35762
https://intl.cloud.tencent.com/document/product/457/35763
https://intl.cloud.tencent.com/document/product/457/35764
https://intl.cloud.tencent.com/document/product/457/35765
https://intl.cloud.tencent.com/document/product/457/35766
https://intl.cloud.tencent.com/document/product/457/35767

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 127

This article describes how to use SystemTap to troubleshoot pod issues.

Preparations

Different operating systems have different methods for installing SystemTap and its dependencies. Pick one that suits
you.

Ubuntu

1. Run the following command to install SystemTap:

apt install -y systemtap

2. Run the following command to check for dependencies:

stap-prep

The following is a sample result:

Please install linux-headers-4.4.0-104-generic

You need package linux-image-4.4.0-104-generic-dbgsym but it does not seem to be

available

Ubuntu -dbgsym packages are typically in a separate repository

Follow https://wiki.ubuntu.com/DebuggingProgramCrash to add this repository

apt install -y linux-headers-4.4.0-104-generic

3. The above result shows that you need to install dbgsym, which is not in the existing sources. Run the following
command to add the third-party source:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys C8CAB6595FDFF622

codename=$(lsb_release -c | awk '{print $2}')

Pod exception troubleshooter
Use Systemtap to Identify Pod Exceptions
Last updated：2022-04-20 19:15:30

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 127

sudo tee /etc/apt/sources.list.d/ddebs.list << EOF

deb http://ddebs.ubuntu.com/ ${codename} main restricted universe multiverse

deb http://ddebs.ubuntu.com/ ${codename}-security main restricted universe mult

iverse

deb http://ddebs.ubuntu.com/ ${codename}-updates main restricted universe multi

verse

deb http://ddebs.ubuntu.com/ ${codename}-proposed main restricted universe mult

iverse

EOF

sudo apt-get update

4. Run the following command after adding the source:

stap-prep

The following is a sample result:

Please install linux-headers-4.4.0-104-generic

Please install linux-image-4.4.0-104-generic-dbgsym

5. Run the following command to install the prompted packages:

apt install -y linux-image-4.4.0-104-generic-dbgsym

apt install -y linux-headers-4.4.0-104-generic

CentOS

1. Run the following command to install SystemTap:

yum install -y systemtap

2. For the purpose of this article, we assume that debuginfo is not added. Add the following to

 /etc/yum.repos.d/CentOS-Debug.repo and save.

[debuginfo]

name=CentOS-$releasever - DebugInfo

baseurl=http://debuginfo.centos.org/$releasever/$basearch/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 127

gpgcheck=0

enabled=1

protect=1

priority=1

3. Run the following command to check for dependencies and install them:

Note：

The following command installs kernel-debuginfo .

stap-prep

4. Run the following command to check if the node has multiple versions of kernel-devel installed:

rpm -qa | grep kernel-devel

The returned result is as follows:

kernel-devel-3.10.0-327.el7.x86_64

kernel-devel-3.10.0-514.26.2.el7.x86_64

kernel-devel-3.10.0-862.9.1.el7.x86_64

If there are multiple versions, keep the one that corresponds to the kernel version. For example, if the current kernel
version is 3.10.0-862.9.1.el7.x86_64 , delete all version except kernel-devel-3.10.0-

862.9.1.el7.x86_64 .

Note：

You can use uname -r to view the kernel version.

Make sure kernel-debuginfo and kernel-devel are both installed and their versions

correspond to the kernel version.

rpm -e kernel-devel-3.10.0-327.el7.x86_64 kernel-devel-3.10.0-514.26.2.el7.x86_64

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 127

Problem Analysis

You can use SystemTap to monitor a process in order to troubleshoot pod issues. This is how it works:

1. SystemTap translates the script into C code and calls gcc to compile the code into the Linux kernel module. It then
uses modprobe to load the module into the kernel.

2. It uses the script to create kernel hooks and identify the causes of pod issues using the signals captured by the
hooks.

Troubleshooting

Step 1: obtain the pids of the containers that restarted automatically in the pod due to
exceptions

1. Run the following command to obtain the Container ID:

kubectl describe pod <pod name>

The returned result is as follows:

......

Container ID: docker://5fb8adf9ee62afc6d3f6f3d9590041818750b392dff015d7091eaaf99c

f1c945

......

Last State: Terminated

Reason: Error

Exit Code: 137

Started: Thu, 05 Sep 2019 19:22:30 +0800

Finished: Thu, 05 Sep 2019 19:33:44 +0800

2. Run the following command to query the pid of the main container process using the obtained Container ID:

docker inspect -f "{{.State.Pid}}" 5fb8adf9ee62afc6d3f6f3d9590041818750b392dff0

15d7091eaaf99cf1c945

The returned result is as follows:

7942

Step 2: narrow the scope using the container exit code

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 127

Use the Exit Code in the result of Step 1 to obtain the status code of the last container exit. For the purpose of

this article, we will use 137 as an example. The analysis is as follows:

If the process was killed by an external signal, the exit code should be between 129 and 255.

An exit code of 137 indicates that the process was killed by SIGKILL . However, we still cannot determine the

reason why the process exited.

Step 3: use the SystemTap script to identify the reason

Assuming the issue is reproducible, you can use a SystemTap to troubleshoot the problem.

1. Create a file called sg.stp . Add the following content and save.

global target_pid = 7942

probe signal.send{

if (sig_pid == target_pid) {

printf("%s(%d) send %s to %s(%d)\n", execname(), pid(), sig_name, pid_name, sig

_pid);

printf("parent of sender: %s(%d)\n", pexecname(), ppid())

printf("task_ancestry:%s\n", task_ancestry(pid2task(pid()), 1));

}

}

Note：
Substitute pid with the value of the main container process pid obtained in Step 2. For the purpose of this

article, we will use 7942 as an example:

2. Run the following command to execute the script:

stap sg.stp

When the container process is killed, the script captures the event and outputs the following:

pkill(23549) send SIGKILL to server(7942)

parent of sender: bash(23495)

task_ancestry:swapper/0(0m0.000000000s)=>systemd(0m0.080000000s)=>vGhyM0(19491m2.

579563677s)=>sh(33473m38.074571885s)=>bash(33473m38.077072025s)=>bash(33473m38.08

1028267s)=>bash(33475m4.817798337s)=>pkill(33475m5.202486630s)

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 127

Solution

By observing task_ancestry , you can see the parent processes of the stopped process. In the example above,

you can see a strange process called vGhyM0 . This usually indicates that there is a trojan in the system. Take the

necessary steps to clean it so your containers can function properly.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 127

This document describes how to use exit codes to troubleshoot pod issues.

Querying Pod Exceptions

Run the following command to query pod exceptions:

kubectl describe pod <pod name>

The returned result is as follows:

Containers:

kubedns:

Container ID: docker://5fb8adf9ee62afc6d3f6f3d9590041818750b392dff015d7091eaaf99c

f1c945

Image: ccr.ccs.tencentyun.com/library/kubedns-amd64:1.14.4

Image ID: docker-pullable://ccr.ccs.tencentyun.com/library/kubedns-amd64@sha256:4

0790881bbe9ef4ae4ff7fe8b892498eecb7fe6dcc22661402f271e03f7de344

Ports: 10053/UDP, 10053/TCP, 10055/TCP

Host Ports: 0/UDP, 0/TCP, 0/TCP

Args:

--domain=cluster.local.

--dns-port=10053

--config-dir=/kube-dns-config

--v=2

State: Running

Started: Tue, 27 Aug 2019 10:58:49 +0800

Last State: Terminated

Reason: Error

Exit Code: 255

Started: Tue, 27 Aug 2019 10:40:42 +0800

Finished: Tue, 27 Aug 2019 10:58:27 +0800

Ready: True

Restart Count: 1

 Exit Code is the status code of the last container exit. If it is not 0, the container exited due to an exception. You

can use the exit code to further troubleshoot the problem.

Use Exit Code to Identify Pod Exceptions
Last updated：2020-10-16 16:07:23

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 127

Exit Codes

A valid exit code is between 0 and 255.
0 means the container exited normally.
If the container exited due to an external signal, the exit code is between 129 and 255. For example, if the operating

system sent kill -9 or ctrl+c as the termination signal, the status is SIGKILL or SIGINT .

If the container exited due to an internal signal, the exit code is between 1 and 128. However, in some
circumstances, the exit code might be between 129 and 255.
If the specified exit code has a value outside the 0-255 range, such as exit(-1) , it is automatically translated

to a value in the 0-255 range.

