
Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 160

Tencent Real-Time

Communication

Basic Features

Product Documentation

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 160

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,

copy or distribute in any way, in whole or in part, the contents of this document without Tencent

Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud

Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties

referred to in this document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products

and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's

products or services are subject to change. Specific products and services and the standards

applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 160

Contents

Basic Features

Call Mode

iOS and macOS

Android

Windows

Electron

Web

Real-Time Screen Sharing

iOS

Android

Windows

macOS

Web

Flutter

Live Streaming Mode

iOS and macOS

Android

Windows

Electron

Web

On-Cloud Recording

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 4 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (AudioCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The call modes allow a maximum of 300 users in each TRTC room, and up to 50 of them can speak at

the same time. The call modes are suitable for scenarios such as one-to-one video calls, video

conferencing with up to 300 participants, online medical consultation, remote interviews, video

customer service, and online Werewolf playing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls, but the unit cost is relatively high.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback. The unit cost is relatively low.

In the call modes, all users in a TRTC room are assigned to access servers and are in the role of

“anchor”. This means the users can speak to each other at any point during the call (up to 50 users

can send data at the same time). This makes the call modes suitable for use cases such as online

Basic Features

Call Mode

iOS and macOS

Last updated：2022-03-09 16:43:44

https://intl.cloud.tencent.com/document/product/647/35107

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 5 of 160

conferencing, but the number of users in each room is capped at 300.

Sample Code

You can visit GitHub to obtain the sample code used in this document.

Note：

If your access to GitHub is slow, download the ZIP file here.

Directions

Step 1. Integrate the SDKs

https://github.com/LiteAVSDK/TRTC_iOS/tree/main/TRTC-API-Example-OC
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_TRTC_iOS_latest.zip

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 6 of 160

You can integrate the TRTC SDK into your project in the following ways:

Method 1: integrating through CocoaPods

1. Install CocoaPods. For detailed directions, please see Getting Started.

2. Open the Podfile file in the root directory of your project and add the code below.

Note：

If you cannot find a Podfile file in the directory, run the pod init command to create one

and add the code below.

target 'Your Project' do
pod 'TXLiteAVSDK_TRTC'
end

3. Run the command below to install the TRTC SDK.

pod install

After successful installation, an XCWORKSPACE file will be generated in the root directory of your

project.

4. Open the XCWORKSPACE file.

Method 2: manual integration

If you do not want to install CocoaPods, or your access to CocoaPods repositories is slow, you can

download the ZIP file of the SDK and integrate it into your project as instructed in SDK Quick

Integration > iOS.

Step 2. Add device permission requests

Add camera and mic permission requests in the Info.plist file.

Key Value

Privacy - Camera Usage

Description

The reason for requesting camera permission, for example, “camera

access is required to capture video”

https://guides.cocoapods.org/using/getting-started.html
https://intl.cloud.tencent.com/document/product/647/34615
https://intl.cloud.tencent.com/document/product/647/35092

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 7 of 160

Key Value

Privacy - Microphone

Usage Description

The reason for requesting mic permission, for example, “mic access

is required to capture audio”

Step 3. Initialize an SDK instance and configure event callbacks

1. Call sharedInstance() to create a TRTCCloud instance.

// Create a `TRTCCloud` instance
_trtcCloud = [TRTCCloud sharedInstance];
_trtcCloud.delegate = self;

2. Set the attributes of delegate to subscribe to event callbacks and listen for event and error

notifications.

Step 4. Assemble the room entry parameter TRTCParams

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter Type Description Example

sdkAppId Number
Application ID, which you can view in the

TRTC console.
1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, see UserSig.
eJyrVareCeYrSy1SslI...

// Error events must be listened for and captured, and error messages should be sent to users.
- (void)onError:(TXLiteAVError)errCode errMsg:(NSString *)errMsg extInfo:(NSDictionary *)extIn
fo {
if (ERR_ROOM_ENTER_FAIL == errCode) {
[self toastTip:@"Failed to enter room"];
[self.trtcCloud exitRoom];
}
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#ab6884975e069628328d05cf0e2c3dc67
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a96152963bf6ac4bc10f1b67155e04f8d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__ios.html#interfaceTRTCParams
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 8 of 160

Parameter Type Description Example

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

Note：

In TRTC, users with the same userId cannot be in the same room at the same time as it will

cause a conflict.

Step 5. Create and enter a room

1. Call enterRoom() to enter the room specified by the roomId field in TRTCParams . If the room does

not exist, the SDK will create a room whose room number is the value of roomId .

2. Set the appScene parameter according to your actual application scenario. Inappropriate

 appScene values may lead to increased lag or decreased clarity.

For video calls, set the parameter to TRTCAppScene.videoCall .

For audio calls, set the parameter to TRTCAppScene.audioCall .

3. You will receive the onEnterRoom(result) callback. If result is greater than 0, room entry

succeeds, and the value of result indicates the time (ms) room entry takes; if result is less

than 0, room entry fails, and the value is the error code for the failure.

- (void)enterRoom() {
TRTCParams *params = [TRTCParams new];
params.sdkAppId = SDKAppID;
params.roomId = _roomId;
params.userId = _userId;
params.role = TRTCRoleAnchor;
params.userSig = [GenerateTestUserSig genTestUserSig:params.userId];
[self.trtcCloud enterRoom:params appScene:TRTCAppSceneVideoCall];
}

- (void)onEnterRoom:(NSInteger)result {
if (result > 0) {
[self toastTip:@"Entered room successfully"];
} else {
[self toastTip:@"Failed to enter room"];
}
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a96152963bf6ac4bc10f1b67155e04f8d

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 9 of 160

Note：

If room entry fails, you will also receive the onError callback, which contains errCode

(error code), errMsg (error message), and extraInfo (reserved parameter).

If you are already in a room, you must call exitRoom to exit the room before entering

another room.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 6. Subscribe to remote audio/video streams

The SDK supports automatic subscription and manual subscription.

Automatic subscription (default)

In the automatic subscription mode, after room entry, the SDK will automatically pull audio streams

from other users in the room. This enables instant streaming.

1. If other users in the room are sending audio data, you will receive the onUserAudioAvailable()

notification, and the SDK will automatically play back the users’ audio.

2. Call muteRemoteAudio(userId, mute: true) to mute a specified user (userId), or

muteAllRemoteAudio(true) to mute all remote users. The SDK will stop pulling the audio data of

the user(s).

3. If a remote user in the room is sending video data, you will receive the onUserVideoAvailable()

notification, but since the SDK has not received instructions on how to display the video, it will not

process the video data. You must call startRemoteView(userId, view: view) to associate the remote

user’s video data with view .

4. Call setRemoteViewFillMode() to specify the display mode of a remote video.

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

5. Call stopRemoteView(userId) to block the video data of a specified user (userId) or

stopAllRemoteView() to block the video data of all remote users. The SDK will stop pulling the

video data of the user(s).

// Sample code: subscribe to or unsubscribe from the video image of a remote user based on the no
tification received
- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

https://intl.cloud.tencent.com/document/product/647/35124
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a8c885eeb269fc3d2e085a5711d4431d5
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#afede3cc79a8d68994857b410fb5572d2
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a75148bf8a322c852965fe774cbc7dd14
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#afda6658d1bf7dc9bc1445838b95d21ff
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a2b7e96e4b527798507ff743c61a6a066
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#aaa75cd1b98c226bb7b8a19412b204d2b

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 10 of 160

Note：

If you do not call startRemoteView() to subscribe to the video stream immediately after

receiving the onUserVideoAvailable() event callback, the SDK will stop pulling the remote

video within 5 seconds.

Manual subscription

You can call setDefaultStreamRecvMode() to switch the SDK to the manual subscription mode. In this

mode, the SDK will not pull the data of other users in the room automatically. You have to start the

process manually via APIs.

1. Before you enter a room, call the setDefaultStreamRecvMode(false, video: false) API to switch

the SDK to the manual subscription mode.

2. If other users in the room are sending audio data, you will receive the onUserAudioAvailable()

notification, and you need to call muteRemoteAudio(userId, mute: false) to manually subscribe to

the users’ audio. The SDK will decode and play the audio data received.

3. If a remote user in the room is sending video data, you will receive the onUserVideoAvailable()

notification, and you need to call startRemoteView(userId, view: view) to manually subscribe to

the user's video data. The SDK will decode and play the video data received.

Step 7. Publish the local stream

1. Call startLocalAudio() to enable local mic capturing and encode and send the audio captured.

2. Call startLocalPreview() to enable local camera capturing and encode and send the video

captured.

