
Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 72

Serverless Cloud Function

Development Guide

Product Documentation

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 72

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 72

Contents

Development Guide
Basic Concepts
Testing a Function
Environment Variables
Dependency Installation
Using Container Image
Error Types and Retry Policies
Dead Letter Queue
Connecting SCF to Database
Automated Deployment
Cloud Function Status Code
Common Errors and Solutions

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 72

Serverless Cloud Function (SCF) provides two deployment methods of code deployment and image deployment and
supports two function types of event-triggered function and HTTP-triggered function. Different deployment methods
and function types require different specifications during code development. This document describes the writing

specifications and related concepts of event-triggered function in code deployment. For more information on image
deployment and HTTP-triggered function, please see the corresponding documents.

An SCF event-triggered function involves three basic concepts: execution method, function input parameter, and
function return.

Note

The above concepts correspond respectively to the following in general project development:
Execution method: corresponds to the main function of the project and is the starting point of program
execution.
Function input parameter: refers to function input parameters in a normal sense. However, in the SCF
environment, the input parameters of an entry function are fixed values. For more information, please see
Function Input Parameters.

Function return: corresponds to the returned value of the main function in the project. After the function
returns, the code execution ends.

Execution Method

When the SCF platform invokes a function, it will first find an execution method as the entry point to execute your code.
At this time, you need to set in the format of filename.execution method name.
For example, if the user-configured execution method is index.handler , the SCF platform will first look for the

 index file in the code package and find the handler method in the file to start execution.

In the execution method, you can process the input parameters of the entry function and call other methods in the
code arbitrarily. In SCF, the completion of the execution of the entry function or the exception of the execution of the
function marks the end of execution.

Development Guide
Basic Concepts
Last updated：2022-04-28 16:31:41

https://intl.cloud.tencent.com/document/product/583/41076
https://intl.cloud.tencent.com/document/product/583/40688

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 72

Function Input Parameters

Function input parameters refer to the content that is passed to the function when the function is triggered. Usually,
there are two input parameters: event and context . However, the number of input parameters may vary by

programming language and environment. For more information, please see Serverless Cloud Function.

event
context

Usage

The event parameter is of dict type and contains the basic information that triggers the function. It can be in a

platform-defined or custom format. After the function is triggered, the event can be processed inside the code.

Instructions

There are two ways to trigger an SCF function:

1. Trigger by calling TencentCloud API.
2. Trigger by binding a trigger.

These two SCF trigger methods correspond to two event formats:

TencentCloud API:
You can freely define a parameter of dict type between the invoker and the function code, where the invoker

passes in the data in the format agreed upon, and the function code gets the data in the format.

Sample:
You can define a data structure {"key":"XXX"} of dict type, and when the invoker passes in the data

 {"key":"abctest"} , the function code can get the value abctest through event[key] .

Trigger:
SCF can be connected with various Tencent Cloud services such as API Gateway, COS, and CKafka, so you can

bind a corresponding Tencent Cloud service trigger to a function. When the function is triggered, the service will
pass the event to SCF as the event parameter in a platform-predefined unchangeable format. You can write

code based on this format and get information from the event parameter.

Sample:
When COS triggers a function, the specific information of the bucket and the file will be passed to the event

parameter in JSON format. The processing of the triggering event can be completed by parsing the event

information in the function code.

https://intl.cloud.tencent.com/document/product/583/40190
https://intl.cloud.tencent.com/document/product/583/17243
https://intl.cloud.tencent.com/document/product/583/9705
https://intl.cloud.tencent.com/document/product/583/9707

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 72

After understanding the basic usage of event and context input parameters, you should pay attention to the

following points when writing function code:

To ensure uniformity for each programming language and environment, `event` and `context` should be uniformly

encapsulated in the `JSON` data format.
Different triggers pass different data structures when triggering functions. For more information, please see Trigger
Overview.
If the function does not need any input, you can ignore the `event` and `context` parameters in your code.

Function Return

The SCF platform will get the returned value after the function is executed and handle according to different trigger

type as listed below.

Trigger
Type

Handling Method

Sync
triggering

If triggered by API Gateway or the TencentCloud API for sync invocation, the function will be
triggered synchronously.
For a function triggered synchronously, the SCF platform will not return the trigger result during
function execution.
After the function is executed, the SCF platform will encapsulate the returned value into JSON
format and return it to the invoker.

Async
triggering

For a function that is triggered asynchronously, the SCF will return the triggering request ID after
receiving the triggering event.
After the function is executed, the returned value will be encapsulated into JSON format and
stored in the log.
After the function execution is completed, you can query the log by the request ID in the return to
get the returned value of the asynchronously triggered function.

When the code in a function returns a specific value, it usually returns a specific data structure; for example:

Runtime Environment Returned Structure Type

Python Simple or dict data structure

Node.js JSON Object

PHP Array structure

Go Simple data structure or struct with JSON description

https://intl.cloud.tencent.com/document/product/583/9705

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 72

To ensure uniformity for different programming languages and environments, the function return will be uniformly
encapsulated in the JSON data format. For example, after SCF gets the returned value of the function in the above
runtime environment, it will convert the returned data structure to JSON and return it to the invoker.

Note：

You should ensure that the returned value of the function can be converted to JSON format. If the object is
returned directly and there is no JSON conversion method, SCF will fail when executing JSON conversion
and prompt an error.
For example, the returned value in the above runtime environment does not need to be converted to JSON

format before it is returned; otherwise, the output string will be converted again.

Exception Handling

If an exception occurs during testing and executing a function, the SCF platform will handle the exception as much as
possible and write the exception information into the log. Exceptions generated by function execution include caught
exceptions (handled errors) and uncaught exceptions (unhandled errors).

Handling method

You can log in to the SCF console and follow the steps below to test exception handling:

1. Create a function and copy the following function code without adding any triggers.

2. Click Test in the console and select the "Hello World" test sample for testing.

This document provides the following three ways to throw exceptions, and you can choose how to handle exceptions
in the code based on your actual needs.

Throw exceptions explicitly
Inherit the `Exception` class

Use the `Try` statement to capture errors

Sample

def always_failed_handler(event,context):

raise Exception('I failed!')

Description

https://console.intl.cloud.tencent.com/scf/index

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 72

This function will throw an exception during execution and return the following error message. The SCF platform will
record this error message in the function log.

File "/var/user/index.py", line 2, in always_failed_handler

raise Exception('I failed!')

Exception: I failed!

Returned error message

If exception handling and error capture are not performed in your code logic, the SCF platform will capture errors as
much as possible such as when your function suddenly crashes and exits during execution. The platform will return a

general error message if it cannot capture an error that occurs.
The table below lists some common errors in code execution:

Error Scenario Error Message

 raise is used to throw an
exception

{File "/var/user/index.py", line 2, in always_failed_handler raise
Exception('xxx') Exception: xxx}

The handler does not exist {'module' object has no attribute 'xxx'}

The dependent module does
not exist

{global name 'xxx' is not defined}

Timed out {"time out"}

Log

The SCF platform stores all the records of function invocations and the outputs of the function code in logs. You can
use the printout or log statement in the programming language to generate the output logs for debugging and
troubleshooting. For more information, please see Log Search Guide.

Notes

Because of the nature of SCF, you must write your function code in a stateless style. State characteristics in the
lifecycle of a function such as local file storage will be destroyed after the function invocation ends.
Therefore, you are recommended to store persistent states in TDSQL, COS, TencentDB for Memcached, or other
cloud storage services.

https://intl.cloud.tencent.com/document/product/583/39777

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 72

Development Process

For more information on the function development process, please see Getting Started.

https://intl.cloud.tencent.com/document/product/583/9179

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 72

After creating a function, you can directly test it in the following ways to understand the function execution conditions
and check the code execution process.

SCF console: Creating Event-Triggered Function in Console

Test Events and Templates

Functions are executed in an event-triggered method. Different triggers pass different event data structures when they
trigger functions. The function testing method is to trigger the function by sending a simulated test event.

The SCF console provides the following event templates to simulate corresponding events:

Hello World event template: it contains simple data structure and content that can be used to trigger functions
created by the hello world template.

COS file event template: it simulates file upload/deletion events in COS.
CMQ topic event template: it simulates message receiving events in a CMQ topic.
API Gateway event template: it simulates API request receiving events in API Gateway.
CKafka event template: it simulates message receiving events in a CKafka topic.