If the exit code is specified as code , it is translated as follows:

If the exit code is negative:

256 - (|code| % 256)

If the exit code is positive:

code % 256

Typical Exit Codes

137: indicates that the process was killed by SIGKILL . Possible reasons are:

Pod memory reached resources.limits , such as Out of Memory (OOM). Pod resource limits are

implemented by using Linux cgroup. If the memory of a pod reaches its limit, cgroup forces it to stop (with a
similar effect to kill -9). If you use describe pod , you can see the value of Reason is

 OOMKilled .

If the host does not have sufficient resources (OOM), the kernel stops some processes to free up the memory.

livenessProbe failed, which causes kubelet to stop the pod.
Pod stopped by a trojan process.

Note：

If the process is stopped due to OOM, cgroup, or the host, you can find relevant records in system logs:
Ubuntu system logs are stored in /var/log/syslog , whereas CentOS system logs are stored in
 /var/log/messages . You can run the journalctl -k command to view system logs in both
operating systems.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 127

1 and 255: indicates common issues. Check container logs for further troubleshooting. For example, this could be
the result of exit(1) or exit(-1) . -1 is translated to 255.

Standard Linux Interruption Signals

Linux programs send an exit code when they are interrupted by external signals. The value of the exit code is the value

of the interrupt signal plus 128. For example, the value of SIGKILL is 9, so the program exit code is 9 + 128 = 137.

For more standard interrupt signals, see the following table:

Signal Status Code
Value

Action Description

 SIGHUP 1 Term Hangup detected on controlling terminal or death of controlling
process

 SIGINT 2 Term Interrupt from keyboard

 SIGQUIT 3 Core Quit from keyboard

 SIGILL 4 Core Illegal Instruction

 SIGABRT 6 Core Abort signal from abort(3)

 SIGFPE 8 Core Floating-point exception

 SIGKILL 9 Term Kill signal

 SIGSEGV 11 Core Invalid memory reference

 SIGPIPE 13 Term Broken pipe: write to pipe with no readers; see pipe(7)

 SIGALRM 14 Term Timer signal from alarm(2)

 SIGTERM 15 Term Termination signal

 SIGUSR1 30,10,16 Term User-defined signal 1

 SIGUSR2 31,12,17 Term User-defined signal 2

 SIGCHLD 20,17,18 Ign Child stopped or terminated

 SIGCONT 19,18,25 Cont Continue if stopped

 SIGSTOP 17,19,23 Stop Stop process

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 127

 SIGTSTP 18,20,24 Stop Stop typed at terminal

 SIGTTIN 21,21,26 Stop Terminal input for background process

 SIGTTOU 22,22,27 Stop Terminal output for background process

C/C++ Exit Codes

 /usr/include/sysexits.h provides standardized exit codes for C and C++. These codes are described in the

following table:

Definition Status Code Description

 #define EX_OK 0 successful termination

 #define EX__BASE 64 base value for error messages

 #define EX_USAGE 64 command line usage error

 #define EX_DATAERR 65 data format error

 #define EX_NOINPUT 66 cannot open input

 #define EX_NOUSER 67 addressee unknown

 #define EX_NOHOST 68 host name unknown

 #define EX_UNAVAILABLE 69 service unavailable

 #define EX_SOFTWARE 70 internal software error

 #define EX_OSERR 71 system error (e.g., can't fork)

 #define EX_OSFILE 72 critical OS file missing

 #define EX_CANTCREAT 73 can't create (user) output file

 #define EX_IOERR 74 input/output error

 #define EX_TEMPFAIL 75 temp failure; user is invited to retry

 #define EX_PROTOCOL 76 remote error in protocol

 #define EX_NOPERM 77 permission denied

 #define EX_CONFIG 78 configuration error

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 127

 #define EX__MAX 78 78 maximum listed value

Status Code Reference

For the description of more status codes, see the following table:

Status
Code

Meaning Example Description

1 Catchall for general errors let "var1 = 1/0" Miscellaneous errors, such as "divide by
zero" and other impermissible operations

2
Misuse of shell builtins
(according to Bash
documentation)

empty_function()
{} Missing keyword or command

126 Command invoked cannot
execute

/dev/null Permission problem or command is not an
executable

127 "command not found" illegal_command Possible problem with $PATH or a typo

128 Invalid argument to exit exit 3.14159 exit takes only integer args in the range0 -
255 (see first footnote)

128+n Fatal error signal "n"
kill -9 $PPID of
script

$? returns137 (128 + 9)

130 Script terminated by Control-C Ctl-C Control-C is fatal error signal 2, (130 =
128 + 2, see above)

255* Exit status out of range exit -1 exit takes only integer args in the range0 -
255

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 127

This article describes the causes that will lead a Pod to become stuck in the ContainerCreating or

 Waiting status and how to troubleshoot this issue. Refer to the following instructions to troubleshoot and solve

these issues.

Possible Causes

Incorrect Pod configurations
Volume failed to mount
Insufficient disk space
Node memory fragmentation
The value of Limit is too small or uses the wrong unit

Failure to pull the image
CNI network error
controller-manager exception
New Docker installed without completely uninstalling the old version
Duplicate container names

Troubleshooting

Checking Pod configuration

1. Make sure the image is properly packaged.

2. Make sure the container parameters are configured correctly.

Checking volume mounting

In the following two scenarios, volume mounting issues may cause exceptions:

1. A volume fails to unmount due to Pod float

Analysis
The default volume in a managed Kubernetes cluster is usually a storage class cloud disk. If a node malfunctions and
causes kubelet to fail or not be able to communicate with apiserver and the time threshold is reached, the Pods on the

node are drained and backup Pods on another node are automatically started. This is called Pod floating. Drained
Pods cannot function properly nor are they aware of their states. Therefore, the volume mounted to the node is not

Pod Remains in ContainerCreating or Waiting
Last updated：2020-05-25 09:34:49

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 127

properly unmounted.
cloud-controller-manager requires the volume to unmount properly in order to invoke vendor APIs to unmount disks
from the node. Pod floating causes cloud-controller-manager to force unmount a volume after the time threshold is

reached and mount it to the node where the Pod is scheduled.

Impact
The Pod may spend an extended period of time in ContainerCreating but will launch successfully.

2. Hitting a subpath bug when mounting configmap/secret

If you modify the content of configmap or secret that is already mounted and the container restarts in place, such as
restarting after being killed for failing a liveness check, this bug is triggered.

In this case, the container continuously fails to launch. The error messages are as follows:

$ kubectl -n prod get pod -o yaml manage-5bd487cf9d-bqmvm

...

lastState: terminated

containerID: containerd://e6746201faa1dfe7f3251b8c30d59ebf613d99715f3b800740e587e

681d2a903

exitCode: 128

finishedAt: 2019-09-15T00:47:22Z

message: 'failed to create containerd task: OCI runtime create failed: container_

linux.go:345:

starting container process caused "process_linux.go:424: container init

caused \"rootfs_linux.go:58: mounting \\\"/var/lib/kubelet/pods/211d53f4-d08c-11e

9-b0a7-b6655eaf02a6/volume-subpaths/manage-config-volume/manage/0\\\"

to rootfs \\\"/run/containerd/io.containerd.runtime.v1.linux/k8s.io/e6746201faa1d

fe7f3251b8c30d59ebf613d99715f3b800740e587e681d2a903/rootfs\\\"

at \\\"/run/containerd/io.containerd.runtime.v1.linux/k8s.io/e6746201faa1dfe7f325

1b8c30d59ebf613d99715f3b800740e587e681d2a903/rootfs/app/resources/application.pro

perties\\\"

caused \\\"no such file or directory\\\"\"": unknown'

For more information on how to resolve this issue, see pr82784.

Checking for insufficient disk space

A Pod uses the CRI APIs to create containers when it launches. This usually involves creating directories and files for
the new containers under the data directory. If there is not enough disk space, container creation will fail with the

following error messages:

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedCreatePodSandBox 2m (x4307 over 16h) kubelet, 10.179.80.31 (combine

https://github.com/kubernetes/kubernetes/pull/82784

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 127

d from similar events): Failed create pod sandbox: rpc error: code = Unknown desc

= failed to create a sandbox for pod "apigateway-6dc48bf8b6-l8xrw": Error respons

e from daemon: mkdir /var/lib/docker/aufs/mnt/1f09d6c1c9f24e8daaea5bf33a4230de7db

c758e3b22785e8ee21e3e3d921214-init: no space left on device

For more information and further instructions, see Disk Full.