3. Call setLocalViewFillMode() to set the display mode of the local video:

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

UIView* remoteView = remoteViewDic[userId];
if (available) {
[_trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeSmall view:remoteView];
} else {
[_trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeSmall];
}
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#ada2e2155e0e7c3001c6bb6dca1d93048
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#ada2e2155e0e7c3001c6bb6dca1d93048
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a8c885eeb269fc3d2e085a5711d4431d5
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#afede3cc79a8d68994857b410fb5572d2
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3177329bc84e94727a1be97563800beb
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3fc1ae11b21944b2f354db258438100e
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a961596f832657bfca81fd675878a2d15

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 11 of 160

4. Call setVideoEncoderParam() to set the encoding parameters for the local video, which determine

the quality of your video seen by other users in the room.

Note：

The SDK for macOS uses the default camera and mic. You can call setCurrentCameraDevice()

and setCurrentMicDevice() to switch to a different camera and mic.

Step 8. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

Note：

If your application integrates multiple audio/video SDKs, please wait after you receive the

 onExitRoom callback to start other SDKs; otherwise, the device busy error may occur.

// Sample code: publish the local audio/video stream
[self.trtcCloud startLocalPreview:_isFrontCamera view:self.view];
[self.trtcCloud startLocalAudio:TRTCAudioQualityMusic];

// Please wait for the `onExitRoom` callback after calling the room exit API.
[self.trtcCloud exitRoom];

- (void)onExitRoom:(NSInteger)reason {
NSLog(@"Exited room: reason: %ld", reason)
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a57938e5b62303d705da2ceecf119d74e
https://intl.cloud.tencent.com/document/product/647/35153
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#aae9955bb39985586f7faba841d2692fc
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a5141fec83e7f071e913bfc539c193ac6
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a715f5b669ad1d7587ae19733d66954f3
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a6a98fcaac43fa754cf9dd80454897bea

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 12 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (AudioCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The call modes allow a maximum of 300 users in each TRTC room, and up to 50 of them can speak at

the same time. The call modes are suitable for scenarios such as one-to-one video calls, video

conferencing with up to 300 participants, online medical consultation, remote interviews, video

customer service, and online Werewolf playing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls, but the unit cost is relatively high.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback. The unit cost is relatively low.

In the call modes, all users in a TRTC room are assigned to access servers and are in the role of

“anchor”. This means the users can speak to each other at any point during the call (up to 50 users

can send data at the same time). This makes the call modes suitable for use cases such as online

Android

Last updated：2022-03-09 16:35:03

https://intl.cloud.tencent.com/document/product/647/35108

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 13 of 160

conferencing, but the number of users in each room is capped at 300.

Sample Code

You can visit GitHub to obtain the sample code used in this document.

Note：

If your access to GitHub is slow, download the ZIP file here.

Directions

Step 1. Integrate the SDKs

https://github.com/LiteAVSDK/TRTC_Android/tree/main/TRTC-API-Example
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_TRTC_Android_latest.zip

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 14 of 160

You can integrate the TRTC SDK into your project in the following ways:

Method 1: automatic loading (AAR)

The TRTC SDK has been released to the mavenCentral repository, and you can configure Gradle to

download updates automatically.

The TRTC SDK has integrated TRTC-API-Example , which offers sample code for your reference. Use

Android Studio to open your project and follow the steps below to modify the app/build.gradle file.

1. Add the TRTC SDK dependency to dependencies .

dependencies {
compile 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'
}

2. In defaultConfig , specify the CPU architecture to be used by your application.

Note：

Currently, the TRTC SDK supports armeabi, armeabi-v7a, and arm64-v8a.

defaultConfig {
ndk {
abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}
}

3. Click Sync Now to sync the SDK.

If you have no problem connecting to mavenCentral, the SDK will be downloaded and integrated

into your project automatically.

Method 2: manual integration

You can directly download the ZIP package and integrate the SDK into your project as instructed in

Quick Integration (Android).

Step 2. Configure app permissions.

Add camera, mic, and network permission requests in AndroidManifest.xml .

https://intl.cloud.tencent.com/document/product/647/34615
https://intl.cloud.tencent.com/document/product/647/35093

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 15 of 160

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus" />

Step 3. Initialize an SDK instance and configure event callbacks

1. Call the sharedInstance() API to create a TRTCCloud instance.

// Create a `TRTCCloud` instance
mTRTCCloud = TRTCCloud.sharedInstance(getApplicationContext());
mTRTCCloud.setListener(new TRTCCloudListener(){
// Processing callbacks
...
});

2. Set the attributes of setListener to subscribe to event callbacks and listen for event and error

notifications.

// Error notifications indicate that the SDK has stopped working and therefore must be listene
d for
@Override
public void onError(int errCode, String errMsg, Bundle extraInfo) {
Log.d(TAG, "sdk callback onError");
if (activity != null) {
Toast.makeText(activity, "onError: " + errMsg + "[" + errCode+ "]" , Toast.LENGTH_SHORT).show
();
if (errCode == TXLiteAVCode.ERR_ROOM_ENTER_FAIL) {
activity.exitRoom();
}
}
}

https://intl.cloud.tencent.com/document/product/647/35125

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 16 of 160

Step 4. Assemble the room entry parameter TRTCParams

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter Type Description Example

sdkAppId Number
Application ID, which you can view in the

TRTC console.
1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, please see UserSig.
eJyrVareCeYrSy1SslI...

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

Note：

In TRTC, users with the same userID cannot be in the same room at the same time as it will

cause a conflict.

Step 5. Create and enter a room

1. Call enterRoom() to enter the audio/video room specified by roomId in the TRTCParams

parameter. If the room does not exist, the SDK will automatically create it with the roomId value

as the room number.

2. Set the appScene parameter according to your actual application scenario. Inappropriate

 appScene values may lead to increased lag or decreased clarity.

For video calls, please set TRTC_APP_SCENE_VIDEOCALL .

For audio calls, please set TRTC_APP_SCENE_AUDIOCALL .

3. You will receive the onEnterRoom(result) callback. If result is greater than 0, room entry

succeeds, and the value of result indicates the time (ms) room entry takes; if result is less

than 0, room entry fails, and the value is the error code for the failure.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#abfc1841af52e8f6a5f239a846a1e5d5c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__android.html#a674b3c744a0522802d68dfd208763b59
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#abfc1841af52e8f6a5f239a846a1e5d5c

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 17 of 160

public void enterRoom() {
TRTCCloudDef.TRTCParams trtcParams = new TRTCCloudDef.TRTCParams();
trtcParams.sdkAppId = sdkappid;
trtcParams.userId = userid;
trtcParams.roomId = 908;
trtcParams.userSig = usersig;
mTRTCCloud.enterRoom(trtcParams, TRTC_APP_SCENE_VIDEOCALL);
}
@Override
public void onEnterRoom(long result) {
if (result > 0) {
toastTip("Entered room successfully; the total time used is [\(result)] ms")
} else {
toastTip("Failed to enter the room; the error code is [\(result)]")
}
}

Note：

If the room entry fails, the SDK will also call back the onError event and return the

parameters errCode (error code), errMsg (error message), and extraInfo (reserved

parameter).

If you are already in a room, you must call exitRoom to exit the room before entering

another room.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 6. Subscribe to remote audio/video streams

The SDK supports automatic subscription and manual subscription.

Automatic subscription (default)

In automatic subscription mode, after room entry, the SDK will automatically receive audio streams

from other users in the room to achieve the best "instant broadcasting" effect:

1. When another user in the room is upstreaming audio data, you will receive the

onUserAudioAvailable() event notification, and the SDK will automatically play back the audio of

the remote user.

2. You can call muteRemoteAudio(userId, true) to mute a specified user (userId), or

muteAllRemoteAudio(true) to mute all remote users. The SDK will stop pulling the audio data of

the user(s).

https://intl.cloud.tencent.com/document/product/647/35130
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac474bbf919f96c0cfda87c93890d871f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a8d8b8edf120036d4049cc3639a1ce81f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a5b63c0796404b80323ae67aafe0384ba

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 18 of 160

3. When another user in the room is upstreaming video data, you will receive the

onUserVideoAvailable() event notification; however, since the SDK has not received instructions on

how to display the video data at this time, video data will not be processed automatically. You

need to associate the video data of the remote user with the display view by calling the

startRemoteView(userId, view) method.

4. Call setRemoteViewFillMode() to specify the display mode of a remote video.

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

5. Call stopRemoteView(userId) to block the video data of a specified user (userId) or

stopAllRemoteView() to block the video data of all remote users. The SDK will stop pulling the

video data of the user(s).

@Override
public void onUserVideoAvailable(String userId, boolean available) {
TXCloudVideoView remoteView = remoteViewDic[userId];
if (available) {
mTRTCCloud.startRemoteView(userId, remoteView);
mTRTCCloud.setRemoteViewFillMode(userId, TRTC_VIDEO_RENDER_MODE_FIT);
} else {
mTRTCCloud.stopRemoteView(userId);
}
}

Note：

If you do not call startRemoteView() to subscribe to the video stream immediately after

receiving the onUserVideoAvailable() event callback, the SDK will stop pulling the remote

video within 5 seconds.

