
Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 73

Serverless Cloud Function

Developer Tools

Product Documentation

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 73

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 73

Contents

Developer Tools
Serverless Web IDE
Serverless Cloud Framework

Overview
Installation
Permission Management
Function Operations
Development Debugging
Project Application
List of Supported Commands
Account and Permission Configuration
Creating and Deploying Function

Calling SDK Across Functions
Node.js SDK
SDK for Python

Third-Party Tools
Malagu Framework

Accessing Database
Getting Started
Overview

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 73

Overview

Serverless Web IDE is an IDE for functions launched by Tencent Cloud Serverless in partnership with CODING based
on CloudStudio, an integrated development environment for browsers. It delivers an on-cloud development experience
comparable to native IDEs.

Serverless Web IDE supports:

Complete function development, deployment, and testing capabilities.
Terminal capabilities. Common development tools such as pip and npm and programming language development
environments already supported by SCF are pre-configured in it.
The basic capabilities of a complete IDE, such as smart prompt and code autocomplete.

User-defined IDE configuration, which ensures a consistent IDE user experience for the development of different
functions.

Note：

We will keep the personalized configuration and code status in Serverless Web IDE for you. To ensure that
function modifications will take effect, deploy the modifications to the cloud in a timely manner.
We recommend you use the latest version of Google Chrome to get the best IDE user experience.

Directions

1. Log in to the SCF console and select Functions on the left sidebar.
2. In the function list, click a function name to enter the function details page.
3. On the Function Management page, select Function Code > Online editing to view and edit the function.

Note：
Online editing is not supported for Java and Go runtime environments currently. When they are used, only

developed, compiled, and packaged ZIP packages or binary files can be uploaded. The SCF environment does

Developer Tools
Serverless Web IDE
Last updated：2023-02-01 17:37:37

https://console.intl.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 73

not provide Java and Go compiling capability. For more information, see Go Deployment Methods and Java
Deployment Methods.

Overview

This document describes the Serverless Web IDE tool in detail as shown below in order from left to right:

1. Resource Manager
2. File editing section

3. Function operation section
4. Command line terminal

Function Operations

In Serverless Web IDE, you can edit, deploy, and test function code. Common operations such as function testing and
deployment and testing template selection are configured in the operation section in the top-right corner of the IDE as

https://intl.cloud.tencent.com/document/product/583/46776
https://intl.cloud.tencent.com/document/product/583/46769

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 73

shown below:

Function deployment

Serverless Web IDE enables you to deploy a function either manually or automatically and to install dependencies
online.

Deployment mode:
Manual deployment: In manual deployment mode, you can trigger function deployment to the cloud by clicking

Deploy in the top-right corner of the IDE.
Automatic deployment: In automatic deployment mode, you can trigger function deployment to the cloud by
saving the function (pressing Ctrl + S or Command + S).

Online dependency installation: Currently, this feature is supported only for the Node.js runtime environment.
After online dependency installation is enabled, dependencies will be installed automatically according to the
configuration in package.json when the function is deployed. For more information, see Online Dependency

Installation.

Note：

The root directory of the function is /src , and the deployment operation will package and upload the files

in the /src directory by default. Place the files that you want to deploy to the cloud in the /src

directory.

In automatic deployment mode, you can trigger function deployment to the cloud by saving the function.
Therefore, we recommend you not enable automatic deployment for functions with traffic.

You can switch between manual and automatic deployment and enable/disable online dependency installation by
selecting from the drop-down list in the operation section in the top-right corner of the IDE. Automatic deployment:

https://intl.cloud.tencent.com/document/product/583/38105

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 73

Disabled indicates the manual deployment mode.

Function testing

You can click Test in the operation section in the top-right corner of the IDE to trigger the function and view the result
in the output.

Select a test template: Click Test templates in the operation section of the IDE to select a function testing
triggering event.
Create a test template: If existing test templates cannot meet your testing requirements, you can select Create
test template from the test template drop-down list to customize a test event, which will be stored in JSON format
in the scf_test_event folder in the /src root directory of the function and deployed to the cloud with the function

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 73

as shown below:

Viewing logs

You can view the function testing result in the output, including the returned data Response , the log Output ,

and the function execution summary Summary .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 73

More Operations

In addition to operations such as function deployment and testing as well as testing template adding, the list expanded

by right-clicking the function file in the Resource Manager contains all operations related to the function, including:

Generating serverless.yml : You can write the current configuration of the function into the

 serverless.yml configuration file and use the Serverless Cloud Framework command line tool for further

development;
Discarding current modifications: You can re-pull the function deployed in the cloud to overwrite the current

workspace.

IDE Operations

The commonly used commands, runtime environments, and preconfigured extensions in Serverless Web IDE are as
follows:

Commands

Command Version

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 73

Command Version

python3 Python 3.7.12
`python3` follows the latest Python 3 version by default.

python37 Python 3.7.12

python36 Python 3.6.1

python27 Python 2.7.13

python Python 2.7.13

node

Node.js 16.13.1
The `node` command follows the latest Node.js version by default. Node.js 14.18, 12.16, and

10.15 are also installed in the environment. You can run the `n` command in the terminal to switch
the version.

php80 PHP 8.0.13

php74 PHP 7.4.26

php72 PHP 7.2.2

php56 PHP 5.6.33

php PHP 7.2.2

pip3 pip 22.0.4 (Python 3.7)

pip37 pip 22.0.4 (Python 3.7)

pip36 pip 21.3.1 (Python 3.6)

pip pip 20.3.4 (Python 2.7)

npm 8.1.2

composer 2.2.9

Common tools

Tool Version

yarn 1.22.18

wget 1.14

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 73

Tool Version

Zip and unzip 6

Git 2.24.1

zsh 5.0.2

dash 0.5.10.2

make 3.82

jupyter 4.6.3

pylint 1.9.5

Serverless Cloud Framework 3.2.1

Runtime environments

Runtime Environment Version

Node.js 16.13, 14.18, 12.16, 10.15

Python 3.7, 3.6, 2.7

PHP 8.0, 7.4, 7.2, and 5.6

Extensions

Extension Version

Python 2020.11.371526539

Jupyter 2020.12.411183155

PHP-IntelliSense 2.3.14

ESLint 2.1.13

Prettier 5.8.0

Quota Limits

https://intl.cloud.tencent.com/document/product/583/36267

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 73

The IDE provides 5 GB of storage space for each user. If it is used up, you will not be able to perform write
operations; therefore, clean it up in time. (Deleting functions will not clear the storage space of the IDE. You can
back up your workspace changes and manually reset the workspace. You can also choose to switch to the old

editor to avoid this restriction.)
To ensure a smooth experience, we recommend you not open more than 3 functions on multiple browser pages at
the same time.

Notes

Performing the following operations in the IDE may cause security risks such as data leakage. If you have to perform
them, do so with caution:

Install high-risk open-source components such as phpMyAdmin and Struts 2.

FAQs

1. What should I do if an exception occurs during IDE loading?

If IDE cannot be normally started due to a workspace exception, you can click Having problems? in the top-right
corner of the IDE and click Reset Workspace on the pop-up page to initialize the workspace.

2. What should I do if the function can be executed successfully in the terminal but fails to be executed
after I click Test?

The online IDE terminal and the SCF cloud runtime environment are independent of each other. The execution result
returned after you click Test is the actual execution result of the function.

3. What should I do if the result doesn't meet the expectation when I run a command in the terminal?

If you run a dependent package installation command, make sure that you run it under the src directory.

Check the command version before running a command. For the commands supported by default, see Common
commands.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 73

Overview

Well-received in the industry, Serverless Cloud Framework allows you to deploy a complete and available serverless
application framework without having to care about underlying resources. It features resource orchestrating, auto
scaling, and event driving and covers the full development lifecycle from coding and debugging to testing and

deploying, helping you quickly build serverless applications with the aid of Tencent Cloud resources.

SCF Component

Serverless Cloud Framework provides an SCF component, which can be used to quickly package and deploy SCF
projects. You can familiarize yourself with and use the component by following the steps below:

1. Get started with Serverless Cloud Framework as instructed in Creating and Deploying Functions.
2. Learn how to use Serverless Cloud Framework to develop and debug SCF functions as instructed in Development

Mode and In-cloud Debugging.
3. Learn how to perform project management and resource orchestration for multiple SCF functions as instructed in

Project Application.

Best Practices

Serverless Cloud Framework provides the SCF component to implement resource creation and orchestration for SCF.
In addition, it provides more encapsulated components and best practices for some typical use cases, such as
Express framework support and website deployment. For more information, please see the Serverless Components

project on GitHub.

Item Description

Deploying static websites Use the `Serverless Website` component to quickly host a static website.

Deploying Express.js
applications

Use the `Serverless SCF` component to quickly construct an Express.js
project.

Serverless Cloud Framework
Overview
Last updated：2022-10-20 14:41:07

https://intl.cloud.tencent.com/document/product/583/36707
https://intl.cloud.tencent.com/document/product/583/36268
https://intl.cloud.tencent.com/document/product/583/38850
https://github.com/serverless/components/blob/master/README.cn.md
https://intl.cloud.tencent.com/document/product/1040/36748
https://intl.cloud.tencent.com/document/product/1040/37354

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 73

Deploying full-stack websites
with Vue + Express +
PostgreSQL

Use Vue as the frontend and Express framework as the backend to deploy a
serverless full-stack application through multiple Serverless Components.