By clicking Change on the template management page in the console, you can change the currently used test
template to another system-defined or custom template. For more information on message structures in event

templates, please see Trigger Event Message Structure Summary.

Custom Template Configuration and Usage

In addition to the system-provided event templates, you can create more custom templates. By clicking Configure on
the template management page in the console, you can modify an existing template and save it as a custom template,
or directly enter a test event designed by yourself and save it as a custom template.

Notes

When using the test event template feature, you need to pay attention to the following:

The test event template name can contain letters, digits, hyphens, and underscores and must begin with a letter.

Testing a Function
Last updated：2021-10-26 15:40:39

https://intl.cloud.tencent.com/document/product/583/32742
https://intl.cloud.tencent.com/document/product/583/31439

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 72

On the same page, the created custom test templates can be deleted if they are no longer needed.
Up to five custom test templates can be configured for one single function. After the limit is reached, to configure a
new one, please first delete an old one that is no longer in use.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 72

When creating or editing a function, you can add, delete, or modify environment variables for the function runtime
environment by modifying the environment variables in the configuration.

The configured environment variables will be configured into the OS environment when the function is executed. The

function code can read the system environment variables to obtain the specific values and use them in the code.

Adding an environment variable

Adding an environment variable in the console

1.Log in to the Serverless console and click Function Service on the left sidebar
2. When creating or editing a function, you can add environment variables in "Environment Variable".
Environment variables usually appear as key-value pairs. Enter the required environment variable key in the first

input box and the required value in the second one. Note that the value of key or value can contain 2–64 bytes

of letters, digits, and underscores and must begin with a letter.

Adding an environment variable locally

For local development, you can configure the Environment environment variable directly under the function in

 serverless.yml and run the scf deploy command to deploy it to the cloud as shown below:

component: scf # Component name, which is required. It is `scf` in this example

name: scfdemo # Component instance name, which is required

Component parameter configuration

inputs:

name: scfdemo # Function name, which is `${name}-${stage}-${app}` by default

namespace: default

1. Default format. Create a specifically named COS bucket and upload it

src: ./src

type: event # Function. Valid values: event - event-triggered (default), web - HT

TP-triggered

handler: index.main_handler # Entry (valid if the function is event-triggered)

runtime: Nodejs10.15 # Runtime environment, which is Nodejs10.15 by default

region: ap-guangzhou # Function region

description: This is a function in ${app} application.

memorySize: 128 # Memory size in MB

Environment Variables
Last updated：2023-03-21 15:02:12

https://console.intl.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 72

timeout: 20 # Function execution timeout period in seconds

initTimeout: 3 # Initialization timeout period in seconds

environment: # Environment variable

variables: # Environment variable object

TEST1: value1

TEST2: value2

Viewing an environment variable

After configuring environment variables for the function, you can query the specific configured environment variables
by viewing the function configuration, which are displayed in the form of key=value .

Using an environment variable

The configured environment variables will be configured into the runtime environment when the function is executed.
The code can read the system environment variables to get the specific values and use them in the code. It should be

noted that environment variables cannot be read locally.
Assume that the key of the configured environment variable for a function is key . The following is the sample codes

for reading and printing the value of this environment variable in different runtime environments.

In a Python runtime environment, the way to read the environment variables is as follows:

import os

value = os.environ.get('key')

print(value)

In a Node.js runtime environment, the way to read the environment variables is as follows:

var value = process.env.key

console.log(value)

In a Java runtime environment, the way to read the environment variables varies by temporary authorized fields
and other fields:

For temporary authorized fields (including TENCENTCLOUD_SESSIONTOKEN ,

 TENCENTCLOUD_SECRETID , and TENCENTCLOUD_SECRETKEY), the way to read the environment

variables is as follows:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 72

System.out.println("value: "+ System.getProperty("key"));

For other fields, the way to read the environment variables is as follows:

System.out.println("value: "+ System.getenv("key"));

In a Go runtime environment, the way to read the environment variables is as follows:

import "os"

var value string

value = os.Getenv("key")

In a PHP runtime environment, the way to read the environment variables is as follows:

$value = getenv('key');

Overview

Variable value extraction: Values that may change in the business can be extracted into environment variables,

eliminating the need to modify the code according to business changes.
External storage of encrypted information: Keys related to authentication and encryption can be extracted
from the code into environment variables, avoiding security risks caused by the presence of relevant keys hard-
coded in the code.
Environment differentiation: The configuration and database information for different development stages can
be extracted into the environment variables, so that in different stages of development and release, you only need

to modify the environment variable values and execute the development environment database and release
environment database separately.

Use Limits

The following Use Limits apply to the environment variables of functions:

The key must begin with a letter ([a-zA-Z]) and can only contain alphanumeric characters and underscores ([a-zA-
Z0-9_]).

The keys of reserved environment variables cannot be modified, including:
Keys beginning with SCF_, such as SCF_RUNTIME.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 72

Keys beginning with QCLOUD_, such as QCLOUD_APPID.
Keys beginning with TENCENTCLOUD_, such as TENCENTCLOUD_SECRETID.

Built-in Environment Variables

The Key and Value of built-in environment variables in the current runtime environment are as shown in the

table below:

Environment Variable Key Specific Value or Value Source

TENCENTCLOUD_SESSIONTOKEN {Temporary SESSION TOKEN}

TENCENTCLOUD_SECRETID {Temporary SECRET ID}

TENCENTCLOUD_SECRETKEY {Temporary SECRET KEY}

_SCF_SERVER_PORT 28902

TENCENTCLOUD_RUNENV SCF

USER_CODE_ROOT /var/user/

TRIGGER_SRC Timer (if a timer trigger is used)

PYTHONDONTWRITEBYTECODE x

PYTHONPATH /var/user:/opt

CLASSPATH /var/runtime/java x:/var/runtime/java x/lib/*:/opt (`x` is 8 or 11)

NODE_PATH
/var/user:/var/user/node_modules:/var/lang/node
x/lib/node_modules:/opt:/opt/node_modules (`x` is 16, 14, 12, 10, 8, or
6)

PHP_INI_SCAN_DIR /var/user/php_extension:/opt/php_extension

_ /var/lang/python3/bin/python x (`x` is 37, 3, or 2)

PWD /var/user

LOGNAME qcloud

LANG en_US.UTF8

LC_ALL en_US.UTF8

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 72

Environment Variable Key Specific Value or Value Source

USER qcloud

HOME /home/qcloud

PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

SHELL /bin/bash

SHLVL 3

LD_LIBRARY_PATH /var/runtime/java x:/var/user:/opt (`x` is 8 or 11)

HOSTNAME {host id}

SCF_RUNTIME Function runtime

SCF_FUNCTIONNAME Function name

SCF_FUNCTIONVERSION Function version

TENCENTCLOUD_REGION Region

TENCENTCLOUD_APPID Account APPID

TENCENTCLOUD_UIN Account UIN

TENCENTCLOUD_TZ Time zone, which is UTC currently

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 72

Dependency Installation
Last updated：2023-05-05 15:39:53

Built-in Dependencies

SCF runtime environments have provided some dependent libraries, which can be queried in the corresponding
runtime development guide:
Node.js

Python
PHP
Go

Installing Dependent Libraries

You can save the dependent libraries of the SCF code in the code package and upload it to the cloud for use by SCF.
SCF supports the following runtimes and usage methods:

Node.js runtime

The Node.js runtime supports installing dependent libraries in the following three ways:
Upload from local
Online Dependency Installation
Use dependency management tools
You can use a dependency manager (such as npm) to locally install the dependent library, package and upload it with
the function code.

Note
Place the entry point file of the function in the root directory of the zip package. If you package and upload the

entire folder as a zip package, the function creation will fail because the entry point file cannot be found in the

unzipped root directory.
This document takes installing the lodash library as an example.

