
Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 53

Cloud GPU Service

AI Optimization

Product Documentation

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 53

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 53

Contents

AI Optimization
Training Acceleration Engine TACO Train

Deployment and Practices

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 53

AI Optimization
Training Acceleration Engine TACO Train
Deployment and Practices
Last updated：2024-01-11 17:11:13

This document describes how to deploy and use TACO-Training on GPU instances.

Notes

Currently, TACO-Training is supported only by Cloud GPU Service.
Currently, the three acceleration components of TACO-Training have been integrated into the same Docker image,

which can be pulled at the following address:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 53

ccr.ccs.tencentyun.com/qcloud/taco-training:cu112-cudnn81-py3-0.3.2

Directions

Preparing the instance environment

1. Create at least two instances meeting the following requirements as instructed in Purchasing NVIDIA GPU

Instance:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 53

Instance: We recommend you select the Computing GT4 GT4.41XLARGE948 8-card model.
Image: Select CentOS 7.8 or Ubuntu 18.04 or later and select Automatically install GPU driver on the backend
to use the automatic installation feature to install the GPU driver.

Automatic installation of CUDA and cuDNN is not required for this deployment, and you can choose as needed.

System disk: We recommend you configure a system disk of 100 GB or above in size to store the Docker image and
intermediate state files generated during training.

2. Install Docker as instructed in the corresponding document based on the operating system type of your instance:

OS Description

CentOS For detailed directions, see Install Docker Engine on CentOS.

Ubuntu For detailed directions, see Install Docker Engine on Ubuntu.

3. Install nvidia-docker as instructed in Docker.

Using TTF

Installation

1. Run the following command as the root user and install TTF through a Docker image:

https://intl.cloud.tencent.com/document/product/560/19701
https://docs.docker.com/engine/install/centos/
https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 53

docker pull ccr.ccs.tencentyun.com/qcloud/taco-training:cu112-cudnn81-py3-0.3.2

2. Run the following command to start Docker:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 53

docker run -it --rm --gpus all --shm-size=32g --ulimit memlock=-1 --ulimit stack=67

3. Run the following command to view the TTF version:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 53

pip show ttensorflow

Model adaptation

Dynamic embedding

Below is the code for the native static embedding of TF and dynamic embedding of TTF:

Native static embedding of TF
Dynamic embedding of TTF

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 53

deep_dynamic_variables = tf.get_variable(

 name="deep_dynamic_embeddings",

 initializer=tf.compat.v1.random_normal_initializer(0, 0.005),

 shape=[100000000, self.embedding_size])

deep_sparse_weights = tf.nn.embedding_lookup(

 params=deep_dynamic_variables,

 ids=ft_sparse_val,

 name="deep_sparse_weights")

deep_embedding = tf.gather(deep_sparse_weights, ft_sparse_idx)

deep_embedding = tf.reshape(

 deep_embedding,

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 53

 shape=[self.batch_size, self.feature_num * self.embedding_size])

deep_dynamic_variables = tf.dynamic_embedding.get_variable(

 name="deep_dynamic_embeddings",

 initializer=tf.compat.v1.random_normal_initializer(0, 0.005),

 dim=self.embedding_size,

 devices=["/{}:0".format(FLAGS.device)],

 init_size=100000000)

deep_sparse_weights = tf.dynamic_embedding.embedding_lookup(

 params=deep_dynamic_variables,

 ids=ft_sparse_val,

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 53

 name="deep_sparse_weights")

deep_embedding = tf.gather(deep_sparse_weights, ft_sparse_idx)

deep_embedding = tf.reshape(

 deep_embedding,

 shape=[self.batch_size, self.feature_num * self.embedding_size])

By comparing the code, you can see that TTF mainly modifies the following two parts:

Embedding uses tf.dynamic_embedding.get_variable . For more information, see

tfra.dynamic_embedding.get_variable.
Lookup uses tf.dynamic_embedding.embedding_lookup . For more information, see

tfra.dynamic_embedding.embedding_lookup.
For the detailed API documentation, see Module: tfra.dynamic_embedding.

Mixed precision

Mixed precision can be implemented by rewriting the code of the optimizer or modifying environment variables:
Through code modification:

https://github.com/tensorflow/recommenders-addons/blob/master/docs/api_docs/tfra/dynamic_embedding/get_variable.md
https://github.com/tensorflow/recommenders-addons/blob/master/docs/api_docs/tfra/dynamic_embedding/embedding_lookup.md
https://github.com/tensorflow/recommenders-addons/blob/master/docs/api_docs/tfra/dynamic_embedding.md

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 53

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

Through environment variable modification:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 53

export TF_ENABLE_AUTO_MIXED_PRECISION=1

The loss change curve of resnet50 training with the ImageNet dataset by TTF at mixed precisions is as follows:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 53

XLA

XLA can be configured through the code or environment variables:
Through code modification:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 53

config = tf.ConfigProto()

config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

sess = tf.Session(config=config)

