
Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 91

Serverless Cloud Function

Triggers

Product Documentation

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 91

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 91

Contents

Triggers
Trigger Overview
Trigger Event Message Structure Summary
API Gateway Trigger

Overview
Websocket

How It Works
Usage

COS Trigger
COS Trigger Description
Usage

CLS Trigger
CLS Trigger Description
Usage

Timer Trigger
Timer Trigger Description
Usage

CKafka Trigger
CKafka Trigger Description
Usage

Trigger Configuration Description
MPS Trigger
CLB Trigger Description
TencentCloud API Trigger

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 91

SCF currently supports two triggering modes: event-triggered and HTTP request-triggered.

Event-Triggered

Event-Triggered is a typical serverless execution mode. Its core components are SCF functions and event sources,
where an event source is a Tencent Cloud service or user-defined code that publishes an event, an SCF function is

the handler of the event, and a function trigger is a set of correspondences between functions and event sources. For
example, in the following scenarios:

Image/Video processing: the application crops the images uploaded by users into an appropriate size, stores the
images in COS, creates thumbnails of each image, and displays them on the user page. In this scenario, you need
to select COS as the event source and publish the event to the SCF function when the file is created. The event

data provides all the information about the bucket and the file.
Data processing: the data collected during the day (such as clickstreams) is analyzed with a report generated at
00:00. In this scenario, you need to select a timer as the event source to publish an event to the SCF function at a
specific time.
Custom application: the first image is invoked in your application to handle the SCF function as a module of the
application. In this scenario, you need to call the Invoke API in the application to publish an event.

These event sources can be any of the following:

Internal event sources: these are preconfigured Tencent Cloud services that can be used with SCF. If you
configure one of these event sources as a function trigger, the function will be invoked automatically when an event
occurs. The relationship between the event source and the function (i.e., event source mapping) will be maintained
on the event source side.

Custom applications: you can let custom applications publish events and invoke SCF functions.

Sample 1. COS publishes an event and invokes a function

You can configure the event source mapping for COS to determine what behaviors of COS will trigger an SCF
function (such as object PUT or DELETE). The COS event source mapping is stored in COS and uses the bucket
notification feature to direct COS to invoke the function when an event of a particular type occurs:

A COS trigger is created.

Triggers
Trigger Overview
Last updated：2021-08-11 16:19:48

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 91

The user creates/deletes an object in the bucket.
COS detects an object creation/deletion event.
COS automatically invokes a function. It will be determined which function should be invoked based on the event

source mapping stored in the COS configuration. The bucket and object information will be passed to the function
as event data.

Sample 2. A timer publishes a time and invokes a function

The event source mapping of the timer is saved in the SCF function configuration to determine when the function
should be automatically triggered:

A timer trigger is created.

The timer automatically invokes the function at the configured time.

Sample 3. A custom application invokes a function

If you need to invoke an SCF function in a custom application, you do not need to configure a function trigger or set up
an event source mapping in this case; instead, you can use the Invoke API as the event source.

The custom application uses the Invoke API to invoke the function and pass in the event data.

The function receives the triggering request and is executed.
If sync invocation is used, the function will return the result to the application.

Note：
In this example, since the custom application and the function are produced by the same user, the user
credentials (APPID , SecretId , and SecretKey) can be specified.

Notes

1. The current trigger-related restrictions for a single function can be viewed in Quota Limits.
2. There are specific restrictions on event source mappings due to the limitations of different Tencent Cloud services.

For example, for a COS trigger, the same event (such as file upload) in the same COS bucket cannot trigger
multiple different functions.

HTTP Request-Triggered

HTTP request-triggered is a special trigger method supported by SCF web functions. A native HTTP request can be
directly passed through to the function environment through API Gateway to trigger the execution and processing of

https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 91

the function. It is suitable for the development of web service scenarios. For detailed usage, please see Function
Overview.

https://intl.cloud.tencent.com/document/product/583/40688

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 91

Trigger Event Message Structure Summary
Last updated：2024-03-07 14:48:38

This document summarizes the message structures of all trigger events that are connected to SCF. For more
information on trigger configuration and restrictions, see Trigger Management.
Note:

The event structure of the input parameter passed in by a trigger has been partially defined and can be used directly.
You can get and use the Java library through the Java Cloud Event Definition or the Go library through the Go Cloud
Event Definition.

Event Message Structure of Integration Request for API Gateway
Trigger

When an API Gateway trigger receives a request, event data will be sent to the bound function in JSON format as
shown below. For more information, see API Gateway Trigger.

https://intl.cloud.tencent.com/document/product/583/9704
https://github.com/tencentyun/scf-java-libs
https://github.com/tencentyun/scf-go-lib/tree/master/events
https://intl.cloud.tencent.com/document/product/583/12513

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 91

{

 "requestContext": {

 "serviceId": "service-f94sy04v",

 "path": "/test/{path}",

 "httpMethod": "POST",

 "requestId": "c6af9ac6-****-****-9a41-93e8deadbeef",

 "identity": {

 "secretId": "abdcdxxxxxxxsdfs"

 },

 "sourceIp": "10.0.2.14",

 "stage": "release"

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 91

 },

 "headers": {

 "Accept-Language": "en-US,en,cn",

 "Accept": "text/html,application/xml,application/json",

 "Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",

 "User-Agent": "User Agent String"

 },

 "body": "{\\"test\\":\\"body\\"}",

 "pathParameters": {

 "path": "value"

 },

 "queryStringParameters": {

 "foo": "bar"

 },

 "headerParameters":{

 "Refer": "10.0.2.14"

 },

 "stageVariables": {

 "stage": "release"

 },

 "path": "/test/value",

 "queryString": {

 "foo" : "bar",

 "bob" : "alice"

 },

 "httpMethod": "POST"

}

Event Message Structure for Timer Trigger

When a function is invoked at a scheduled time, event data will be sent to the bound function in JSON format as
shown below.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 91

{

 "Type":"Timer",

 "TriggerName":"EveryDay",

 "Time":"2019-02-21T11:49:00Z",

 "Message":"user define msg body"

}

Event Message Structure for COS Trigger

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 91

When an object creation or deletion event occurs in the specified COS bucket, event data will be sent to the bound
function in JSON format as shown below. For more information, see COS Trigger.

{

 "Records": [{

 "cos": {

 "cosSchemaVersion": "1.0",

 "cosObject": {

 "url": "http://testpic-1253970026.cos.ap-chengdu.myqcloud.com/testf

 "meta": {

 "x-cos-request-id": "NWMxOWY4MGFfMjViMjU4NjRfMTUy********ZjM=",

https://intl.cloud.tencent.com/document/product/583/9707

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 91

 "Content-Type": ""

 },

 "vid": "",

 "key": "/1253970026/testpic/testfile",

 "size": 1029

 },

 "cosBucket": {

 "region": "cd",

 "name": "testpic",

 "appid": "1253970026"

 },

 "cosNotificationId": "unkown"

 },

 "event": {

 "eventName": "cos:ObjectCreated:*",

 "eventVersion": "1.0",

 "eventTime": 1545205770,

 "eventSource": "qcs::cos",

 "requestParameters": {

 "requestSourceIP": "192.168.15.101",

 "requestHeaders": {

 "Authorization": "q-sign-algorithm=sha1&q-ak=AKIDQm6iUh2NJ6jL41

 }

 },

 "eventQueue": "qcs:0:lambda:cd:appid/1253970026:default.printevent.$LAT

 "reservedInfo": "",

 "reqid": 179398952

 }

 }]

}

Event Message Structure for CKafka Trigger

When a specified CKafka topic receives a message, the backend consumption module of SCF will consume the
message and encapsulate it into an event in JSON format like the one below, which will trigger the bound function and
pass the data content as input parameters to the function. For more information, see CKafka Trigger.

https://intl.cloud.tencent.com/document/product/583/17530

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 91

{

 "Records": [

 {

 "Ckafka": {

 "topic": "test-topic",

 "partition":1,

 "offset":36,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka!"

 }

 },

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 91

 {

 "Ckafka": {

 "topic": "test-topic",

 "partition":1,

 "offset":37,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka again!"

 }

 }

]

}

Event Message Structure for CMQ Topic Trigger

When a specified CMQ topic receives a message, event data will be sent to the bound function in JSON format as
shown below. For more information, see CMQ Topic Trigger.

https://intl.cloud.tencent.com/document/product/583/11517

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 91

{

 "Records": [

 {

 "CMQ": {

 "type": "topic",

 "topicOwner":"120xxxxx",

 "topicName": "testtopic",

 "subscriptionName":"xxxxxx",

 "publishTime": "1970-01-01T00:00:00.000Z",

 "msgId": "123345346",

 "requestId":"123345346",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 91

 "msgBody": "Hello from CMQ!",

 "msgTag": "tag1,tag2"

 }

 }

]

}

Event Message Structure for CLS Trigger

When the specified CLS trigger receives a message, the CLS backend consumption module will consume the
message and encapsulate it to asynchronously invoke your function. In order to ensure the efficiency of data transfer in
a single triggering action, the value of the data field is a Base64-encoded ZIP document. For more information, see
CLS Trigger.

https://intl.cloud.tencent.com/document/product/583/38845

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 91

{

 "clslogs": {

 "data": "ewogICAgIm1lc3NhZ2VUeXBlIjogIkRBVEFfTUVTU0FHRSIsCiAgICAib3duZXIiOiAiMT

 }

}

After being decoded and decompressed, the log data will look like the following JSON body (using decoded CLS Logs
message data as an example):

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 91

{

 "topic_id": "xxxx-xx-xx-xx-yyyyyyyy",

 "topic_name": "testname",

 "records": [{

 "timestamp": "1605578090000000",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }, {

 "timestamp": "1605578090000003",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }]

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 91

Event Message Structure for MPS Trigger

When a specified MPS trigger receives a message, the event structures and fields will be as shown below (with the

 WorkflowTask task as an example). For more information, see MPS Trigger.