1. Run the mkdir test-package command in the local terminal to create a directory for storing the function

code and dependency libraries.
2. Run the following command to install the lodash dependency library in this directory.

https://intl.cloud.tencent.com/document/product/583/11060#.E5.B7.B2.E5.8C.85.E5.90.AB.E7.9A.84.E5.BA.93.E5.8F.8A.E4.BD.BF.E7.94.A8.E6.96.B9.E6.B3.95
https://intl.cloud.tencent.com/document/product/583/40323
https://intl.cloud.tencent.com/document/product/583/17531
https://intl.cloud.tencent.com/document/product/583/18032

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 72

cd test-package

npm install lodash

3. Create the function entry file index.js in this directory and import the lodash library in the code.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 72

'use strict';

const _ = require('lodash');

exports.main_handler = async (event, context) => {

 console.log("Hello World")

 console.log(event)

 console.log(event["non-exist"])

 console.log(context)

 return event

};

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 72

4. Compress the function code and dependent library to a zip package. Upload the zip package and create a function
via the SCF console.
4.1 Log in to the SCF console and click Functions on the left sidebar.

4.2 Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
4.3 Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.

Runtime environment: Select Node.js 12.16.
Submitting method: Select Local ZIP file.
4.4 Click Complete.
The Node.js runtime provides an online dependency installation feature, which can install dependencies online
according to the dependency information configured in package.json . For more information, see Online

Dependency Installation.

The SCF online editor Serverless Web IDE supports Terminal capability that has a built-in npm package

management tool.
Note
Serverless Web IDE has a delay in supporting newer versions of runtime environments. If the console does not open
up the Serverless Web IDE for the corresponding runtime environment, package and upload the dependency library

together with the code for dependency installation or install the dependency online.
This document takes installing the lodash library in the terminal as an example:

1. Log in to the SCF console and click Functions on the left sidebar.
2. In the function list, click a function name to enter the function details page.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf
https://intl.cloud.tencent.com/document/product/583/38105
https://intl.cloud.tencent.com/document/product/583/39962
https://console.intl.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 72

3. On the Function management page, select Function codes > Edit codes to view and edit the function.
4. Select Terminal > New terminal on the topbar of the IDE to open the terminal window.
5. Run the following command in the terminal to install the lodash dependency library:

cd src # Install the dependent library in the same level of directory as the funct

npm install lodash # You can view the npm version through the terminal

6. After the installation is completed, view package.json and node_modules in the file tree on the left side of

the IDE.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 72

7. After you click Deploy, the dependency library can be packaged and uploaded to the cloud together with the
function code.

Python runtime

The Python runtime supports installing dependent libraries in the following two ways.
Upload from local
Use dependency management tools
You can use a dependency manager (such as pip) to locally install the dependent library, package and upload it with
the function code.

Note
Place the entry point file of the function in the root directory of the zip package. If you package and upload the

entire folder as a zip package, the function creation will fail because the entry point file cannot be found in the

unzipped root directory.
Due to runtime environment differences, confirm that the installed dependency version is adapted to the function
runtime environment.

The function runtime environment is CentOS 7, and you need to install the dependencies in the same environment. If
not, an error where the dependencies cannot be found may occur while running the function after upload.
If some dependencies involve a dynamic link library, such as Pandas in Python 3.6, you need to manually copy the
relevant dependency package to the dependency installation directory before packaging and uploading them. For
more information, see Installing Dependency with Docker. You can also use the online IDE for installation.

This document takes installing the numpy library as an example:

1. Run the mkdir test-package command in the local terminal to create a directory for storing the function

code and dependency libraries.
2. Run the following command to install the numpy dependency library in this directory.

https://intl.cloud.tencent.com/document/product/583/38127

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 72

cd test-package

pip install numpy -t . # Check whether the pip version you are using is adapted to

3. Create the function entry file index.py in this directory and import the numpy library in the code.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 72

-*- coding: utf8 -*-

import json

import numpy

def main_handler(event, context):

 print("Received event: " + json.dumps(event, indent = 2))

 print("Received context: " + str(context))

 print("Hello world")

 return("Hello World")

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 72

4. Compress the function code and dependent library to a zip package. Upload the zip package and create a function
via the SCF console.
4.1 Log in to the SCF console and click Functions on the left sidebar.

4.2 Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
4.3 Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.

Runtime environment: Select Python 3.6.
Submitting method: Select Local ZIP file.
4.4 Click Complete.
The SCF online editor Serverless Web IDE supports Terminal capability that has a built-in pip package

management tool.
Note

 Serverless Web IDE has a delay in supporting newer versions of runtime environments. If the console does not open
up the Serverless Web IDE for the corresponding runtime environment, package and upload the dependency library
together with the code for dependency installation or install the dependency online.
This document takes installing the numpy library in the terminal as an example:

1. Log in to the SCF console and click Functions on the left sidebar.

2. In the function list, click a function name to enter the function details page.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf
https://intl.cloud.tencent.com/document/product/583/39962
https://console.intl.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 72

3. On the Function management page, select Function codes > Edit codes to view and edit the function.
4. Select Terminal > New terminal on the topbar of the IDE to open the terminal window.
5. Run the following command in the terminal to install the numpy dependency library:

cd src # Install the dependent library in the same level of directory as the funct

pip install numpy -t . # You can view the pip version through the terminal to check

6. After the installation is completed, view the installed dependency libraries in the file tree on the left side of the IDE.

7. After you click Deploy, the dependency library can be packaged and uploaded to the cloud together with the
function code.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 72

Note
You can run pip freeze > requirements.txt to generate the requirements.txt files for all

dependencies in the local environment.

Run pip install -r requirements.txt -t . in the terminal of the IDE to install the dependency package

according to the configuration in requirements.txt .

PHP runtime

Note
The PHP versions supported by SCF are 5.6, 7.2, 7.4 and 8.0. Different minor versions of PHP may be incompatible.
Check the version number first before installing dependencies.

Install custom libraries
Install custom extensions
You can use a dependency manager (such as “composer”) to locally install the dependent library, package and
upload it with the function code.
Note
Place the entry point file of the function in the root directory of the zip package. If you package and upload the

entire folder as a zip package, the function creation will fail because the entry point file cannot be found in the

unzipped root directory.
This document takes installing the requests library for PHP 7.2 as an example:

1. Run the mkdir test-package command in the local terminal to create a directory for storing the function

code and dependency libraries.

2. Create Composer.json under test-package and specify the dependency library and version to be

installed.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 72

{

"require": {

 "requests": ">=1.0"

 }

}

3. Run the following command to install the requests dependency library in this directory.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 72

cd test-package

composer install

4. Create the function entry file index.php in this directory and import the requests library in the code.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 72

<?php

require 'vendor/autoload.php';

function main_handler($event, $context) {

 return "hello world";

}

?>

5. Compress the function code and dependent library to a zip package. Upload the zip package and create a function
via the SCF console.
5.1 Log in to the SCF console and click Functions on the left sidebar.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 72

5.2 Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
5.3 Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.
Runtime environment: Select Php7.2.
Submitting method: Select Local ZIP file.
5.4 Click Complete.

Create the extension folder php_extension in a directory at the same level as the function entry file, add the

custom extension file .so and configuration file php.ini , and package and upload them together with the

function code.
This document uses installing the custom extension swoole.so for PHP 7.2 as an example.

1. Run the mkdir test-package command in the local terminal to create a directory for storing the function

code and dependency libraries.

2. Run the following command to create the folder php_extension in test-package and place the

configuration file php.ini and extension file .so corresponding to the extension in this directory. The directory

structure is as follows:
Note
The extension folder php_extension and configuration file php.ini are given fixed names. If other names

are used, the extension may fail to load.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 72

The extension folder php_extension , the configuration file php.ini , and the custom extension file .so

need to have executable permissions.

|____php_extension

| |____php.ini

| |____swoole.so

|____index.php

3. Custom extensions can be loaded from the code or layers. If an extension is uploaded as a layer, make sure that the
unzipped directory structure of the uploaded zip file is as follows:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 72

|____php_extension

| |____swoole.so

4. php.ini writing method:

The extension is in the code directory:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 72

extension=/var/user/php_extension/swoole.so

This extension is in the layer directory:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 72

extension=/opt/php_extension/swoole.so

5. Create the function entry file index.php in this directory. Check whether the extension is loaded successfully

through the extension_loaded() function, and if so, true will be returned; otherwise, false will be

returned.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 72

<?php

function main_handler($event, $context) {

 var_dump(extension_loaded('swoole'));

 return "hello world";

}

?>

6. Compress the function code and dependent library to a zip package. Upload the zip package and create a function
via the SCF console.
1. Log in to the SCF console and click Functions on the left sidebar.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 72

6.1 Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
6.2 Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.
Runtime environment: Select Php7.2.
Submitting method: Select Local ZIP file.
6.3 Click Complete.