Checking for node memory fragmentation

If node memory is severely fragmented or lacks large page memory, requests for more memory will fail even though

there is plenty of memory left. For instructions on troubleshooting and solutions, refer to Memory Fragmentation.

Checking for limit configuration

Error description

Run kubectl describe pod and get the following message:

Pod sandbox changed, it will be killed and re-created.

kubelet outputs the following error message:

to start sandbox container for pod ... Error response from daemon: OCI runtime

create failed: container_linux.go:348: starting container process caused "proce

ss_linux.go:301: running exec setns process for init caused \"signal: killed\""

: unknown

Solution

If the value of limit is too small, Sandbox will fail to run. This will cause the Pod to remain in the ContainerCreating or
Waiting status. This is usually a memory limit unit issue.

For example, if you used m as the memory limit unit, then Kubernetes reads it as byte. The correct unit to use is

 Mi or M . If you set a memory limit to 1024m, that translates to 1.024 bytes, which causes a container to be killed

by cgroup-oom every it attempts to launch. This results in the Pod remaining in the ContainerCreating state.

Checking for image pull failures

The failure to pull an image produces the same issue. There are many reasons why image pull may fail. The common
ones are as follows:

The wrong image is used
kubelet cannot access the image registry. For example, images hosted on gcr.io are more difficult to access from
Mainland China.
imagePullSecret is not present or is incorrect when pulling private images.

https://intl.cloud.tencent.com/document/product/457/35753
https://intl.cloud.tencent.com/document/product/457/35755

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 127

Image pull times out due to the size of the image. Adjust the value of --runtime-request-timeout and -

-image-pull-progress-deadline .

Pull the image again after checking the above items and check the state of the Pod.

Checking for CNI errors

Make sure that CNI is configured and running properly. If not, you get the following messages:

Cannot configure Pod network
Cannot assign Pod IP address

Checking for controller-manager issues

Make sure the Master kube-controller-manager is running properly. Restart it if it is not.

Checking for existing Docker versions

If the node already has Docker installed or installed Docker without completely uninstalling the old Docker, a Pod may

encounter the same issue.
For example, if you have installed Docker multiple times using the following command in CentOS:

yum install -y docker

Due to the incompatibility issue among components of different versions, dockerd continuously fails to create
containers. This results in the Pod remaining in the ContainerCreating status. Use kubectl describe pod and

get the following error messages:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedCreatePodSandBox 18m (x3583 over 83m) kubelet, 192.168.4.5 (combine

d from similar events): Failed create pod sandbox: rpc error: code = Unknown desc

= failed to start sandbox container for pod "nginx-7db9fccd9b-2j6dh": Error respo

nse from daemon: ttrpc: client shutting down: read unix @->@/containerd-shim/mob

y/de2bfeefc999af42783115acca62745e6798981dff75f4148fae8c086668f667/shim.sock: rea

d: connection reset by peer: unknown

Normal SandboxChanged 3m12s (x4420 over 83m) kubelet, 192.168.4.5 Pod sandbox cha

nged, it will be killed and re-created.

Choose a Docker version to keep and completely uninstall the other versions.

Checking for duplicate container names

Duplicate container names on the same node cause sandbox creation failures, which leads to Pods remaining in the
ContainerCreating and Waiting statuses.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 127

Run kubectl describe pod and get the following error messages:

Warning FailedCreatePodSandBox 2m kubelet, 10.205.8.91 Failed create pod sandbox:

rpc error: code = Unknown desc = failed to create a sandbox for pod "lomp-ext-d8c

8b8c46-4v8tl": operation timeout: context deadline exceeded

Warning FailedCreatePodSandBox 3s (x12 over 2m) kubelet, 10.205.8.91 Failed creat

e pod sandbox: rpc error: code = Unknown desc = failed to create a sandbox for po

d "lomp-ext-d8c8b8c46-4v8tl": Error response from daemon: Conflict. The container

name "/k8s_POD_lomp-ext-d8c8b8c46-4v8tl_default_65046a06-f795-11e9-9bb6-b67fb7a70

bad_0" is already in use by container "30aa3f5847e0ce89e9d411e76783ba14accba7eb77

43e605a10a9a862a72c1e2". You have to remove (or rename) that container to be able

to reuse that name.

Change container names and make sure there are no duplicate container names on the same node.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 127

This article describes the causes that lead to a Pod remaining in the ImagePullBackOff status and how to troubleshoot
these issues. Refer to the following instructions for troubleshooting.

Possible Causes

HTTP registry addresses are not added under insecure-registry

The self-signed registry CA for HTTPS traffic is not added to the node
The private image registry failed to authenticate the request
Damaged image file
Image pull timed out
Image not found

Troubleshooting

Checking if HTTP registries are added under insecure-registry

dockerd pulls images from HTTPS registries by default. If you want to use HTTP registries, you need to add them
under insecure-registry and restart or reload dockerd to apply the change.

Checking if the self-signed registry CA is added to the node

If your HTTPS registry uses a self-signed CA, dockerd will authenticate the certificate. You can only use the registry if
the certificate is successfully authenticated.

To make sure the process succeeds, place the certificate file under:

/etc/docker/certs.d/<Registry:port>/ca.crt

Checking for private registry configuration issues

If you use a private image registry and the Pod is not configured with an imagePullSecret or uses the wrong
imagePullSecret, the registry will refuse the pull requests and the Pod will remain in the ImagePullBackOff status.

Checking for damaged image files

Pod Remains in ImagePullBackOff
Last updated：2020-05-25 09:34:50

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 127

If the image file is damaged before or when it is pushed to the registry, the downloaded image is also damaged. In this
case, you need to push the image again.

Checking for image pull timeout

Error description

When multiple Pods are launched at the same time from the same node, all containers pull images and these images

are stored in a download queue. If the images in the front of the queue are large in size and take a long time to pull, the
images behind them may fail to be pulled due to timeout.

By default, kubelet pulls images one at a time.

--serialize-image-pulls Pull images one at a time. We recommend *not* changing th

e default value on nodes that run docker daemon with version < 1.9 or an Aufs sto

rage backend. Issue #10959 has more details. (default true)

Solution

If necessary, you can enable concurrent image pulling and set a concurrency limit. The following is an example:

--Registry-qps int32 If > 0, limit Registry pull QPS to this value. If 0, unlimit

ed. (default 5)

--Registry-burst int32 Maximum size of a bursty pulls, temporarily allows pulls t

o burst to this number, while still not exceeding Registry-qps. Only used if --Re

gistry-qps > 0 (default 10)

Checking if the image exists

If the image does not exist, the Pod may remain in the ImagePullBackOff status. You can identify the issue using
kublet logs, as shown by the following:

PullImage "imroc/test:v0.2" from image service failed: rpc error: code = Unknown

desc = Error response from daemon: manifest for imroc/test:v0.2 not found

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 127

This article describes the causes that lead to Pods remaining in the Pending status and how to troubleshoot these
issues. Refer to the following instructions for troubleshooting.

Error Description

A Pending Pod has not been scheduled to a node. Use kubectl describe pod <pod-name> to look up event

information, which can be used to analyze the cause.

$ kubectl describe pod tikv-0

...

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Warning FailedScheduling 3m (x106 over 33m) default-scheduler 0/4 nodes are avail

able: 1 node(s) had no available volume zone, 2 Insufficient cpu, 3 Insufficient

memory.

Possible Reasons

Insufficient node resources
nodeSelector and affinity conditions not met

The node contains a taint that the pod cannot tolerate
Bugs in earlier versions of kube-scheduler
kube-scheduler is not running properly
The stateful application on other usable nodes is not in the same availability zone as the drained node

Troubleshooting

Checking if the node has sufficient resources

Analysis

The following are likely causes of insufficient node resources:

Pod Remains in Pending
Last updated：2020-09-18 10:01:38

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 127

The CPU utilization is too high.
There is not enough memory left for allocation.
There are not enough GPUs left (usually in machine learning and GPU cluster use cases).

Run the following command to query resource allocation information for further analysis:

kubectl describe node <node-name>

Focus on the following returned items to judge if a node has sufficient resources:

 Allocatable : all resources the current node can apply for.

 Allocated resources : resources that have been allocated (Allocatable minus all Requests by all Pods on

the node).