Manual subscription

You can call setDefaultStreamRecvMode() to switch the SDK to the manual subscription mode. In this

mode, the SDK will not pull the data of other users in the room automatically. You have to start the

process manually via APIs.

1. Before room entry, call the setDefaultStreamRecvMode(false, false) API to set the SDK to

manual subscription mode.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac1a0222f5b3e56176151eefe851deb05
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#ab4197bc2efb62b471b49f926bab9352f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a8f3e86bc219090d0e8f2d5c2fab4467a
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#addaac0786ac0bd6e73a5f35c038df127
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a0b8d004665d5003ce1d9a48a9ab551b3
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a0b8d004665d5003ce1d9a48a9ab551b3

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 19 of 160

2. If other users in the room are sending audio data, you will receive the onUserAudioAvailable()

notification, and you need to call muteRemoteAudio(userId, false) to manually subscribe to the

users’ audio. The SDK will decode and play the audio data received.

3. If a remote user in the room is sending video data, you will receive the onUserVideoAvailable()

notification, and you need to call startRemoteView(userId, remoteView) to manually subscribe to

the user's video data. The SDK will decode and play the video data received.

Step 7. Publish the local stream

1. Call startLocalAudio() to enable local mic capturing and encode and send the audio captured.

2. Call startLocalPreview() to enable local camera capturing and encode and send the video

captured.

3. Call setLocalViewFillMode() to set the display mode of the local video:

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

4. Call setVideoEncoderParam() to set the encoding parameter of the local video, which determines

the image quality of the video watched by other users in the room.

// Sample code: publish the local audio/video stream
mTRTCCloud.setLocalViewFillMode(TRTC_VIDEO_RENDER_MODE_FIT);
mTRTCCloud.startLocalPreview(mIsFrontCamera, mLocalView);
mTRTCCloud.startLocalAudio();

Step 8. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

// Please wait for the `onExitRoom` callback after calling the room exit API.
mTRTCCloud.exitRoom()
@Override
public void onExitRoom(int reason) {
Log.i(TAG, "onExitRoom: reason = " + reason);
}

Note：

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac474bbf919f96c0cfda87c93890d871f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a8d8b8edf120036d4049cc3639a1ce81f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac1a0222f5b3e56176151eefe851deb05
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a9428ef48d67e19ba91272c9cf967e35e
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a84098740a2e69e3d1f02735861614116
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#af36ab721c670e5871e5b21a41518b51d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#ae047d96922cb1c19135433fa7908e6ce
https://intl.cloud.tencent.com/document/product/647/35153
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a41d16a97a9cb8f16ef92f5ef5bfebee1
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ad5ac26478033ea9c0339462c69f9c89e

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 20 of 160

If your application integrates multiple audio/video SDKs, please wait after you receive the

 onExitRoom callback to start other SDKs; otherwise, the device busy error may occur.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 21 of 160

Overview

This document describes how to use the TRTC SDK to implement the simple video call feature. It

covers only the most used APIs. To learn about other APIs, please see the API documentation.

Sample Code

Platform Sample Code

Windows (MFC) TRTCMainViewController.cpp

Windows (Duilib) TRTCMainViewController.cpp

Windows (C#) TRTCMainForm.cs

Video Call

1. Initialize the SDK

To use the TRTC SDK, the first step is obtaining the ITRTCCloud* pointer to a singleton object of

 TRTCCloud through the export API getTRTCShareInstance , and subscribing to the SDK’s events.

Inherit the ITRTCCloudCallback callback API class and rewrite the callback APIs for key events

including room entry/exit by local user, room entry/exit by remote user, error event, and warning

event.

Call the addCallback API to subscribe to the SDK’s events.

Note：

If addCallback is called N times, the SDK will trigger N callbacks for the same event.

Therefore, you are advised to call addCallback only once.

C++

Windows

Last updated：2021-11-22 10:12:21

https://intl.cloud.tencent.com/document/product/647/35119
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/MFCDemo/TRTCMainViewController.cpp
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/DuilibDemo/TRTCMainViewController.cpp
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/CSharpDemo/TRTCMainForm.cs

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 22 of 160

C#

// TRTCMainViewController.h

// Inherit the `ITRTCCloudCallback` callback API class
class TRTCMainViewController : public ITRTCCloudCallback
{
public:
TRTCMainViewController();
virtual ~TRTCMainViewController();

virtual void onError(TXLiteAVError errCode, const char* errMsg, void* arg);
virtual void onWarning(TXLiteAVWarning warningCode, const char* warningMsg, void* arg);
virtual void onEnterRoom(int result);
virtual void onExitRoom(int reason);
virtual void onRemoteUserEnterRoom(const char* userId);
virtual void onRemoteUserLeaveRoom(const char* userId, int reason);
virtual void onUserVideoAvailable(const char* userId, bool available);
virtual void onUserAudioAvailable(const char* userId, bool available);
...
private:
ITRTCCloud * m_pTRTCSDK = NULL；
...
}

// TRTCMainViewController.cpp

TRTCMainViewController::TRTCMainViewController()
{
// Create a `TRTCCloud` instance
m_pTRTCSDK = getTRTCShareInstance();

// Subscribe to the SDK’s events
m_pTRTCSDK->addCallback(this);
}

TRTCMainViewController::~TRTCMainViewController()
{
// Unsubscribe from the SDK’s events
if(m_pTRTCSDK) {
m_pTRTCSDK->removeCallback(this);
}

// Release the `TRTCCloud` instance
if(m_pTRTCSDK != NULL) {
destroyTRTCShareInstance();

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 23 of 160

2. Assemble TRTCParams

 TRTCParams is the most critical parameter in the SDK. It contains four required fields: SDKAppID ,

 userId , userSig , and roomId .

SDKAppID

Log in to the TRTC console. If you don't have an application yet, create one, and you will see its

 SDKAppID .

userId

A custom string, which you can keep in line with the naming of your account. Please note that

there cannot be users with identical userId in a room.

userSig

Calculated based on SDKAppID and userID . For details, see UserSig.

roomId

A custom number. Please note that rooms under the same application cannot have

identical roomId . For string-type room ID, use strRoomId in TRTCParams .

3. Enter (or create) a room

Call enterRoom to enter the room specified by the roomId field in TRTCParams . If the room does not

exist, the SDK will create one whose room number is the value of roomId .

The appScene parameter specifies the application scenario of the SDK. In this document, it is set to

 TRTCAppSceneVideoCall (video call). In this scenario, the codec and network components give a

higher priority to ensuring video smoothness and reducing call latency and stutter.

m_pTRTCSDK = null;
}
}

// Error notifications indicate that the SDK has stopped working and therefore must be listened f
or.
virtual void TRTCMainViewController::onError(TXLiteAVError errCode, const char* errMsg, void* ar
g)
{
if (errCode == ERR_ROOM_ENTER_FAIL) {
LOGE(L"onError errorCode[%d], errorInfo[%s]", errCode, UTF82Wide(errMsg).c_str());
exitRoom();
}
}

https://console.cloud.tencent.com/rav
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 24 of 160

After calling the room entry API, you will receive the onEnterRoom callback. If result is greater

than 0, room entry succeeds, and the value represents the time (ms) room entry takes; if result

is less than 0, room entry fails, and the value is the error code for the failure.

If room entry fails, you will also receive the onError callback, which contains errCode (error

code, whose value is ERR_ROOM_ENTER_FAIL ; for other error code values, please see

 TXLiteAVCode.h), errMsg (error message), and extraInfo (reserved parameter).

If you are already in a room, you must call exitRoom to exit the room before entering another

room.

C++

C#

// TRTCMainViewController.cpp

void TRTCMainViewController::enterRoom()
{
// For the definition of `TRTCParams`, please see the header file `TRTCCloudDef.h`.
TRTCParams params;
params.sdkAppId = sdkappid;
params.userId = userid;
params.userSig = usersig;
params.roomId = 908; // Set it to the ID of the room you want to enter
if(m_pTRTCSDK)
{
m_pTRTCSDK->enterRoom(params, TRTCAppSceneVideoCall);
}
}

...

void TRTCMainViewController::onError(TXLiteAVError errCode, const char* errMsg, void* arg)
{
if(errCode == ERR_ROOM_ENTER_FAIL)
{
LOGE(L"onError errorCode[%d], errorInfo[%s]", errCode, UTF82Wide(errMsg).c_str());
// Check whether `userSig` is valid, network is normal, etc.
}
}

...

void TRTCMainViewController::onEnterRoom(int result)
{
LOGI(L"onEnterRoom result[%d]", result);

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 25 of 160

Note：

Set the appScene parameter according to your actual application scenario. Inappropriate

 appScene values may lead to increased stutter or decreased clarity.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

4. Play remote audio streams

The TRTC SDK pulls remote audio streams by default, so there is no need for extra code. If you do

not want to play the audio stream of a specified user (userid), you can mute it by calling

 muteRemoteAudio .