{

 "EventType":"WorkflowTask",

 "WorkflowTaskEvent":{

https://intl.cloud.tencent.com/document/product/583/39163

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 91

 "TaskId":"245****654-WorkflowTask-f46dac7fe2436c47******d71946986t0",

 "Status":"FINISH",

 "ErrCode":0,

 "Message":"",

 "InputInfo":{

 "Type":"COS",

 "CosInputInfo":{

 "Bucket":"macgzptest-125****654",

 "Region":"ap-guangzhou",

 "Object":"/dianping2.mp4"

 }

 },

 "MetaData":{

 "AudioDuration":11.261677742004395,

 "AudioStreamSet":[

 {

 "Bitrate":127771,

 "Codec":"aac",

 "SamplingRate":44100

 }

],

 "Bitrate":2681468,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Duration":11.261677742004395,

 "Height":720,

 "Rotate":90,

 "Size":3539987,

 "VideoDuration":10.510889053344727,

 "VideoStreamSet":[

 {

 "Bitrate":2553697,

 "Codec":"h264",

 "Fps":29,

 "Height":720,

 "Width":1280

 }

],

 "Width":1280

 },

 "MediaProcessResultSet":[

 {

 "Type":"Transcode",

 "TranscodeTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 91

 "Definition":10,

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_transcode_10",

 "SegmentObjectName":"/dasda/dianping2_transcode_10_{number}

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Path":"/dasda/dianping2_transcode_10.mp4",

 "Definition":10,

 "Bitrate":293022,

 "Height":320,

 "Width":180,

 "Size":401637,

 "Duration":11.26200008392334,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Md5":"31dcf904c03d0cd78346a12c25c0acc9",

 "VideoStreamSet":[

 {

 "Bitrate":244608,

 "Codec":"h264",

 "Fps":24,

 "Height":320,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 91

 "Width":180

 }

],

 "AudioStreamSet":[

 {

 "Bitrate":48414,

 "Codec":"aac",

 "SamplingRate":44100

 }

]

 }

 },

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"AnimatedGraphics",

 "TranscodeTask":null,

 "AnimatedGraphicTask":{

 "Status":"FAIL",

 "ErrCode":30010,

 "Message":"TencentVodPlatErr Or Unkown",

 "Input":{

 "Definition":20000,

 "StartTimeOffset":0,

 "EndTimeOffset":600,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_animatedGraphic_20000"

 },

 "Output":null

 },

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"SnapshotByTimeOffset",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 91

 "SnapshotByTimeOffsetTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "TimeOffsetSet":[

],

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_snapshotByOffset_10_{n

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Definition":0,

 "PicInfoSet":[

 {

 "TimeOffset":0,

 "Path":"/dasda/dianping2_snapshotByOffset_10_0.jpg"

 "WaterMarkDefinition":[

 515247

]

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 91

 }

]

 }

 },

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"ImageSprites",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_imageSprite_10_{number

 "WebVttObjectName":"/dasda/dianping2_imageSprite_10",

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Definition":10,

 "Height":80,

 "Width":142,

 "TotalCount":2,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 91

 "ImagePathSet":[

 "/dasda/imageSprite/dianping2_imageSprite_10_0.jpg"

],

 "WebVttPath":"/dasda/imageSprite/dianping2_imageSprite_10.v

 }

 }

 }

]

 }

}

Event Message Structure for CLB Trigger

When a CLB trigger receives a request, event data will be sent to the bound function in JSON format as shown below.
For more information, see CLB Trigger Description.

https://intl.cloud.tencent.com/document/product/583/39849

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 91

{

 "headers": {

 "Content-type": "application/json",

 "Host": "test.clb-scf.com",

 "User-Agent": "Chrome",

 "X-Stgw-Time": "1591692977.774",

 "X-Client-Proto": "http",

 "X-Forwarded-Proto": "http",

 "X-Client-Proto-Ver": "HTTP/1.1",

 "X-Real-IP": "9.43.175.219",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 91

 "X-Forwarded-For": "9.43.175.xx"

 "X-Vip": "121.23.21.xx",

 "X-Vport": "xx",

 "X-Uri": "/scf_location",

 "X-Method": "POST"

 "X-Real-Port": "44347",

 },

 "payload": {

 "key1": "123",

 "key2": "abc"

 },

 "isBase64Encoded": "false"

}

Event Message Structure for EventBridge Trigger

With EventBridge, you can further expand the function event trigger sources and send events generated by
EventBridge to SCF in the following form, where the content of the "data" field is determined by the event source.

Here, TDMQ is used as an example:

https://intl.cloud.tencent.com/products/eb

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 91

 {

 "specversion": "0",

 "id": "13a3f42d-7258-4ada-da6d-023a33******",

 "type": "connector:tdmq",

 "source": "tdmq.cloud.tencent",

 "subjuect": "qcs::tdmq:$region:$account:topicName/$topicSets.clusterId/$topicSets

 "time": "1615430559146",

 "region": "ap-guangzhou",

 "datacontenttype": "application/json;charset=utf-8",

 "data": {

 "topic": "persistent://appid/namespace/topic-1",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 91

 "tags": "testtopic",

 "TopicType": "0",

 "subscriptionName": "xxxxxx",

 "toTimestamp": "1603352765001",

 "partitions": "0",

 "msgId": "123345346",

 "msgBody": "Hello from TDMQ!"

 }

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 91

You can implement backend web services by writing SCF functions and providing services through API Gateway
which will pass the request content as parameters to the function and return the result from the function back to the
requester as the response.

Note：
API Gateway triggers can trigger both event-triggered functions and HTTP-triggered functions. This document
only describes the request method of event-triggered function triggering. For more information on HTTP-
triggered function triggering, see Trigger Management.

Characteristics of API Gateway triggers:

Push model
After API Gateway receives an API request, if the API Gateway backend is connected with an SCF function, the
function will be triggered. Meanwhile, API Gateway will send the relevant information of the API request to the
triggered function as event input parameters, such as the specific service that receives the request, API rule,

actual request path, method, and path , header , and query of the request.

Sync invocation

API Gateway invokes the function synchronously, and it will wait for the function to return before the timeout period
configured in it elapses. For more information on invocation types, see Invocation Types.

API Gateway Trigger Configuration

API Gateway triggers can be configured in the SCF console or the API Gateway console.

SCF console
API Gateway console

In the SCF console, you can add API Gateway triggers, select existing or create API services, and define the request
methods (currently, six methods are supported, namely, ANY, GET, HEAD, POST, PUT, and DELETE),
environments (test, pre-release, and release environments), and authentication methods (API Gateway key pair).

API Gateway Trigger
Overview
Last updated：2022-01-23 18:04:51

https://intl.cloud.tencent.com/document/product/583/40691
https://intl.cloud.tencent.com/document/product/583/9694
https://console.intl.cloud.tencent.com/scf/index
https://console.intl.cloud.tencent.com/apigateway/index

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 91

Limitation on API Gateway Trigger Binding

In API Gateway, one API rule can be bound to only one function, but one function can be bound to multiple API rules
as the backend. You can create an API with different paths in the API Gateway console and point the backend to the
same function. APIs with the same path, same request method, and different release environments are regarded as

the same API and cannot be bound repeatedly.

API Gateway triggers currently can only be bound to functions in the same region; for example, a function created in
the Guangzhou region can only be bound to and triggered by API rules created in the Guangzhou region. If you want
to trigger a function through API Gateway configuration in a specific region, please create a function in that region.

Request and Response

Request method is the method to process request sent from API Gateway to SCF, and response method is the

method to process the returned value sent from SCF to API Gateway. Both request and response methods can be
planned and implemented by means of passthrough and integration.

Integration request and passthrough request

Integration request means that API Gateway converts the content of the HTTP request into request data structures
which are passed to the function for handling as event input parameters of the function. The following details the

request data structures.

For more information on passthrough requests, see Trigger Management.

Note：
When transferring images or files to SCF through API Gateway, you need to Base64-encode them. If the size of
a Base64-encoded file is above 6 MB, we recommend you upload the file to COS through the client and pass
the object address to SCF first. Then, SCF will pull the file from COS to complete the upload.

Event message structures of integration request for API Gateway trigger

When an API Gateway trigger receives a request, it sends the event data to the bound function in JSON format as

shown below:

{

"requestContext": {

"serviceId": "service-f94sy04v",

"path": "/test/{path}",

https://console.intl.cloud.tencent.com/apigateway/index
https://intl.cloud.tencent.com/document/product/583/40691#.E8.AF.B7.E6.B1.82.E4.B8.8E.E5.93.8D.E5.BA.94
https://intl.cloud.tencent.com/zh/product/cos

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 91

"httpMethod": "POST",

"requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",

"identity": {

"secretId": "abdcdxxxxxxxsdfs"

},

"sourceIp": "10.0.2.14",

"stage": "release"

},

"headers": {

"accept-Language": "en-US,en,cn",

"accept": "text/html,application/xml,application/json",

"host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",

"user-Agent": "User Agent String"

},

"body": "{\"test\":\"body\"}",

"pathParameters": {

"path": "value"

},

"queryStringParameters": {

"foo": "bar"

},

"headerParameters":{

"Refer": "10.0.2.14"

},

"stageVariables": {

"stage": "release"

},

"path": "/test/value",

"queryString": {

"foo" : "bar",

"bob" : "alice"

},

"httpMethod": "POST"

}

The data structures are as detailed below:

Structure Description

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 91

Structure Description

requestContext

Configuration information, request ID, authentication information, and source
information of the API gateway where the request comes from.

 serviceId , path , and httpMethod are service ID, API path, and
method of API Gateway.
 stage indicates the environment of the request source API.
 requestId identifies the unique ID of the current request.
 identity identifies the user's authentication method and information.
 sourceIp identifies the request source IP.

path Records the complete Path information of the actual request.

httpMethod Records the HTTP method of the actual request.

queryString Records the complete Query content of the actual request.

body Records the content of the actual request after being converted into a String .

headers Records the complete Header content of the actual request.

pathParameters Records the Path parameters configured in API Gateway and their actual values.

queryStringParameters
Records the Query parameters configured in API Gateway and their actual
values.

headerParameters
Records the Header parameters configured in API Gateway and their actual
values.