Java runtime

You can use a dependency manager (such as maven) to locally install the dependent library, package and upload it
with the function code.
1. Run the mkdir test-package command in the local terminal to create a directory for storing the function

code and dependency libraries.
2. Create pom.xml in this directory and configure the dependency information in pom.xml .

3. Run the mvn package command in the root directory of the project folder, and the compilation output is as

follows:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 72

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building java-example 1.0-SNAPSHOT

[INFO] --

[INFO]

...

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.785 s

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 72

[INFO] Finished at: 2017-08-25T10:53:54+08:00

[INFO] Final Memory: 17M/214M

[INFO] --

4. Compress the function code and dependent library to a jar package. Upload the jar package and create a function
via the SCF console.
4.1 Log in to the SCF console and click Functions on the left sidebar.
4.2 Select the region where to create a function at the top of the page and click Create to enter the function creation

process.
4.3 Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.
Runtime environment: Select Java 8.

Submitting method: Select Local ZIP file.
4.4 Click Complete.

Go runtime

Instructions: upload the final binary file when packaging.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 72

Compile the dependent library of the Go runtime with codes to generate a binary file. Upload the binary file and create
a function via the SCF console.
1. Log in to the SCF console and click Functions on the left sidebar.

2. Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
3. Enter the basic information of the function on the Create function page.

Creation method: Select Create from scratch.

Runtime environment: Select Go 1.
Submitting method: Select Local ZIP file.
4. Click Complete.

https://console.intl.cloud.tencent.com/scf
https://console.intl.cloud.tencent.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 72

Overview

The SCF container image feature has been launched, so you can use images for development. This document
describes how to install an image and use it for development.

Prerequisites

Docker has been installed in the development environment.

Directions

Getting image

The SCF image is based on CentOS 7.7.1908 and available as a public image in TKE. You can search for scf-

repo on the public image page to view the image information.

1. Run the following command to pull the image:

Pull the SCF source image

docker pull ccr.ccs.tencentyun.com/scf-repo/scf-runtimes-image:latest

2. You can view the runtime contained in the current image in the /scf/lang/ directory.

As the SCF source image contains all runtimes, it is relatively large. Please refer to the following table and choose a
runtime image according to your needs.

Runtime Address

SCF ccr.ccs.tencentyun.com/scf-repo/scf-runtimes-image:latest

Using Container Image
Last updated：2021-01-21 14:26:17

Note：

If the command prompts a permission error and cannot be executed normally, add sudo before the
command and try again.

https://docs.docker.com/install/
https://console.intl.cloud.tencent.com/tke2/registry/qcloud
https://console.intl.cloud.tencent.com/tke2/registry/qcloud/default/detail/tag?rid=8&reponame=scf-repo%252Fscf-runtimes-image

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 72

Runtime Address

Go 1.8 ccr.ccs.tencentyun.com/scf-repo/runtime-go1:latest

Python 2.7 ccr.ccs.tencentyun.com/scf-repo/runtime-python2:latest

Python 3.6 ccr.ccs.tencentyun.com/scf-repo/runtime-python3:latest

PHP 5.6 ccr.ccs.tencentyun.com/scf-repo/runtime-php5:latest

PHP 7.2 ccr.ccs.tencentyun.com/scf-repo/runtime-php7:latest

Java 8 ccr.ccs.tencentyun.com/scf-repo/runtime-java8:latest

Node.js 6.10 ccr.ccs.tencentyun.com/scf-repo/runtime-node6:latest

Node.js 8.9 ccr.ccs.tencentyun.com/scf-repo/runtime-node8:latest

Node.js 10.15 ccr.ccs.tencentyun.com/scf-repo/runtime-node10:latest

Node.js 12.16 ccr.ccs.tencentyun.com/scf-repo/runtime-node12:latest

3. This document uses the scf:python3 tag as an example. Run the following command to retag the image:

docker pull ccr.ccs.tencentyun.com/scf-repo/runtime-python3:latest

Run this command to find the IMAGE ID and copy it

docker images

docker tag IMAGE_ID REPOSITORY:TAG

docker tag 0729ecc15d37 scf:python3

The execution result is as shown below:

Note：

If you don't want to tag the image, you need to replace scf:python3 in the sample with
 ccr.ccs.tencentyun.com/scf-repo/runtime-python3:latest .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 72

Using image for dependency installation

This document uses the NodeJieba dependency in the Node.js 12 environment as an example to describe how to
install dependencies with an image.

Getting Node.js 12 image

Run the following command to pull the image:

docker pull ccr.ccs.tencentyun.com/scf-repo/runtime-node12:latest

Run this command to find the IMAGE ID and copy it

docker images

docker tag d64a665357b6 scf:node12

Starting container and mounting directory

Run the following command to start the container and mount the local directory to a directory in the container (if the
directory does not exist, it will be created automatically). This document uses mounting the
 /path/to/your_project directory to the /tmp/your_project directory in the container as an example.

docker run -it -v /path/to/your_project:/tmp/your_project scf:node12 /bin/bash

Installing dependencies in container

1. After starting the container, run the cd command to enter the directory in the container. Then, run the npm

command to install NodeJieba in this directory as shown below:

cd /tmp/your_project

npm install nodejieba --save

2. The dependency will be installed in the local /path/to/your_project directory. Run the exit command

to exit the container as shown below:

Exit the container

exit

Following the above steps, you can install dependencies through the container image and then redeploy the code to
SCF. For the Node.js language, online dependency installation is also supported, so that dependencies will be
automatically installed upon upload.

Using image for development

This document uses Python 3.6 as an example to describe how to use a container for development and testing.

https://intl.cloud.tencent.com/document/product/583/38105

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 72

Getting Python 3.6 image

Run the following command to pull the image:

docker pull ccr.ccs.tencentyun.com/scf-repo/runtime-python3:latest

Run this command to find the IMAGE ID and copy it

docker images

docker tag d64a665357b6 scf:python3

Starting container and mounting directory

1. Run the following command to start the container and mount the local project directory to a directory in the

container (if the directory does not exist, it will be created automatically):

docker run -it -v /path/to/your_project:/tmp/your_project scf:node12 /bin/bash

2. Run the docker exec command to enter the container for development as shown below:

docker ps

Get the CONTAINER ID

docker exec -it CONTAINER_ID /bin/bash

Saving image

Run the following command to submit changes to the local image for subsequent use:

Get the container ID

docker ps

Save the image locally

docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

docker commit db47b8e66e64 scf:myimage

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 72

A function invocation may fail for various reasons. Different error types and invocation methods (sync or async
invocation) all affect the retry policy. You can configure a dead letter queue (DLQ) to collect error event information
and analyze causes of failures.

Error Types

A function invocation may fail for various reasons. The errors can be divided into the following types:

Invocation error

An invocation error occurs before the function is actually executed. It will occur in the following cases:

Invocation request error. For example, the data structure of the event passed in is too large, an input parameter
does not meet the requirements, or the function does not exist.
Invoker error. This error generally occurs when the invoker does not have required permissions.

Overrun error. The number of concurrent invocations exceeds the maximum concurrency limit.

Execution error

An execution error occurs during the actual execution of a function. It will occur in the following cases:

User code execution error. This type of errors occurs during the execution of user code; for example, the
function code throws an exception, or the format of the returned result is exceptional.
Runtime error. During function execution, the runtime is responsible for pulling and executing user code. A
runtime error refers to errors detected and reported by the runtime, such as function execution timeout (for the

timeout period, see Quota Limits) and code syntax error.

System error

It refers to errors of the function platform, such as internal error.

Retry Policy

Different error types and invocation methods (sync or async invocation) all affect the retry policy.

Sync invocation

Error Types and Retry Policies
Last updated：2022-03-15 18:56:13

https://intl.cloud.tencent.com/document/product/583/39848
https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 72

Types of sync invocation include sync invocation by TencentCloud API trigger, API Gateway trigger, CKafka trigger,
and CLB trigger.
In sync invocation, the error message will be directly returned; therefore, when an error occurs in sync invocation, the

platform will not automatically retry, and the retry policy (i.e., whether to retry and the number of retries) will be
determined by the invoker.