5. Play remote video streams

The TRTC SDK does not pull remote video streams by default. If a user is sending video data, other

users in the room can get his or her userid through the onUserVideoAvailable callback in

 ITRTCCloudCallback and call startRemoteView to display the user’s video image.

Call setRemoteViewFillMode to set the video display mode to Fill or Fit . Video may be resized

proportionally in both modes, but they differ in that:

In the Fill mode, the image fills the entire screen. If the dimensions of the image do not match

those of the screen after scaling, the excess parts are cropped.

In the Fit mode, the image is displayed in whole. If the dimensions of the image do not match

those of the screen after scaling, the blank area is filled with black bars.

C++

C#

if(result >= 0)
{
// Entered room successfully
}
else
{
// Failed to enter room. Error code = result;
}
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 26 of 160

6. Enable/Disable local audio capturing

Mic capturing is disabled by default. Call startLocalAudio to enable local audio capturing and send

the data captured, and stopLocalAudio to disable audio capturing.

Note：

You can call startLocalAudio after startLocalPreview .

7. Enable/Disable local video capturing

Camera capturing is disabled by default. You can call startLocalPreview to turn the local camera on

and enable preview, and stopLocalPreview to disable camera capturing and preview.

Call startLocalPreview , specifying the window for local video rendering. The SDK dynamically

detects window size and renders the video in the window represented by rendHwnd .

Call the setLocalViewFillMode API to set the local video rendering mode to Fill or Fit . In both

modes, video may be resized proportionally, but they differ in that:

In the Fill mode, the image fills the entire screen. If the dimensions of the image do not

match those of the screen after scaling, the parts that do not fit are cropped.

In the Fit mode, the image is displayed in whole. If the dimensions of the image do not match

those of the screen after scaling, the unoccupied space is painted black.

C++

C#

// TRTCMainViewController.cpp
void TRTCMainViewController::onUserVideoAvailable(const char* userId, bool available){
if (available) {
// Get the handle of the rendering window
CWnd *pRemoteVideoView = GetDlgItem(IDC_REMOTE_VIDEO_VIEW);
HWND hwnd = pRemoteVideoView->GetSafeHwnd();

// Set the rendering mode of the remote video
m_pTRTCSDK->setRemoteViewFillMode(TRTCVideoFillMode_Fill);
// Call the API below to play the remote video
m_pTRTCSDK->startRemoteView(userId, hwnd);
} else {
m_pTRTCSDK->stopRemoteView(userId);
}
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 27 of 160

8. Block audio/video

Block local video data

Call muteLocalVideo to block local video data to other users in the room if you do not want them

to see your video for privacy reasons.

Block local audio data

Call muteLocalAudio to block local audio data to other users in the room if you do not want them

to hear your audio for privacy reasons.

Block remote video data

Call stopRemoteView to block the video data of a specified user (userid).

Call stopAllRemoteView to block the video data of all remote users.

Block remote audio data

Call muteRemoteAudio to block the audio data of a specified user (userid).

Call muteAllRemoteAudio to block the audio data of all remote users.

9. Exit the room

Call exitRoom to exit the room. Regardless of whether the call has ended, the SDK will release all

resources used by the call.

// TRTCMainViewController.cpp

void TRTCMainViewController::onEnterRoom(uint64_t elapsed)
{
...

// Get the handle of the rendering window
CWnd *pLocalVideoView = GetDlgItem(IDC_LOCAL_VIDEO_VIEW);
HWND hwnd = pLocalVideoView->GetSafeHwnd();

if(m_pTRTCSDK)
{
// Call the APIs below to set the rendering mode and rendering window
m_pTRTCSDK->setLocalViewFillMode(TRTCVideoFillMode_Fit);
m_pTRTCSDK->startLocalPreview(hwnd);
}

...
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 28 of 160

Note：

After exitRoom is called, the SDK will start a complex handshake process, which finishes only

after the onExitRoom callback is received.

C++

C#

// TRTCMainViewController.cpp

void TRTCMainViewController::exitRoom()
{
if(m_pTRTCSDK)
{
m_pTRTCSDK->exitRoom();
}
}
....
void TRTCMainViewController::onExitRoom(int reason)
{
// Exited room successfully. `reason` is a reserved parameter and is not used for the time being.

...
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 29 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (VoiceCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The call modes allow a maximum of 300 users in each TRTC room, and up to 50 of them can speak at

the same time. The call modes are suitable for scenarios such as one-to-one video calls, video

conferencing with up to 300 participants, online medical consultation, remote interviews, video

customer service, and online Werewolf playing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls, but the unit cost is relatively high.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback. The unit cost is relatively low.

In the call modes, all users in a TRTC room are assigned to access servers and are in the role of

“anchor”. This means the users can speak to each other at any point during the call (up to 50 users

can send data at the same time). This makes the call modes suitable for use cases such as online

conferencing, but the number of users in each room is capped at 300.

Electron

Last updated：2022-01-20 14:58:02

https://intl.cloud.tencent.com/document/product/647/36070

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 30 of 160

Sample Code

You can obtain the sample code used in this document at GitHub.

Directions

Step 1. Run the official SimpleDemo

We recommend that you read Demo Quick Start > Electron first and follow the instructions to run the

official SimpleDemo .

If you run SimpleDemo successfully, then you know how to install Electron in your project.

If not, there may be a problem in the download or installation process. Try troubleshooting the

problem by following the instructions in Electron's installation document.

Step 2. Integrate trtc-electron-sdk into your project

If you can run SimpleDemo successfully, then you know how to set up the Electron environment.

You can develop your project based on the demo we provide to get started quickly.

You can also run the following command to install trtc-electron-sdk in your project.

npm install trtc-electron-sdk --save

https://github.com/tencentyun/TRTCSDK/tree/master/Electron
https://intl.cloud.tencent.com/document/product/647/35089
https://www.electronjs.org/docs/tutorial/installation

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 31 of 160

Step 3. Initialize an SDK instance and configure event callbacks

1. Create a trtc-electron-sdk instance:

import TRTCCloud from 'trtc-electron-sdk';
let trtcCloud = new TRTCCloud();

2. Listen for the onError event:

Step 4. Assemble the room entry parameter TRTCParams

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter Type Description Example

sdkAppId Number

Application ID, which can be found in

Application Management > Application

Info in the console

1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, see UserSig.
eJyrVareCeYrSy1SslI...

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

// Error events must be listened for and captured, and error messages should be sent to users.
let onError = function(err) {
console.error(err);
};
trtcCloud.on('onError',onError);

import {
TRTCParams,
TRTCRoleType
} from "trtc-electron-sdk/liteav/trtc_define";

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#enterRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCParams.html
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 32 of 160

Note：

In TRTC, users with the same userId cannot be in the same room at the same time as it will

cause a conflict.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 5. Create and enter a room

1. Call enterRoom() to enter the room specified by the roomId field in TRTCParams . If the room does

not exist, the SDK will create a room whose number is the value of roomId .

2. Set the appScene parameter according to your actual application scenario. Inappropriate

 appScene values may increase stutter or reduce video clarity.

For video calls, set it to TRTCAppScene.TRTCAppSceneVideoCall .

For audio calls, set it to TRTCAppScene.TRTCAppSceneAudioCall .

Note：

For more information about TRTCAppScene , see TRTCAppScene .

3. You will receive the onEnterRoom(result) callback. If result is greater than 0, room entry

succeeds, and the value of result indicates the time (ms) room entry takes; if result is less

than 0, room entry fails, and the value is the error code for the failure.

let param = new TRTCParams();
param.sdkAppId = 1400000123;
param.roomId = 29834;
param.userId = 'test_user_001';
param.userSig = 'eJyrVareCeYrSy1SslI...';

import TRTCCloud from 'trtc-electron-sdk';
import { TRTCParams, TRTCAppScene } from "trtc-electron-sdk/liteav/trtc_define";
import TRTCCloud from 'trtc-electron-sdk';
let trtcCloud = new TRTCCloud();

let onEnterRoom = function (result) {
if (result > 0) {

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#enterRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/global.html#TRTCAppScene
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onEnterRoom

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 33 of 160

Step 6. Subscribe to remote audio/video streams

The SDK supports two subscription modes: automatic subscription and manual subscription. The

former allows instant streaming and is suitable for calls with a small number of participants, while

the latter reduces bandwidth usage and is suitable for conferences with a large number of

participants.