Deploying Nuxt.js applications Use the `Serverless Components Nuxt.js` component to quickly deploy an
SSR project based on Nuxt.js.

https://intl.cloud.tencent.com/document/product/1040/36989
https://intl.cloud.tencent.com/document/product/1040/37355

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 73

You can install Serverless Cloud Framework through npm.

Installing via npm

Prerequisites

Before installing through npm, you need to make sure that Node.js (later than v12) and npm have been installed in
your environment (for more information, see Node.js Installation Guide) .

$ node -v

v12.18.0

$ npm -v

7.0.10

Note：

To ensure the installation speed and stability, we recommend you use cnpm for installation: download and
install cnpm first, and then replace all the npm commands used below with cnpm commands.

 scf is short for the serverless-cloud-framework command.

Installation steps

Run the following command on the command line:

npm i -g serverless-cloud-framework

Note：
If macOS prompts that you have no permission, you need to run sudo npm i -g serverless-cloud-

framework for installation.

If you have already installed Serverless Cloud Framework, you can run the following command to upgrade it to the
latest version:

Installation
Last updated：2023-10-30 10:35:22

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 73

npm update -g serverless-cloud-framework

Viewing version information

After the installation is completed, run the scf -v command to view the version information of Serverless Cloud

Framework:

scf -v

Relevant Operations

Next step: Getting started

Quick Deployment of Function Template
Quick Creation of Application Template

https://intl.cloud.tencent.com/document/product/1040/39133
https://intl.cloud.tencent.com/document/product/1040/39134

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 73

This document describes several authorization methods of Serverless Cloud Framework and demonstrates actual
operations by configuring sub-account permissions.

Prerequisites

Serverless Cloud Framework helps you quickly deploy your project to SAC. Before deploying, make sure that you

have registered a Tencent Cloud account and completed identity verification.

Authorization Method

Authorizing by scanning code

When deploying by running scf deploy , you can scan the QR code for quick authorization and deployment. After

you authorize by scanning the code, temporary key information will be generated (which will expire in 60 minutes) and
written into the .env file in the current directory.

TENCENT_APP_ID=xxxxxx # `AppId` of authorizing account

TENCENT_SECRET_ID=xxxxxx # `SecretId` of authorizing account

TENCENT_SECRET_KEY=xxxxxx # `SecretKey` of authorizing account

TENCENT_TOKEN=xxxxx # Temporary token

For more information on the permissions obtained during quick authorization, see scf_QcsRole permission list.

Note：
If your account is a Tencent Cloud sub-account, policy authorization needs to be configured by the root
account first. For more information on the configuration, see Sub-account Permission Configuration.

Authorizing with local key

To eliminate the need for repeated authorization due to information expiration in case of authorization by scanning the
code, you can authorize with a key. Create an .env file in the root directory of the project to be deployed and

configure the Tencent Cloud SecretId and SecretKey information:

Permission Management
Last updated：2022-12-19 18:41:57

https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/10495

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 73

.env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

You can get SecretId and SecretKey on the Manage API Key page.

Note：
To ensure the account security, we recommend you use a sub-account key for authorization. The sub-
account can deploy the project only after being granted the relevant permission. For more information on the

configuration, see Sub-account Permission Configuration.

Configuring with permanent key

You can run the scf credentials command to quickly set the persistent storage of the global key information.

This command must be configured under the created SCF project. Make sure that you have created a project with
 serverless.yml through scf init or manually.

Below are all the commands:

scf credentials Manage global user authorization information

set Store user authorization information

--secretId / -i (Required) Tencent Cloud CAM account's `secretId`

--secretKey / -k (Required) Tencent Cloud CAM account's `secretKey`

--profile / -n {name} Authorization name, which is `default` by default

--overwrite / -o Overwrite the key with an existing authorization name

remove Remove user authorization information

--profile / -n {name} (Required) authorization name

list View user authorization information

Configure global authorization information:

Configure authorization information through the default profile name

$ scf credentials set --secretId xxx --secretKey xxx

Configure authorization information through the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1

Update the authorization information in the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1 --o

verwrite

Delete global authorization information:

https://console.intl.cloud.tencent.com/cam/capi

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 73

$ scf credentials remove --profile profileName1

View all current authorization information:

$ scf credentials list

Deploy through global authorization information:

Deploy through the default profile

$ scf deploy

Deploy through the specified profile

$ scf deploy --profile newP

Ignore global variables and scan the QR code for deployment

$ scf deploy --login

Sub-account Permission Configuration

Configuration steps

If you use a Tencent Cloud sub-account, it does not have the operation permissions by default; therefore, it needs to
be authorized by the root account (or a sub-account with the authorization permission) in the following steps:

1. On the Users page in the CAM console, select the target sub-account and click Authorize.

2. Search for and select QcloudscfFullAccess in the pop-up window and click OK to grant the sub-account

the permission to manipulate all Serverless Cloud Framework resources.

https://console.intl.cloud.tencent.com/cam/user

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 73

3. On the Users page in the CAM console, select the target sub-account and click the username to enter the user
details page.

4. Click Associate Policy. On the policy adding page, click Select policies from the policy list > Create Custom
Policy.
Policy association page:

https://console.intl.cloud.tencent.com/cam/user

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 73

Policy creation page:

5. Click Create by Policy Syntax > Blank Template and enter the following content. Be sure to replace the role
parameter with the UIN of your root account:

{

"version": "2.0",

"statement": [

{

"action": [

"cam:PassRole"

],

"resource": [

"qcs::cam::uin/${enter the account's uin}:roleName/scf_QcsRole"

],

"effect": "allow"

},

{

"resource": [

"*"

],

"action": [

"name/sts:AssumeRole"

],

"effect": "allow"

}

]

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 73

6. After completing the custom policy configuration, go back to the authorization page in step 4, search for the custom
policy just created, and click Next > OK to grant the sub-account the operation permissions of scf_QcsRole .

At this point, your sub-account should have a custom policy and a preset policy QcloudscfFullAccess and can
use Serverless Framework normally.

Note：
In addition to the permission to call the default scf_QcsRole role, you can also grant the sub-account

the permission to call a custom role and control the sub-account permissions with refined permission policies
in the custom role. For more information, see Configuring Role for Specified Operation.

scf_QcsRole permission list

Policy Description

QcloudCOSFullAccess Full access to COS

QcloudSCFFullAccess Full access to SCF

QcloudSSLFullAccess Full access to SSL Certificate Service

QcloudTCBFullAccess Full access to TCB

QcloudAPIGWFullAccess Full access to API Gateway

QcloudVPCFullAccess Full access to VPC

QcloudMonitorFullAccess Full access to Cloud Monitor

QcloudslsFullAccess Full access to SLS.

QcloudCDNFullAccess Full access to CDN

https://intl.cloud.tencent.com/document/product/1040/36819

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 73

Policy Description

QcloudCKafkaFullAccess Full access to CKafka

QcloudCodingFullAccess Full access to CODING DevOps

QcloudPostgreSQLFullAccess Full access to TencentDB for PostgreSQL

QcloudCynosDBFullAccess Full access to TDSQL-C for MySQL

QcloudCLSFullAccess Full access to CLS

QcloudAccessForscfRole
This policy can be associated with the SLS service role (scf_QCSRole) for
SCF's quick experience feature to access other Tencent Cloud service
resources. It contains permissions of CAM-related operations.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 73

Note：
Due to the domain name's ICP filing update, you currently cannot log in by scanning the QR code during CLI
deployment. You can log in by configuring a permanent key locally or visiting the URL as prompted on the

command line. For more information, see Account and Permission Configuration.

Overview

This document describes how to quickly create, configure, and deploy an SCF application in Tencent Cloud through
Serverless Cloud Framework.

Prerequisites

You have installed Serverless Cloud Framework 1.67.2 or later.

npm install -g serverless-cloud-framework

You have registered a Tencent Cloud account and completed identity verification.

Note：
If your account is a Tencent Cloud sub-account, get the authorization from the root account first as
instructed in Account and Permission Configuration.

Directions

Quick deployment

In an empty folder directory, run the following command:

Function Operations
Last updated：2022-11-01 10:58:16

https://intl.cloud.tencent.com/document/product/1040/36793
https://intl.cloud.tencent.com/document/product/1040/37034
https://intl.cloud.tencent.com/document/product/378/17985
https://intl.cloud.tencent.com/document/product/378/10495
https://intl.cloud.tencent.com/document/product/1040/36793

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 73

serverless-cloud-framework

Next, follow the interactive prompts to initialize the project. Select the scf-starter template for the application

and select the runtime you want to use (Node.js is used as an example here):

serverless-cloud-framework: No serverless project is detected. Do you want to cre

ate one? Yes

serverless-cloud-framework: Select the Serverless application you want to create:

scf-starter - quickly deploys an SCF function

react-starter - quickly deploys a React.js application

restful-api - quickly deploys a RESTful API to use Python + API Gateway

❯ scf-starter - quickly deploys an SCF function
vue-starter - quickly deploys a basic Vue.js application

website-starter - quickly deploys a static website

eggjs-starter - quickly deploys a basic Egg.js application

express-starter - quickly deploys a basic Express.js application

serverless-cloud-framework: Select the runtime of the application: scf-nodejs - q

uickly deploys an SCF function in Node.js

scf-golang - quickly deploys an SCF function in Go

❯ scf-nodejs - quickly deploys an SCF function in Node.js
scf-php - quickly deploys an SCF function in PHP

scf-python - quickly deploys an SCF function in Python

serverless-cloud-framework: Enter the project name: demo

serverless-cloud-framework: Installing the scf-nodejs application...

scf-nodejs › Created

The demo project has been successfully created!