Impact

The remaining resources a node has is equal to Allocatable minus Allocated resources . If it is less

than the Request from the Pod, then the node does not have enough resources to accommodate the Pod, which
means the Scheduler skips the Pod in the Predicates stage. Therefore, the pod is not scheduled to the node.

Checking for nodeSelector and affinity configurations

If the nodeSelector of a Pod specifies a label, the scheduler will only schedule the Pod to a node with that label. If no

such node exists, the Pod will not be scheduled. For more information, refer to the official Kubernetes website.

If the Pod has affinity configured and the scheduler cannot find a node that satisfies the affinity conditions, the Pod is
not scheduled. Affinity has the following types:

 nodeAffinity : affinity to nodes. You can think of this as an enhanced version of nodeSelector. It limits the Pod

to the nodes that meet certain conditions.
 podAffinity : affinity to Pods. This schedules related Pods to the same node or nodes in the same availability

zone.
 podAntiAffinity : anti-affinity to pods. This is used to prevent the scheduling of the same type of Pods to the

same place in order to avoid single point of failure. For example, you can schedule the Pods that provide DNS
service to the cluster to different nodes in order to prevent the DNS service crashes causing business interruptions
because a single node fails.

Checking if the node has taints that the Pod cannot tolerate

Analysis

If a node has taints for which the Pod has no corresponding tolerations, the Pod will not be scheduled to that node.
You can run kubectl describe node <node-name> to query existing node taints, as shown below:

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 127

$ kubectl describe nodes host1

...

Taints: special=true:NoSchedule

...

You can add taints automatically or manually. For more information, refer to Adding Taints.

Solution

This document provides the following solutions. Solution 2 is the most often used.

Solution 1: delete the taints
Run the following command to delete the taint named special :

kubectl taint nodes host1 special-

Solution 2: add corresponding tolerations to the Pod

i. Refer to Logging In to a Linux Instance in Standard Login Mode (Recommended) for instructions on how to log in

to the CVM instance that contains nginx .

ii. Run the following command to edit the YAML file:

kubectl edit deployment nginx

iii. Add tolerations under spec in the template section. The following adds a toleration for the existing taint

 special :

tolerations:

- key: "special"

operator: "Equal"

value: "true"

effect: "NoSchedule"

Note：

The following uses a Pod created in the Deployment (named nginx) as an example to describe how to
add a toleration:

https://intl.cloud.tencent.com/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 127

The result should be as follows:

iv. Save and exit to complete the process.

Checking if there is a bug in kube-scheduler

There is a bug in earlier versions of kube-scheduler that causes Pods to remain in the Pending status. You can

solve the issue by upgrading kube-scheduler.

Checking if kube-scheduler is running properly

Check if the Master kube-scheduler is running properly. If not, restart the scheduler.

Checking if the stateful application on the drained node is scheduled to a node in another
availability zone

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 127

If a node fails after a service is deployed, the Pod is evicted and a new Pod is created and scheduled to another node.
Pods with mounted disks mounted are usually scheduled to nodes in the same availability zone as the drained node
and the disks. However, if the cluster does not have a node that meets the rescheduling requirements, these nodes

are not scheduled even if there are nodes in other availability zones that meet the requirements.

The reason that Pods with disks mounted cannot be scheduled to nodes in other availability zones is as follows:
Cloud disks can be dynamically mounted to different machines in the same IDC. However, they are not allowed to be
mounted to machines in other IDCs to avoid severe I/O degradation due to network latency.

Related Operations

Adding taints

Adding taints manually

Use the following command to add taints manually:

$ kubectl taint node host1 special=true:NoSchedule

node "host1" tainted

Adding taints automatically

Kubernetes v1.12 Beta provides the feature TaintNodesByCondition . With this feature, controller manager will

check conditions defined in the node when the node does not run properly. If a condition is met, then the
corresponding taint is added automatically.

For example, if the condition of OutOfDisk =true is met, then a taint called node.kubernetes.io/out-of-

disk is added to the node.

Conditions and corresponding taints:

Condition Value Taints

-------- ----- ------

OutOfDisk True node.kubernetes.io/out-of-disk

Ready False node.kubernetes.io/not-ready

Ready Unknown node.kubernetes.io/unreachable

MemoryPressure True node.kubernetes.io/memory-pressure

PIDPressure True node.kubernetes.io/pid-pressure

Note：

In some cases, you may not want Pods to be scheduled to a new node before certain configurations are
finished. In this case, you can add a taint called node.kubernetes.io/unschedulable to the node.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 127

DiskPressure True node.kubernetes.io/disk-pressure

NetworkUnavailable True node.kubernetes.io/network-unavailable

The specific values for each Condition indicate specific meanings as described below:

If OutOfDisk is True, the node is out of storage space.

If Ready is False, the node is unhealthy.

If Ready is Unknown, the node is unreachable. If a node does not report to controller-manager in the time defined

by node-monitor-grace-period (40s by default), it is marked as Unknown.

If MemoryPressure is True, the node has little available memory.

If PIDPressure is True, the node has too many processes running and it is running out of PIDs.

If DiskPressure is True, the node has little available storage space.

If NetworkUnavailable is True , the node cannot communicate with other Pods because the network is

not properly configured.

Note：

Taints are added if the above conditions are met. TKE also adds/removes taints actively in the following
case:
When a node is created, a taint called node.cloudprovider.kubernetes.io/uninitialized is
added to it. Then, after successful node initialization, the taint is automatically removed. This is to prevent
Pods from being scheduled to an uninitialized node.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 127

This article describes the causes that lead to a Pod remaining in the Terminating status and how to troubleshoot these
issues. Refer to the following instructions for troubleshooting.

Possible Causes

Insufficient disk space

Files with the i attribute exist
A bug in Docker version 17
Finalizers exist
A bug in earlier versions of kubelet list-watch
Dockerd status and containerd status is not in sync

A bug in Daemonset Controller

Troubleshooting

Checking if disk space is sufficient

If the disk where the Docker data directory resides is full, Docker will not function properly. It cannot even delete or
create containers. Therefore it cannot respond to kubelet’s call to delete containers. Use kubectl describe pod

<pod-name> to query event and get the following messages:

Normal Killing 39s (x735 over 15h) kubelet, 10.179.80.31 Killing container with i

d docker://apigateway:Need to kill Pod

For solutions and more information, see Disk Full.

Checking to see if files with the i attribute exist

Error description

Use man chattr to display a description of the i attribute, as shown below:

A file with the 'i' attribute cannot be modified: it cannot be deleted or rename

d, no link can be created to this file and no data can be written to the file. On

ly the superuser or a process possessing the CAP_LINUX_IMMUTABLE capability can s

et or clear this attribute.

Pod Remains in Terminating
Last updated：2022-04-20 19:17:48

https://intl.cloud.tencent.com/document/product/457/35753

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 127

Note：

If the container image file itself or files stored in the container have the i attribute, they cannot be modified or
deleted.

When Pods are deleted, container directories are cleaned. If the directories have files that cannot be deleted, the
directories cannot be deleted, which causes the Pods to remain in the Terminating status. In this case, kubelet
displays the following error message:

Sep 27 14:37:21 VM_0_7_centos kubelet[14109]: E0927 14:37:21.922965 14109 remote_

runtime.go:250] RemoveContainer "19d837c77a3c294052a99ff9347c520bc8acb7b8b9a9dc9f

ab281fc09df38257" from runtime service failed: rpc error: code = Unknown desc = f

ailed to remove container "19d837c77a3c294052a99ff9347c520bc8acb7b8b9a9dc9fab281f

c09df38257": Error response from daemon: container 19d837c77a3c294052a99ff9347c52

0bc8acb7b8b9a9dc9fab281fc09df38257: driver "overlay2" failed to remove root files

ystem: remove /data/docker/overlay2/b1aea29c590aa9abda79f7cf3976422073fb3652757f0

391db88534027546868/diff/usr/bin/bash: operation not permitted

Sep 27 14:37:21 VM_0_7_centos kubelet[14109]: E0927 14:37:21.923027 14109 kuberun

time_gc.go:126] Failed to remove container "19d837c77a3c294052a99ff9347c520bc8acb

7b8b9a9dc9fab281fc09df38257": rpc error: code = Unknown desc = failed to remove c

ontainer "19d837c77a3c294052a99ff9347c520bc8acb7b8b9a9dc9fab281fc09df38257": Erro

r response from daemon: container 19d837c77a3c294052a99ff9347c520bc8acb7b8b9a9dc9

fab281fc09df38257: driver "overlay2" failed to remove root filesystem: remove /da

ta/docker/overlay2/b1aea29c590aa9abda79f7cf3976422073fb3652757f0391db885340275468

68/diff/usr/bin/bash: operation not permitted

Solution

Permanent solution: do not store files with the i attribute in container images or set a launched container with the i
attribute.