Automatic subscription (recommended)

After room entry, the SDK will automatically pull audio streams from other users in the room. This

enables instant streaming.

1. If other users in the room are sending audio data, you will receive the onUserAudioAvailable()

notification, and the SDK will play their audio automatically.

2. You can call muteRemoteAudio(userId, true) to mute a specified user (userId), or

muteAllRemoteAudio(true) to mute all remote users. The SDK will stop pulling the audio data of

the user(s).

3. If a remote user in the room is sending video data, you will receive the onUserVideoAvailable()

notification, but since the SDK has not received instructions on how to display the video, it will not

process the video data. You need to call startRemoteView(userId, view, streamType) to associate

the remote user’s video data with view .

4. You can call setRemoteViewFillMode(userId, mode) to set the display mode of a remote video.

- TRTCVideoFillMode.TRTCVideoFillMode_Fill : aspect fill. The image may be scaled up and cropped,

but there are no black bars.

- TRTCVideoFillMode.TRTCVideoFillMode_Fit : aspect fit. The image may be scaled down to ensure

that it’s displayed in its entirety, and there may be black bars.

console.log(`onEnterRoom, room entry succeeded and took ${result} seconds`);
} else {
console.warn(`onEnterRoom: failed to enter room ${result}`);
}
};

// Subscribe to the room entry event
trtcCloud.on('onEnterRoom', onEnterRoom);

// Enter room. If the room does not exist, the TRTC will create one.
let param = new TRTCParams();
param.sdkAppId = 1400000123;
param.roomId = 29834;
param.userId = 'test_user_001';
param.userSig = 'eJyrVareCeYrSy1SslI...';
trtcCloud.enterRoom(param, TRTCAppScene.TRTCAppSceneVideoCall);

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserAudioAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#muteRemoteAudio
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#muteAllRemoteAudio
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserVideoAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startRemoteView
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setRemoteViewFillMode

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 34 of 160

5. You can call stopRemoteView(userId) to block the video of a specified userId or

stopAllRemoteView() to block the video of all remote users. The SDK will stop pulling the video

data of the user(s).

<div id="video-container"></div>

<script>
import TRTCCloud from 'trtc-electron-sdk';
const trtcCloud = new TRTCCloud();
const videoContainer = document.querySelector('#video-container');
const roomId = 29834;

/**
* Whether camera video is enabled
* @param {number} uid - user ID
* @param {boolean} available - Whether video is enabled
**/

let onUserVideoAvailable = function (uid, available) {

console.log(`onUserVideoAvailable: uid: ${uid}, available: ${available}`);
if (available === 1) {
let id = `${uid}-${roomId}-${TRTCVideoStreamType.TRTCVideoStreamTypeBig}`;
let view = document.getElementById(id);
if (!view) {
view = document.createElement('div');
view.id = id;
videoContainer.appendChild(view);
}
trtcCloud.startRemoteView(uid, view);
trtcCloud.setRemoteViewFillMode(uid, TRTCVideoFillMode.TRTCVideoFillMode_Fill);
} else {
let id = `${uid}-${roomId}-${TRTCVideoStreamType.TRTCVideoStreamTypeBig}`;
let view = document.getElementById(id);
if (view) {
videoContainer.removeChild(view);
}
}
};

// Sample code: subscribe to or unsubscribe from the video image of a remote user based on the no
tification received
trtcCloud.on('onUserVideoAvailable', onUserVideoAvailable);

</script>

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#stopRemoteView
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#stopAllRemoteView

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 35 of 160

Note：

If you do not call startRemoteView() to subscribe to the video stream immediately after

receiving the onUserVideoAvailable() callback, the SDK will stop pulling the remote video

within 5 seconds.

Manual subscription

You can call setDefaultStreamRecvMode(autoRecvAudio, autoRecvVideo) to switch the SDK to the

manual subscription mode. In this mode, the SDK will not pull the audio/video data of other users in

the room automatically. You have to start the process manually via APIs.

1. Before you enter a room, call the setDefaultStreamRecvMode(false, false) API to switch the SDK

to the manual subscription mode.

2. If other users in the room are sending audio data, you will receive the onUserAudioAvailable()

notification, and you need to call muteRemoteAudio(userId, false) to manually subscribe to the

users’ audio. The SDK will decode and play the audio data received.

3. If a remote user in the room is sending video data, you will receive the

onUserVideoAvailable(userId, available) notification, and you need to call startRemoteView(userId,

view) to manually subscribe to the user's video data. The SDK will decode and play the video data

received.

Step 7. Publish the local stream

1. Call startLocalAudio() to enable mic capturing and encode and publish the audio captured.

2. Call startLocalPreview() to enable camera capturing and encode and publish the video captured.

3. Call setLocalViewFillMode() to set the display mode of the local video:

- TRTCVideoFillMode.TRTCVideoFillMode_Fill : aspect fill. The image may be scaled up and cropped,

but there are no black bars.

- TRTCVideoFillMode.TRTCVideoFillMode_Fit : aspect fit. The image may be scaled down to ensure

that it’s displayed in its entirety, and there may be black bars.

4. Call setVideoEncoderParam() to set the encoding parameters for the local video, which determine

the quality of your video seen by other users in the room.

// Sample code: publish the local audio/video stream
trtcCloud.startLocalPreview(view);
trtcCloud.setLocalViewFillMode(TRTCVideoFillMode.TRTCVideoFillMode_Fill);
trtcCloud.startLocalAudio();
// Set local video encoding parameters
let encParam = new TRTCVideoEncParam();

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setDefaultStreamRecvMode
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setDefaultStreamRecvMode
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserAudioAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#muteRemoteAudio
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserVideoAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startRemoteView
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalAudio
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalPreview
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setLocalViewFillMode
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setVideoEncoderParam
https://intl.cloud.tencent.com/document/product/647/35153

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 36 of 160

Note：

The SDK uses the default camera and mic. You can call setCurrentCameraDevice() and

setCurrentMicDevice() to switch to a different camera and mic.

Step 8. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

Note：

If your Electron application integrates multiple audio/video SDKs, please wait after you receive

the onExitRoom callback to start other SDKs; otherwise the device busy error may occur.

encParam.videoResolution = TRTCVideoResolution.TRTCVideoResolution_640_360;
encParam.resMode = TRTCVideoResolutionMode.TRTCVideoResolutionModeLandscape;
encParam.videoFps = 25;
encParam.videoBitrate = 600;
encParam.enableAdjustRes = true;
trtcCloud.setVideoEncoderParam(encParam);

// Please wait for the `onExitRoom` event callback after calling the room exit API.
let onExitRoom = function (reason) {
console.log(`onExitRoom, reason: ${reason}`);
};
trtcCloud.exitRoom();
trtcCloud.on('onExitRoom', onExitRoom);

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setCurrentCameraDevice
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setCurrentMicDevice
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#exitRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onExitRoom

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 37 of 160

This document describes the basic workflow of the TRTC SDK for Web and how to implement the

real-time audio/video call feature.

You will deal with two types of objects in your use of the TRTC SDK for web.

Client object, which represents a local client. The Client class provides APIs for room entry, local

stream publishing, remote stream subscription, etc.

Stream object, which represents an audio/video stream object. There are local stream objects

(LocalStream) and remote stream objects (RemoteStream). The Stream class provides APIs for

stream-related actions, including audio/video playback control.

Web

Last updated：2022-01-20 14:58:02

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/LocalStream.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/RemoteStream.html

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 38 of 160

Below are the APIs used in a basic audio/video call:

Step 1. Create a client object

Create a client object using TRTC.createClient(). Set the parameters as follows:

 mode : TRTC mode, which should be set to rtc

 sdkAppId : the sdkAppId you obtain from Tencent Cloud

 userId : user ID

 userSig : user signature. For the calculation method, please see UserSig

const client = TRTC.createClient({
mode: 'rtc',

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/TRTC.html#.createClient
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 39 of 160

sdkAppId,
userId,
userSig
});

Step 2. Enter a room

Call Client.join() to enter a TRTC room.

 roomId : room ID

client
.join({ roomId })
.then(() => {
console.log('Entered room successfully');
})
.catch(error => {
console.error('Failed to enter room' + error);
});

Step 3. Publish the local stream and subscribe to a remote

stream

1. Call TRTC.createStream() to create a local audio/video stream.

In the example below, the local stream is captured by the camera and mic. The parameters are as

follows:

 userId : ID of the user to whom the stream belongs

 audio : whether to enable audio

 video : whether to enable video

const localStream = TRTC.createStream({ userId, audio: true, video: true });

2. Call LocalStream.initialize() to initialize the local audio/video stream.

localStream
.initialize()
.then(() => {
console.log('Local stream initialized successfully');
})

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#join
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/TRTC.html#.createStream
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/LocalStream.html#initialize

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 40 of 160

.catch(error => {
console.error('Failed to initialize local stream' + error);
});

3. After the local stream is initialized, call Client.publish() to publish it.

client
.publish(localStream)
.then(() => {
console.log('Local stream published successfully');
})
.catch(error => {
console.error('Failed to publish local stream' + error);
});

4. After receiving the Client.on('stream-added') callback, which is used to listen for remote streams,

call Client.subscribe() to subscribe to the stream.