Note：
A CKafka trigger will create a backend module as a consumer that can connect to a CKafka instance and
consume messages. After obtaining the message, the backend module will synchronously invoke the triggered

function. Since the backend module of the CKafka trigger is maintained by SCF, the retry policy for sync
invocation will also be controlled by SCF.

For execution errors (including user code errors and runtime errors), the CKafka trigger will retry according
to the configured retry times, which is 10,000 by default.
For overrun errors and system errors, the CKafka trigger will continue to retry in an exponential backoff
manner until it succeeds.

Async invocation

Types of async invocation include async invocation by TencentCloud API trigger, COS trigger, scheduled trigger,
CMQ topic trigger, etc. For specific trigger invocation types, see Trigger Overview.
You can modify and customize the default retry attempts and maximum waiting time in the function configuration
according to your business needs. This configuration is only applicable to async invocations.

Retry Attempts: the number of times the function retries when an error is returned. This parameter is only
applicable to the policy configuration for execution errors. The default value is 2 retries.
Maximum Event Age: the maximum time that the function keeps events in the async event queue. This parameter
is applicable to the retry configuration of all async invocations. The default value is 6 hours, and the maximum
queue length can reach up to 100,000 events.

https://intl.cloud.tencent.com/document/product/583/18198
https://intl.cloud.tencent.com/document/product/583/12513
https://intl.cloud.tencent.com/document/product/583/17530
https://intl.cloud.tencent.com/document/product/583/39849
https://intl.cloud.tencent.com/document/product/583/18198
https://intl.cloud.tencent.com/document/product/583/9707
https://intl.cloud.tencent.com/document/product/583/9708
https://intl.cloud.tencent.com/document/product/583/11517
https://intl.cloud.tencent.com/document/product/583/9705

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 72

Async invocation retry policies for different types of errors:

Error Type Retry Policy

System error

The function request execution status code is 500. When an error of this type occurs, the SCF
platform will retry for the configured maximum event age (which is 6 hours by default) at
intervals of one minute. If a DLQ is configured, events that still fail after the maximum event
age elapses will be sent to it for further processing on your own; otherwise, they will be
discarded by the SCF platform.

Overrun error

The function request execution status code is 432. When an error of this type occurs, the SCF
platform will retry for the configured maximum event age (which is 6 hours by default) at
intervals of one minute. If a DLQ is configured, events that still fail after the maximum event
age elapses will be sent to it for further processing on your own; otherwise, they will be
discarded by the SCF platform.

Execution
errors
(except
system errors
and overrun
errors, all
other errors
are execution
errors)

When an error of this type occurs, the SCF platform will retry for the configured number of
retries at intervals of one minute. While automatically retrying, the function can still handle new
triggering events normally. If a DLQ is configured, events that still fail after retries for the
configured number of times or exceed the maximum waiting time will be passed to it;
otherwise, the events will be discarded by the SCF platform.

Note：

1. Due to the differences in execution mechanisms, the retry and dead letter queue configurations don't work

for errors during the execution of asynchronously executed functions.
2. How to judge whether the maximum waiting time is exceeded: if event retry time - event initial trigger time is

greater than the maximum waiting time, the maximum waiting time is exceeded.

https://intl.cloud.tencent.com/document/product/583/39466

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 72

Overview

A dead letter queue (DLQ) is a message queue under your account used to collect error event information and analyze
causes of failures. If you have configured a DLQ for a function, an event will be sent to the DLQ if:

It still fails after the SCF platform retries it twice due to a user code execution error

It still fails after the SCF platform retries it for more than 24 hours due to an overrun error or system error
Message retention in the async queue reaches the upper limit.

Note：
The DLQ feature is currently in beta test. If you want to try it out, please submit a ticket to apply for the
activation of CMQ.

DLQ Message Attributes

RequestId: (string) unique identifier of the event call request
ErrorCode: (numeric) error code status
ErrorMessage: (string) error message

When the DLQ delivers a message to CMQ, it encapsulates the attribute information and event information in a JSON
request body in the following format:

{

"RequestId": "b615b896-d197-47d7-8919-xxx",

"ErrorCode": -1,

"ErrorMessage": "Traceback (most recent call last):\n File \"/var/user/index.py

\", line 5, in main_handler\n if 'key1' in event.keys():\nNameError: global name

'event' is not defined",

"Body": {

"AppId": xxx,

"Uin": "xxx",

"SubAccountUin": "xxx",

"RequestSource": "TRIGGER_TIMER",

"FunctionName": "tabortest",

Dead Letter Queue
Last updated：2022-10-20 11:19:38

https://intl.cloud.tencent.com/document/product/583/9694
https://console.intl.cloud.tencent.com/workorder/category

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 72

"Namespace": "default",

"Qualifier": "$DEFAULT",

"InvocationType": "RequestResponse",

"ClientContext": "{\"Type\":\"Timer\",\"TriggerName\":\"tabortimer\",\"Time\":\"2

020-10-10T01:22:00Z\",\"Message\":\"\"}",

"LogType": "",

"TimeStampForInvoker": "160229310xxx",

"RequestId": "b615b896-d197-47d7-8919-xxx",

"PushTime": "2020-10-10T09:22:00.061824591+08:00",

"RetryNum": 2,

"Ttl": 0

}

}

Structure Content

AppId APPID.

Uin Root account ID.

SubAccountUin Sub-account ID of the creator (this field may return null, indicating that no valid values
can be obtained).

RequestSource Trigger request source.

FunctionName Function name.

Namespace Namespace.

Qualifier Version/Alias of the trigger function.

ClientContext Parameters used to run the function, which are passed in JSON format. For the
maximum parameter length, please see Limits.

TimeStampForInvoker The millisecond timestamp when the function is invoked.

RequestId
Unique ID of request. Each request returns a unique ID. The RequestId is
required to troubleshoot issues.

PushTime Time when the message is pushed to CMQ.

RetryNum Number of retries (0–2).

Ttl Retention time of the async queue event.

Directions

https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 72

Creating DLQ

Note：
SCF currently supports a CMQ topic or queue as the DLQ for your choice.
The DLQ of a function alias will follow the DLQ of the primary version, i.e., the first DLQ selected and

configured when the alias is created in the console.

1. Log in to the CMQ console and create a DLQ.
CMQ topics support filtering by tag or route match. To ensure that your subscribers can receive all error messages,
when adding a subscriber, please leave the tag filter empty and enter "#" for the BindingKey filter.

2. Log in to the Serverless console and create a function.

3. Configure the DLQ.
You can configure the DLQ on the Create Function or Configure Function page.

Monitoring DLQ

When using a DLQ, permission errors, incorrect resource configurations, or message sizes exceeding the size limit of
the target queue or topic will cause DLQ delivery failures. You can query the "number of failed deliveries to DLQ" in
the function monitoring information.

1. Log in to the Serverless console and select Function Service on the left sidebar.

2. Select the region of the function for which to monitor the DLQ at the top of the page and click the target function in
the list to enter the function details page.

3. On the function details page, click Monitoring information to view the number of failed deliveries to the DLQ.

https://console.intl.cloud.tencent.com/cmq/index?rid=1
https://console.intl.cloud.tencent.com/scf/list?rid=1&ns=default
https://console.intl.cloud.tencent.com/scf/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 72

Overview

You can quickly connect to your local or TencentDB databases by writing code in SCF. This document describes how
to use an existing SDK to connect to a TencentDB for MySQL database in the SCF function code and perform
operations such as insertion and query in the database. TDSQL-C and TDSQL for MySQL databases can also be

connected, and you can perform relevant operations as needed.

Note：
You can also use Serverless Framework components to deploy databases and functions. For more information,
see Serverless Application Center.

Prerequisites

You have registered a Tencent Cloud account and completed identity verification.

Interconnect network environments:
For self-built databases (non-TencentDB databases), you need to enable public network access first
before you can connect to them; otherwise, the connection may fail due to the lack of network connectivity.
For TencentDB databases, it is necessary to ensure that the function and database are in the same VPC.

Directions

You can follow the steps below to connect to and manage your TencentDB database in the function code.

Creating VPC

Note

You can skip this step for self-built databases.

Follow the steps below to create a VPC and subnet. For more information, see Building Up an IPv4 VPC.