Note：

The content of requestContext may be increased during API Gateway iteration. At present, it is

guaranteed that the content of the data structure will only be increased but not reduced, so that the existing
structure will not be compromised.
Parameters in real requests may appear in multiple locations and can be selected based on your business
needs.

Integration response and passthrough response

Integration response means that API Gateway parses the returned content of the function and constructs an HTTP

response based on the parsed content. With the aid of integration response, you can control the status code, headers,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 91

and body content of the response by using code, and implement the response in a custom format, such as XML,
HTML, JSON, and even JS. When using integration response, data structures need to be returned based on the rules
of integration response for API Gateway trigger before they can be successfully parsed by API Gateway; otherwise,

error message {"errno":403,"error":"Invalid scf response format. please check your scf

response format."} will appear.

Passthrough response means that API Gateway directly passes the returned content of the function to the API
requester. Generally, the data format of this type of responses is fixed at JSON format, the status code is defined
according to the status of function execution, and status code 200 is returned if the function is successfully executed.

With passthrough response, you can get the JSON format and parse the structures at the call location to get the
content in the structures.

Note：

If the API Gateway trigger is configured in the API Gateway console, the way to handle the response is
passthrough response by default. To enable integration response, select Enable integration response at
the backend configuration location in the API configuration and return the content in the data structures

detailed below in the code.
If the API Gateway trigger is configured in the SCF console, the integration response feature is enabled by
default. Please pay attention to the format of the returned data.

Returned data structures of integration response for API Gateway trigger

If integration response is set for API Gateway, the data structure in the following JSON format should be returned to
API Gateway.

{

"isBase64Encoded": false,

"statusCode": 200,

"headers": {"Content-Type":"text/html"},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

The data structures are as detailed below:

Structure Description

isBase64Encoded
This indicates whether the content in the body is Base64-encoded binary. It should be
 true or false in JSON format. The specification of true and false varies
by language, so you should adjust based on your actual language.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 91

Structure Description

statusCode HTTP return code, which should be an integer value.

headers
HTTP return header, which should contain multiple key-value or key:
[value,value] objects. Both key and value should be strings. The Location key
header is not supported currently.

body HTTP return body.

Taking Python 3.6 as an example, the sample code is as follows:

-*- coding: utf8 -*-

import json

def main_handler(event, context):

return {

"isBase64Encoded": false,

"statusCode": 200,

"headers": {"Content-Type":"text/html"},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

The returned result of a function triggered by API Gateway is as follows:

If you need to return multiple headers with the same key, you can use a string array to describe different values; for
example:

{

"isBase64Encoded": false,

"statusCode": 200,

"headers": {"Content-Type":"text/html","Key":["value1","value2","value3"]},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 91

Note：
This document describes how to support WebSocket for event-triggered functions. Currently, HTTP-
triggered functions already supports the native WebSocket protocol.

How to Implement

WebSocket is a new TCP-based network protocol. It implements full-duplex communication between browser and
server, i.e., allowing server to actively send information to client. In contrast, a server using the traditional HTTP
protocol only allows a client to get the data that needs to be pushed through polling or long polling.

Since SCF is stateless and trigger-based (i.e., it will be triggered only when an event arrives), in order to implement
WebSocket, SCF is used in conjunction with API Gateway to sustain and maintain the connection with the client

through API Gateway. You can assume that API Gateway and SCF work together to implement the server. When sent
by the client, a message is first passed to API Gateway, which then triggers the SCF function. When the server
function sends a message to the client, the function first posts the message to the reverse push link of API Gateway,

Websocket
How It Works
Last updated：2022-01-21 15:58:25

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 91

which then pushes the message to the client. The specific implementation architecture is as follows:

The entire lifecycle of WebSocket mainly consists of the following events:

Connection establishment: the client requests to connect with the server and establishes a connection.
Data upstream: the client sends data to the server through the established connection.
Data downstream: the server sends data to the client through the established connection.

Client disconnection: the client requests to close the established connection.
Server disconnection: the server requests to close the established connection.

SCF and API Gateway handle the events throughout the lifecycle of WebSocket as follows:

Connection establishment: the client establishes a WebSocket connection with API Gateway which sends a
connection establishment event to SCF.
Data upstream: the client sends data through WebSocket, and API Gateway forwards the data to SCF.

Data downstream: SCF sends a request to the push address specified by API Gateway, which then sends the data
to the client through WebSocket.
Client disconnection: the client requests to disconnect, and API Gateway sends a disconnection event to SCF.
Server disconnection: SCF sends a disconnection request to the push address specified by API Gateway, which
will close the WebSocket connection after receiving the request.

Therefore, the interaction between API Gateway and SCF needs to be sustained by three types of functions:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 91

Registration function: this function is triggered when a WebSocket connection is requested and established
between the client and API Gateway, notifying SCF of the secConnectionID of the WebSocket connection.

The secConnectionID is usually recorded in the persistent storage in this function for reverse push of

subsequent data.
Cleanup function: this function is triggered when the client initiates a WebSocket disconnection request, notifying
SCF to prepare to disconnect the secConnectionID . The secConnectionID is usually cleaned from the

persistent storage in this function.
Transfer function: this function is triggered when the client sends data through the WebSocket connection, notifying

SCF of the secConnectionID of the connection and the data sent. Business data is usually processed in this

function. For example, it determines whether to push data to other secConnectionID values in the persistent

storage.

Note：
When you need to actively push data to a secConnectionID or disconnect a secConnectionID , the

reverse push address of API Gateway has to be used.

Data Structures

Connection establishment

1. When the client initiates a WebSocket connection establishment request, API Gateway encapsulates the agreed
upon JSON data structures in the request body and sends it to the registration function in the HTTP POST method.
You can get the request body from the function's event. Below is a sample:

{

"requestContext": {

"serviceName": "testsvc",

"path": "/test/{testvar}",

"httpMethod": "GET",

"requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",

"identity": {

"secretId": "abdcdxxxxxxxsdfs"

},

"sourceIp": "10.0.2.14",

"stage": "prod",

"websocketEnable":true

},

"websocket":{

"action":"connecting",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 91

The data structures are as detailed below:

Structure
Name

Content

requestContext

Configuration information, request ID, authentication information, and source information of
API Gateway where the request comes from, including:

serviceName, path, httpMethod: they point to API Gateway's service, API path, and
method.
stage: it points to the environment where the request source API is located.
requestId: it identifies the unique ID of the current request.
identity: it identifies the user's authentication method and authentication information.
sourceIp: it identifies the request source IP.

websocket

Details of connection establishment, including:
action: action of this request.
secConnectionID: a string that identifies the ID of the WebSocket connection. The
original length is 128 bits, which is a Base64-encoded string with a total of 32
characters.
secWebSocketProtocol: string; optional.
It represents the list of sub-protocols. If this field is in the original request, it will be
passed to the function; otherwise, it will not appear.
secWebSocketExtensions: string; optional.
It represents the list of extensions. If this field is in the original request, it will be passed
to the function; otherwise, it will not appear.

Note：
The content of requestContext may be increased significantly during API Gateway iteration. At present,

it is guaranteed that the content of the data structure will only be increased but not reduced, so that the existing
structure will not be compromised.

2. When the registration function receives the connection establishment request, it needs to return the response

message of whether to agree to establish the connection to API Gateway at the end of function handling. The
response body must be in JSON format as shown in the sample below:

"secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

"secWebSocketProtocol":"chat,binary",

"secWebSocketExtensions":"extension1,extension2"

}

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 91

The data structures are as detailed below:

Structure
Name

Content

errNo
Integer; required.
Response error code. If `errNo` is 0, the handshake succeeded, and the connection was
allowed to be established.

errMsg String; required.
Cause of error. If `errNo` is not 0, this field will take effect.

websocket

Details of connection establishment, including:
action: action of this request.
secConnectionID: a string that identifies the ID of the WebSocket connection. The original
length is 128 bits, which is a Base64-encoded string with a total of 32 characters.
secWebSocketProtocol: string; optional.
It is the value of a single sub-protocol. If this field is in the original request, it will be passed
through to the client by API Gateway.
secWebSocketExtensions: string; optional.
It is the value of a single extension. If this field is in the original request, it will be passed
through to the client by API Gateway.

Note：

If the SCF request times out, it will be deemed by default that the connection establishment failed.

When API Gateway receives the response message from SCF, it will check the HTTP response code
first. If the response code is 200, it will parse the response body; otherwise, it will deem that SCF failed
and connection establishment was refused.

Data transfer

{

"errNo":0,

"errMsg":"ok",

"websocket":{

"action":"connecting",

"secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

"secWebSocketProtocol":"chat,binary",

"secWebSocketExtensions":"extension1,extension2"

}

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 91

Upstream data transfer

Transfer request

When the client sends data through WebSocket, API Gateway will encapsulate the agreed JSON data structures in
the request body and send it to the transfer function in the HTTP POST method. You can get the request body from
the function's event. Below is a sample:

{

"websocket":{

"action":"data send",

"secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

"dataType":"text",

"data":"xxx"

}

}

The data structures are as detailed below:

Parameter Content

websocket Details of data transfer.

action Action of this request, such as "data send" in this document.

secConnectionID A string that identifies the ID of the WebSocket connection. The original length is 128 bits,
which is a Base64-encoded string with a total of 32 characters.

dataType

Type of the transferred data.
"binary": binary.
"text": text.

data Transferred data. If `dataType` is `binary`, it will be a Base64-encoded binary stream; if
`dataType` is `text`, it will be a string.

Transfer response

After the transfer function finishes executing, it will return an HTTP response to API Gateway which will act according
to the response code:

If the response code is 200, the function was executed successfully.
If the response code is not 200, a system failure occurred, and API Gateway will actively send a FIN packet to the
client.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 91

Note：
API Gateway does not handle the content in the response body.