Select Deploy Now to quickly deploy the initialized project to the SCF console:

serverless-cloud-framework: Do you want to deploy the project in the cloud now? Y

es

Click the link below to log in

https://scflogin.qcloud.com/XKYUcbaK

Logged in successfully!

serverless-cloud-framework

Action: "deploy" - Stage: "dev" - App: "scfApp" - Instance: "scfdemo"

functionName: helloworld

description: Helloworld empty template function

namespace: default

runtime: Nodejs10.15

handler: index.main_handler

memorySize: 128

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 73

lastVersion: $LATEST

traffic: 1

triggers:

apigw:

- http://service-xxxxxxx.gz.apigw.tencentcs.com/release/

27s › scfdemo › Success

After deployment, complete the remote invocation of the function by running the following command:

scf invoke --inputs function=helloworld

Note：
 scf is short for the serverless-cloud-framework command.

Viewing deployment information

If you want to check the deployment status and resources of the application again, you can go to the folder where the
project is successfully deployed and run the following command to view the corresponding information:

cd demo # Enter the project directory. Change to your actual project's directory

name here

scf info

Viewing directory structure

In the directory of the initialized project, you can see the most basic structure of a serverless function project:

.

├── serverless.yml # Configuration file

├—— index.js # Entry function

└── .env # Environment variable file

The serverless.yml configuration file implements the quick configuration of the basic function information. All

the configuration items supported by the SCF console can be configured in the .yml file (for more information,

see SCF Configuration Information).
 index.js is the entry function of the project, which is the helloworld template here.

The .env file stores user login authentication information. You can also configure other environment variables in

it.

Redeployment

https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 73

In the local project directory, you can modify the function template and configuration file and then redeploy the project
by running the following command:

scf deploy

Note：
If you want to view the details during the removal process, you can add the --debug parameter.

Continuous development

After the deployment is completed, Serverless Cloud Framework supports running different commands to help you
implement continuous development, deployment, and grayscale release for the project. You can also use this
component in conjunction with other components to manage the deployment of multi-component applications.

For more information, see Application Management and List of Supported Commands.

FAQs

What should I do if the wizard does not pop up by default when serverless-cloud-framework is
entered?

Solution: Add the SERVERLESS_PLATFORM_VENDOR=tencent configuration item to the .env file.

What should I do if the deployment is very slow after scf deploy is entered in a network environment
outside the Chinese mainland?

Solution: Add the GLOBAL_ACCELERATOR_NA=true configuration item to the .env file to enable acceleration

outside the Chinese mainland.

What should I do if the deployment reports a network error after scf deploy is entered?

Solution: Add the following proxy configuration to the .env file.

HTTP_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

HTTPS_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

https://intl.cloud.tencent.com/document/product/1040/38288
https://intl.cloud.tencent.com/document/product/1040/36861

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 73

Development Mode

Serverless Cloud Framework supports the development mode (dev mode). For projects in development mode, you

can write their code and develop and debug them more easily, as you can continuously focus on the process from
development to debugging while minimizing the interruptions caused by other tasks such as packaging and update.

Entering development mode

Under a project, you can run scf dev to enter the development mode as shown below:

Currently, scf dev is supported by only the Node.js 10 & 12.16 runtime environment.

$ scf dev

serverless-cloud-framework

Dev Mode - Watching your Component for changes and enabling streaming logs, if su

pported...

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools fo

r Node] to debug your code.

--------------------- The realtime log ---------------------

17:13:38 - express-api-demo - deployment

region: ap-guangzhou

apigw:

serviceId: service-b77xtixx

subDomain: service-b77xtixx-12539702xx.gz.apigw.tencentcs.com

environment: release

url: http://service-b77xtixx-12539702xx.gz.apigw.tencentcs.com/release/

scf:

functionName: express_component_6r6xkh60k

runtime: Nodejs10.15

namespace: default

express-api-demo › Watching

After you enter the development mode, the Serverless tool will output the deployed content and start continuous file
monitoring. When a code file is updated, it will be automatically deployed again to sync the local file to the cloud.

Development Debugging
Last updated：2022-10-20 15:33:47

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 73

Exiting development mode

You can press Ctrl+C to exit the development mode, and the following result will be returned:

express-api-demo › Disabling Dev Mode & Closing ...

express-api-demo › Dev Mode Closed

In-cloud Debugging

You can enable in-cloud debugging for projects whose runtime environment is Node.js 10. You can use a debugging
tool such as Chrome DevTools or VS Code Debugger to connect to the remote environment for debugging.

Notes

SCF in-cloud debugging is currently in beta test. You are recommended to try it out and share your questions and
suggestions with us.

Before using SCF in-cloud debugging, you need to note the following:

In-cloud debugging uses an actually running SCF instance for debugging.
Because of the randomness of event triggering, if there are multiple instances, an event may be triggered on a
random instance. Therefore, not all requests can hit the debugging instance and trigger debugging.
When debugging is paused at a breakpoint:

If it stops running for a long period of time and there is no return, the trigger such as API gateway may prompt

timeout.
If the instance is still in countdown status and continues running until the execution is completed after debugging
completion, the total consumed time will be recorded as the function execution duration.

The maximum duration of a single execution from triggering of instance execution to debugging completion is 900
seconds. If the debugging is interrupted for over 900 seconds, the execution will be forcibly ended, and 900

seconds will be used as the function execution duration for statistics and measurement.
The debugging capability on the current version will set the function timeout period to 900 seconds. If you exit
debugging properly, the timeout period will be reset to a normal value. If you forcibly end debugging or exit
debugging exceptionally, the function timeout period will fail to be set to a normal value. In this case, you can deploy
the function again (on the CLI) or manually edit it (in the console) to adjust the timeout configuration.

Enabling in-cloud debugging

When you enter the development mode, if the project is a function whose runtime environment is Node.js 10 or above,
in-cloud debugging will be automatically enabled and debugging information will be output.
For example, when you enable the development mode, if the output result contains information similar to the following
content, in-cloud debugging has been enabled for this project.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 73

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools fo

r Node] to debug your code.

Using Chrome DevTools

The following steps are used as an example to describe how to use DevTools in Chrome to connect to a remote
environment for debugging:

1. Start the Chrome browser.
2. Enter chrome://inspect/ in the address bar to access it.

3. You can open DevTools in two ways as shown below:

4. (Recommended) Click Open dedicated DevTools for Node under "Devices".

5. Select inspect under a specific target in "Remote Target #LOCALHOST".
If you cannot open the target or there are no targets, please check whether configuration of localhost:9229

or localhost:9222 exists in "Configure" under "Devices", which corresponds to the output after in-cloud

debugging is enabled.
6. In DevTools opened after you click Open dedicated DevTools for Node, you can click the Sources tab to view

the remote code. The actual code of the function is in the /var/user/ directory.

On the Sources tab, the code that you want to view may be loaded. More remote files will be displayed as the
debugging proceeds.

7. Open a file as needed and set a breakpoint at the specified position in it.
8. If you trigger the function in any means such as URL access, page, command, or API, the remote environment will

start running and be interrupted at the breakpoint to wait for further operations.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 73

9. On the tool bar on the right of DevTools, you can continue the execution of an interrupted program or perform other
operations such as step-over, step-into, and step-out on it. You can also directly view the current variables or set
the variables that you want to track. For more information on how to use DevTools, please see the DevTools user

guide.

Exiting in-cloud debugging

When you exit the development mode, in-cloud debugging will be disabled automatically.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 73

Project Application
Last updated：2023-05-04 18:15:28

Overview

The Creating and Deploying Function document describes how to create an SCF function by using Serverless Cloud
Framework. For Serverless Cloud Framework, this operation deploys a single-instance serverless application through
the SCF component. A serverless application can consist of one or multiple instances, and each component

deployment corresponds to one instance. Each instance involves a serverless.yml file as shown below, which

defines certain parameters of the component. Such parameters are used to generate the instance information during
deployment. For example, region defines the region where the resources are located.

This document describes single-instance and multi-instance applications and uses actual scenarios as examples to

show how to perform project management and resource orchestration for SCF.

Single-instance applications

In the project of a single-instance application, only one component is imported, and only one component instance will
be generated during deployment. The name of the single-instance application is generated by Serverless Cloud
Framework by default.
Use cases: Serverless Cloud Framework is used only as a CLI tool to create and update functions, and you need to
orchestrate and manage function resources by yourself.

https://intl.cloud.tencent.com/document/product/583/38860

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 73

Multi-instance applications

In the project of a multi-instance application, multiple components are imported, and multiple component instances will
be generated during deployment. You need to enter a fixed name for the multi-instance application to ensure that all
components are managed under the same application.