Connecting SCF to Database
Last updated：2022-01-23 18:08:52

https://intl.cloud.tencent.com/document/product/236/5147
https://intl.cloud.tencent.com/document/product/1098/40615
https://intl.cloud.tencent.com/document/product/1042/33311
https://intl.cloud.tencent.com/zh/document/product/1040/33163
https://intl.cloud.tencent.com/register
https://console.intl.cloud.tencent.com/developer/auth
https://intl.cloud.tencent.com/document/product/215/31891

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 72

1. Log in to the VPC console.
2. Select the region of the VPC at the top and click +Create.
3. In the Create VPC pop-up window, enter the VPC information, initial subnet name, and region based on the

following information as shown below:

https://console.intl.cloud.tencent.com/vpc

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 72

4. Click OK.

Creating database instance

Note
You can skip this step for self-built databases.

The following steps take TDSQL-C as an example to describe how to quickly create a MySQL database.

Note：
For other types of databases, see corresponding product documents:

TencentDB for MySQL
TencentDB for PostgreSQL
TencentDB for Redis

1. Log in to the TDSQL-C purchase page, select the deployment region, AZ, database specification, and other
information, and click Buy Now.

2. After the purchase is completed, you will be redirected to the cluster list. After the status of the cluster becomes

Running, it can be used normally as shown below:

3. Click the cluster ID to enter the cluster details page. You can modify configurations, manage accounts, set security
groups, and perform other operations for your database cluster as shown below. For more information, see

https://intl.cloud.tencent.com/document/product/1098/40626
https://intl.cloud.tencent.com/document/product/236/37785
https://intl.cloud.tencent.com/document/product/409/40724
https://intl.cloud.tencent.com/document/product/239/37712

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 72

Managing TDSQL-C Cluster.

Creating a function

1. Log in to the SCF console and click Function Service on the left sidebar.

2. Write your business code and connect to the database through an existing SDK or the SCF DB SDK for MySQL
tool encapsulated by SCF by following the normal way of connecting to the database. Here, the Node.js function is
used as an example. For other languages, see the function code samples below.

Note
To use an existing SDK, you need to install the dependency package first. For more information, see
Dependency Installation.

exports.main_handler = async (event, context, callback) => {

var mysql = require('mysql2');

var connection = mysql.createConnection({

host : process.env.HOST,

user : process.env.USER,

password : process.env.PASSWORD

});

connection.connect();

connection.query('SELECT 1 + 1 AS solution', function (error, results, fields)

{

if (error) throw error;

console.log('The solution is: ', results[0].solution);

https://intl.cloud.tencent.com/document/product/1098/40628
https://console.intl.cloud.tencent.com/scf
https://intl.cloud.tencent.com/document/product/583/34879

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 72

});

connection.end();

}

3. Enter the Function Configuration page of the function and configure the function as shown below:
i. Add an environment variable and enter the information by referring to the table below:

key value

HOST Database address

USER Database username

PASSWORD Database password

ii. Enable VPC and select the same VPC and subnet as those of the database as shown below:

4. After completing the configuration, save it and invoke your function to connect to and manage your database.

Function code samples

You can refer to the following code samples to create functions and configure corresponding environmental variables:

Python
Node.js
PHP

Java

https://intl.cloud.tencent.com/document/product/583/32748

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 72

In Python, you can use the built-in pymysql dependency package in the SCF environment to connect to the database.
The sample code is as follows:

SCF DB SDK for MySQL

For ease of use, the SCF team encapsulated the code related to connection pools in Node.js and Python as SCF DB
SDK for MySQL. With this SDK, you can connect to MySQL, TDSQL-C, or TDSQL for MySQL databases and

performs operations such as insertion and query.

SCF DB SDK for MySQL has the following features:

It can automatically initialize the database client from environment variables.
It can maintain a persistent database connection globally and handle reconnection after disconnection.

-- coding: utf8 --

from os import getenv

import pymysql

from pymysql.err import OperationalError

mysql_conn = None

def __get_cursor():

try:

return mysql_conn.cursor()

except OperationalError:

mysql_conn.ping(reconnect=True)

return mysql_conn.cursor()

def main_handler(event, context):

global mysql_conn

if not mysql_conn:

mysql_conn = pymysql.connect(

host = getenv('DB_HOST', '<your db="" host="">'),

user = getenv('DB_USER','<your db="" user="">'),

password = getenv('DB_PASSWORD','<your db="" password="">'),

db = getenv('DB_DATABASE','<your db="" database="">'),

port = int(getenv('DB_PORT','<your db="" port="">')),

charset = 'utf8mb4',

autocommit = True

)

with __get_cursor() as cursor:

cursor.execute('select * from employee')

myresult = cursor.fetchall()

print(myresult)

for x in myresult:

print(x)

https://intl.cloud.tencent.com/document/product/236/5147
https://intl.cloud.tencent.com/document/product/1098/40615
https://intl.cloud.tencent.com/document/product/1042/33311

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 72

The SCF team will continuously check issues to ensure that the database connection is available, so you don't
need to pay attention to connection issues.

The sample code is as follows:

Node.js SDK JavaScript
Python SDK Python

Note：

1. Python 3.6, Python 2.7, Node.js 12.16, and Node.js 10.15 have built-in SCF DB SDK for MySQL, so no

additional installation is required.
2. For other Node.js versions, please refer to Dependency Installation to install scf-nodejs-

serverlessdb-sdk .

3. For specific usage of the SDK for Node.js, see SCF DB SDK for MySQL.

FAQs

How do I manage database connections more efficiently under the operating mechanism of SCF?

Each SCF request actually runs on a container that can be reused for a period of time when there are continuous

requests. A database connection is better to be established when the container is initialized, i.e., corresponding to
the global part of the function code. After the database connection is established, it can be reused during the
existence of the container and will be closed when the container is released. Please avoid frequent database
connections and disconnections inside the entry function, as they affect the performance. To ensure the database
connection availability, a connection check can be performed inside the entry function.

'use strict';

const database = require('scf-nodejs-serverlessdb-sdk').database;

exports.main_handler = async (event, context, callback) => {

let pool = await database('TESTDB2').pool()

pool.query('select * from coffee',(err,results)=>{

console.log('db2 callback query result:',results)

})

// no need to release pool

console.log('db2 query result:',result)

}

https://intl.cloud.tencent.com/document/product/583/34879
https://www.npmjs.com/package/scf-nodejs-serverlessdb-sdk

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 72

We recommend you use the database connection pool for container database connection management and set the
minimum number of connections to 1.

How do I perform database connection management in high-concurrency scenarios?

In high function concurrency scenarios, the number of concurrent connections may exceed the maximum number of

database connections. You can refer to the following solutions for handling:

Increase the maximum number of database connections.
Set the maximum dedicated concurrency quota for functions and limit the number of concurrent function
connections to be less than the maximum number of database connections.
TencentDB for MySQL provides the database proxy feature. Requests arriving at the proxy address are all relayed

through the proxy cluster to access the source and replica nodes of the database. Read/Write separation is
implemented, so that read requests are forwarded to read-only instances, which lowers the load of the source
database.

https://intl.cloud.tencent.com/document/product/236/42048

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 72

Overview

As agile development and DevOps get more popular, CI/CD has become an indispensable best practice by almost all
developers. It aims to deliver practical software programs more quickly.

CI/CD

CI/CD strengths

Reduced release cycle
Reduced risks

Improved code quality
More efficient feedback loop
Visual process

This document uses GitHub, Jenkins, and CODING as examples to describe how to use Serverless Framework CLI to
quick build CI/CD for your SCF project.

Automated Deployment Based on GitHub

Automated Deployment
Last updated：2022-05-20 18:49:24

https://intl.cloud.tencent.com/document/product/583/36262

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 72

GitHub Actions is an automated software development workflow launched by GitHub. It uses actions to execute any
tasks, including CI/CD.

Prerequisites

The SCF project has been hosted in GitHub.
The project needs to contain the serverless.yml configuration file used for execution in Serverless

Framework CLI.
To use an HTTP-triggered function, place the scf_bootstrap file in the root directory of your project.

Directions

Note：
SCF has released Tencent Serverless Action in GitHub.

https://docs.github.com/cn/actions
https://intl.cloud.tencent.com/document/product/583/40690
https://github.com/marketplace/actions/tencent-serverless-action

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 72

1. Search for Tencent Serveless Action in GitHub.

2. On the Actions tab, select Set up a workflow yourself as shown below.

3. How to use:

If you are familiar with the action usage, you can use the following command, which encapsulates the steps of
installing Serverless Framework and running the deployment command.