Downstream data callback

Callback request

When SCF needs to push data to the client or actively disconnect, it can initiate a request, encapsulate the data in the

request body, and send it to the reverse push address of API Gateway in the POST method. The request body must
be in JSON format, as shown in the sample below:

{

"websocket":{

"action":"data send", // Send data to the client

"secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

"dataType":"text",

"data":"xxx"

}

}

{

 "websocket":{

 "action":"closing", // Send the disconnection request

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

 }

}

The data structures are as detailed below:

Field Content

websocket Details of data transfer.

action

Action of this request, which can be data send or closing :
"data send": it is to send data to the client.
"closing": it is to initiate a disconnection request to the client, where the dataType
and data are optional.

secConnectionID A string that identifies the ID of the WebSocket connection. The original length is 128 bits,
which is a Base64-encoded string with a total of 32 characters.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 91

Field Content

dataType

Type of the transferred data, including two types:
"binary": binary.
"text": text.

data

Transferred data:
If dataType is binary , it is a Base64-encoded binary stream.
If dataType is text , it is a string.

Callback response

After the callback is over, the result of the callback can be determined based on the response code of API Gateway:

If the response code is 200, the call succeeded.
If the response code is not 200, a system failure occurred, and API Gateway will actively send a FIN packet to the
client.

In addition, the response body in JSON format can be obtained in the response result as shown in the sample below:

{

"errNo":0,

"errMsg":"ok"

}

The data structures are as detailed below:

Field Content

errNo Integer; response error code. 0 means success.

errMsg String; cause of error.

Connection cleanup

Active disconnection by client

Logout request

When the client actively initiates a WebSocket disconnection request, API Gateway will encapsulate the agreed upon
JSON data structures in the request body and send it to the cleanup function in the HTTP POST method. You can get
the request body from the function's event. Below is a sample:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 91

{

"websocket":{

"action":"closing",

"secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

}

}

The data structures are as detailed below:

Field Content

websocket Details of disconnection.

action Action of this request, which is "closing" here.

secConnectionID
String.
It identifies the ID of the WebSocket connection. The original length is 128 bits, which is a
Base64-encoded string with a total of 32 characters.

Note：
In the cleanup function, you can get the secConnectionID from the event and delete the ID from the

persistent storage (such as a database).

Logout response

After the cleanup function finishes executing, it will return an HTTP response to API Gateway, which will act according
to the response code:

If the response code is 200, the function was executed successfully.
If the response code is not 200, a system failure occurred.

Note：
API Gateway does not handle the content in the response body.

Active disconnection by server

Please see Downstream data callback. SCF can initiate a request in the function, encapsulate the following data
structures in the request body, and send it to the reverse push address of API Gateway in the POST method.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 91

{

"websocket":{

"action":"closing", // Send the disconnection request

"secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

}

}

Note：
When actively disconnecting the link with the client, you need to get the secConnectionID of the client's

WebSocket, enter it in the data structure, and then delete the ID from the persistent storage (such as a
database).

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 91

In the How It Works document, it is mentioned that three types of SCF functions are required to sustain the interaction
with API Gateway:

Registration function: this function is triggered when a WebSocket connection is requested and established

between the client and API Gateway, notifying SCF of the secConnectionID of the WebSocket connection.

The secConnectionID is usually recorded in the persistent storage in this function for reverse push of

subsequent data.
Cleanup function: this function is triggered when the client initiates a WebSocket disconnection request, notifying
SCF to prepare to disconnect the secConnectionID . The secConnectionID is usually cleaned from the

persistent storage in this function.
Transfer function: this function is triggered when the client sends data through the WebSocket connection, notifying
SCF of the secConnectionID of the connection and the data sent. Business data is usually processed in this

function. For example, it determines whether to push data to other secConnectionID values in the persistent

storage.

This document uses Python 2.7 as an example to describe how to write the main_handler for various functions.

Sample Function Code

Registration function

-*- coding: utf8 -*-

import json

import requests

def main_handler(event, context):

print('Start Register function')

print("event is %s"%event)

retmsg = {}

global connectionID

if 'requestContext' not in event.keys():

return {"errNo":101, "errMsg":"not found request context"}

Usage
Last updated：2020-09-01 10:01:47

Note：

When you need to actively push data to a secConnectionID or disconnect a secConnectionID , the
reverse push address of API Gateway has to be used.

https://intl.cloud.tencent.com/document/product/583/31437

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 91

if 'websocket' not in event.keys():

return {"errNo":102, "errMsg":"not found websocket"}

connectionID = event['websocket']['secConnectionID']

retmsg['errNo'] = 0

retmsg['errMsg'] = "ok"

retmsg['websocket'] = {

"action":"connecting",

"secConnectionID":connectionID

}

if "secWebSocketProtocol" in event['websocket'].keys():

retmsg['websocket']['secWebSocketProtocol'] = event['websocket']['secWebSocketPro

tocol']

if "secWebSocketExtensions" in event['websocket'].keys():

ext = event['websocket']['secWebSocketExtensions']

retext = []

exts = ext.split(";")

print(exts)

for e in exts:

e = e.strip(" ")

if e == "permessage-deflate":

#retext.append(e)

pass

if e == "client_max_window_bits":

#retext.append(e+"=15")

pass

retmsg['websocket']['secWebSocketExtensions'] = ";".join(retext)

print("connecting \n connection id:%s"%event['websocket']['secConnectionID'])

print(retmsg)

return retmsg

Transfer function

-*- coding: utf8 -*-

import json

import requests

g_connectionID = 'xxxx' # Forward the message to a specific WebSocket connection

sendbackHost = "http://set-7og8wn64.cb-beijing.apigateway.tencentyun.com/api-xxx

x" # API Gateway's reverse push address, which can be obtained after the API is c

reated in the next step

Actively push the message to the client

Note：

In this function, you can add other business logic as needed. For example, you can save
 secConnectionID to TencentDB or create and associate a chat room.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 91

def send(connectionID,data):

retmsg = {}

retmsg['websocket'] = {}

retmsg['websocket']['action'] = "data send"

retmsg['websocket']['secConnectionID'] = connectionID

retmsg['websocket']['dataType'] = 'text'

retmsg['websocket']['data'] = json.dumps(data)

print("send msg is %s"%retmsg)

r = requests.post(sendbackHost, json=retmsg)

def main_handler(event, context):

print('Start Transmission function')

print("event is %s"%event)

if 'websocket' not in event.keys():

return {"errNo":102, "errMsg":"not found web socket"}

for k in event['websocket'].keys():

print(k+":"+event['websocket'][k])

Send the content to a specific client

#connectionID = event['websocket']['secConnectionID']

data = event['websocket']['data']

send(g_connectionID,data)

return event

Cleanup function

import json

import requests

g_connectionID = 'xxxx' # Forward the message to a specific WebSocket connection

sendbackHost = "http://set-7og8wn64.cb-beijing.apigateway.tencentyun.com/api-xxx

x" # API Gateway's reverse push address, which can be obtained after the API is c

reated in the next step

Actively send disconnection information

def close(connectionID):

retmsg = {}

retmsg['websocket'] = {}

retmsg['websocket']['action'] = "closing"

retmsg['websocket']['secConnectionID'] = connectionID

r = requests.post(sendbackHost, json=retmsg)

return retmsg

Note：

In this function, you can add other business logic as needed. For example, you can forward the data
obtained in this request to another secConnectionID stored in TencentDB.
In the API details in API Gateway, you can get the reverse push address.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 91

def main_handler(event, context):

print('Start Delete function')

print("event is %s"%event)

if 'websocket' not in event.keys():

return {"errNo":102, "errMsg":"not found web socket"}

for k in event['websocket'].keys():

print(k+":"+event['websocket'][k])

#close(g_connectionID)

return event

Note：

In this function, you can add other business logic as needed. For example, you can remove the
 secConnectionID disconnected in this request from TencentDB or force the client of a
 secConnectionID to go offline.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 91

You can write an SCF function to handle object creation and deletion events in a COS bucket. COS can publish
events to the function and invoke it by using the event data as parameters. You can add a bucket notification
configuration in the COS bucket, which can identify information such as the trigger event type and name of the

function to be invoked.

Characteristics of COS triggers:

Push model
COS monitors the specified bucket action (event type) and invokes the associated function to push the event data
to the function. In the push model, the bucket notification is used to store the event source mapping with COS.

Async invocation
A COS trigger always invokes a function asynchronously, and the result is not returned to the invoker. For more
information on invocation types, see "Invocation Types" in How It Works.

COS Trigger Attributes

COS bucket (required): The configured COS bucket, which can only be a COS bucket in the same region.
Event type (required): It supports "file upload" and "file deletion" as well as finer-grained upload and deletion events.
For specific event types, see the table below. The event type determines when the trigger triggers the function. For

example, if "File upload" is selected, the function will be triggered when there is a file uploaded to the COS bucket.

Event Type Description

 cos:ObjectCreated:*
All upload events mentioned below can trigger
the function.

 cos:ObjectCreated:Put
The function will be triggered when a file is
created through the `Put Object` API.

 cos:ObjectCreated:Post
The function will be triggered when a file is
created through the `Post Object` API.

 cos:ObjectCreated:Copy
The function will be triggered when a file is
created through the `Put Object - Copy` API.

COS Trigger
COS Trigger Description
Last updated：2022-08-12 15:32:21

https://intl.cloud.tencent.com/document/product/583/9694

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 91

Event Type Description

 cos:ObjectCreated:CompleteMultipartUpload

The function will be triggered when a file is
created through the
`CompleteMultipartUpload` API.

 cos:ObjectCreated:Origin
The function will be triggered when an object
is created through COS origin-pull.

 cos:ObjectCreated:Replication
The function will be triggered when an object
is created through cross-region replication.

 cos:ObjectRemove:*
All deletion events mentioned below can
trigger the function.

 cos:ObjectRemove:Delete

The function will be triggered when an object
in a bucket for which versioning is not enabled
is deleted through the `Delete Object` API, or
an object on a specified version is deleted
with `versionid`.

 cos:ObjectRemove:DeleteMarkerCreated

The function will be triggered when an object
in a bucket for which versioning is enabled or
suspended is deleted through the `Delete
Object` API.

 cos:ObjectRestore:Post
The function will be triggered when an archive
restoration job is created.

 cos:ObjectRestore:Completed
The function will be triggered when an archive
restoration job is completed.