Temporary solution:

1. Use the file path in the kubelet log and run the command chattr -i <file> , as shown below:

chattr -i /data/docker/overlay2/b1aea29c590aa9abda79f7cf3976422073fb3652757f039

1db88534027546868/diff/usr/bin/bash

2. Wait for kubelet to restart and try again. You can delete the Pod now.

Checking for the bug in Docker Version 17

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 127

Error description

Docker hangs without any response. Running kubectl describe pod <pod-name> returns the following

results:

Warning FailedSync 3m (x408 over 1h) kubelet, 10.179.80.31 error determining stat

us: rpc error: code = DeadlineExceeded desc = context deadline exceeded

The cause is likely to be a bug in Docker version 17. You can use kubectl -n cn-staging delete pod

apigateway-6dc48bf8b6-clcwk –force –grace-period=0 to force delete the pod, but you can still see it

using docker ps .

Solution

Upgrade Docker to version 18. Version 18 uses a new dockerd version and fixed many bugs.

If the problem persists, submit a ticket for further assistance. We do not recommend that you force delete the
pod as this may impact your business.

Checking for Finalizers

Error description

If a Kubernetes resource has the finalizers metadata, it is created by an application and the finalizers

field contains an identifier of the application. For example, Rancher-created resources have the finalizers

identifier.

To delete this type of resource, the application responsible must clean them up and remove the finalizers

identifiers before they can be deleted.

Solution

Use kubectl edit to manually edit the resources to remove finalizers before deleting them.

Check for a bug in an earlier version of kubelet list-watch

We discovered that, when you use Kubernetes v1.8.13, kubelet list-watch has a bug that prevents kubelet from
receiving event information after deleting a Pod, which means the Pod is not truly deleted. This leads to the Pod

remaining in the Terminating status.

Refer to Updating Clusters for instructions on how to update Kubernetes.

Checking if dockerd and containerd are synchronized

Error description

If you use the AUFS storage driver and the disk is full, the kernel may panic and output the following error message:

https://console.intl.cloud.tencent.com/workorder/category/?level1_id=6&level2_id=350&source=undefined&data_title=%E5%AE%B9%E5%99%A8%E6%9C%8D%E5%8A%A1TKE&step=1
https://intl.cloud.tencent.com/document/product/457/30640

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 127

aufs au_opts_verify:1597:dockerd[5347]: dirperm1 breaks the protection by the per

mission bits on the lower branch

If this happens, it may lead to status synchronization issues, and dockerd logs may contain records similar to the
following:

Sep 18 10:19:49 VM-1-33-ubuntu dockerd[4822]: time="2019-09-18T10:19:49.903943652

+08:00" level=error msg="Failed to log msg \"\" for logger json-file: write /opt/

docker/containers/54922ec8b1863bcc504f6dac41e40139047f7a84ff09175d2800100aaccbad1

f/54922ec8b1863bcc504f6dac41e40139047f7a84ff09175d2800100aaccbad1f-json.log: no s

pace left on device"

Analysis

You can use one of the following methods to find out if dockerd and containerd are in sync.

Use describe pod to obtain the ID of the container. Then, use docker ps to query the status of the

container and see if it matches the status from dockerd.
Use docker-container-ctr to query the container status in containerd, as shown below:

$ docker-container-ctr --namespace moby --address /var/run/docker/containerd/do

cker-containerd.sock task ls |grep a9a1785b81343c3ad2093ad973f4f8e52dbf54823b8b

b089886c8356d4036fe0

a9a1785b81343c3ad2093ad973f4f8e52dbf54823b8bb089886c8356d4036fe0 30639 STOPPED

If the status of the container in containerd is stopped or empty and it is running in dockerd, then the container

status is not synchronized between dockerd and containerd.

Solution

Temporary solution: run docker container prune or restart dockerd.

Permanent solution: use containerd instead of both containerd and dockerd to work around the bug in dockerd.

Checking for the Daemonset Controller bug

Kubernetes 1.10 and 1.11 have a bug that causes Daemonset Pod to remain in the Terminating status. In this case,
Daemonset Controller reuses the predicates logic of scheduler which sorts the nodeSelector array (passed as pointer

parameters) from nodeAffinity. This results in spec being different from that stored by apiserver. At the same time,
Daemonset Controller uses spec to calculate the hash of Daemonset for version control purposes.
This difference in parameter values causes the Pod to get stuck in a loop of launching and stopping.

Solution

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 127

Temporary solution: make sure rollingUpdate Daemonset uses nodeSelector rather than nodeAffinity.
Permanent solution: refer to Updating Clusters for instructions on how to update Kubernetes to 1.12.

https://intl.cloud.tencent.com/document/product/457/30640

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 127

This article describes the causes of health check failures and how to troubleshoot them. Refer to the following
instructions to troubleshoot and solve these issues.

Error Description

Kubernetes health checks include readiness checks (readinessProbe) and liveness checks (livenessProbe). Different

health check failures have different symptoms:

Pod IP addresses are removed from Service and traffic is not directed to the Pods that failed readiness check.
kubelet stops a Pod and tries to restart it.

There are many reasons why health checks may fail. For example, the application may have a bug that prevents it
from responding to health checks. If a Pod becomes Unhealthy , following these instructions to troubleshoot it:

Possible Causes

Improper health check configuration
Node overload
Container process stopped by a trojan
The listening port of a container internal process fails
SYN backlog setting too low

Troubleshooting

Checking your health check configuration

An improper health check configuration may cause health checks to fail. For example, if initialDelaySeconds

(the period of time to wait before probing a container for the first time after the container starts) is too low and a
container is slow to start, this will cause the probe to start before the container finishes startup. If, at the same time
 successThreshold is set to 1, then the health check is performed once and stopped. As a result, the Pod is

stuck in a loop where it is repeatedly stopped and restarted.

Checking if the node is overloaded

Pod Health Check Fails
Last updated：2020-05-25 09:34:50

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 127

High CPU usage (such as 100%) causes the process to be unable to send or receive packets, which leads to timeout
and health check failures. See High Workload for more information on how to troubleshoot this issue.

Checking if the container process was stopped by a trojan

See Using Systemtap to Troubleshoot Pod Exceptions for more information on how to troubleshoot this issue.

Checking if the listening port of the container internal process stopped working

Use netstat -tunlp to check if the port is still listening. From the results we can conclude: if the port stops

listening, health check probe requests are reset, as shown by the following:

20:15:17.890996 IP 172.16.2.1.38074 > 172.16.2.23.8888: Flags [S], seq 96880261,

win 14600, options [mss 1424,nop,nop,sackOK,nop,wscale 7], length 0

20:15:17.891021 IP 172.16.2.23.8888 > 172.16.2.1.38074: Flags [R.], seq 0, ack 96

880262, win 0, length 0

20:15:17.906744 IP 10.0.0.16.54132 > 172.16.2.23.8888: Flags [S], seq 1207014342,

win 14600, options [mss 1424,nop,nop,sackOK,nop,wscale 7], length 0

20:15:17.906766 IP 172.16.2.23.8888 > 10.0.0.16.54132: Flags [R.], seq 0, ack 120

7014343, win 0, length 0

As shown above, health check probe request exceptions lead to health check failure. Possible causes are:

If a node has multiple Pods that use hostNetwork to listen on the same host port, only one Pod will be able to

listen while the other Pods will fail to listen but do not exit. That means they will all be probed by health checks and all
Pods but one will fail the health check.

Checking if SYN backlog value is too low

Error description

The value of SYN backlog is the size of the SYN queue. If this value is set too low and many new connection requests
are received in a short time, the majority of the requests will fail. You can use netstat -s | grep

TCPBacklogDrop to get the number of failed requests.

Solution

Once you are sure the requests failed due to the value of SYN backlog, increase the value. The kernel parameter to
use is net.ipv4.tcp_max_syn_backlog .

https://intl.cloud.tencent.com/document/product/457/35754
https://intl.cloud.tencent.com/document/product/457/35757

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 127

This article describes the reasons that may cause a Pod to fail and enter the CrashLoopBackOff status and how to
troubleshoot the issues. Refer to the following instructions to troubleshoot and solve these issues.