Use cases: you need to organize and orchestrate multiple SCF resources in the project through Serverless
Framework.

Project Development

Serverless Cloud Framework provides a set of administrative mechanisms for resource orchestration, environment
isolation, and grayscale release. In addition to creating SCF functions, Serverless Cloud Framework also provides a
wealth of components for manipulating various Tencent Cloud services such as API Gateway, Tencent Cloud Object

Storage (COS), and Cloud Access Management (CAM). With Serverless Cloud Framework for project development,
you can focus on developing your business and improving your efficiency. For more information about project
development, see Serverless Cloud Framework.

https://intl.cloud.tencent.com/document/product/1040/38288
https://intl.cloud.tencent.com/document/product/1040/38289#.E7.8E.AF.E5.A2.83.E9.9A.94.E7.A6.BB
https://intl.cloud.tencent.com/document/product/1040/38289#.E7.81.B0.E5.BA.A6.E5.8F.91.E5.B8.83
https://intl.cloud.tencent.com/document/product/1040/38289

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 73

List of Supported Commands
Last updated：2023-05-04 18:11:11

Serverless Application Center (SLS) is deployed based on Serverless Cloud Framework and supports the following
CLI commands:
 scf registry : Lists available components.

 scf registry publish : Publishes components to the SLS component registry.

 --dev : Publishes components of the @dev version for development or testing.

 scf init xxx : Downloads, from the component registry, a template specified by entering the template name

after init , for example, "$ scf init fullstack".

 scf init xxx --name my-app : Customizes the project directory name.

 --debug : Lists log information during template download.

 scf deploy : Deploys a component instance in the cloud.

 --debug : Lists log information such as the deployment operations and the status output by console.log()

during component deployment.
 ---inputs publish=true : Publishes a new version during function deployment.

 ---inputs traffic=0.1 : Switches 10% of the traffic to the $latest function version during deployment

and switches the rest of the traffic to the last published function version.
Description
The legacy command format scf deploy --inputs.key=value has been changed to scf deploy --

inputs key=value since Serverless CLI v3.2.3. Legacy commands cannot be used in new versions of Serverless

CLI. If you have upgraded Serverless CLI, please use the new commands.

 scf is short for serverless-cloud-framework .

 scf remove : Removes a component instance from the cloud.

 --debug : Lists log information such as the removal operations and the status output by console.log()

during component removal.
 scf info : Gets and displays the information about a component instance.

 --debug : Lists more state values.

 scf dev : Enables the development mode ("DEV Mode") and automatically deploys changed information when

component status changes are detected. In development mode, information such as execution logs, invocation
information, and errors can be displayed on the CLI in real time. The development mode also supports in-cloud
debugging for Node.js applications.
 scf login : Supports logging in to the Tencent Cloud account and authorizing operations on associated

resources by using the login command.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 73

Currently, Serverless Framework can deploy a project properly only with the relevant role permissions in the
 SLS_QcsRole role under the account. This role contains the policies for products that are used in deployment with

Serverless Framework. You can configure the permissions for a root account or sub-account.

Root Account Permission Configuration

Currently, you can grant permissions by configuring the account key. As the root account has the permissions to
create roles and bind policies, you can associate it with SLS_QcsRole for Serverless Framework access in the

following way:

Authorization through account key configuration

If you want to configure persistent environment variables/key information so that you do not need to deploy them by
scanning the code every time, you can create a .env file under the project directory and save the SecretId

and SecretKey information.

.env

TENCENT_SECRET_ID=123 // Your `SecretId`

TENCENT_SECRET_KEY=123 // Your `SecretKey`

Serverless Framework will check whether the user is in Mainland China by default during deployment. If your
development environment is outside Mainland China and you want to use Serverless Framework in the Mainland
China edition, you can add the following configuration in the .env file to start the Mainland China edition by default,

which provides an interactive quick deployment process (for more information, please see Getting Started).

.env

TENCENT_SECRET_ID=123

TENCENT_SECRET_KEY=123

SERVERLESS_PLATFORM_VENDOR=tencent

Note：

If you don't have a Tencent Cloud account yet, please sign up first.
If you already have a Tencent Cloud account, you can get SecretId and SecretKey in API Key

Management.

Account and Permission Configuration
Last updated：2021-12-06 14:32:22

https://intl.cloud.tencent.com/document/product/598/19420
https://intl.cloud.tencent.com/document/product/1040/36249
https://intl.cloud.tencent.com/register
https://console.intl.cloud.tencent.com/cam/capi

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 73

Sub-account Permission Configuration

If you want to grant a sub-account the permission to deploy by scanning code, you need to ensure that the sub-
account has permissions to create roles and bind role policies. You can add the preset policy

 QcloudCamRoleFullAccess or QcloudCamSubaccountsAuthorizeRoleFullAccess to the sub-

account.

You can also add SLS_QcsRole by using the root account in the CAM Console to grant access to Serverless

Framework resources. The role entity is sls.cloud.tencent.com , which includes the following policy

permissions:

QcloudCDNFullAccess
QcloudTCBFullAccess
QcloudSLSFullAccess
QcloudSSLFullAccess
QcloudCKafkaFullAccess

QcloudMonitorFullAccess
QcloudVPCFullAccess
QcloudCOSFullAccess
QcloudAPIGWFullAccess
QcloudSCFFullAccess

After the creation is successful, the root account needs to bind the following two policies to the sub-account:

1. Call permission policy of a specified role
2. API permission policy of Serverless Framework

Granting sub-account permission to call specified role

1. On the CAM User List page, select the target sub-account and click the username to enter the user details page.
2. Click Associate Policy. On the policy adding page, click Select policies from the policy list.
3. Click Create Custom Policy > Create by Policy Syntax > Blank Template and enter the following content. Be

sure to replace the role parameter with your own uin (account ID):

{

"version": "2.0",

"statement": [

{

"action": [

"cam:PassRole"

https://console.intl.cloud.tencent.com/cam/role
https://console.intl.cloud.tencent.com/cam/user

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 73

],

"resource": [

"qcs::cam::uin/000000000000:roleName/SLS_QcsRole"

],

"effect": "allow"

}

]

}

4. Click OK to grant the sub-account the permission to manipulate SLS_QcsRole.

Granting sub-account permission to use APIs of Serverless Framework

Two authorization methods are provided below for your reference:

Method 1. Grant the sub-account permission to manipulate all Serverless Framework resources

1. On the CAM User List page, select the target sub-account and click the username to enter the user details page.
2. Click Associate Policy. On the policy adding page, click Select policies from the policy list.
3. Search for and associate with QcloudSLSFullAccess and click Next.

4. Click OK to grant the sub-account the permission to manipulate all Serverless Framework resources.

The policy syntax is as follows:

{

"version": "2.0",

"statement": [

{

"action": [

"sls:*"

],

"resource": "*",

"effect": "allow"

}

]

}

Method 2. Grant the sub-account permission to manipulate specific Serverless Framework resources

You can allow a sub-account to manipulate only specific Serverless Framework resources in the following steps:

1. On the CAM User List page, select the target sub-account and click the username to enter the user details page.

2. Click Associate Policy. On the policy adding page, click Select policies from the policy list.
3. Click Create Custom Policy, create a custom policy based on the policy syntax, and associate it to the user. The

sample policy syntax is as shown below:

https://console.intl.cloud.tencent.com/cam/user
https://console.intl.cloud.tencent.com/cam/user

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 73

{

"version": "2.0",

"statement": [

{

"action": [

"sls:*"

],

"resource": "qcs::sls:ap-guangzhou::appname/${appname}/stagename/${stagename}",

"effect": "allow"

}

]

}

After the configuration is completed, the sub-account will have the permission to manipulate serverless applications
only under ${appname} and ${stagename} .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 73

Operation Scenarios

This document describes how to use the SCF component provided by Serverless Framework to quickly create and
deploy an SCF project.

Prerequisites

You have installed Serverless Framework as instructed in Installing Serverless Framework.

Directions

Creating function directory

1. Run the following command on the command line to create a directory and enter it (this document uses
 tencent-scf as an example):

mkdir tencent-scf && cd tencent-scf

2. Run the following commands in sequence to quickly create an SCF application:

serverless create --template-url https://github.com/serverless-components/tence

nt-scf/tree/v2/example

cd example

After the application is created successfully, its directory structure is as follows

|- src

| └── index.py

└── serverless.yml

Deploying function

1. Enter the directory where serverless.yml is and run the following command to deploy the function:

serverless deploy

Creating and Deploying Function
Last updated：2021-12-06 14:32:22

https://intl.cloud.tencent.com/document/product/583/36263

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 73

2. Log in to your Tencent Cloud account and grant applicable permissions. If you want to configure persistent
environment variables or key information, please do so as instructed in Account Configuration.
After the function is deployed successfully, you can view the URL provided by the gateway trigger of the
corresponding function in the command line output and access the URL in a browser to view the function

deployment result.

If you want to view more information on the deployment process, you can run the sls deploy --

debug command to view the real-time log information during the deployment process (sls is an

abbreviation for the serverless command).