Prefix filtering (optional): Prefix filtering is usually used to filter file events in a specified directory. For example, if the
prefix to be filtered is test/ , only file events in the test/ directory can trigger the function, while those in the

 hello/ directory cannot.

Suffix filtering (optional): Suffix filtering is usually used to filter file events in a specified type or with a specified suffix.

For example, if the suffix to be filtered is .jpg , only file events of the .jpg type can trigger the function, while

those of the .png/ type cannot.

COS Trigger Use Limits

https://intl.cloud.tencent.com/document/product/436/31508

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 91

In order to avoid errors in COS event production and delivery, for the combination of each event (such as file
upload/deletion) and prefix/suffix filter in each bucket, COS limits that the same rule can be bound to only one
function that can be triggered. Therefore, when you create a COS trigger, do not configure repeated rules for the

same COS bucket. For example, if you configure a Created: * event trigger in the test bucket for function A

(with no filter rule configured), then the upload events (including Created:Put and Created:Post) in the

test bucket cannot be bound to other functions, but you can configure an ObjectRemove event trigger in the

test bucket for function B.

When using prefix and suffix filter rule, in order to ensure the uniqueness of the triggering events in the same

bucket, it should be noted that the same bucket cannot use overlapping prefixes, overlapping suffixes, or
overlapping combinations of prefixes and suffixes to define the filter rule for the same event type. For example, if you
configure a Created: * trigger event with prefix filter of Log in the test bucket for function A, then you

cannot configure a Created: * trigger event with prefix filter of Log in the test bucket.

In addition, COS triggers can only trigger functions in the same region; for example, for an SCF function created in
the Guangzhou region, you can only select a COS bucket in the Guangzhou region (South China) when configuring

a COS trigger. If you want to trigger a function through COS bucket events in a specific region, create a function in
that region.

A COS trigger has limits in two dimensions: SCF and COS, as detailed below:

SCF dimension: One function can be bound to 10 COS triggers at most.

COS dimension: Only one function can be bound to the same event and prefix/suffix rules in a single COS bucket.

Event Message Structure for COS Trigger

When an object creation or deletion event occurs in the specified COS bucket, event data will be sent to the bound
function in JSON format as shown below.

{

"Records": [{

"cos": {

"cosSchemaVersion": "1.0",

"cosObject": {

"url": "http://testpic-1253970026.cos.ap-chengdu.myqcloud.com/testfile",

"meta": {

"x-cos-request-id": "NWMxOWY4MGFfMjViMjU4NjRfMTUyMVxxxxxxxxx=",

"Content-Type": "",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 91

"x-cos-meta-mykey": "myvalue"

},

"vid": "",

"key": "/1253970026/testpic/testfile",

"size": 1029

},

"cosBucket": {

"region": "cd",

"name": "testpic",

"appid": "1253970026"

},

"cosNotificationId": "unkown"

},

"event": {

"eventName": "cos:ObjectCreated:*",

"eventVersion": "1.0",

"eventTime": 1545205770,

"eventSource": "qcs::cos",

"requestParameters": {

"requestSourceIP": "192.168.15.101",

"requestHeaders": {

"Authorization": "q-sign-algorithm=sha1&q-ak=xxxxxxxxxxxxxx&q-sign-time=154520570

9;1545215769&q-key-time=1545205709;1545215769&q-header-list=host;x-cos-storage-cl

ass&q-url-param-list=&q-signature=xxxxxxxxxxxxxxx"

}

},

"eventQueue": "qcs:0:scf:cd:appid/1253970026:default.printevent.$LATEST",

"reservedInfo": "",

"reqid": 179398952

}

}]

}

The data structures are as detailed below:

Structure Description

Records List structure. There may be multiple messages merged in the list.

event This records the event information, including event version, event source, event name, time,
queue information, request parameters, and request ID.

cos This records the COS information corresponding to the event.

cosBucket
This records the bucket of the specific event, including bucket name, region, and user APPID
(which can be obtained on the Account Info page).

https://console.intl.cloud.tencent.com/developer

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 91

Structure Description

cosObject This records the object of the specific event, including object file path, size, custom metadata, and
access URL.

Sample

The following is a sample COS trigger in Java for your reference:

https://github.com/tencentyun/scf-demo-java/blob/master/src/main/java/example/Co

s.java

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 91

This document describes how to create a COS trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the COS sample template as an example to create a function project. In the default creation
process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger after
creating the function. Here, configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting COS Trigger, configure the bucket, triggering event type, and other information as prompted to create
a trigger:

Usage
Last updated：2022-04-13 15:54:41

https://console.intl.cloud.tencent.com/scf/list-create?rid=1&ns=default
https://intl.cloud.tencent.com/document/product/583/32742

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 91

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 91

You can write an SCF function to process the logs collected in the CLS service. By passing the collected logs as a
parameter, the function can be invoked and the function code can process and analyze the data or dump it to other
Tencent Cloud services.

Characteristics of CLS triggers:

Push model
CLS monitors the specified log topic, aggregates data within a certain period of time, and invokes the associated
function to push the event data to the function.
Async invocation

a CLS trigger always invokes a function asynchronously, and the result is not returned to the invoker. For more
information on invocation types, please see "Invocation Types" in How It Works.

CLS Trigger Attributes

Logset: configure the CLS logset you want to connect to. It can only be a logset in the same region as the function.
Log topic: configure the CLS log topic you want to connect to, which is the smallest unit for managing and
configuring CLS triggers.
Maximum waiting time: configure the longest waiting time for a single event pull.

CLS Trigger Consumption and Message Delivery

After consuming messages, the CLS backend consumption module will encapsulate them into event structures
according to the max waiting time, delivery process, and message body size and then initiate async function
invocation. The applicable limits are as follows:

Maximum waiting time
at present, the SCF backend consumption module requires this value to be between 3s and 300s to avoid an

excessive latency before consumption. For example, if the maximum waiting time is set to 60s, the consumption
template will aggregate log data once every 60s and deliver it to the function.
Event size limit for async invocation
128 KB. For more information, please see Limits. If a message of the log topic is large (for example, if the message

CLS Trigger
CLS Trigger Description
Last updated：2021-08-11 15:55:26

https://intl.cloud.tencent.com/document/product/583/9694
https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 91

body size exceeds 128 KB after being compressed by the backend component within the maximum waiting time),
then due to the limit of 128 KB for async invocation, the system will extract and deliver the message body of 128 KB
after being compressed by gzip in sequence from the event structure passed to the function instead of using the

data aggregated within the maximum waiting time.
Delivery process
if a non-retriable error occurs during the delivery process, such as AccessDeniedException or

 ResourceNotFoundException , the CLS trigger will pause the transfer retry logic.

Note：

In the message delivery process, the time aggregation may vary by combination; that is, the number of
messages in each event structure ranges from 1 to the maximum waiting time. If the configured
maximum waiting time is too long, there may be cases where the aggregation time in an event structure will
never reach the maximum aggregation time.
After the event content is obtained by the function, each message can be guaranteed for processing by loop
handling, and it is not assumed that the message time passed each time is constant.

Event Message Structure for CLS Trigger

When the specified CLS trigger receives a message, the CLS backend consumption module will consume the
message and encapsulate it to asynchronously invoke your function. In order to ensure the efficiency of data transfer in
a single triggering action, the value of the data field is a Base64-encoded Gzip document.

{

"clslogs": {

"data": "ewogICAgIm1lc3NhZ2VUeXBlIjogIkRBVEFfTUVTU0FHRSIsCiAgICAib3duZXIiOiAiMTIz

NDU2Nzg5MDEyIiwKICAgICJsb2dHcm91cCI6I..."

}

}

After being decoded and decompressed, the log data will look like the following JSON body (using decoded CLS Logs
message data as an example):

{

"topic_id": "xxxx-xx-xx-xx-yyyyyyyy",

"topic_name": "testname",

"records": [{

"timestamp": "1605578090000000",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 91

"content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}, {

"timestamp": "1605578090000000",

"content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}]

}

The data structures are as detailed below:

Structure Description

topic_id Log topic ID

topic_name Log topic name

timestamp Log production time (timestamp at the microsecond level)

content Log content

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 91

This document describes how to create a CLS trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the CLS sample template as an example to create a function project. In the default creation
process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger after
creating the function. Here, trigger configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting CLS Trigger, configure the logset, log topic, and other information as prompted to create a trigger:

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page,
where you can enable/disable the trigger.

Usage
Last updated：2021-08-11 16:19:48

https://console.intl.cloud.tencent.com/scf/list-create?rid=1&ns=default
https://intl.cloud.tencent.com/document/product/583/32742

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 91

You can write an SCF function to handle a scheduled task (which can be triggered in seconds). The timer will
automatically trigger the function at the specified time. Timer triggers have the following characteristics:

Push model: the timer directly calls the Invoke API of the function to trigger it at the specified time. The event

source mapping is retained in the SCF function.
Async invocation: a timer trigger always invokes a function asynchronously, and the result is not returned to the
invoker. For more information on invocation types, please see Invocation Types.

Timer Trigger Attributes

Timer name (required): it can contain up to 60 characters out of a-z , A-Z , 0-9 , - , and _ and must

begin with a letter and be unique under the same function.

Triggering cycle (required): this is the specified function triggering time. You can use the default value in the
console or customize a standard cron expression to decide when to trigger the function. For more information on
cron expressions, please see below.
Input parameter (optional): it can be a string of up to 4 KB, which can be obtained from the event parameter of

the entry function.

Cron Expression

When creating a timer trigger, you can customize the triggering time by using a standard cron expression. Timer

triggers can trigger functions in a matter of seconds. In order to be compatible with legacy timer triggers, cron
expressions can be written in two ways:

Cron expression syntax 1 (recommended)

A cron expression has seven required fields, separated by spaces.