Error Description

If a Pod’s status is CrashLoopBackOff , this means the Pod was launched but exited with exceptions. When this

happens, unless the Pod’s restartPolicy is Never , the Pod will be restarted and the RestartCounts of the

Pod will usually be greater than 0. In this case, first see Using Exit Code to Troubleshoot Pod Exiting with Exceptions
for information on using the exit code to narrow down the range of possible problems.

Possible Causes

Container process exited
System OOM

cgroup OOM
Node memory fragmentation
Health check failed

Troubleshooting

Making sure the containers are not killed

When a container exits, the exit code usually is between 0 and 128. The cause of the exception may be a bug or other
reason.
Refer to Container Exits for more information on how to further troubleshoot such problems.

Checking for system OOM

Analysis

If system OOM occurs, the exit code of the containers will be 137, indicating they exited due to the SIGKILL

signal. The kernel will display the following error message:

Out of memory: Kill process ...

Pod Remains in CrashLoopBackOff
Last updated：2022-04-18 16:18:24

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://intl.cloud.tencent.com/document/product/457/35758
https://intl.cloud.tencent.com/document/product/457/35767

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 127

This can occur when other non-Kubernetes processes deployed on the node use too much memory, or not enough
memory was assigned to kubelet using --kube-reserved and --system-reserved , leaving too little

headroom for other non-container processes.

Note：
The total memory usage of all Pods on a node will not exceed the value of cgroup defined in

 /sys/fs/cgroup/memory/kubepods (cgroup = capacity - "kube-reserved" -

"system-reserved"). In most cases, if memory is properly divided and the non-container processes (such

as kubelet, dockerd, kube-proxy and sshd) on the same node do not use up the reserved memory, system
OOM should not occur.

Solution

Adjust memory allocation according to your needs to avoid this issue.

Checking for cgroup OOM

Error description

If the Pod exited due to cgroup OOM, the value of Reason under Pod events will be OOMKilled , indicating the

actual usage of the container memory exceeded the limit. The kernel log will show the Memory cgroup out of

memory error message.

Solution

Adjust limit according to your needs.

Node memory fragmentation

If node memory is severely fragmented or lacks large page memory, requests for more memory will fail even though
there is plenty of memory left. For instructions on troubleshooting and solutions, refer to Memory Fragmentation.

Health check failures

For information on how to troubleshoot this issue, see Health Check Failures.

https://intl.cloud.tencent.com/document/product/457/35755
https://intl.cloud.tencent.com/document/product/457/35765

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 127

Problems

The Pod suddenly kept restarting, with abnormal traffic coming in.

Cause

1. The Pod drifted to another node for start, as its previous node was abnormal.
2. After recreation, the Pod started slowly due to a faulty dependent service of the basic image. As both

 ReadinessProbe and LivenessProbe were configured, it was highly likely that all health checks failed

more times than the upper limit set in LivenessProbe , thereby leading to a restart.

3. The Pod was configured with preStop for graceful termination, indicating to run preStop before restart.

The graceful termination took a long time, and during preStop execution, ReadinessProbe kept probing.

4. TCP probe was used. During graceful termination, the TCP probe succeeded (port listening existed before the

process was completely closed), but the process no longer processed new requests.
5. The result of ReadinessProbe but not LivenessProbe determines whether a Pod is ready. As

 ReadinessProbe was successful during preStop execution, the Pod became ready.

6. The Pod was ready but couldn't process requests, leading to business exceptions.

Summary

1. The Pod kept restarting due to a slow start and liveness probe. You need to prolong initialDelaySeconds

or StartProbe to protect containers that start slowly.

2. The TCP probe method cannot reflect the actual health status of the business. During graceful termination,
 ReadinessProbe succeeds and lets traffic in, which will not be handled by the business, leading to traffic

exceptions. We recommend you use a better probe method, where the business provides the HTTP liveness probe
to check the actual health status of the business.

Pod Kept Restarting with Traffic Exception
Last updated：2022-12-08 17:25:19

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#define-startup-probes

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 127

This article describes several scenarios that can cause containers to exit and provides instructions on how to
troubleshoot these issues.

Error Description

When a container exits (not killed by external sources), the exit code is usually between 0 and 128. 0 indicates a

normal exit and 1-127 indicates exits due to exceptions. For example, if an application detects that its launch
parameters or conditions are not met or the application panics but the exception is not handled, the application will
exit.
Refer to Using Exit Codes to Troubleshoot Pod Exceptions for more information on container exit code details.

Possible Causes

Failure to resolve DNS

Application configuration issues

Troubleshooting

Checking for DNS resolution failures

If the application relies on the cluster DNS service, unresolved DNS requests will cause the application to throw
exceptions and exit. For example, if the application needs to connect to the database when it launches and the
database uses a service name or external domain name that needs to be resolved by a DNS server. Unresolved DNS
requests lead to application exception and exit. Possible causes are as follows:

The cluster network is not functioning properly, and Pods cannot connect to the DNS service.

The DNS service not functioning properly and cannot respond to requests.
The service name or domain name is unresolvable.

Checking for application configuration issues

If the application is not configured properly, this can also result in the application exiting. Possible causes are as
follows:

Container Process Exits
Last updated：2020-05-25 09:43:07

https://intl.cloud.tencent.com/document/product/457/35758

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 127

The configuration file is not correctly formatted. The application fails to resolve the configuration when launching,
which leads to exceptions and exit.
The configuration values do not meet requirements. For example, a missing required field value will cause the

configuration to fail verification, which leads to application exceptions and exit.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 127

Tencent Cloud OPS team is not allowed to log in to your cluster for troubleshooting without your permission. If you
need Tencent Cloud OPS team to assist in troubleshooting, please refer to the following steps to grant Tencent Cloud
OPS team related permissions. You can cancel the permissions authorized to Tencent Cloud OPS team at any time.

Grant permissions to Tencent Cloud though console

1. Log in to the TKE console.
2. On Cluster Management page, select the cluster where Tencent Cloud assistance is needed.
3. On the cluster details page, select Authorization Management > Authorize Tencent Cloud OPS team.
4. When configuring the cluster RBAC, select the operation permissions that you want to authorize to Tencent Cloud

OPS team.

5. After the configuration is completed, you can check the progress in My Tickets.

Note：
Tencent Cloud OPS team is not allowed to log in to your cluster for troubleshooting without your permission.
If you need Tencent Cloud OPS team to assist in troubleshooting, you can grant Tencent Cloud OPS team
related permissions. You can also cancel the permissions authorized to Tencent Cloud OPS team at any

time.
You can withdraw permissions authorized to Tencent Cloud OPS team by deleting relevant resources
(ClusterRoleBinding/tkeopsaccount-ClusterRole, ServiceAccount/tkeopsaccount, and
Sercet/tkeopsaccount-token-xxxx).

Authorizing Tencent Cloud OPS Team for
Troubleshooting
Last updated：2023-05-22 10:15:09

https://console.intl.cloud.tencent.com/tke2/overview
https://console.intl.cloud.tencent.com/workorder

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 127

Grant permissions to Tencent Cloud OPS team through Kubernetes
API

You can grant permissions to Tencent Cloud OPS team by creating the following Kubernetes resources.

ServiceAccount: authorize Tencent Cloud OPS team to access cluster credential

kind: ServiceAccount

apiVersion: v1

metadata:

name: tkeopsaccount

namespace: kube-system

labels:

cloud.tencent.com/tke-ops-account: tkeops

ClusterRoleBinding/RoleBing: rules on granting Tencent Cloud OPS team permissions

Note：

1. Name and label should be created according to the following rule.
2. roleRef can be replaced with the permissions you want to grant to Tencent Cloud OPS team.

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

annotations:

cloud.tencent.com/tke-ops-account: tkeops

labels:

cloud.tencent.com/tke-ops-account: tkeops

name: tkeopsaccount-ClusterRole

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: tke:admin

subjects:

- kind: ServiceAccount

name: tkeopsaccount

namespace: kube-system

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 127

(Optional) ClusterRole/Role: permissions authorized to Tencent Cloud OPS team

If there is relevant ClusterRole/Role in the cluster, you can use ClusterRoleBinding/RoleBinding to associate. Policies
will be created automatically if you authorize through console.