Through environment variable modification:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 53

TF_XLA_FLAGS=--tf_xla_auto_jit=1

Demo

Before running the demo:

1. Run the following command to enter the demo directory:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 53

cd /opt/dynamic-embedding-demo

2. Run the following command to download the dataset:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 53

bash download_dataset.sh

You can get started with TTF quick by using the following demo:

benchmark
This demo is used to compare and test the performance of the dynamic embedding and the native static embedding:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 53

Enter the `benchmark` directory

cd benchmark

Run the demo according to the default configuration

python train.py

You need to delete the local dataset cache files every time you modify `batch siz

rm -f .index .data-00000-of-00001

python train.py --batch_size=16384

Use the static embedding and dynamic embedding to train the DeepFM model respecti

python train.py --batch_size=16384 --is_dynamic=False

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 53

python train.py --batch_size=16384 --is_dynamic=True

Adjust the number of fully connected layers of the deep part

python train.py --batch_size=16384 --dnn_layer_num=12

ps
This demo shows how to use the dynamic embedding in ps mode.

cd ps && bash start.sh

Estimator

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 53

This demo shows how to use the dynamic embedding in estimator mode.

cd estimator && bash start.sh

Using LightCC

Installation

1. Run the following command as the root user and install LightCC through a Docker image:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 53

docker pull ccr.ccs.tencentyun.com/qcloud/taco-training:cu112-cudnn81-py3-0.3.2

2. Run the following command to start Docker:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 53

docker run --network host -it --rm --gpus all --privileged --shm-size=32g --ulimit

3. Run the following command to view the LightCC version:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 53

pip show light-horovod

Note:

When the kernel protocol stack is used for NCCL network communication, or if the runtime environment of the HARP
protocol stack is not configured, you need to move the /usr/lib/x86_64-linux-gnu/libnccl-net.so file

in the image to a path other than the system lib directory, such as the /root directory, as the system will

check whether the HARP configuration file exists in a certain directory in the lib directory during init and will

report an error if the file doesn't exist.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 53

Environment variable configuration

LightCC environment variables are as detailed below, which can be configured as needed:

Environment Variable Default Value Description

LIGHT_2D_ALLREDUCE 0 Whether to use the 2D-Allreduce algorithm

LIGHT_INTRA_SIZE 8 Number of GPUs in a 2D-Allreduce group

LIGHT_HIERARCHICAL_THRESHOLD 1073741824
Threshold for 2D-Allreduce in bytes. Only data of
a size less than this threshold can use 2D-
Allreduce.

LIGHT_TOPK_ALLREDUCE 0 Whether to use TOPK to compress the
communication data

LIGHT_TOPK_RATIO 0.01 Compression ratio of TOPK

LIGHT_TOPK_THRESHOLD 1048576

Threshold for TOPK compression in bytes. Only
communication data of a size greater than or
equal to this threshold can be compressed
through TOPK.

LIGHT_TOPK_FP16 0 Whether to convert the values of the compressed
communication data to FP16

Demo

1. After creating two GPU instances, install LightCC and configure environment variables in the above steps.
2. Run the following commands in the container to configure passwordless SSH login for the instances:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 53

Allow the root user to use the SSH service and start the service (default port: 2

sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_co

service ssh start && netstat -tulpn

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 53

Change the default SSH port in the container to 2222 to avoid conflicts with the

sed -i 's/#Port 22/Port 2222/' /etc/ssh/sshd_config

service ssh restart && netstat -tulpn

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 53

Set `root passwd`

passwd root

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 53

Generate an SSH key

ssh-keygen

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 53

Configure SSH to use port 2222 by default

Create `~/.ssh/config`, add the following content, and save and exit the file:

Note: The IP used here is the IP displayed in `ifconfig eth0` of the two instance

Host gpu1

 hostname 10.0.2.8

 port 2222

Host gpu2

 hostname 10.0.2.9

 port 2222

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 53

Configure mutual passwordless login for the instances and local passwordless logi

ssh-copy-id gpu1

ssh-copy-id gpu2

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 53

Test whether passwordless login is configured successfully

ssh gpu1

ssh gpu2

3. Run the following command to download the benchmark test script of Horovod:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 53

wget https://raw.githubusercontent.com/horovod/horovod/master/examples/tensorflow/t

4. Run the following command to start multi-server training benchmark based on ResNet-50:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 53

/usr/local/openmpi/bin/mpirun -np 16 -H gpu1:8,gpu2:8 --allow-run-as-root -bind-to

Here, the command parameters are used for an 8-card model. To configure another model, modify the -np and -

H parameters. Other parameters are as detailed below:

 NCCL_ALGO=RING : Select the ring algorithm as the communication algorithm in NCCL.

 NCCL_DEBUG=INFO : Enable debugging output in NCCL.