First Second Third Fourth Fifth Sixth Seventh

Second Minute Hour Day Month Week Year

Each field has a corresponding value range:

Timer Trigger
Timer Trigger Description
Last updated：2022-06-09 17:00:05

https://intl.cloud.tencent.com/document/product/583/9694

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 91

Field Value Wildcards

Second An integer between 0 and 59 , - * /

Minute An integer between 0 and 59 , - * /

Hours An integer between 0 and 23 , - * /

Day An integer between 1 and 31 (the number of days in the month needs to be
considered)

, - * /

Month An integer between 1 and 12 or JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC

, - * /

Week An integer between 0 and 6 or SUN, MON, TUE, WED, THU, FRI, SAT; where 0
means Sunday, 1 means Monday, and so on

, - * /

Year An integer between 1970 and 2099 , - * /

Cron expression syntax 2 (not recommended)

A cron expression has five required fields, separated by spaces.

First Second Third Fourth Fifth

Minute Hour Day Month Week

Each field has a corresponding value range:

Field Value Wildcards

Minute An integer between 0 and 59 , - * /

Hours An integer between 0 and 23 , - * /

Day An integer between 1 and 31 (the number of days in the month needs to be considered) , - * /

Month An integer between 1 and 12 or JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC

, - * /

Week An integer between 0 and 6 or SUN, MON, TUE, WED, THU, FRI, SAT; where 0
means Sunday, 1 means Monday, and so on

, - * /

Wildcards

Wildcard Description

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 91

, (comma) It represents the union of characters separated by commas; for example, 1, 2, 3 in the "Hour"
field means 1:00, 2:00 and 3:00

- (hyphen) It contains all values in the specified range; for example, in the "Day" field, 1-15 contains the 1st
to the 15th day of the specified month

* (asterisk) It means all values; for example, in the "Hour" field, * means every o'clock

/ (forward
slash)

It specifies the increment; for example, in the "Minute" field, you can enter 1/10 to specify
repeating every ten minutes from the first minute on (e.g., at the 11th minute, the 21st minute,
the 31st minute, and so on)

Precautions

When both the "Day" and "Week" fields in a cron expression are specified, they are in an "or" relationship, i.e., the

conditions of both are effective separately.

Sample

Below are some examples of cron expressions and their meanings:

Expression Description

 */5 * * * * * * Triggers once every 5 seconds

 0 15 10 1 * * * Triggers at 10:15 am on the 1st day of every month

 0 15 10 * * MON-FRI * Triggers every day at 10:15 am Monday through Friday

 0 0 10,14,16 * * * * Triggers every day at 10 am, 2 pm, and 4 pm

 0 */30 9-17 * * * * Triggers every half hour from 9 am to 5 pm every day

 0 0 12 * * WED * Triggers at 12:00 noon every Wednesday

Input Parameters of Timer Triggers

When a timer trigger triggers a function, the following data structures will be encapsulated in event and passed to

the function. In addition, you can specify to pass the message for a timer trigger, which is empty by default.

{

"Type":"Timer",

"TriggerName":"EveryDay",

"Time":"2019-02-21T11:49:00Z",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 91

"Message":"user define msg body"

}

Field Description

Type Type of the trigger, whose value is Timer

TriggerName
Timer name, which can contain up to 60 characters out of a-z , A-Z , 0-9 , - , and
 _ and must begin with a letter and be unique under the same function

Time Trigger creation time, in UTC+0

Message String type

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 91

This document describes how to create a timer trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the scheduled task sample template as an example to create a function project. In the default
creation process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger
after creating the function. Here, configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting Timer Trigger, configure the task name, trigger period, and other information as prompted to create a
trigger:

Usage
Last updated：2021-08-11 16:19:48

https://console.intl.cloud.tencent.com/scf/list-create?rid=1&ns=default
https://intl.cloud.tencent.com/document/product/583/32742

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 91

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page,

where you can enable/disable the trigger.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 91

You can write an SCF function to process messages received in the specific CKafka instance. The SCF backend can
consume the messages in CKafka as a consumer and pass them to the function.

Characteristics of CKafka triggers:

Pull model: the backend module of SCF acts as a consumer, connects to the CKafka instance, and consumes
messages. When the backend module gets the message, it will encapsulate the message into data structures and
invoke the specified function to pass the message data to the function.
Sync invocation: a CKafka trigger always invokes a function synchronously. For more information on invocation
types, please see Invocation Types.

Note：

For execution errors (including user code errors and runtime errors), the CKafka trigger will retry
according to the configured retry times, which is 10,000 by default.
For system errors, the CKafka trigger will continue to retry in an exponential backoff manner until it
succeeds.

CKafka Trigger Attributes

CKafka instance: configure the CKafka instance you want to connect to. It can only be an instance in the same

region as the function.
Topic: it can be an existing topic in the CKafka instance (only topics without ACL are supported).
Maximum messages: the maximum number of messages that can be pulled and batch delivered to the current
function at a time, which can be up to 10,000 currently. According to the message size and writing speed, the
number of messages delivered when the function is triggered each time may not always reach the maximum

number; instead, it is a variable value between 1 and the maximum number.
Start Point: the start position from which the trigger consumes messages. Valid values: latest (default), oldest,
specified time point.
Retry Attempts: the maximum number of retries when an error occurs during function execution (including user
code errors and runtime errors).

CKafka Trigger
CKafka Trigger Description
Last updated：2021-08-11 15:56:55

https://intl.cloud.tencent.com/document/product/583/9694

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 91

CKafka Consumption and Message Delivery

CKafka does not push messages actively. The consumer needs to pull messages and consume them. Therefore, if a
CKafka trigger is configured, the SCF backend will launch a CKafka consumption module as the consumer to create
an independent consumer group in CKafka for message consumption.

After consuming messages, the SCF backend consumption module will encapsulate them into event structures
according to the timeout period, accumulated messages, and maximum messages and then initiate function
invocation (sync invocation). Applicable limits are as follows:

Timeout period: the current timeout period of the consumption module on the backend of SCF is 60 seconds,
which avoids waiting for too long before consuming. For example, if the CKafka topic has very few messages

written in, and the consumption module fails to collect the configured maximum number of messages in 60
seconds, then the function invocation will still be initiated.
Event size limit for sync invocation: 6 MB. For more information, please see Limits. If the messages in the
CKafka topic are large (for example, one single message is over 6 MB in size), then due to the 6 MB limit for sync
invocation, there will be only one message in the event structure passed to the function instead of the user-
configured maximum number of messages.

Maximum messages: this is the same as the user-defined CKafka trigger attribute, which can be up to 10,000
currently.

The consumption module on the backend of SCF will loop this process and ensure the order of message
consumption, that is, the next batch of messages will be consumed only after the previous batch is completely
consumed (sync invocation).

Note：

In this process, the number of encapsulated messages is different in each event structure, which ranges
from 1 to the maximum number. If the maximum number of messages is too high, there may be cases
where the number of messages in an event structure will never reach the maximum number.
After the event content is obtained by the function, each message can be guaranteed for processing by loop

handling, and it should not be assumed that the number of messages passed each time is constant.

Event Message Structure for CKafka Trigger

When the specified CKafka topic receives a message, the backend consumption module of SCF will consume the
message and encapsulate it into an event in JSON format like the one below, which will trigger the bound function and

https://intl.cloud.tencent.com/document/product/583/11637

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 91

pass the data content as input parameters to the function.

{

"Records": [

{

"Ckafka": {

"topic": "test-topic",

"Partition":1,

"offset":36,

"msgKey": "None",

"msgBody": "Hello from Ckafka!"

}

},

{

"Ckafka": {

"topic": "test-topic",

"Partition":1,

"offset":37,

"msgKey": "None",

"msgBody": "Hello from Ckafka again!"

}

}

]

}

The data structures are as detailed below:

Structure Description

Records List structure. There may be multiple messages merged in the list

Ckafka Identifies the event source as CKafka

topic Message source topic

partition Partition ID of message source

offset Consumption offset number

msgKey Message key

msgBody Message content

FAQs

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 91

What should I do if a lot of CKafka messages heap up?

If a CKafka trigger is configured, the SCF backend will launch a CKafka consumption module as the consumer to
create an independent consumer group in CKafka for message consumption. In addition, the number of consumption
modules is equal to the number of partitions in the CKafka topic.

If a lot of CKafka messages heap up, you need to increase the consumption capability in the following ways:

Increase the number of partitions of the CKafka topic. The consumption capability of the function is proportional to
the number of partitions. The CKafka consumption modules on the backend of the function will automatically match
the number of CKafka topic partitions, that is, the consumption capability can be improved by adding partitions.
Optimize the execution duration of the function. The shorter the duration, the higher the consumption capability. If

the duration becomes longer (for example, the database in the function needs to be written but the response of the
database becomes slower), the consumption speed will decrease.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 91

This document describes how to create a CKafka trigger and invoke a function.

Step 1. Create a function

1. Log in to the SCF console.
2. On the function creation page, select Template, search for CKafka , and select

CkafkaSCFCOS as shown below:

2. Click Next.

Step 2. Configure a trigger

On the Function configuration page, set the basic configurations of the function.

Usage
Last updated：2022-08-12 15:32:48

https://console.intl.cloud.tencent.com/scf/list-create?rid=1&ns=default

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 91

1. In Trigger configurations, select Custom to create a trigger as shown below:

Select CKafka trigger and configure the name, topic, and other information of the CKafka instance as the
message source as prompted. You can also choose to create a CKafka instance.

Note：
Make sure that your function and CKafka instance are in the same VPC.

2. Click Complete.

Step 3. Manage the trigger

After the function is created, go to the function details page, and you can see the created trigger in Trigger
management. You can also turn triggers on or off there.

https://console.intl.cloud.tencent.com/ckafka/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 91

When you call the trigger API CreateTrigger, the corresponding TriggerDesc parameter will be the trigger

description, which can be used as instructed in this document.

Timer Trigger

Please directly enter a cron expression for this parameter. For more information, please see Timer Trigger

Description.