Configuring deployment

The SCF component supports "zero" configuration deployment, that is, it can be deployed directly with the default

values in the configuration file. Nonetheless, you can also modify more optional configuration items as needed to
further customize the project to be deployed.
The following is the description of the SCF component configuration file serverless.yml . For more information,

please see Full Configuration and Configuration Description.

serverless.yml

component: scf # Name of the imported component, which is required. The `tencent-

scf` component is used in this example

name: scfdemo # Name of the instance created by this component, which is required

org: test # Organization information, which is optional. The default value is the

`appid` of your Tencent Cloud account

app: scfApp # SCF application name, which is optional

stage: dev # Information for identifying environment, which is optional. The defa

ult value is `dev`

inputs:

name: scfFunctionName

src: ./src

runtime: Nodejs10.15 # Runtime environment of function. Valid values: Python2.7,

Python3.6, Nodejs6.10, Nodejs8.9, Nodejs10.15, Nodejs12.16, PHP5, PHP7, Golang1,

Java8

region: ap-guangzhou

handler: index.main_handler

events:

- apigw:

name: serverless_api

parameters:

protocols:

- http

https://intl.cloud.tencent.com/document/product/583/32743
https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 73

- https

serviceName:

description: The service of Serverless Framework

environment: release

endpoints:

- path: /index

method: GET

After updating the fields in the configuration file, run the serverless deploy or serverless command

again to update the configuration to the cloud.

Subsequent Operations

After deploying the function, you can use the development and debugging capabilities provided by the component to

re-develop the project into a production-ready application.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 73

Tencentcloud-Serverless-Nodejs SDK Overview

Tencentcloud-Serverless-Nodejs is a Tencent Cloud SCF SDK that integrates SCF APIs to simplify the function
invocation method. It can invoke a function from a local system, CVM instance, container, or another cloud function,
eliminating the need for you to encapsulate TencentCloud APIs.

Features

Tencentcloud-Serverless-Nodejs SDK has the following features:

Invokes functions in a high-performance, low-latency manner
It enables quick invocation across functions after the required parameters are entered (by default, it will obtain
parameters in environment variables such as region and secretId).

Supports access with private network domain names.

Supports session keep-alive.
Supports cross-region function chaining.

Note：
Calling SDK across functions is only applicable to event-triggered functions. HTTP-triggered functions can be
invoked by requesting the corresponding path of the function in the function code.

Getting Started

Development Preparations

Development environment

Node.js 8.9 or a higher version has been installed.
Running environment
Windows, Linux, or macOS with tencentcloud-serverless-nodejs SDK have been installed.

Calling SDK Across Functions
Node.js SDK
Last updated：2023-03-14 15:54:10

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 73

We recommend you use the Serverless Cloud Framework to quickly deploy local functions.

Installing the tencentcloud-serverless-nodejs SDK

Installing via npm (recommended)

1. Select the directory path according to your actual needs and create a directory under it.
For example, you can create a project directory named testNodejsSDK in the

 /Users/xxx/Desktop/testNodejsSDK path.

2. Enter the testNodejsSDK directory and run the following commands in sequence to install tencentcloud-

serverless-nodejs SDK.

npm init -y

npm install tencentcloud-serverless-nodejs

After installation, you will be able to see node_modules , package.json , and package-lock.json in

the testNodejsSDK directory.

Installing via the source package

Go to the GitHub code hosting page to download the latest source package and install it after decompression.

Using SCF to install dependencies online

To install dependencies online with SCF, run the following command in package.json :

{

"dependencies": {

"tencentcloud-serverless-nodejs":"*"

}

}

Mutual Recursion

Sample

Note：

To implement mutual recursion of functions in different regions, you need to specify the region. For the
naming rules, please see Region List.

If no region is specified, functions will invoke one another within the same region.
If no namespace is specified, default will be used by default.

https://intl.cloud.tencent.com/document/product/583/32743
https://github.com/TencentCloud/tencentcloud-serverless-nodejs
https://intl.cloud.tencent.com/document/product/583/38105
https://intl.cloud.tencent.com/document/api/583/17238

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 73

The invoker function should have the public network access enabled.
If parameters such as secretId and secretKey are not manually passed in, the function needs to

be bound to a role with SCF Invoke permissions (or containing SCF Invoke , such as SCF

FullAccess). For more information, please see Roles and Policies.

1. Create a to-be-invoked Node.js function named "FuncInvoked" in the region of Beijing. The content of the
function is as follows:

'use strict';

exports.main_handler = async (event, context, callback) => {

console.log("\n Hello World from the function being invoked\n")

console.log(event)

console.log(event["non-exist"])

return event

};

2. Create an index.js file in the testNodejsSDK directory and enter the following sample code to create an

invoking Node.js function.

The main parameters can be obtained as described below:

const { SDK, LogType } = require('tencentcloud-serverless-nodejs')

exports.main_handler = async (event, context) => {

context.callbackWaitsForEmptyEventLoop = false

const sdk = new SDK({

region:'ap-beijing'

}) // If you bind and run in SCF an execution role with SCF invocation permiss

ions, the authentication information in the environment variable will be used

by default

const res = await sdk.invoke({

functionName: 'FuncInvoked',

logType: LogType.Tail,

data: {

name: 'test',

role: 'test_role'

}

})

console.log(res)

// return res

}

https://intl.cloud.tencent.com/document/product/583/38176

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 73

region: the region of the invoked function. The Beijing region selected in step 1 is used as an example in this
document.
functionName: the name of the invoked function. The FuncInvoked function created in step 1 is used as an

example in this document.
qualifier: the version of the invoked function. If no version is specified, $LATEST will be used by default. For

more information, please see Viewing a Version.
namespace: the namespace of the invoked function. If no namespace is specified, default will be used by

default.

data: the data passed to the invoked function, which can be read from the event input parameter.

3. Create an invoking Node.js function named "NodejsInvokeTest" in the Chengdu region. The main settings of the
function are as follows:

Execution method: Select index.main_handler.
Code submission method: Select Local zip package upload.
Compress all files in the testNodejsSDK directory to ZIP format and upload them to the cloud.

4. In the SCF console, click the function just created, go to Function management > Edit codes. Click Test to run
the function. The result should be as follows:

"Already invoked a function!"

Invoking a function locally

Sample

1. Create a to-be-invoked Node.js function named "FuncInvoked" in the region of Beijing. The content of the
function is as follows:

'use strict';

exports.main_handler = async (event, context, callback) => {

console.log("\n Hello World from the function being invoked\n")

console.log(event)

console.log(event["non-exist"])

return event

};

2. Create an index.js file in the testNodejsSDK directory as an invoking Node.js function and enter the

following sample code:

https://intl.cloud.tencent.com/document/product/583/31455
https://console.intl.cloud.tencent.com/scf/list

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 73

Note
secretId and secretKey: Secret ID and secret key of TencentCloud API. You can obtain them or create new

ones by logging into the CAM Console and selecting Access Key > API Key Management.

3. Go to the directory where the index.js file is located and run the following command to view the result.

On Linux or macOS, run the following command:

export NODE_ENV=development && node index.js

On Windows, run the following command:

set NODE_ENV=development && node index.js

The output is as follows:

const { SDK, LogType } = require('tencentcloud-serverless-nodejs')

exports.main_handler = async (event, context) => {

context.callbackWaitsForEmptyEventLoop = false

const sdk = new SDK({

region:'ap-beijing',

secretId: 'AKxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxj',

secretKey: 'WtxxxxxxxxxxxxxxxxxxxxxxxxxxxxqL'

}) // If you bind and run in SCF an execution role with SCF invocation permiss

ions, the authentication information in the environment variable will be used

by default

const res = await sdk.invoke({

functionName: 'FuncInvoked',

logType: LogType.Tail,

data: {

name: 'test',

role: 'test_role'

}

})

console.log(res)

// return res

}

https://console.intl.cloud.tencent.com/cam/overview

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 73

prepare to invoke a function!

{"key":"value"}

Already invoked a function!

API List

API Reference

Init
Invoke

Init

We recommend you run the npm init command to initialize the SDK before using it.

Note：

The region , secretId , and secretKey parameters can be passed in using the initialization

command.
After the initialization is completed, the initialization configuration can be reused for future API calls.

Parameter information:

Parameter
Name

Required Type Description

region No String Region

secretId No String process.env.TENCENTCLOUD_SECRETID is used by default

secretKey No String
 process.env.TENCENTCLOUD_SECRETKEY is used by
default

token No String
process.env.TENCENTCLOUD_SESSIONTOKEN is used by
default

Invoke

This is used to invoke a function. Currently, sync invocation is supported.

Parameter information:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 73

Parameter
Name

Required Type Description
Parameter
Name

Required Type Description

functionName Yes String Function name

qualifier No String Function version. Default value: $LATEST

data No String Input parameter for function execution

namespace No String Namespace, which is default by default.

region No String Region

secretId No String process.env.TENCENTCLOUD_SECRETID is used by default

secretKey No String
 process.env.TENCENTCLOUD_SECRETKEY is used by
default

token No String
process.env.TENCENTCLOUD_SESSIONTOKEN is used by
default

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 73

Tencentserverless SDK Overview

Tencentserverless is a Tencent Cloud SCF SDK that integrates SCF business flow APIs to make it easier to invoke
SCF functions. It allows users to invoke a function quickly from a local system, CVM instance, container or function,
eliminating the need to encapsulate APIs in a public cloud.