Note：

To ensure that you are notified when a remote user enters the room, please register the

Client.on('stream-added') callback before you call Client.join() to enter the room.

For other events such as the exit of a remote user, please see the API documentation.

client.on('stream-added', event => {
const remoteStream = event.stream;
console.log('New remote stream:' + remoteStream.getId());
// Subscribe to the remote stream
client.subscribe(remoteStream);
});
client.on('stream-subscribed', event => {
const remoteStream = event.stream;
console.log('Subscribed to remote stream successfully:' + remoteStream.getId());
// Play the remote stream
remoteStream.play('remote_stream-' + remoteStream.getId());
});

5. In the callback that indicates successful initialization of the local stream or subscription to a

remote stream, call Stream.play() to play the stream on a webpage. The play method allows a

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#publish
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/module-Event.html#.STREAM_ADDED
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#subscribe
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/module-Event.html#.STREAM_ADDED
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#join
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/module-Event.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Stream.html#play

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 41 of 160

parameter that is a div element ID. The SDK will create an audio/video tag in the div element and

play the stream on it.

Play the local stream after successful initialization

localStream
.initialize()
.then(() => {
console.log('Local stream initialized successfully');
localStream.play('local_stream');
})
.catch(error => {
console.error('Failed to initialize local stream' + error);
});

Play a remote stream after successful subscription

client.on('stream-subscribed', event => {
const remoteStream = event.stream;
console.log('Subscribed to remote stream successfully:' + remoteStream.getId());
// Play the remote stream
remoteStream.play('remote_stream-' + remoteStream.getId());
});

Step 4. Exit the room

Call Client.leave() to exit the room, and the call session ends.

client
.leave()
.then(() => {
// Exited room. You can call `client.join` to start a new call.
})
.catch(error => {
console.error('Failed to leave room' + error);
// The error is unrecoverable. Please refresh the page.
});

Note：

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#leave

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 42 of 160

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 43 of 160

TRTC supports two screen sharing schemes on iOS:

In-app sharing

With in-app sharing, sharing is limited to the views of the current app. This feature is supported on

iOS 13 and above. As content outside the current app cannot be shared, this feature is suitable for

scenarios with high requirements on privacy protection.

Cross-app sharing

Based on Apple's ReplayKit scheme, cross-app sharing allows the sharing of content across the

system, but the steps required to implement this feature are more complicated than those for in-

app sharing as an additional extension is needed.

Supported Platforms

iOS Android macOS Windows Electron Chrome

✓ ✓ ✓ ✓ ✓ ✓

In-App Sharing

You can implement in-app sharing simply by calling the startScreenCaptureInApp API of the TRTC

SDK, passing in the encoding parameter TRTCVideoEncParam . If TRTCVideoEncParam is set to nil , the

SDK will use the encoding parameters set previously.

We recommend the following encoding settings for screen sharing on iOS:

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Resolution videoResolution 1280 × 720 1920 × 1080

Frame rate videoFps 10 fps 8 fps

Highest

bitrate
videoBitrate 1600 Kbps 2000 Kbps

Real-Time Screen Sharing

iOS

Last updated：2022-03-20 11:04:03

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a16d30ca3f89863da2581ff3872bf31f0

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 44 of 160

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Resolution

adaption
enableAdjustRes NO NO

As screen content generally does not change drastically, it is not economical to use a high frame

rate. We recommend setting it to 10 fps.

If the screen you share contains a large amount of text, you can increase the resolution and

bitrate accordingly.

The highest bitrate (videoBitrate) refers to the highest output bitrate when a shared screen

changes dramatically. If the shared content does not change a lot, the actual encoding bitrate will

be lower.

Cross-App Sharing

Sample code

You can find the sample code for cross-app sharing in the ScreenShare directory of this GitHub

page, which contains the following files:

├─ TRTC-API-Example-OC // TRTC API examples
| ├─ Basic // Demonstrates the cross-app screen sharing feature
| | ├─ ScreenShare // Demonstrates the cross-app screen sharing feature
| | | ├── ScreenAnchorViewController.h
| | | ├── ScreenAnchorViewController.m // Screen recording view for anchor
| | | ├── ScreenAnchorViewController.xib
| | | ├── ScreenAudienceViewController.h
| | | ├── ScreenAudienceViewController.m // Screen recording watching view for audience
| | | ├── ScreenAudienceViewController.xib
| | | ├── ScreenEntranceViewController.h
| | ├─ ScreenEntranceViewController.swift // Screen sharing starting view
| | | ├── ScreenEntranceViewController.xib
| | | ├── TRTCBroadcastExtensionLauncher.h
| | | ├── TRTCBroadcastExtensionLauncher.m // Supplementary code for starting screen recordi
ng
| | | ├── TXReplayKit_Screen // Code for the screen recording process Broadcast Upload Exten
sion. For details, see step 2.
| | | │ ├── Info.plist
| | | │ ├── SampleHandler.h
| | | │ └── SampleHandler.m // Code for receiving screen recording data from the system

https://github.com/LiteAVSDK/TRTC_iOS/tree/main/TRTC-API-Example-OC

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 45 of 160

You can run the demo as instructed in README.

Directions

To enable cross-app screen sharing on iOS, you need to add the screen recording process Broadcast

Upload Extension, which works with the host app to push streams. A Broadcast Upload Extension is

created by the system when screen sharing is needed and is responsible for receiving the screen

images captured by the system. For this, you need to do the following:

1. Create an App Group and configure it in Xcode (optional) to enable communication between the

Broadcast Upload Extension and host app.

2. Create a target of Broadcast Upload Extension in your project and integrate into it

 TXLiteAVSDK_ReplayKitExt.framework from the SDK package, which is tailored for the extension

module.

3. Make the host app wait to receive screen recording data from the Broadcast Upload Extension.

4. Use a helper class (RPSystemBroadcastPickerView) already implemented in the demo to make it

possible to start screen sharing by tapping a button (optional), as in VooV Meeting for iOS.

Note：

If you skip step 1, that is, if you do not configure an App Group (by passing in nil to the API),

you can still enable screen sharing, but its stability will be compromised. Therefore, to ensure

the stability of screen sharing, we suggest that you configure an App Group as described in

this document.

Step 1. Create an App Group

Log in to https://developer.apple.com/ and do the following. You need to download the

provisioning profile again afterwards.

1. Click Certificates, IDs & Profiles.

2. Click "+" next to Identifiers.

3. Select App Groups and click Continue.

4. In the form that pops up, fill in the Description and Identifier boxes. For Identifier, type the

 AppGroup value passed in to the API. After this, click Continue.

https://github.com/LiteAVSDK/TRTC_iOS/tree/main/TRTC-API-Example-OC/README.md
https://develop.apple.com/

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 46 of 160

5. Select Identifiers on the top left sidebar, and click your App ID (you need to configure App ID for

the host app and extension in the same way).

6. Select App Groups and click Edit.

7. In the form that pops up, select the App Group you created, click Continue to return to the edit

page, and click Save to save the settings.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 47 of 160

8. Download the provisioning profile again and import it to Xcode.

Step 2. Create a Broadcast Upload Extension

1. In the Xcode menu, click File > New > Target..., and select Broadcast Upload Extension.

2. In the dialog box that pops up, enter the information required. You don't need to check Include

UI Extension. Click Finish to complete the creation.

3. Drag TXLiteAVSDK_ReplayKitExt.framework in the SDK package into the project and select the target

created.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 48 of 160

4. Click + Capability, and double-click App Groups, as shown below:

A file named target name.entitlements will appear in the file list as shown below. Select it, click

"+", and enter the App Group created earlier.

5. Select the target of the host app and configure it in the same way as described above.

6. In the new target, Xcode will automatically create a file named SampleHandler.h . Replace the file

content with the following code. You need to change APPGROUP in the code to the App Group

Identifier created earlier.