Sample TriggerDesc

Triggered once every five minutes:

0 */5 * * * * *

API Gateway Trigger

Name Type Required Description

api ApigwApi No API configuration of the created API gateway

service ApigwService No Service configuration of the created API gateway

release ApigwRelease No Release environment for the created API gateway

ApigwApi

Name Type Required Description

authRequired String No
Whether authentication is required. Valid
values: TRUE, FALSE. Default value:
FALSE

requestConfig ApigwApiRequestConfing No Configuration of request backend API

Trigger Configuration Description
Last updated：2021-09-30 18:11:36

https://intl.cloud.tencent.com/document/product/583/18589
https://intl.cloud.tencent.com/document/product/583/9708

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 91

Name Type Required Description

isIntegratedResponse String No
Whether to use integrated response. Valid
values: TRUE, FALSE. Default value:
FALSE

IsBase64Encoded String No
Whether to enable Base64-encoding.
Valid values: TRUE, FALSE. Default
value: FALSE

ApigwApiRequestConfing

Name Type Required Description

method String No
Method configuration of request backend API. Valid values: ANY , GET ,
 HEAD , POST , PUT , DELETE

ApigwService

Name Type Required Description

serviceId String No Apigw Service ID (if this parameter is not passed in, a new service will be
created)

ApigwRelease

Name Type Required Description

environmentName String Yes
Release environment. Valid values: release , test ,
 prepub . If this parameter is left empty, release will be
used by default

Sample TriggerDesc

{

"api":{

"authRequired":"FALSE",

"requestConfig":{

"method":"ANY"

},

"isIntegratedResponse":"FALSE"

},

"service":{

"serviceName":"SCF_API_SERVICE"

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 91

},

"release":{

"environmentName":"release"

}

}

CKafka Trigger

Name Type Required Description

maxMsgNum String Yes
A function invocation will be triggered once every time maxMsgNum
CKafka messages are aggregated within 5 seconds

offset String Yes
 offset is the position where consumption of CKafka messages
starts. Currently, three values are supported: latest ,
 earliest , and millisecond-level timestamp

retry String Yes Maximum number of retries when the function reports an error

Sample TriggerDesc

{"maxMsgNum":100,"offset":"latest","retry":10000}

{"maxMsgNum":999,"offset":"1595927203000","retry":10}

API request description

To create a CKafka trigger by using an API request, the TriggerName field needs to be defined as the

 instanceId and topicName of the target CKafka instance in the following format:

 [instanceId]-[topicName] . Below is a sample request:

TriggerName: "ckafka-8tfxzia3-test"

COS Trigger

Name Type Required Description

event String Yes COS event type

https://intl.cloud.tencent.com/document/product/583/9707

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 91

Name Type Required Description

filter CosFilter Yes COS filename filter

CosFilter

Name Type Required Description

Prefix String No Prefix rule of file filter

Suffix String No Suffix rule of file filter, which must begin with .

COS event conflict rules

Core concept: an event can trigger a function invocation at most once. If an event is bound to another product, it
cannot be bound to a function.
Set at most one prefix filter and one suffix filter.

If the cos:ObjectCreated:* event is set but no prefix/suffix is set, subsequent binding to any event that

starts with cos:ObjectCreated will fail.

The filter will be valid only if both the prefix and suffix are matched, and if there are conflicts with both the prefix and
suffix, subsequent binding will fail.

Sample TriggerDesc

{"event":"cos:ObjectCreated:*","filter":{"Prefix":"","Suffix":""}}

Note：
When TriggerDesc is used as a trigger description, the JSON string must be continuous with no spaces

contained.

API request description

To create a COS trigger by using an API request, the TriggerName field needs to be defined as the XML API

access domain name of the target COS bucket. Below is an example:

TriggerName: "xxx.cos.ap-guangzhou.myqcloud.com"

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 91

Note：
The access domain name can be viewed in Bucket List > Basic Configuration > Basic Information in the
COS console.

CMQ Trigger

Name Type Required Description

filterType String No Message filter type. 1: tag; 2: route match

filterKey String No
When filterType is 1 , it indicates the message filter tag; when
 filterType is 2 , it indicates the Binding Key

Sample TriggerDesc

{"filterType":1,"filterKey":["test"]}

{"filterType":2,"filterKey":["#test"]}

API request description

To create a CMQ trigger by using an API request, the TriggerName field needs to be defined as CMQ Topic .

Below is an example:

TriggerName: "Tabortest"

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 91

Media Processing Service (MPS) is an on-cloud transcoding and audio/video processing service for massive amounts
of multimedia data. You can write functions to process the callback information in MPS and dump, publish, and
process relevant events and subsequent content in video tasks by receiving relevant callbacks.

Characteristics of MPS triggers:

Push model: an MPS trigger listens on the callback information of video processing and pushes the event data to
the SCF function through one single triggering action.
Async invocation: an MPS trigger always invokes a function asynchronously, and the result is not returned to the
invoker. For more information on invocation types, please see Invocation Types.

MPS Trigger Attributes

Event type: an MPS trigger pushes events in the account-level event type. Currently, two event types are
supported: workflow task (WorkflowTask) and video editing task (EditMediaTask).

Event processing: an MPS trigger uses events generated at the service level as the event source, regardless of
attributes such as region and resources. Each account can only create one MPS trigger in all regions. If you need
multiple functions to handle a task, please see SDK for Node.js.

Event Structure for MPS Trigger

When a specified MPS trigger receives a message, the event structure and fields will be as shown below (with the

 WorkflowTask task as an example):

{

"EventType":"WorkflowTask",

"WorkflowTaskEvent":{

"TaskId":"245****654-WorkflowTask-f46dac7fe2436c47******d71946986t0",

"Status":"FINISH",

"ErrCode":0,

"Message":"",

"InputInfo":{

"Type":"COS",

"CosInputInfo":{

"Bucket":"macgzptest-125****654",

"Region":"ap-guangzhou",

MPS Trigger
Last updated：2021-09-23 11:31:33

https://intl.cloud.tencent.com/document/product/1041
https://intl.cloud.tencent.com/document/product/583/9694
https://intl.cloud.tencent.com/zh/document/product/583/32747

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 91

"Object":"/dianping2.mp4"

}

},

"MetaData":{

"AudioDuration":11.261677742004395,

"AudioStreamSet":[

{

"Bitrate":127771,

"Codec":"aac",

"SamplingRate":44100

}

],

"Bitrate":2681468,

"Container":"mov,mp4,m4a,3gp,3g2,mj2",

"Duration":11.261677742004395,

"Height":720,

"Rotate":90,

"Size":3539987,

"VideoDuration":10.510889053344727,

"VideoStreamSet":[

{

"Bitrate":2553697,

"Codec":"h264",

"Fps":29,

"Height":720,

"Width":1280

}

],

"Width":1280

},

"MediaProcessResultSet":[

{

"Type":"Transcode",

"TranscodeTask":{

"Status":"SUCCESS",

"ErrCode":0,

"Message":"SUCCESS",

"Input":{

"Definition":10,

"WatermarkSet":[

{

"Definition":515247,

"TextContent":"",

"SvgContent":""

}

],

"OutputStorage":{

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 91

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"OutputObjectPath":"/dasda/dianping2_transcode_10",

"SegmentObjectName":"/dasda/dianping2_transcode_10_{number}",

"ObjectNumberFormat":{

"InitialValue":0,

"Increment":1,

"MinLength":1,

"PlaceHolder":"0"

}

},

"Output":{

"OutputStorage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"Path":"/dasda/dianping2_transcode_10.mp4",

"Definition":10,

"Bitrate":293022,

"Height":320,

"Width":180,

"Size":401637,

"Duration":11.26200008392334,

"Container":"mov,mp4,m4a,3gp,3g2,mj2",

"Md5":"31dcf904c03d0cd78346a12c25c0acc9",

"VideoStreamSet":[

{

"Bitrate":244608,

"Codec":"h264",

"Fps":24,

"Height":320,

"Width":180

}

],

"AudioStreamSet":[

{

"Bitrate":48414,

"Codec":"aac",

"SamplingRate":44100

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 91

]

}

},

"AnimatedGraphicTask":null,

"SnapshotByTimeOffsetTask":null,

"SampleSnapshotTask":null,

"ImageSpriteTask":null

},

{

"Type":"AnimatedGraphics",

"TranscodeTask":null,

"AnimatedGraphicTask":{

"Status":"FAIL",

"ErrCode":30010,

"Message":"TencentVodPlatErr Or Unkown",

"Input":{

"Definition":20000,

"StartTimeOffset":0,

"EndTimeOffset":600,

"OutputStorage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"OutputObjectPath":"/dasda/dianping2_animatedGraphic_20000"

},

"Output":null

},

"SnapshotByTimeOffsetTask":null,

"SampleSnapshotTask":null,

"ImageSpriteTask":null

},

{

"Type":"SnapshotByTimeOffset",

"TranscodeTask":null,

"AnimatedGraphicTask":null,

"SnapshotByTimeOffsetTask":{

"Status":"SUCCESS",

"ErrCode":0,

"Message":"SUCCESS",

"Input":{

"Definition":10,

"TimeOffsetSet":[

],

"WatermarkSet":[

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 91

{

"Definition":515247,

"TextContent":"",

"SvgContent":""

}

],

"OutputStorage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"OutputObjectPath":"/dasda/dianping2_snapshotByOffset_10_{number}",

"ObjectNumberFormat":{

"InitialValue":0,

"Increment":1,

"MinLength":1,

"PlaceHolder":"0"

}

},

"Output":{

"Storage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"Definition":0,

"PicInfoSet":[

{

"TimeOffset":0,

"Path":"/dasda/dianping2_snapshotByOffset_10_0.jpg",

"WaterMarkDefinition":[

515247

]

}

]

}

},

"SampleSnapshotTask":null,

"ImageSpriteTask":null

},

{

"Type":"ImageSprites",

"TranscodeTask":null,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 91

"AnimatedGraphicTask":null,

"SnapshotByTimeOffsetTask":null,

"SampleSnapshotTask":null,

"ImageSpriteTask":{

"Status":"SUCCESS",

"ErrCode":0,

"Message":"SUCCESS",

"Input":{

"Definition":10,

"OutputStorage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"OutputObjectPath":"/dasda/dianping2_imageSprite_10_{number}",

"WebVttObjectName":"/dasda/dianping2_imageSprite_10",

"ObjectNumberFormat":{

"InitialValue":0,

"Increment":1,

"MinLength":1,

"PlaceHolder":"0"

}

},

"Output":{

"Storage":{

"Type":"COS",

"CosOutputStorage":{

"Bucket":"gztest-125****654",

"Region":"ap-guangzhou"

}

},

"Definition":10,

"Height":80,

"Width":142,

"TotalCount":2,

"ImagePathSet":[

"/dasda/imageSprite/dianping2_imageSprite_10_0.jpg"

],

"WebVttPath":"/dasda/imageSprite/dianping2_imageSprite_10.vtt"

}

}

}

]

}

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 91

WorkflowTask event

The detailed fields of a WorkflowTask event message body are as follows:

{

"EventType":"WorkflowTask",

"WorkflowTaskEvent":{

// WorkflowTaskEvent field

}

}

The data structure and fields of WorkflowTask are as detailed below:

Name Type Description

TaskId String ID of video processing task.