Features

Tencentserverless SDK has the following features:

Invokes functions in a high-performance, low-latency manner
Enables quick invocation across functions after the required parameters are entered (it will obtain parameters in
environment variables by default, such as region and SecretId).

Supports access with private network domain names.

Supports session keep-alive.
Supports cross-region function chaining.
Supports native invocation methods in Python.

Note：
Calling SDK across functions is only applicable to event-triggered functions. HTTP-triggered functions can be
invoked by requesting the corresponding path of the function in the function code.

Getting Started

Mutual function invocation

Samples

Note：

SDK for Python
Last updated：2022-12-28 14:47:58

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 73

To make functions in different regions invoke each other, regions must be specified. For the naming
convention, see Common Params.
If no region is specified, intra-region mutual function invocation will be used by default.

If no namespace is specified, default will be used by default.

1. Create an invoked Python function in the cloud named FuncInvoked in Guangzhou region with the following

content:

-*- coding: utf8 -*-

def main_handler(event, context):

if 'key1' in event.keys():

print("value1 = " + event['key1'])

if 'key2' in event.keys():

print("value2 = " + event['key2'])

return "Hello World from the function being invoked" #return

2. Create an invoking Python function in the cloud named PythonInvokeTest in Chengdu region. You can edit

it as needed in the following two methods.

Method 1. If you don't need to invoke the function frequently, you can use the following sample code:

The output is as follows:

"Already invoked a function!"

from tencentserverless import scf

from tencentserverless.scf import Client

from tencentserverless.exception import TencentServerlessSDKException

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentC

loudSDKException

def main_handler(event, context):

print("prepare to invoke a function!")

try:

data = scf.invoke('FuncInvoked',region="ap-guangzhou",data={"a": "b"})

print (data)

except TencentServerlessSDKException as e:

print (e)

except TencentCloudSDKException as e:

print (e)

except Exception as e:

print (e)

return "Already invoked a function!" # return

https://intl.cloud.tencent.com/document/api/583/17238

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 73

Method 2. If you need to invoke the function frequently, you can choose to connect and trigger it through Client

by using the following sample code:

The output is as follows:

"Already invoked a function!"

Note：

 secret_id and secret_key : TencentCloud API key ID and key, which can be obtained or created in

TencentCloud API Key > API Key Management in the CAM console.

-*- coding: utf8 -*-

from tencentserverless import scf

from tencentserverless.scf import Client

from tencentserverless.exception import TencentServerlessSDKException

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentC

loudSDKException

def main_handler(event, context):

#scf = Client(region="ap-guangzhou") # To use this method to establish a `Clie

nt` connection, enable the "execution role" feature in the function configurat

ion and select an execution role with the function invocation permission.

scf = Client(secret_id="AKIxxxxxxxxxxxxxxxxxxxxxxggB4Sa",secret_key="3vZzxxxxx

xxxxxxaeTC",region="ap-guangzhou",token=" ")# To use this method to establish

a `Client` connection, replace `secret_id` and `secret_key` in the sample code

with your actual `secret_id` and `secret_key`. This key pair needs to contain

the function invocation permission.

print("prepare to invoke a function!")

try:

data = scf.invoke('FuncInvoked',data={"a": "b"})

data = scf.FuncInvoked(data={"a": "b"}) # To use Python's native invocation

method, perform initialization through `Client` first.

print (data)

except TencentServerlessSDKException as e:

print (e)

except TencentCloudSDKException as e:

print (e)

except Exception as e:

print (e)

return "Already invoked a function!" # return

https://console.intl.cloud.tencent.com/cam/capi
https://console.intl.cloud.tencent.com/cam/overview

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 73

Local function invocation

Preparations for development

Development environment
Python 2.7 or Python 3.6 has been installed.
Running environment

Windows, Linux, or macOS with Tencentserverless SDK installed.

Note：
For local function invocation, you must complete the above preparations. We recommend you develop the
function locally and then upload it to the cloud and use mutual function invocation for debugging.

Installation through pip (recommended)

Run the following command to install Tencentserverless SDK for Python.

pip install tencentserverless

Installation through source package

Go to GitHub to download the latest source package and install it by running the following commands after
decompression.

cd tencent-serverless-python-master

python setup.py install

Configuring Tencentserverless SDK for Python

Run the following command to upgrade Tencentserverless SDK for Python.

pip install tencentserverless -U

Run the following command to view the information of Tencentserverless SDK for Python.

pip show tencentserverless

Samples

1. Create an invoked Python function in the cloud named FuncInvoked in Guangzhou region with the following

content:

https://github.com/tencentyun/tencent-serverless-python

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 73

-*- coding: utf8 -*-

def main_handler(event, context):

if 'key1' in event.keys():

print("value1 = " + event['key1'])

if 'key2' in event.keys():

print("value2 = " + event['key2'])

return "Hello World from the function being invoked" #return

2. Create a local file named PythonInvokeTest.py with the following content:

-*- coding: utf8 -*-

from tencentserverless import scf

from tencentserverless.scf import Client

from tencentserverless.exception import TencentServerlessSDKException

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCl

oudSDKException

def main_handler(event, context):

print("prepare to invoke a function!")

scf = Client(secret_id="AKIxxxxxxxxxxxxxxxxxxxxxxggB4Sa",secret_key="3vZzxxxxxx

xxxxxaeTC",region="ap-guangzhou",token=" ")# Replace with your own `secret_id`

and `secret_key`

try:

data = scf.invoke('FuncInvoked',data={"a":"b"})

data = scf.FuncInvoked(data={"a":"b"})

print (data)

except TencentServerlessSDKException as e:

print (e)

except TencentCloudSDKException as e:

print (e)

except Exception as e:

print (e)

return "Already invoked a function!" # return

main_handler("","")

Go to the directory where the PythonInvokeTest.py file is located and run the following command to view the

result.

python PythonInvokeTest.py

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 73

The output is as follows:

prepare to invoke a function!"Hello World form the function being invoked"

API List

API Reference

Client (class)
invoke (method)
TencentserverlessSDKException (class)

Client

Method

__init__

Parameter information:

Parameter
Name

Required Type Description

region No String
Region, which is the same as the region of the function invoking the
API and is Guangzhou for local invocations by default.

secret_id No String
User `SecretId`, which is obtained from the function's environment
variable by default and is required for local debugging.

secret_key No String
User `SecretKey`, which is obtained from the function's environment
variable by default and is required for local debugging.

token No String
User `token`, which is obtained from the function's environment
variable by default.

invoke

Parameter information:

Parameter
Name

Required Type Description

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 73

function_name Yes String Function name.

qualifier No String Function version. Default value: $LATEST.

data No Object
Input parameter for function execution, which must be an object
that can be processed by `json.dumps`.

namespace No String Namespace. Default value: default.

invoke

This is used to invoke a function. Currently, only sync invocation is supported.

Parameter information:

Parameter Required Type Description

region No String
Region, which is the same as the region of the function invoking
the API and is Guangzhou for local invocations by default.

secret_id No String

User SecretId , which is obtained from the function's
environment variable by default and is required for local
debugging.

secret_key No String

User SecretKey , which is obtained from the function's
environment variable by default and is required for local
debugging.

token No String
User token , which is obtained from the function's
environment variable by default.

function_name Yes String Function name.

qualifier No String Function version. Default value: $LATEST.

data No String
Input parameter for function execution, which must be an object
that can be processed by json.dumps .

namespace No String Namespace. Default value: default.

TencentserverlessSDKException

Attributes:

[code]
[message]
[request_id]

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 73

[response]
[stack_trace]

Methods and descriptions:

Method Name Description

get_code Returns error code

get_message Returns error message

get_request_id Returns RequestId

get_response Returns response

get_stack_trace Returns stack_trace

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 73

The Malagu framework can be easily integrated with third-party database operation frameworks, such as Sequelize
and TypeORM. Malagu's component mechanism increases the extensibility of third-party libraries and supports
attribute configuration for out-of-the-box use.

Currently, Malagu offers integration with TypeORM libraries. You can configure the database connection information
through the framework configuration file. In addition, Malagu is serverless-first, so it features best practice adaption to
serverless scenarios during integration with TypeORM. In addition, it draws on the Spring transaction management
mechanism to provide non-intrusive transaction management capabilities and support transaction propagation
behaviors.

Directions

1. The framework provides a built-in template database-app . You can run the following command to quickly

initialize a template application related to database operations:

malagu init demo database-app

2. After the initialization is completed, you only need to change the database connection to the connection in the
current actual environment. You can also install the @malagu/typeorm component directly in the project by

running the following command:

yarn add @malagu/typeorm

Or, run `npm i @malagu/typeorm`

Configuring Data Source Connection

The data source connection configuration in Malagu is similar to that in TypeORM, with slightly different configuration

form and location. In order to keep the configuration method for third-party libraries consistent with that for framework

Third-Party Tools
Malagu Framework
Accessing Database
Last updated：2021-10-28 11:55:56

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 73

components, the framework adapts the original configuration method of TypeORM to that for framework components
during integration with TypeORM. For more information on TypeORM data source connection configuration, please
see Connection Options.