- name: serverless scf deploy

uses: woodyyan/tencent-serverless-action@main

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 72

If you are new to actions, you can select one of the following YML code samples based on your programming
language (Python, Java, or Node.js):

Python python
Java java
NodeJS nodejs

 TENCENT_SECRET_ID and TENCENT_SECRET_KEY are required during the deployment. You need to

configure such variables in Secrets in the GitHub code repository settings as follows:

When the code is pushed to the `main` branch, the current workflow will be e

xecuted

For more information on configuration, visit https://docs.github.com/cn/acti

ons/getting-started-with-github-actions.

name: deploy serverless scf

on: # Configuration of the event and branch listened on

push:

branches:

- main

jobs:

deploy:

name: deploy serverless scf

runs-on: ubuntu-latest

steps:

- name: clone local repository

uses: actions/checkout@v2

- name: deploy serverless

uses: woodyyan/tencent-serverless-action@main

env: # Environment variable

STAGE: dev # Your deployment environment

SERVERLESS_PLATFORM_VENDOR: tencent # The serverless platform is `aws` by defa

ult outside the Chinese mainland. Here, it is set to `tencent`

TENCENT_SECRET_ID: ${{ secrets.TENCENT_SECRET_ID }} # `secret ID` of your Tenc

ent Cloud account, which needs to be configured in `Settings-Secrets`

TENCENT_SECRET_KEY: ${{ secrets.TENCENT_SECRET_KEY }} # `secret key` of your T

encent Cloud account, which needs to be configured in `Settings-Secrets`

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 72

You can get the Tencent Cloud secret ID and key from CAM.

4. After the configuration, every time the code is pushed, the deployment process will be automatically triggered, and
you can view the execution result and error logs on the Actions tab in real time as shown below:

In addition, you can add testing to the process for steps such as security check and release based on your project
needs.

https://console.intl.cloud.tencent.com/cam/capi

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 72

Automated Deployment Based on Jenkinsfile

Jenkinsfile is commonly used on Jenkins and CODING platforms. After configuring the Jenkinsfile, you can complete
automated deployment on such platforms.

Prerequisites

You have hosted your SCF project onto platforms such as CODING, GitHub, GitLab, and Gitee.

The project needs to contain the serverless.yml configuration file used for execution in Serverless

Framework CLI.
To use an HTTP-triggered function, place the scf_bootstrap file in the root directory of your project.

Directions

This document provides Jenkinsfile code in three programming languages: Python, Java, and Node.js. Carefully read
the comments.

pipeline {

agent any

stages {

stage('check out') {

steps {

checkout([$class: 'GitSCM', branches: [[name: env.GIT_BUILD_REF]],

userRemoteConfigs: [[url: env.GIT_REPO_URL, credentialsId: env.CREDENTIALS_ID]]])

}

}

stage('Package'){ // This stage is only used for a Java project

steps{

container("maven") {

echo 'Package start'

sh "mvn package" // This line is used for a Java Maven project

sh "./gradlew build" // This line is used for a Java Gradle project

sh "mkdir zip" // This line is used to store JAR and `scf_bootstrap` files for HT

TP-triggered Java functions. You only need to specify the `Jar` directory in `Ser

verless.yml` for event-triggered Java functions.

sh "cp ./build/libs/XXX.jar ./scf_bootstrap ./zip" // This line is used to move J

AR and `scf_bootstrap` files for HTTP-triggered Java functions. You only need to

specify the `Jar` directory in `Serverless.yml` for event-triggered Java function

s. Note that if you use Maven for compilation, you need to change the JAR path be

low to `/target`.

}

}

}

stage('Install dependency') {

steps {

https://intl.cloud.tencent.com/document/product/583/40690

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 72

echo 'Installing dependency...'

sh 'npm i -g serverless'

sh 'npm install' // This line is used for a Node.js project

echo 'Dependency installed.'

}

}

stage('deploy') {

steps {

echo 'deploying...'

withCredentials([

cloudApi(

credentialsId: "${env.TENCENT_CLOUD_API_CRED}",

secretIdVariable: 'TENCENT_SECRET_ID',

secretKeyVariable: 'TENCENT_SECRET_KEY'

),

]) {

// Generate the credential file

sh 'echo "TENCENT_SECRET_ID=${TENCENT_SECRET_ID}\nTENCENT_SECRET_KEY=${TENCENT_SE

CRET_KEY}" > .env'

// Deploy

sh 'sls deploy --debug'

// Remove the credential

sh 'rm .env'

}

echo 'deployment complete'

}

}

}

}

You can use the above Jenkinsfile to quickly configure CI/CD on platforms such as Jenkins and CODING.

Note：
You can get Tencent Cloud TENCENT_SECRET_ID and TENCENT_SECRET_KEY required during the

deployment from CAM.

https://console.intl.cloud.tencent.com/cam/capi

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 72

Cloud Function Status Code
Last updated：2023-04-27 17:28:11

If an error code is returned after the function is executed, you can find the cause and solution for the error code by
referring to the following table.

Status Code and
Status Message

Description Solution

200
Success

Successful -

400
InvalidParameterValue

The request
event passed
in by the event
execution
function is not
of the JSON
type.

Make modifications as instructed in Introduction and
InvokeFunction and try again.

401
InvalidCredentials

Permission
authentication
failed.

Your account does not have the permission to manipulate this
function. Make modifications as instructed in the authorization
description in Permission Management Overview and try again.

402
ServiceSuspended

The service is
temporarily
suspended.

Your SCF service is temporarily suspended. You can refer to
Payment Overdue to make changes and try again later.

404
InvalidSubnetID

The subnet ID
in the network
configuration
of the function
is exceptional.

Check whether the network configuration of the function is
correct and whether the subnet ID is valid.

405
ContainerStateExited

The container
exits.

Check your image or bootstrap file to see whether it can be
properly started locally. If so, check whether the use limits of SCF
are followed; for example, RootFS is read-only and only /tmp
is writable. Local debugging command:

https://intl.cloud.tencent.com/document/product/583/17234
https://intl.cloud.tencent.com/document/product/583/41408
https://intl.cloud.tencent.com/document/product/583/18014
https://intl.cloud.tencent.com/document/product/583/12283
https://intl.cloud.tencent.com/document/product/583/38377

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 72

docker run -itd --read-only -v /tmp:/tmp

406
RequestTooLarge

The event
input
parameter of
the function,
i.e., the
request event
size of the
function,
exceeds the
quota limit.

The request event size exceeds the quota limit, which is 6 MB for
sync request events or 128 KB for async ones. Adjust the
request event size accordingly and try again.

407
The size of response
exceeds the upper limit
(6MB)

The size of
function
response
exceeds the
upper limit of 6
MB.

Please adjust it and try again.

410
InsufficientBalance

Insufficient
account
balance

The SCF service is suspended because the Tencent Cloud
account has overdue payments. Top up and try again.

429 The container The default maximum speed of elastic concurrency expansion

https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 72

ResourceLimit request rate is
too high and
exceeds the
limit due to
concurrency
surges.

(function burst) for each account is 500 concurrent instances per
region per minute. During a sudden concurrency surge, if there
are not enough containers to carry the requests, a large number
of container request actions will be triggered, and this message
will be returned when the account limit is exceeded.
After assessing the function concurrency, configure provisioned
concurrency for the function and prepare containers in advance
to avoid sudden concurrency surges from causing the container
request speed to exceed the limit.
If assessment shows that the provisioned concurrency cannot
meet the needs of your business scenario, you can purchase a
function package to increase the function burst in the region.

430
User code exception
caught

A user code
execution error
occurs.

Please check the code error stack information in the invocation
log provided by the SCF console, make modifications, and try
again.

432
ResourceLimitReached

The account-
level or region-
level
concurrency
limit is
reached.

For a function with a reserved quota configured, if the function
concurrency exceeds the quota, Function [xxx]
concurrency exceeded reserved quota xxx MB will
be returned. You can assess your business needs and increase
the quota or refer to Concurrency Overrun.
For a function with no reserved quota configured, if the
concurrency quota actually used by the function exceeds the
region-level unused concurrency quota, Function [xxx]
concurrency exceeded region unreserved quota

xxx MB will be returned. You can assess your business needs
and configure a reserved quota for the function. If the remaining
available quota in the corresponding region cannot meet your
business needs, you can purchase a function package to
increase the total concurrency quota in the region.