Admin permissions

Read-only

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRole

metadata:

labels:

cloud.tencent.com/tke-rbac-generated: "true"

name: tke:admin

rules:

- apiGroups:

- '*'

resources:

- '*'

verbs:

- '*'

- nonResourceURLs:

- '*'

verbs:

- '*'

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 127

Symptom

When you are using NGINX Ingress and reducing the number of NGINX Ingress Controller replicas, the problem of
"Connection Refused" may occur. In this case, RSs are unbound from CLB instances in batches, and TCP/UDP
listeners stop forwarding existing connections.

Possible Causes

View the source code of NGINX Ingress and you can see that the workloads of NGINX Ingress Controller have no
graceful shutdown capabilities. Therefore, a Pod directly exits after receiving the kill signal.

Solutions

If you use TKE's graceful service shutdown capabilities, when a Pod needs to be deleted, it can process the received
requests, and inbound traffic is turned off while outbound traffic is still on. Outbound traffic will not be turned off until all

Engel Ingres appears in Connechtin
Reverside
Last updated：2022-09-26 16:54:29

https://github.com/kubernetes/ingress-nginx/blob/main/cmd/waitshutdown/main.go
https://intl.cloud.tencent.com/document/product/457/42070

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 127

existing requests are processed and the Pod is deleted. The Pod is deleted after the graceful shutdown period ends.

Troubleshooting

Note：

This is only effective in the direct access mode. Check whether your cluster supports direct access.

Step 1

Use an annotation to indicate the use of graceful shutdown in the ****-ingress-nginx-controller Service

in the kube-system namespace.

The following is an example of using an annotation to indicate the use of graceful shutdown. For more information on
Service annotations, see Service Annotation.

kind: Service

apiVersion: v1

metadata:

annotations:

service.cloud.tencent.com/direct-access: "true" ## Enable CLB-to-Pod direct acces

s

service.cloud.tencent.com/enable-grace-shutdown: "true" # Indicate the use of gra

ceful shutdown

name: my-service

spec:

selector:

app: MyApp

https://intl.cloud.tencent.com/document/product/457/36837
https://intl.cloud.tencent.com/document/product/457/39142

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 127

Step 2

Add a sleep period before the wait-shutdown of the ****-ingress-nginx-controller Deployment in

the kube-system namespace.

lifecycle:

preStop:

exec:

command:

- sleep # Add a sleep period

- 30s # Add a sleep period

- /wait-shutdown # Add a sleep period before this line

For more information, see Graceful Service Shutdown. If the problem persists, submit a ticket for assistance.

https://intl.cloud.tencent.com/document/product/457/42070
https://console.intl.cloud.tencent.com/workorder/category

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 127

Background

In order to shorten the linkage and improve the performance when the business in a cluster accesses a Service of the
LoadBalancer type through Tencent Cloud CLB, the community edition of Kube-Proxy binds the CLB IP to the local
dummy ENI in IPVS mode, so that the traffic short-circuits on the node instead of going through CLB and thus is

directly forwarded to the endpoint locally. However, this optimization conflicts with the health check mechanism of
CLB. The following makes a detailed analysis and describes corresponding solutions.

Similarly, when you use TKE, CLB loopback may occur, causing service inaccessibility or several seconds of latency
during access to an Ingress. This document describes the symptoms, causes, and solutions of this problem.

Issue Description

CLB loopback may cause the following symptoms:

No matter whether you are in iptables or IPVS mode, when you access an Ingress on the cluster private network, a
4-second latency or inaccessibility occurs.
In IPVS mode, when you access a LoadBalancer service on the cluster private network within your cluster, it is
completely inaccessible, or the connection is unstable.

Workaround

Avoiding layer-4 loopback

Note：
Avoiding the layer-4 loopback problem requires CLB to support non-VIP health check source IP. This feature is

currently in beta test. To try it our, submit a ticket for assistance.

To solve the loopback problem that may be encountered when using the Service, follow the steps below:

1. Check whether kube-proxy is on the latest version, and if not, upgrade it as follows:

CLB Loopback
Last updated：2022-04-06 10:29:27

https://intl.cloud.tencent.com/document/product/214/44863
https://console.intl.cloud.tencent.com/workorder/category

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 127

i. To solve this problem, kube-proxy needs to support binding the LB address to the IPVS ENI. You can find
version numbers that support this capability in TKE Kubernetes Revision Version History, such as v1.20.6-
tke.12, v1.18.4-tke.20, v1.16.3-tke.25, v1.14.3-tke.24, and v1.12.4-tke.30.

ii. Determine the version of the cluster: you can view the version number of the current cluster on the Basic
Information page in the cluster as shown below:

iii. Find the DaemonSet named kube-proxy under the kube-system namespace, update the version number of its
image, and select a version that supports this capability or a later version. For example, for a cluster on v1.18,
you need to select an image version later than v1.18.4-tke.20.

2. Annotate all Services:

 service.cloud.tencent.com/prevent-loopback: "true"

Effect:

kube-proxy will bind the CLB VIP to the local system based on this information to solve the loopback problem.

https://intl.cloud.tencent.com/document/product/457/9315

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 127

service-controller will call the CLB API and change its health detection IP to an IP in the 100.64 IP range to solve
the health check problem.

Avoiding layer-7 loopback

To solve the loopback problem that may be encountered when using Ingress, follow the steps below:

1. Submit a ticket to apply for the CLB layer-7 SNAT and keepalive capabilities.

Note：
These capabilities will enable persistent connection. Then, persistent connections will be used between CLB
and real server, and CLB will no longer pass through the source IP, which can be obtained from XFF. To
ensure normal forwarding, enable the "Allow by default" feature in the CLB security group or allow

 100.127.0.0/16 in the CVM security group. For more information, see Configuring HTTP Listener.

2. Use the capabilities of TkeServiceConfig to enhance the configuration capabilities of the Ingress. For existing
Ingresses, you need to add an annotation: ingress.cloud.tencent.com/tke-service-config-auto:

"true" . For more information, see Ingress Annotation.

Purpose: this automatically generates the corresponding TkeServiceConfig for the Ingress and provides additional
configuration for the Ingress.

Effect: the Ingress will generate a resource named <ingressname>-auto-ingress-config of the

TkeServiceConfig type.

3. Add a field in the generated TkeServiceConfig named <ingressname>-auto-ingress-config . The field

name is spec.loadBalancer.l7Listeners[].keepaliveEnable , and the field value is 1. Note that this

field needs to be added for each port as shown below:

https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/214/32515
https://intl.cloud.tencent.com/document/product/457/40675

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 127

For more information, see Using TKEServiceConfig to Configure CLBs.

Causes

The root cause is that when CLB forwards a request to the real server, the packet source and target IPs are both on

the same node, but Linux will ignore the received packets whose source IP is the local IP by default, causing the data

https://intl.cloud.tencent.com/document/product/457/37015

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 127

packet to be looped within the CVM instance as shown below:

Analysis of layer-7 loopback problem

If you use a TKE CLB Ingress, a CLB instance and layer-7 listener rules (HTTP/HTTPS) for ports 80 and 443 will be

created for each Ingress resource, and the same NodePort of each corresponding TKE node will be bound to each
Ingress location as the real server (a location corresponds to a Service, and each Service uses the same NodePort of
each node to expose the traffic). CLB forwards the request to the corresponding real server (i.e., NodePort) according
to the location matched by the request, and the traffic will be forwarded to the corresponding backend Pod after
passing the NodePort and the Kubernetes iptables or IPVS. When a Pod in the cluster accesses the private network

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 127

Ingress in the cluster, CLB will forward the request to the corresponding NodePort of a node in the cluster.

As shown above, when the node whose traffic is forwarded is the node of the client that sends the request:

1. A Pod in the cluster accesses CLB, and CLB forwards the request to the corresponding NodePort of any node.
2. When the packet reaches the NodePort, the target IP is the node IP, and the source IP is the actual IP of the client

Pod. As CLB does not perform SNAT, it will pass through the actual source IP.

3. As the source and target IPs are both on the same server, loopback will occur, and CLB cannot receive response
from the real server.

The most frequent fault of access to an Ingress in the cluster is a latency of several seconds. It is because if a layer-7
CLB instance's request to a real server times out (in about 4 seconds), the instance will try the next real server.
Therefore, if you set a long timeout period on the client, loopback may occur with a symptom of slow request response

with a several-second latency. If your cluster has only one node, CLB has no real server for retry, and the symptom will
be inaccessibility.