Status String
Task flow status. Valid values:

PROCESSING: processing.
FINISH: finished.

ErrCode Integer
Disused. Please use ErrCode of each
specific task.

Message String
Disused. Please use Message of each
specific task.

InputInfo MediaInputInfo
Information of the target file of video processing.
Note: this field may return null, indicating that no
valid values can be obtained.

MetaData MediaMetaData
Source video metadata. Note: this field may
return null, indicating that no valid values can be
obtained.

MediaProcessResultSet Array
of MediaProcessTaskResult

Execution status and result of video processing
task.

AiContentReviewResultSet Array
of AiContentReviewResult

Execution status and result of video content
moderation task.

AiAnalysisResultSet Array of AiAnalysisResult Execution status and result of video content
analysis task.

AiRecognitionResultSet Array
of AiRecognitionResult

Execution status and result of video content
recognition task.

https://intl.cloud.tencent.com/document/product/1041/33690#MediaInputInfo
https://intl.cloud.tencent.com/document/product/1041/33690#MediaMetaData
https://intl.cloud.tencent.com/document/product/1041/33690#MediaProcessTaskResult
https://intl.cloud.tencent.com/document/product/1041/33690#AiContentReviewResult
https://intl.cloud.tencent.com/document/product/1041/33690#AiAnalysisResult
https://intl.cloud.tencent.com/document/product/1041/33690#AiRecognitionResult

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 91

EditMediaTask event

The detailed fields of an EditMediaTask event message body are as follows:

{

"EventType":"EditMediaTask",

"EditMediaTaskEvent":{

// EditMediaTask field

}

}

The data structure and fields of EditMediaTask are as detailed below:

Name Type Description

TaskId String Task ID.

Status String
Task status. Valid values:

PROCESSING: processing.
FINISH: finished.

ErrCode Integer Error code. 0: success; other values: failure.

Message String Error message.

Input EditMediaTaskInput Input of video editing task.

Output EditMediaTaskOutput Output of video editing task. Note: this field may return null, indicating
that no valid values can be obtained.

https://intl.cloud.tencent.com/document/product/1041/33690#EditMediaTaskInput
https://intl.cloud.tencent.com/document/product/1041/33690#EditMediaTaskOutput

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 91

You can implement backend web services by writing SCF functions and providing services through CLB, which will
pass the request content as parameters to the function and return the result from the function back to the requester as
the response.

Characteristics of CLB triggers:

Push model
After a CLB trigger receives a request from CLB, if CLB is configured to connect with a function on the backend,
the function will be triggered for execution, and CLB will send the information of the request as event input

parameters to the triggered function, including the specific method how the request is received as well as the

 path , header , and query of the request.

Sync invocation
A CLB trigger invokes functions synchronously. For more information on invocation types, please see Invocation
Types.

Note：

CLB accounts are divided into standard accounts and traditional accounts. Traditional accounts cannot be

bound to SCF. We recommend you upgrade them to standard accounts.

CLB Trigger Configuration

CLB triggers can be configured in either the SCF or CLB console.

SCF console
CLB console

In the Serverless console, you can add CLB triggers in trigger method, select existing CLB instances, create routing

rules, and configure URL request paths.

CLB Trigger Binding Limits

CLB Trigger Description
Last updated：2022-12-16 17:41:56

https://intl.cloud.tencent.com/document/product/583/9694
https://console.intl.cloud.tencent.com/scf/index
https://console.intl.cloud.tencent.com/clb/index
https://intl.cloud.tencent.com/document/product/583/31441

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 91

One CLB path rule can be bound to only one function, but one function can be bound to multiple CLB rules as the
backend. Rules with the same path, listener, and host are regarded as the same rule and cannot be bound
repeatedly.

Currently, CLB triggers can only be bound to functions in the same region; for example, a function created in the
Guangzhou region can only be bound to and triggered by CLB rules created in the Guangzhou region.

Request and Response

Request method refers to the method to process request sent from CLB to SCF, and response method refers to the
method to process the returned value sent from SCF to CLB. Both request and response methods are automatically
processed by the CLB trigger. When it triggers the function, data structures must be returned in the request method.

Note：
 X-Vip , X-Vport , X-Uri , X-Method , and X-Real-Port fields must be customized in the

CLB console before they can be transferred. For custom configurations, see Layer-7 Custom Configuration.

Event message structure of integration request for CLB trigger

When a CLB trigger receives a request, event data will be sent to the bound function in JSON format as shown below.

Note：
In the CLB trigger scenario, all requests and responses need to be transferred in JSON. For images, files, and

other data, as directly passing in JSON content will cause invisible characters to be lost, Base64 encoding is
required as detailed below:

If the Content-type is text/* , application/json , application/javascript , or

 application/xml , CLB will not transcode the body content.

For all other types, CLB will Base64-encode them first and then forward them.

{

"headers": {

 "Content-type": "application/json",

 "Host": "test.clb-scf.com",

 "User-Agent": "Chrome",

 "X-Stgw-Time": "1591692977.774",

 "X-Client-Proto": "http",

 "X-Forwarded-Proto": "http",

https://intl.cloud.tencent.com/document/product/214/32427

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 91

 "X-Client-Proto-Ver": "HTTP/1.1",

"X-Real-IP": "9.43.175.219",

 "X-Forwarded-For": "9.43.175.xx"

 "X-Vip": "121.23.21.xx",

 "X-Vport": "xx",

 "X-Uri": "/scf_location",

 "X-Method": "POST"

 "X-Real-Port": "44347",

},

"payload": {

 "key1": "123",

 "key2": "abc"

},

}

The data structures are as detailed below:

Structure Description

X-Stgw-Time Request start timestamp

X-Forwarded-
Proto

 scheme structure of the request

X-Client-Proto-
Ver

Protocol type

X-Real-IP Client IP address

X-Forward-For Passed proxy IP address

X-Real-Port
Records the Path parameters configured in CLB and their actual values (optional custom
configuration of CLB)

X-Vip CLB VIP address (optional custom configuration of CLB)

X-Vport CLB Vport (optional custom configuration of CLB)

X-Url CLB request path (optional custom configuration of CLB)

X-Method CLB request method (optional custom configuration of CLB)

Note：

The content may be increased significantly during CLB iteration. At present, it is guaranteed that the content
of the data structure will only be increased but not reduced, so that the existing structure will not be

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 91

compromised.
Parameters in real requests may appear in multiple locations and can be selected based on your business
needs.

Integration response

Integration response means that CLB parses the returned content of the function and constructs an HTTP response
based on the parsed content. With the aid of integration response, you can control the status code, headers, and body
content of the response by using code and implement response to content in custom formats, such as XML, HTML,
JSON, and even JS. When using integration response, data structures need to be returned in the returned data
structures of integration response for CLB trigger before they can be successfully parsed; otherwise, the error

message {"errno":403,"error":"Analyse scf response failed."} will appear.

Returned data structures of integration response for CLB trigger

If integration response is set for CLB, data needs to be returned in the following structures:

{

"isBase64Encoded": false,

"statusCode": 200,

"headers": {"Content-Type":"text/html"},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

The data structures are as detailed below:

Structure Description

isBase64Encoded
This indicates whether the content in the body is Base64-encoded binary. It should be
 true or false in JSON format.

statusCode HTTP return code, which should be an integer value.

headers
HTTP return header, which should contain multiple key-value or key:
[value,value] objects. Both key and value should be strings.

body HTTP return body.

If you need to return multiple headers with the same key, you can use a string array to describe different values; for
example:

{

"isBase64Encoded": false,

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 91

"statusCode": 200,

"headers": {"Content-Type":"text/html","Key":["value1","value2","value3"]},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 91

Overview

You can write SCF functions to handle your own business logic and trigger the functions through the management
APIs exposed by SCF. The management APIs are collectively referred to as TencentCloud API in Tencent Cloud. By
using the Invoke API of SCF, you can trigger and invoke functions as needed.

The detailed TencentCloud API call method can be found in Invoke. TencentCloud API triggers have the following
characteristics:

Invocation method: the sync or async triggering method can be defined according to the InvocationType

parameter.
Custom event: the event or data content that triggers the function can be defined according to the

 ClientContext parameter, and the content has to be encoded in JSON format.

TencentCloud API Call

To trigger a function through TencentCloud API, you need to:

1. Authenticate the API;
2. Enter the common parameters;
3. Parse the returned result.

In addition, if you do not want to construct or parse the request content on your own, you can directly use the

TencentCloud API SDK for Python, PHP, Java, Go, .NET, or Node.js to trigger functions. For more information on how
to use the SDK, please see SDK.

TencentCloud API Trigger
Last updated：2020-09-01 10:01:48

https://intl.cloud.tencent.com/document/product/583/17243
https://intl.cloud.tencent.com/document/product/583/17239
https://intl.cloud.tencent.com/document/product/583/17238
https://intl.cloud.tencent.com/document/product/583/17240
https://intl.cloud.tencent.com/document/product/494