433
TimeLimitReached

Function
execution is
not completed
after the
execution
timeout period
elapses.

Please check whether a large number of time-consuming
operations exists in the service code.
Set a longer timeout period on the Function configuration
page. If the current timeout period has been set to the maximum
value, you can create an async function as instructed in Async
Execution to get a function execution duration of up to 24 hours.
This status code will trigger instance repossession.

434
MemoryLimitReached

The memory
limit is
reached.

Please check the code logic to see whether there is a memory
leak.
Please increase the memory configuration on the Function
Configuration page, or apply for a large memory on the
Function Memory Configuration page to get up to 120 GB of
function execution memory.

https://intl.cloud.tencent.com/document/product/583/37040
https://console.intl.cloud.tencent.com/scf/buy?rid=1&ns=default
https://intl.cloud.tencent.com/document/product/583/39848
https://console.intl.cloud.tencent.com/scf/buy?rid=1&ns=default
https://intl.cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E9.85.8D.E7.BD.AE
https://intl.cloud.tencent.com/document/product/583/39466
https://intl.cloud.tencent.com/document/product/583/37040#.E5.B9.B6.E5.8F.91.E5.AE.9E.E4.BE.8B.E5.A4.8D.E7.94.A8.E4.B8.8E.E5.9B.9E.E6.94.B6

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 72

This status code will trigger instance repossession.

435
FunctionNotFound

The function is
not found.

Please check whether the input parameters match the
information of the function to be invoked.
Please check whether the function exists when it is invoked and
whether there is any deletion action that causes the function to be
invoked after deletion.

436
InvalidParameterValue

The parameter
passed in for
 invoke
does not
conform to the
specification.

The parameter does not conform to the specification. Modify it as
instructed in Introduction and try again.

437
HandlerNotFound

The function
package is
loaded
incorrectly.

Please check whether the compressed package is in normal
status.
The function execution entry file is not found. Please make sure
that the entry file is in the root directory of the decompressed
code package.
Check the entry file and execution method in the code package.

438
FunctionStatusError

The function is
exceptional or
the SCF
service is
suspended.

The function is invoked in an exceptional state. Please wait for
the function status to become normal and try again.
The SCF service is suspended because the Tencent Cloud
account has overdue payments. Top up and try again.

439
User process exit when
running

The user
process exits
accidentally.

Based on the error message, find out the cause, fix the function
code, and try again.
This status code will trigger instance repossession.

441
UnauthorizedOperation

CAM
authentication
fails.

Check whether the CAM authentication parameters for the
function invoker are passed correctly. For more information, see
the authorization description in Permission Management
Overview.

442
QualifierNotFound

The specified
version is not
found.

The function version does not exist. Check the function version
and try again.

443
UserCodeError

A user code
execution error
occurs.

Based on the error log on the console, check the error stack of
the code and see whether the code can be executed properly.

444
PullImageFailed

Image pull
fails.

Check the integrity and validity of the selected image and try
again; for example, check whether it can be downloaded locally.

https://intl.cloud.tencent.com/document/product/583/37040#.E5.B9.B6.E5.8F.91.E5.AE.9E.E4.BE.8B.E5.A4.8D.E7.94.A8.E4.B8.8E.E5.9B.9E.E6.94.B6
https://intl.cloud.tencent.com/document/product/583/17234
https://intl.cloud.tencent.com/document/product/583/19805
https://intl.cloud.tencent.com/document/product/583/37040#.E5.B9.B6.E5.8F.91.E5.AE.9E.E4.BE.8B.E5.A4.8D.E7.94.A8.E4.B8.8E.E5.9B.9E.E6.94.B6
https://intl.cloud.tencent.com/document/product/583/18014

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 72

If the problem persists, submit a ticket.

445
ContainerInitError

Container start
fails.

Container start fails. Check whether your bootstrap file has been
uploaded successfully and ensure that the invocation path is
correct.
For an image deployment-based function, check whether the
 Command or Args parameter passed in the console is in
the correct format. For more information, see Usage.
For a code deployment-based function, please check whether
your bootstrap file has been uploaded successfully and ensure
that the invocation path is correct.

446
PortBindingFailed

Port listening
fails.

The container initialization duration exceeds the initialization
timeout period.
Please check whether the listening port is 9000.
Please check whether all the files in the code package or
container image are required files. Appropriate streamlining can
improve the initialization speed of the container.
Please check whether there are any exceptions or time-
consuming business logic in the initialization code. You can
appropriately increase the initialization timeout period and try
again.

447
PullImageTimeOut

Image pull
times out.

It may be a timeout caused by a large image or network jitters.
Minimize the image or increase the initialization timeout period
and try again. If the problem persists, submit a ticket.

449
InsufficientResources

There are no
resources
available at the
resource
specification
selected by
this function in
the specified
region.

If the resource type is high-spec CPU or GPU, it can be used
with the provisioned concurrency. If the problem persists, submit
a ticket.

450
InitContainerTimeout

Container start
times out.

The container start duration exceeds the initialization timeout
period. Minimize the code or increase the initialization timeout
period and try again.

499
RequestCanceled

The function
execution
request is
canceled.

For an asynchronously executed function, if the user cancels the
function execution request, this message will be returned.
For an HTTP-triggered function, if the timeout period of an API
Gateway trigger is less than the sum of the initialization duration
and execution duration of the function, this message will be

https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/583/41077
https://intl.cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E9.85.8D.E7.BD.AE
https://intl.cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E9.85.8D.E7.BD.AE
https://console.intl.cloud.tencent.com/workorder/category
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/583/19805#.E5.87.BD.E6.95.B0.E7.9B.B8.E5.85.B3.E9.85.8D.E7.BD.AE

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 72

returned. Please check whether there is any exceptionally time-
consuming business logic in the code or increase the backend
timeout period of the API and try again.

500
InternalError

Internal error An internal error occurs. Try again later. If the problem persists,
submit a ticket.

Concepts

Execution method

The execution method specifies which function in which file is executed first when the cloud function is invoked.

For Go programming, use the FileName format, such as main .

For Python, Node.js, or PHP programming, use the FileName.FunctionName format, such as
 index.main_handler .

Note that FileName does not include the file name extension, and FunctionName is the name of the entry
function. Ensure that the file name extension matches the programming language. For example, for Python

programming, the file name extension is .py , and for Node.js programming, the file name extension is .js . For

more information, see "Execution Method" in Basic Concepts.
For Java programming, use the package.class::method format, such as example.Hello::mainHandler .

For custom runtime, you can ignore the above patterns, and write the execution method in your custom language.

https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/583/9210

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 72

Common errors and solutions:

Error Code Solution

InvalidParameter.FunctionName
The value of FunctionName is invalid. Please modify it as
instructed in API documentation and try again.

InvalidParameterValue.Action The requests API does not exist. Please modify it as instructed in
API documentation and try again.

InvalidParameterValue.CosBucketRegion
The value of CosBucketRegion is invalid. Please modify it as
instructed in COS Regions and Access Endpoints and try again.

InvalidParameterValue.DeadLetterConfig
The value of DeadLetterConfig is invalid. The value of
 Type should be CMQ-TOPIC , CMQ-QUEUE , topic or
 queue , and Name cannot be left empty.

InvalidParameterValue.Enable
The value of Enable is invalid. It should be OPEN or
 CLOSE .

InvalidParameterValue.Memory
The value of Memory is invalid. The function runtime memory
defaults to 128M. You can set it to 64M, or 128M - 3072M (in
increments of 128M).

InvalidParameterValue.OrderBy
The value of OrderBy is invalid. Please modify it as instructed
in the API documentation and try again.

InvalidParameterValue.RoutingConfig
The value of RoutingConfig is invalid. Please refer to API
documentation.

Common Errors and Solutions
Last updated：2021-05-08 10:43:37

https://intl.cloud.tencent.com/document/product/583/18586
https://intl.cloud.tencent.com/document/product/583/17235
https://intl.cloud.tencent.com/document/product/436/6224
https://intl.cloud.tencent.com/document/api/583/17244?from_cn_redirect=1#RoutingConfig