Analysis of layer-4 loopback problem

If you use a LoadBalancer-type private network Service to expose your service, a private network CLB instance and
the corresponding layer-4 listener (TCP/UDP) will be created. If a Pod in your cluster accesses the EXTERNAL-IP

(i.e., CLB IP) of the LoadBalancer-type Service, the native Kubernetes will not actually access the LB but will directly

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 127

forward the traffic to the backend Pod through iptables or IPVS without passing CLB as shown below:

Therefore, the native Kubernetes logic has no loopback errors. However, in IPVS mode of TKE, the access request

packet of a client to a CLB IP will be actually sent to CLB. Loopback will occur when a Pod accesses the CLB IP of a
LoadBalancer-type Service in the same cluster in IPVS mode, which is similar to the aforementioned private network
Ingress loopback error as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 127

The differences lie in that when loopback occurs, the layer-4 CLB instance will not try the next real server, and the
symptom is usually unstable connection. If the cluster has only one node, complete inaccessibility will be caused.

Why doesn't the IPVS mode of TKE use the similar forwarding logic of the native Kubernetes (i.e., the

traffic is directly forwarded to the backend Pod without passing the LB)?

In the legacy TKE IPVS mode, the cluster uses a private network LoadBalancer Service to expose your service, and
the health checks performed by the private network CLB on the backend NodePort will all fail. Below are the causes:

IPVS mainly runs on the INPUT chain, so the forwarded VIPs (Service cluster IP and EXTERNAL-IP) need to be

used as the local server IP to make the packet enter the INPUT chain and get processed by IPVS.

kube-proxy binds both the cluster IP and EXTERNAL-IP to a dummy ENI named kube-ipvs0 , which is only

used to bind the VIPs (the kernel automatically generates the local route for it) instead of receiving traffic.
The source IP of the health check packets in private network CLB sent to the NodePort is the CLB VIP, and the
target IP is the node IP. When a health check packet arrives at the node, the node will discover that the source IP is
the local server IP (as it is bound to kube-ipvs0) and discard it. Therefore, CLB health check packets can

never get the response, that is, all checks will fail. Although CLB has the all-dead-all-alive logic (failure of all checks

are deemed as that all requests can be forwarded), this problem still equals that the check is of no use and will
cause some exceptions in certain cases.

To solve the aforementioned problems, the solution of TKE is not to bind EXTERNAL-IP to kube-ipvs0 in

IPVS mode; that is, packets of a cluster Pod's access requests to the CLB IP will not enter the INPUT chain; instead,
they will be directly sent by the node ENI to CLB actually. In this way, the health check packets will not be discarded

as packets with the local server IP when entering the node, and the health check response packets will not enter in the
INPUT chain and then get looped within it.

Although this method fixes the problem of CLB health check failure, it also makes cluster Pods' access request
packets to CLB actually arrive at CLB. As the service in the cluster is accessed, the packets will be forwarded back to
a cluster node, which also may cause loopback.

Note：
The problem has been submitted to the community, but there is still no solution.

FAQs

Why public network CLB does not have loopback?

There is no loopback issue if you use a public network Ingress or public network LoadBalancer Service. This is
because the source IP of the packets received by public network CLB is the public network egress IP of a CVM

https://github.com/kubernetes/kubernetes/issues/79783

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 127

instance, but the CVM instance cannot sense its own public network IP internally. When a packet is forwarded to the
CVM instance, the public network source IP will not be considered as the local server IP, so there will not be loopback.

Does CLB have any mechanism to avoid loopback?

Yes. CLB will determine the source IP and will not consider forwarding the request to the real server with the same IP;

instead, it will forward the request to another real server. However, the source Pod IP is different from the real server
IP, and CLB does not know whether the two IPs are on the same node, so the request may still be forwarded and
cause loopback.

Can anti-affinity deployment of the client and server avoid loopback?

If you deploy a client and a server through anti-affinity so that they are not on the same node, can CLB loopback be
avoided?

By default, LB is bound to a real server through a node NodePort, and a request may be forwarded to NodePort of any
node. In this case, no matter whether the client and server are on the same node, loopback may occur. However, if
 externalTrafficPolicy: Local is set for the Service, LB will forward them to only the node with a Server

Pod. If the client and server are scheduled to different nodes through anti-affinity, no loopback will occur. Therefore,
anti-affinity and externalTrafficPolicy: Local can avoid the loopback issue (including private network

Ingress and private network LoadBalancer Service).

Does the direct LB-Pod connection of VPC-CNI have the CLB loopback issue?

TKE generally uses the Global Router network mode, and another mode is VPC-CNI (elastic network interface).
Currently, direct LB-Pod connection supports only the Pods of VPC-CNI; that is, LB is directly bound to the backend

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 127

Pod rather than NodePort as the real server as shown below:

In this case, requests can bypass the NodePort instead of possibly being forwarded to any node like before. However,

if the client and server are on the same node, loopback may still occur, which can be avoided through anti-affinity.

Are there any suggestions?

The anti-affinity and externalTrafficPolicy: Local methods are not very graceful. Generally, you should

avoid accessing the CLB instance in the cluster for a service in the cluster, as the service is already in the cluster, and
forwarding through CLB not only lengthens the network linkage but also may cause loopback.

When you access a service in the cluster, use the service name such as server.prod.svc.cluster.local

as much as possible. In this way, requests will not pass CLB, and loopback will not be caused.

If your business has a coupled domain name and cannot use a Service name, you can use the rewrite plugin of
coreDNS to point the domain name to a Service in the cluster. Below is the sample coreDNS configuration:

apiVersion: v1

kind: ConfigMap

metadata:

name: coredns

namespace: kube-system

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 127

data:

Corefile: |2-

.:53 {

rewrite name roc.oa.com server.prod.svc.cluster.local

...

If multiple Services share the same domain name, you can deploy an Ingress Controller (such as nginx-ingress) by
yourself:

1. Use the aforementioned rewrite method to point the domain name to the self-built Ingress Controller.
2. Match the self-built Ingress with a Service according to the request location (domain name + path) and forward the

request to the backend Pod. The entire linkage will not pass CLB, so loopback can be avoided.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 127

Issue

Error E6009 was reported when I created a CLB Ingress.

Possible Causes

ingress-nginx (Nginx Ingress community edition) versions earlier than v1.0.0 don't support validating webhook
callbacks for resources of the networking.k8s.io/v1 type. You need to remove v1 resource validation from

validation CRDs.

Solutions

You can solve this problem in the following ways:

Option 1. Cancel v1 resource validation

Change the apiVersions field in webhooks.rules of resources of the

 validatingwebhookconfigurations type to v1beta1 .

1. Log in to the TKE console and select the region of your cluster.
2. On the Cluster Management page, click the name of the target cluster to enter its details page.
3. Select Kubernetes resource manager on the left sidebar and search for

 validatingwebhookconfigurations on the Resource Type page.

CLB Ingress Creation Error
Last updated：2022-10-17 14:52:53

https://console.intl.cloud.tencent.com/tke2/cluster?rid=4

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 127

4. Select validatingwebhookconfigurations from the search results and click Edit YAML on the right of

the resource object list to check whether the apiVersions field in webhooks.rules of each resource

object is v1beta1 .

5. Upgrade the add-on. The above steps solve the resource validation problem of an existing Nginx Ingress instance.
To avoid similar problems with new instances, you need to upgrade the Nginx Ingress add-on as follows:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 127

i. On the cluster details page, select Add-On Management on the left sidebar.
ii. Click Upgrade on the right of Nginx Ingress to upgrade it to v1.1.0.

Option 2. Cancel resource validation

1. Log in to the TKE console and select the region of your cluster.

2. On the Cluster Management page, click the name of the target cluster to enter its details page.
3. Select Kubernetes resource manager on the left sidebar and search for

 validatingwebhookconfigurations on the Resource Type page.

4. Select validatingwebhookconfigurations from the search results and click Delete on the right of the

resource object list.

5. Upgrade the add-on. The above steps solve the resource validation problem of an existing Nginx Ingress instance.
To avoid similar problems with new instances, you need to upgrade the Nginx Ingress add-on as follows:

i. On the cluster details page, select Add-On Management on the left sidebar.
ii. Click Upgrade on the right of Nginx Ingress to upgrade it to v1.1.0.

https://console.intl.cloud.tencent.com/tke2/cluster?rid=4