#import "SampleHandler.h"
@import TXLiteAVSDK_ReplayKitExt;

#define APPGROUP @"group.com.tencent.liteav.RPLiveStreamShare"

@interface SampleHandler() <txreplaykitextdelegate>
@end

@implementation SampleHandler
// Note: replace `APPGROUP` with the App Group Identifier created earlier.
- (void)broadcastStartedWithSetupInfo:(NSDictionary<nsstring *,nsobject="" *=""> *)setupInfo {
[[TXReplayKitExt sharedInstance] setupWithAppGroup:APPGROUP delegate:self];
}

- (void)broadcastPaused {

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 49 of 160

// User has requested to pause the broadcast. Samples will stop being delivered.
}

- (void)broadcastResumed {
// User has requested to resume the broadcast. Samples delivery will resume.
}

- (void)broadcastFinished {
[[TXReplayKitExt sharedInstance] finishBroadcast];
// User has requested to finish the broadcast.
}

#pragma mark - TXReplayKitExtDelegate
- (void)broadcastFinished:(TXReplayKitExt *)broadcast reason:(TXReplayKitExtReason)reason
{
NSString *tip = @"";
switch (reason) {
case TXReplayKitExtReasonRequestedByMain:
tip = @"Screen sharing ended";
break;
case TXReplayKitExtReasonDisconnected:
tip = @"Application disconnected";
break;
case TXReplayKitExtReasonVersionMismatch:
tip = @"Integration error (SDK version mismatch)";
break;
}

NSError *error = [NSError errorWithDomain:NSStringFromClass(self.class)
code:0
userInfo:@{
NSLocalizedFailureReasonErrorKey:tip
}];
[self finishBroadcastWithError:error];
}

- (void)processSampleBuffer:(CMSampleBufferRef)sampleBuffer withType:(RPSampleBufferType)sampl
eBufferType {
switch (sampleBufferType) {
case RPSampleBufferTypeVideo:
[[TXReplayKitExt sharedInstance] sendVideoSampleBuffer:sampleBuffer];
break;
case RPSampleBufferTypeAudioApp:
// Handle audio sample buffer for app audio
break;
case RPSampleBufferTypeAudioMic:
// Handle audio sample buffer for mic audio
break;

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 50 of 160

Step 3. Make the host app wait to receive data

Before screen sharing starts, the host app must be on standby to receive screen recording data from

the Broadcast Upload Extension. To achieve this, follow these steps:

1. Make sure that camera capturing has been disabled in TRTCCloud ; if not, call stopLocalPreview to

disable it.

2. Call the startScreenCaptureByReplaykit:appGroup: API, passing in the AppGroup set in step 1 to

put the SDK on standby.

3. The SDK will then wait for a user to trigger screen sharing. If a "triggering button" is not added as

described in step 4, users need to press and hold the screen recording button in the iOS Control

Center to start screen sharing.

4. You can call stopScreenCapture to stop screen sharing at any time.

default:
break;
}
}
@end

// Start screen sharing. You need to replace `APPGROUP` with the App Group Identifier created
earlier.
- (void)startScreenCapture {
TRTCVideoEncParam *videoEncConfig = [[TRTCVideoEncParam alloc] init];
videoEncConfig.videoResolution = TRTCVideoResolution_1280_720;
videoEncConfig.videoFps = 10;
videoEncConfig.videoBitrate = 2000;
// You need to replace `APPGROUP` with the App Group Identifier created earlier.
[[TRTCCloud sharedInstance] startScreenCaptureByReplaykit:videoEncConfig
appGroup:APPGROUP];
}

// Stop screen sharing
- (void)stopScreenCapture {
[[TRTCCloud sharedInstance] stopScreenCapture];
}

// Event notification for the start of screen sharing, which can be received through `TRTCClou
dDelegate`

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a01ee967e3180a5e2fc0e37e9e99e85b3
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a78a8da8c2f235446d03cd2db26f97b60
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#aa8ea0235691fc9cde0a64833249230bb

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 51 of 160

Step 4. Add a screen sharing triggering button (optional)

In step 3, users need to start screen sharing manually by pressing and holding the screen recording

button in the Control Center. To make it possible to start screen sharing by tapping a button in your

app as in VooV Meeting, follow these steps:

1. Find the TRTCBroadcastExtensionLauncher class in the demo and add it to your project.

2. Add a button to your UI and call the launch function of TRTCBroadcastExtensionLauncher in the

response function of the button to trigger screen sharing.

Note：

Apple added RPSystemBroadcastPickerView to iOS 12.0, which can show a picker view in apps

for users to select whether to start screen sharing. Currently, RPSystemBroadcastPickerView

does not support custom UI, and Apple does not provide an official triggering method.

 TRTCBroadcastExtensionLauncher works by going through the subviews of

 RPSystemBroadcastPickerView , finding the UI button, and triggering its tapping event.

Please note that this scheme is not recommended by Apple and may become

invalid in its next update. We have therefore made step 4 optional. You need to

bear the risks of using the scheme yourself.

Watching Shared Screen

Watch screens shared by macOS/Windows users

When a macOS/Windows user in a room starts screen sharing, the screen will be shared through a

substream, and other users in the room will be notified through onUserSubStreamAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the substream image of the

remote user by calling the startRemoteSubStreamView API.

- (void)onScreenCaptureStarted
[self showTip:@"Screen sharing started"];
}

// Customize a response for button tapping
- (IBAction)onScreenButtonTapped:(id)sender {
[TRTCBroadcastExtensionLauncher launch];
}

https://github.com/LiteAVSDK/TRTC_iOS/tree/main/TRTC-API-Example-OC/Basic/ScreenShare
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloudCallback__csharp.html#a52ad5b09959df6e940aec7fb9615de9c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#ae029514645970e7d32470cf1c7aca716

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 52 of 160

Watch screens shared by Android/iOS users

When an Android/iOS user starts screen sharing, the screen will be shared through the primary

stream, and other users in the room will be notified through onUserVideoAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the primary stream of the remote

user by calling the startRemoteView API.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 53 of 160

TRTC supports screen sharing on Android. This means a user can share the screen content of the

local system with other users in the same room through the TRTC SDK. Pay attention to the following

points regarding this feature:

Unlike the desktop edition, for Android, SDK versions earlier than v8.6 do not support substream

screen sharing. Therefore, video capturing by the camera must be stopped first before screen

sharing can start. Substream screen sharing is supported on v8.6 and later versions, so there is no

need to stop video capturing by the camera.

Screen sharing consumes CPU. On Android, a background app consuming CPU continuously is very

likely to be killed by the system. The solution to this problem is creating a floating window after

screen sharing starts. As Android does not kill apps with foreground views, your app can share the

screen continuously without being killed by the system.

Supported Platforms

iOS Android macOS Windows Electron Chrome

✓ ✓ ✓ ✓ ✓ ✓

Starting Screen Sharing

To start screen sharing on Android, simply call the startScreenCapture() API in TRTCCloud . However,

to ensure the stability and video quality of screen sharing, you need to do the following:

Adding an activity

Copy the activity below and paste it in the manifest file. You can skip this if the activity is already

included in your project code.

<activity
android:name="com.tencent.rtmp.video.TXScreenCapture$TXScreenCaptureAssistantActivity"
android:theme="@android:style/Theme.Translucent"/>

Setting video encoding parameters

Android

Last updated：2022-03-09 15:48:36

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#aa6671fc587513dad7df580556e43be58

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 54 of 160

By setting the first parameter encParams in startScreenCapture(), you can specify the encoding

quality of screen sharing. If encParams is set to null , the SDK will use the encoding parameters set

previously. We recommend the following settings:

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Resolution videoResolution 1280 × 720 1920 × 1080

Frame rate videoFps 10 fps 8 fps

Highest

bitrate
videoBitrate 1600 Kbps 2000 Kbps

Resolution

adaption
enableAdjustRes NO NO

As screen content generally does not change drastically, it is not economical to use a high frame

rate. We recommend setting it to 10 fps.

If the screen you share contains a large amount of text, you can increase the resolution and

bitrate accordingly.

The highest bitrate (videoBitrate) refers to the highest output bitrate when a shared screen

changes dramatically. If the shared content does not change a lot, the actual encoding bitrate will

be lower.

Displaying a floating window

Since Android 7.0, apps running in the background tend to be killed by the system if they consume

CPU. To prevent your app from being killed when it is sharing the screen in the background, you need

to create a floating window when screen sharing starts, which also serves the purpose of reminding

the user to avoid displaying personal information as his or her screen is being shared.