Single
Multiple

If the data source connection name is not set, it will be default by default.

malagu.yml

backend:

malagu:

typeorm:

ormConfig:

- type: mysql

host: localhost

port: 3306

synchronize: true

username: root

password: root

database: test

Database Operation

The following sample uses the RESTful style to implement APIs.

Note：
You can also use the RPC style for implementation, and these two styles are similar.

import { Controller, Get, Param, Delete, Put, Post, Body } from '@malagu/mvc/lib/

node';

import { Transactional, OrmContext } from '@malagu/typeorm/lib/node';

import { User } from './entity';

@Controller('users')

export class UserController {

@Get()

@Transactional({ readOnly: true })

list(): Promise<User[]> {

const repo = OrmContext.getRepository(User);

https://typeorm.io/#/connection-options

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 73

return repo.find();

}

@Get(':id')

@Transactional({ readOnly: true })

get(@Param('id') id: number): Promise<User | undefined> {

const repo = OrmContext.getRepository(User);

return repo.findOne(id);

}

@Delete(':id')

@Transactional()

async reomve(@Param('id') id: number): Promise<void> {

const repo = OrmContext.getRepository(User);

await repo.delete(id);

}

@Put()

@Transactional()

async modify(@Body() user: User): Promise<void> {

const repo = OrmContext.getRepository(User);

await repo.update(user.id, user);

}

@Post()

@Transactional()

create(@Body() user: User): Promise<User> {

const repo = OrmContext.getRepository(User);

return repo.save(user);

}

}

Database Context

In Malagu, TypeORM's transactions are managed by the framework, which provides the @Transactional

decorator for how the framework initiates, propagates, commits, and rolls back transactions before and after execution
methods. Plus, the framework puts the managed EntityManager objects in the database context for easy use by the

business code. In addition, you can also manually manage database transactions and create EntityManager objects.

The database context is implemented based on the request context, so it is also at the request level. It mainly provides
methods to get EntityManager and Repository objects:

export namespace OrmContext {

export function getEntityManager(name = DEFAULT_CONNECTION_NAME): EntityManager {

...

}

export function getRepository<Entity>(target: ObjectType<Entity>|EntitySchema<Ent

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 73

ity>|string, name?: string): Repository<Entity> {

...

}

export function getTreeRepository<Entity>(target: ObjectType<Entity>|EntitySchema

<Entity>|string, name?: string): TreeRepository<Entity> {

...

}

export function getMongoRepository<Entity>(target: ObjectType<Entity>|EntitySchem

a<Entity>|string, name?: string): MongoRepository<Entity> {

...

}

export function getCustomRepository<T>(customRepository: ObjectType<T>, name?: st

ring): T {

...

}

export function pushEntityManager(name: string, entityManager: EntityManager): vo

id {

...

}

export function popEntityManager(name: string): EntityManager | undefined {

...

}

}

Transaction Management

Malagu provides the @Transactional decorator to define the behaviors of transactions in a declarative manner.

It decides the opening, propagation, commit, and rollback behaviors of transactions according to the decorator's
declaration.

@Transactional

The @Transactional decorator can be added to classes and methods. If it is added to a class and a method at

the same time, the final configuration will be to use the configuration of the method to merge the class, which has a
higher priority than the class. The decorator configuration options are as follows:

export interface TransactionalOption {

name?: string; // In case of multiple data source connections, specify the data s

ource connection name, which is `default` by default

isolation?: IsolationLevel; // Database isolation level

propagation?: Propagation; // Transaction propagation behavior. Valid values: Req

uired, RequiresNew. Default value: Required

readOnly?: boolean; // Read-only mode, i.e., not to start transaction. Transactio

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 73

n is started by default

}

Below is a sample:

@Put()

@Transactional()

async modify(@Body() user: User): Promise<void> {

const repo = OrmContext.getRepository(User);

await repo.update(user.id, user);

}

@Transactional and OrmContext

According to the configuration of the decorator, Malagu starts (or does not start) a transaction before invoking a
method and hosts the EntityManager in the OrmContext context. OrmContext is fetched to the framework to assist
with the EntityManager that has started a transaction, where the repository is created by the managed EntityManager.
In order to get the EntityManager correctly, please make sure that the configured name of the decorator is the same as
that of the EntityManager to be obtained through OrmContext. If you don't specify a name, the default value will be

 default .

After the method is executed, the framework automatically determines whether to commit or roll back the transaction
according to the method execution. If the method execution is exceptional, the transaction will be rolled back;
otherwise, it will be committed.

If the method has nested invocations to another method with the @Transactional decorator, the configuration of

transaction propagation behavior determines whether to reuse the transaction of the upper-layer method or start a

new one.

Database query

In most cases, database queries do not require starting transactions, but we recommend you add the
 @Transactional decorator to the method and configure readonly to true , so that the framework can

create an EntityManager that does not start transactions and maintain a uniform code style. Below is a sample:

@Get()

@Transactional({ readOnly: true })

list(): Promise<User[]> {

const repo = OrmContext.getRepository(User);

return repo.find();

}

Transaction propagation behavior

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 73

Transaction propagation behaviors determine how transactions are propagated between different methods that
require transactions. Currently, two transaction propagation behaviors are supported:

export enum Propagation {

Required, RequiresNew

}

Required: a transaction needs to be started. If the upper-layer method has already started one, it will be reused;
otherwise, a new one will be started.

RequiresNew: no matter whether the upper-layer method has started a transaction, a new transaction will be
started.

Note：
When a transaction is propagated in different methods, please make sure that the methods are invoked
synchronously. Below is a sample:

...

@Transactional()

async foo(): Promise<void> {

...

await bar(); // `await` must be added

}

....

...

@Transactional()

async bar(): Promise<void> {

...

}

Binding Entity Class

The framework provides the autoBindEntities method for binding entity classes, which is generally invoked in

the module entry file and contains the following two parameters:

entities: entity class you defined.
name: data source connection you want to bind to the entity class, which is default by default.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 73

export function autoBindEntities(entities: any, name = DEFAULT_CONNECTION_NAME) {

}

Below is a sample:

import { autoBindEntities } from '@malagu/typeorm';

import * as entities from './entity';

import { autoBind } from '@malagu/core';

autoBindEntities(entities);

export default autoBind();

Tools

Tool Description

DEFAULT_CONNECTION_NAME The default database connection name is default .

autoBindEntities Binds entity class.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 73

You can use the @malagu/scf-adapter component to deploy applications in SCF. Based on the principle of

convention over configuration, the component can be used out of the box with zero configuration required.

Cloud Resource

The adapter component has a default deployment rule, which can be overwritten. When running a deployment task, it

will use the SDK provided by the platform to create the required cloud resource according to the deployment rule. If it
finds that the cloud resource already exists, it will update the resource differentially. It always creates or updates
cloud resources in the most secure way possible; for example, if a custom domain name is configured, it will
attempt to create or update the custom domain name resource.

The adapter component deploys an application into a function, which means that one application corresponds to one

function. If the application is large, it should be split into small microapplications or microservices. Just like the
principle of granularity breakdown in the microservice architecture, reasonable granularity breakdown enables better
application management. The framework will guarantee the execution performance of one application in one function.

Environment Isolation

Malagu provides the stage configuration attribute to represent the environment. In the deployment rule agreed by

the @malagu/scf-adapter component, the mode attribute is used to map the stage attribute. Three

environments are provided by default: testing, prerelease, and production. The expression rule is as follows:

stage: "${'test' in mode ? 'test' : 'pre' in mode ? 'pre' : 'prod' in mode ? 'pro

d' : cliContext.prod ? 'prod' : 'test'}" # test, pre, prod

The stage value rule is as follows:

test: test environment, i.e., when the mode attribute contains the test mode, or mode does not contain

 test , pre , and prod and the command line parameter -p,--prod is not specified.

pre: prerelease environment, i.e., when the mode attribute contains the pre mode.

prod: production environment, i.e., when the mode attribute contains the prod mode, or the command line

parameter -p,--prod is specified.

You can choose different deployment environments by specifying mode :

Getting Started
Last updated：2021-10-28 11:55:56

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 73

Deploy to the test environment

malagu deploy -m test # Or use `malagu deploy`

Deploy to the prerelease environment. You can also skip deploying to the prerel

ease environment and deploy directly to the production environment

malagu deploy -m pre

Deploy to the production environment

malagu deploy -m prod

Isolation Level

The isolation level of environments can be controlled. You can use accounts to isolate environments by using
different configuration files for different environments and configuring different accounts for different configuration files.
Similarly, you can also use regions and service aliases to isolate environments. The framework isolates environments

by service alias by default. The isolation methods can be used together.