 -mca btl_tcp_if_include eth0 : Select the eth0 device as network device for MPI multi-server

communication. As some ENIs cannot communicate, you need to specify the ENI if there are multiple ones; otherwise,

an error will occur if MPI chooses an ENI that cannot communicate.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 53

The reference throughput rates of LightCC multi-server training benchmark in two GT4.41XLARGE948 instances are
as detailed below:

Model: CVM GT4.41XLARGE948 (A100 * 8 + 50G VPC)
GPU driver: 460.27.04
Container: ccr.ccs.tencentyun.com/qcloud/taco-training:cu112-cudnn81-py3-0.3.2

network

ResNet50 Throughput(images/sec)

horovod 0.21.3 lightcc 3.0.0

NCCL + HRAP 8970.7 10229.9

NCCL + kernel socket 5421.9 7183.5

Using HARP

Preparing the instance environment

1. Run the following command as the root user to modify cmdline of the kernel and configure a 50 GB huge page

memory.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 53

sed -i '/GRUB_CMDLINE_LINUX/ s/"$/ default_hugepagesz=1GB hugepagesz=1GB hugepages=

Note:

You can configure hugepages=50 for an 8-card instance or hugepages= (number of GPU cards * 5 +

10) for other models.

2. Run the following command based on your operating system version to make the configuration take effect and
restart the instance:
Ubuntu

CentOS or TencentOS

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 53

sudo update-grub2 && sudo reboot

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 53

sudo grub2-mkconfig -o /boot/grub2/grub.cfg && sudo reboot

3. Bind ENIs as follows. The number of ENIs should be the same as the number of GPU cards.

3.1 Log in to the CVM console, select More > IP/ENI > Bind ENI on the right of the target instance.
3.2 In the Bind ENI pop-up window, select created ENIs or create new ones and bind them as needed.
3.3 Click OK.
4. Run the following command to initialize the configuration information.

https://console.intl.cloud.tencent.com/cvm/index

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 53

curl -s -L http://mirrors.tencent.com/install/GPU/taco/harp_setup.sh | bash

If the input result contains "Set up HARP successfully", and the ztcp*.conf configuration file is generated in the

 /usr/local/tfabric/tools/config directory, the configuration has been completed successfully.

Installation

1. Run the following command as the root user and install HARP through a Docker image:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 53

docker pull ccr.ccs.tencentyun.com/qcloud/taco-training:cu112-cudnn81-py3-0.3.2

2. Run the following command to start Docker:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 53

docker run -it --rm --gpus all --privileged --net=host -v /sys:/sys -v /dev/hugepag

Demo

1. After creating two GPU instances, configure the instance environment and install HARP in the above steps.

2. Run the following commands in Docker to configure passwordless SSH login for the instances:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 53

Allow the root user to use the SSH service and start the service (default port: 2

sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_co

service ssh start && netstat -tulpn

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 53

Change the default SSH port in the container to 2222 to avoid conflicts with the

sed -i 's/#Port 22/Port 2222/' /etc/ssh/sshd_config

service ssh restart && netstat -tulpn

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 53

Set `root passwd`

passwd root

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 53

Generate an SSH key

ssh-keygen

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 53

Configure SSH to use port 2222 by default

Create `~/.ssh/config`, add the following content, and save and exit the file:

Note: The IP used here is the IP displayed in `ifconfig eth0` of the two instance

Host gpu1

 hostname 10.0.2.8

 port 2222

Host gpu2

 hostname 10.0.2.9

 port 2222

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 53

Configure mutual passwordless login for the instances and local passwordless logi

ssh-copy-id gpu1

ssh-copy-id gpu2

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 53

Test whether passwordless login is configured successfully

ssh gpu1

ssh gpu2

3. Run the following command to download the benchmark script of Horovod:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 53

wget https://raw.githubusercontent.com/horovod/horovod/master/examples/tensorflow/t

4. Run the following command to start multi-server training benchmark based on ResNet-50:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 53

/usr/local/openmpi/bin/mpirun -np 16 -H gpu1:8,gpu2:8 --allow-run-as-root -bind-to

Here, the command parameters are used for an 8-card model. To configure another model, modify the -np and -

H parameters. Other parameters are as detailed below:

 NCCL_ALGO=RING : Select the ring algorithm as the communication algorithm in NCCL.

 NCCL_DEBUG=INFO : Enable debugging output in NCCL. After it is enabled, HARP will output the following content:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 53

 -mca btl_tcp_if_include eth0 : Select the eth0 device as network device for MPI multi-server

communication. As some ENIs cannot communicate, you need to specify the ENI if there are multiple ones; otherwise,

an error will occur if MPI chooses an ENI that cannot communicate.
After NCCL initialization, you can view the network output:

5. HARP is integrated to NCCL as a plugin and is enabled automatically without any configuration required. To disable

HARP, run the following command in the container:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 53

mv /usr/lib/x86_64-linux-gnu/libnccl-net.so /usr/lib/x86_64-linux-gnu/libnccl-net.s