Association of the stage attribute value with the service alias (the following is the default rule and does not need to

be configured):

malagu:

faas-adapter:

alias:

name: ${stage}

Association with the API Gateway environment (the following is the default rule and does not need to be configured):

malagu:

faas-adapter:

apiGateway:

release:

environmentName: "${stage == 'pre' ? 'prepub' : stage == 'prod' ? 'release' : sta

ge}"

Deployment Mode

The adapter component defines the deployment mode through the mode attribute. Supported deployment modes

include:

http: deployment mode based on API Gateway + HTTP-triggered function. During the deployment process, cloud
resources such as API gateways, namespaces, and functions are created or updated.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 73

timer: deployment mode based on timer trigger + event-triggered function. During the deployment process, cloud
resources such as timer triggers, namespaces, and functions are created or updated.
api-gateway: deployment mode based on API Gateway + event-triggered function. During the deployment

process, cloud resources such as API gateways, namespaces, and functions are created or updated.

mode:

- http

Custom Deployment Rule

You can overwrite the default deployment rule with a custom rule of the same name.

Default rule

The default rule is defined in the malagu-remote.yml configuration file of the @malagu/scf-adapter

component.

Custom deployment type

mode:

- htpp # Valid values: http, timer, api-gateway. Default value: http

Custom namespace

malagu:

faas-adapter:

namespace:

name: xxxx # The default value is `default`

Note：
Other namespace attributes can be configured in a similar way.

Custom function name

malagu:

faas-adapter:

function:

name: xxxx # The default value is `${pkg.name}`

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 73

Note：
Other function attributes can be configured in a similar way.

Attribute Configuration

malagu:

faas-adapter:

type:

namespace:

description:

function:

name: ''

namespace:

handler:

publish:

l5Enable:

type:

codeSource:

description:

memorySize:

timeout:

runtime:

role:

clsLogsetId:

ClsTopicId:

env:

vpcConfig:

vpcId:

subnetId:

layers:

name:

version:

deadLetterConfig:

type:

name:

filterType:

publicNetConfig:

PublicNetStatus:

eipConfig:

eipStatus:

alias:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 73

name:

functionName:

namespace:

description:

routingConfig:

additionalVersionWeights:

version:

weight:

addtionVersionMatchs:

version:

key:

method:

expression:

apiGateway:

usagePlan:

name:

environment:

desc:

maxRequestNum:

maxRequestNumPreSec:

strategy:

name:

environmentName:

strategy:

api:

name:

serviceTimeout:

protocol:

desc:

authType:

enableCORS:

businessType:

serviceScfFunctionName:

serviceWebsocketTransportFunctionName:

serviceScfFunctionNamespace:

serviceScfFunctionQualifier:

serviceWebsocketTransportFunctionNamespace:

serviceWebsocketTransportFunctionQualifier:

isDebugAfterCharge:

serviceScfIsIntegratedResponse:

isDeleteResponseErrorCodes:

responseSuccessExample:

responseFailExample:

authRelationApiId:

userType:

oauthConfig:

publicKey:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 73

tokenLocation:

loginRedirectUrl:

responseErrorCodes:

code:

msg:

desc:

convertedCode:

needConvert:

requestConfig:

ApiRequestConfig:

path:

method:

requestParameters:

name:

desc:

position:

type:

defaultValue:

required:

RequestParameter:

service:

exclusiveSetName:

name:

protocol:

description:

netTypes:

ipVersion:

setServerName:

appIdType:

release:

environmentName:

desc:

customDomain:

name:

isDefaultMapping:

certificateId:

protocol:

netType:

pathMappingSet:

path:

Environment:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 73

Note：
Malagu is a third-party development tool with no Tencent Cloud official support unavailable currently. If you
have any questions or feedback, please go to the Malagu community for discussion and contribution by using

issues.

Malagu Overview

Aka the M framework, Malagu is a serverless-first, componentized, platform-independent progressive application
framework based on TypeScript. It uses the same programming language and IoC design to develop frontend,
backend, and frontend/backend integrated applications. It combines object-oriented programming (OOP), aspect-
oriented programming (AOP), and other elements and draws on many design ideas of Spring Boot.

On the backend, Malagu abstracts a set of APIs to facilitate adaptation to any platforms (SCF, AWS Lambda, Vercel,
etc.) and basic frameworks (Express, Koa, Fastify, etc.). It is an upper-layer framework independent of such platforms
and basic frameworks.

In serverless scenarios, Malagu is used to develop projects by application. An application generally includes multiple
APIs. If the application is large, it should be split into small microapplications or microservices. Just like the principle of
granularity breakdown in the microservice architecture, reasonable granularity breakdown enables better application

management. The framework will guarantee the execution performance of one application in one function.

For more information, please see Malagu Framework.

Malagu Architecture Diagram

Overview
Last updated：2021-10-28 11:55:56

https://github.com/cellbang/malagu
https://www.yuque.com/cellbang/malagu

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 73

Why Malagu?

Show All

Firm

展开&收起
Serverless is a new-generation cloud computing engine. It is developed to replace the traditional cloud service

framework. The core idea of serverless is to enable developers to focus on the business code with no need to care
about servers.

Serverless

展开&收起
Currently, all cloud vendors and communities are vigorously promoting and advocating the concept of serverless,
through which commercial solutions can be implemented with speed and quality at low costs. It is widely
acknowledged in the industry that serverless is the combination of FaaS and BaaS, and it may evolve into other forms

in the future. However, no matter how its form changes, the core philosophy of serverless will remain the same.
Serverless development experience is subject to the development experience of FaaS, which, however, is not quite
satisfactory at present and has many challenges. Some challenges may be hard to overcome at the FaaS underlying
layer in the near future, and some may be better to solve at the tool or framework level. Such challenges include cold
start, CI/CD, microservice, database access, local development, debugging, and execution, and platform-

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 73

independency. More and more serverless-first development frameworks will emerge, which not only are resource
orchestration and OPS tools, but also provide more advanced serverless or low-code development platforms.

How to solve such challenges?

You can try solving such problems from the perspective of development framework (which has been proven
effective). Then, you should decide whether to use a traditional framework or select a new framework and
whether to use a specific or general programming language if you choose a new framework.

Why

展开&收起
With many years of usage of traditional frameworks, most developers can tolerate their development experience.

However, when you need to migrate an application developed in a traditional framework to a serverless environment,
you will usually encounter various difficult problems, which are generally related to the framework's underlying design.
Although you can use the framework's extension capabilities to solve or mitigate some problems, practices show that
the threshold for framework transformation is very high, the effect is unsatisfactory, and hacking is required, making
the solution less graceful.
If you use a traditional framework in serverless, although your application can run in it, you may still have worries that

the application may not be able to run normally in the production environment. Of course, as the underlying
technologies of the serverless platform are continuously advanced, the use of traditional frameworks in serverless
scenarios are also improved greatly. However, to achieve the optimal status, changes to the application alone may not
be enough, and the framework also needs to adapt to serverless scenarios reasonably. Just like when the frontend UI
framework tries to be mobile-first, although browsers offer responsive support, the framework also requires adaption.

Therefore, a new serverless-first development framework is desired to give full play to the strengths of serverless and
make the serverless development experience inherit and even excel the traditional development experience.

Why

展开&收起
Currently, open source communities have many language-neutral serverless tools and frameworks, such as Funcraft,
Serverless Framework, and Vercel. Such tools do provide an acceptable experience and can form general standards

in terms of OPS, but may be unsatisfactory in terms of the experience of application code development, debugging,
and execution. Each programming language has its special benefits in aspects such as development, debugging, and
execution, so it is hard for language-neutral serverless tools to achieve an excellent performance while delivering a
unified development experience. You can enjoy an ultimate programming experience only by selecting a specific
language.

Why

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 73

展开&收起
Serverless makes it much easier to get started with backend development and greatly reduces the learning costs for
frontend developers to develop backend applications based on serverless. In the future, more and more frontend

developers will become full-stack developers. TypeScript can be used to develop both frontend and backend
applications, so it is very friendly to frontend and full-stack developers.

Its frontend architecture is a serverless-like architecture. For example, a frontend browser needs to load frontend code
for execution, and user code also needs to be loaded in a serverless scenario for execution. Therefore, many frontend
solutions are natively suitable for serverless scenarios. For example, the frontend can reduce the code size,

deployment time, and cold start time through packaging, compression, and tree shaking. Similarly, such optimized
solutions are also suitable for serverless scenarios. As a result, if you select TypeScript, you can get direct access to
many solutions proven and polished by countless real-world use cases.
In addition, TypeScript is similar to Java, so Java developers can easily switch to its technology stack.

Value

展开&收起
Malagu is a serverless-first, extensible, componentized progressive application framework based on TypeScript. It

shields the underlying details of different serverless platforms and most of the challenges in serverless scenarios. It is
developed and improved based on real business scenarios and provides solutions usable at the production level.
Moreover, it offers multi-cloud vendor-independent solutions.

How to Use Malagu

The Malagu framework consists of a series of components, each of which is a node module. You can choose the
appropriate components according to your business scenario. You can also develop your own components based on

the component mechanism. For the convenience of fast development, Malagu provides a command line tool that has
built-in out-of-the-box templates for different use cases. You can quickly create your applications through the
command line tool.

1. Run the following commands to install the relevant command line tool.

$ npm install -g @malagu/cli # Install Malagu command line tool

$ malagu init project-name # Use the `malagu init` command to select a template

and initialize a template application

$ cd project-name # Enter the root directory of the application

$ malagu serve # Start the application. The default port is 3000

2. Open a browser and access http://localhost:3000/ .