Method 1: displaying a common floating window

The code in FloatingView.java offers an example of how to create a mini floating window similar to

the one in VooV Meeting:

public void showView(View view, int width, int height) {
mWindowManager = (WindowManager) mContext.getSystemService(Context.WINDOW_SERVICE);
// `TYPE_TOAST` applies only to Android 4.4 and above. On earlier versions, use `TYPE_SYSTEM_A
LERT` (the permission needs to be declared in `manifest`).
// Android 7.1 and above set restrictions on `TYPE_TOAST`.
int type = WindowManager.LayoutParams.TYPE_TOAST;
if (Build.VERSION.SDK_INT > Build.VERSION_CODES.N) {
type = WindowManager.LayoutParams.TYPE_PHONE;

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#aa6671fc587513dad7df580556e43be58
https://github.com/LiteAVSDK/TRTC_Android/tree/main/TRTC-API-Example/Basic/ScreenShare/src/main/java/com/tencent/trtc/screenshare/FloatingView.java

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 55 of 160

}
mLayoutParams = new WindowManager.LayoutParams(type);
mLayoutParams.flags = WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE;
mLayoutParams.flags |= WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH;
mLayoutParams.width = width;
mLayoutParams.height = height;
mLayoutParams.format = PixelFormat.TRANSLUCENT;
mWindowManager.addView(view, mLayoutParams);
}

Method 2: displaying a camera preview window

Unlike the desktop edition, for Android, SDK versions earlier than v8.6 do not support substream

screen sharing (supported on v8.6 and later versions), so during screen sharing, the primary

stream cannot be used to send camera video.

What if a user wants to share the screen and send camera video at the same time?

Just display a floating window of the camera preview on the screen, and the window will be

captured during screen sharing and shared together with the screen.

Watching Shared Screen

Watch screens shared by macOS/Windows users

When a macOS/Windows user in a room starts screen sharing, the screen will be shared through a

substream, and other users in the room will be notified through onUserSubStreamAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the substream image of the

remote user by calling the startRemoteSubStreamView API.

Watch screens shared by Android/iOS users

When an Android/iOS user starts screen sharing, the screen will be shared through the primary

stream, and other users in the room will be notified through onUserVideoAvailable in

 TRTCCloudListener .

Users who want to watch the shared screen can start rendering the primary stream of the remote

user by calling the startRemoteView API.

//Sample code: watch the shared screen
@Override
public void onUserSubStreamAvailable(String userId, boolean available) {
startRemoteSubStreamView(userId);
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloudCallback__csharp.html#a15be39bb902bf917321b26701e961286
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#ae029514645970e7d32470cf1c7aca716
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac1a0222f5b3e56176151eefe851deb05
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 56 of 160

FAQs

Can there be multiple channels of screen sharing streams in a room at the same time?

Currently, each TRTC room can have only one channel of screen sharing stream.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 57 of 160

TRTC supports screen sharing via the primary stream and substream on Windows:

Substream sharing

In TRTC, you can share the screen via a dedicated stream, which is called the substream. In

substream sharing, an anchor publishes camera video and screen sharing images at the same

time. This is the scheme used by VooV Meeting. You can enable substream sharing by setting the

 TRTCVideoStreamType parameter to TRTCVideoStreamTypeSub when calling the startScreenCapture

API. To play substream video, call startRemoteSubStreamView .

Primary stream sharing

In TRTC, the channel via which camera images are published is the primary stream (bigstream).

In primary stream sharing, an anchor publishes screen sharing images via the primary stream. As

there is only one stream, an anchor cannot publish both camera video and screen sharing images.

You can enable this mode by setting the TRTCVideoStreamType parameter to

 TRTCVideoStreamTypeBig when calling the startScreenCapture API.

Supported Platforms

iOS Android macOS Windows Electron Chrome

✓ ✓ ✓ ✓ ✓ ✓

APIs

Description C++ C# Electron

Selects a

sharing

source

selectScreenCaptureTarget selectScreenCaptureTarget selectScreenCaptureTa

Starts

screen

sharing

startScreenCapture startScreenCapture startScreenCapture

Windows

Last updated：2021-11-08 11:39:29

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__cplusplus.html#a9d16af81b2ea2db7b91a8346add13393
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#a2aabe079ed38fb5122be988434a81a92
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#selectScreenCaptureTarget
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__cplusplus.html#a984f461eebe77819f40c4129fc5a71bb
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#adde6382876b0afab78bab89e8be8e254
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startScreenCapture

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 58 of 160

Description C++ C# Electron

Pauses

screen

sharing

pauseScreenCapture pauseScreenCapture pauseScreenCapture

Resumes

screen

sharing

resumeScreenCapture resumeScreenCapture resumeScreenCapture

Ends

screen

sharing

stopScreenCapture stopScreenCapture stopScreenCapture

Getting Sharable Sources

You can call getScreenCaptureSources to get a list of sharable sources, which is returned via the

response parameter sourceInfoList .

Note：

On Windows, the desktop also counts as a window. When two monitors are used, each monitor

corresponds to a desktop window. The list returned via getScreenCaptureSources includes

desktop windows.

Each sourceInfo object in sourceInfoList represents a sharable source, which is described by the

following parameters:

Parameter Type Description

type TRTCScreenCaptureSourceType
Capturing source type, which may be

window or screen

sourceId HWND

Capturing source ID.

If a window is captured, the value of this

parameter is the window handle.

If a screen is captured, the value of this

parameter is the screen ID.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__cplusplus.html#a0dcd89ed2e23706239db98b55dd806d4
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#a448e432a91c092f80421d377425fb1bb
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#pauseScreenCapture
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__cplusplus.html#a9dc10db068b9d8c6a0fcb8b085359f33
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#ad1fc32927622168e9b3cbb3f70043450
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#resumeScreenCapture
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__cplusplus.html#a0e09090fe4281c0e78d8eb38496a8ed0
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#ad02093be5c603f66f356978169946a18
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#stopScreenCapture

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 59 of 160

Parameter Type Description

sourceName String

Window name. If a screen is captured, the

value of this parameter is Screen0 ,
 Screen1 , and so on.

thumbWidth Int32 Window thumbnail width

thumbHeight Int32 Window thumbnail height

thumbBGRA Buffer Window thumbnail binary buffer

iconWidth Int32 Window icon width

iconHeight Int32 Window icon height

iconBGRA Buffer Window icon binary buffer

Based on the information, you can display a list of sharable sources on the UI for users to choose

from.

Selecting Sharing Source

The TRTC SDK supports three screen sharing modes, which you can specify using

 selectScreenCaptureTarget .

Share an entire screen:

You can share an entire screen by selecting from sourceInfoList a source whose type is

 TRTCScreenCaptureSourceTypeScreen and setting captureRect to {0, 0, 0, 0}. This mode is

supported when you split the screen onto multiple monitors.

Share a portion of a screen:

You can share a specific portion of a screen by selecting from sourceInfoList a source whose

 type is TRTCScreenCaptureSourceTypeScreen and setting captureRect to a non-null value, such as

{100, 100, 300, 300}.

Share a window:

You can share a window by selecting from sourceInfoList a source whose type is

 TRTCScreenCaptureSourceTypeWindow and setting captureRect to {0, 0, 0, 0}.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 60 of 160

Note：

Two additional parameters:

 captureMouse : specifies whether to capture the cursor.

 highlightWindow : specifies whether to highlight the window being shared and remind users

to move the window when it is covered. The relevant UI design is implemented within the

SDK.

Starting Screen Sharing

After selecting a sharing source, you can call the startScreenCapture API to start screen sharing.

During screen sharing, you can call selectScreenCaptureTarget to change the sharing source.

The difference between pauseScreenCapture and stopScreenCapture is that the former pauses

screen capturing and displays the image at the moment of pausing. Remote users see the last

frame of video before pausing until screen capturing is resumed.

/**
* \brief 7.5 **Screen Sharing** Start screen sharing
* \param: rendHwnd - HWND of the preview window
*/
void startScreenCapture(HWND rendHwnd);
/**
* \brief 7.6 **Screen Sharing** Pause screen sharing
*/
void pauseScreenCapture();
/**
* \brief 7.7 **Screen Sharing** Resume screen sharing
*/
void resumeScreenCapture();
/**
* \brief 7.8 **Screen Sharing** Stop screen sharing
*/
void stopScreenCapture();

Setting Video Quality

You can use the setSubStreamEncoderParam API to set the video quality of screen sharing, including

resolution, bitrate, and frame rate. We recommend the following settings:

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 61 of 160

Clarity Resolution Frame Rate Bitrate

FHD 1920 × 1080 10 800 Kbps

HD 1280 × 720 10 600 Kbps

SD 960 × 720 10 400 Kbps

Watching Shared Screen

Watch screens shared by macOS/Windows users

When a macOS/Windows user in a room starts screen sharing, the screen will be shared through a

substream, and other users in the room will be notified through onUserSubStreamAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the substream image of the

remote user by calling the startRemoteSubStreamView API.

Watch screens shared by Android/iOS users

When an Android/iOS user starts screen sharing, the screen will be shared through the primary

stream, and other users in the room will be notified through onUserVideoAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the primary stream of the remote

user by calling the startRemoteView API.

//Sample code: watch the shared screen
void CTRTCCloudSDK::onUserSubStreamAvailable(const char * userId, bool available)
{
LINFO(L"onUserSubStreamAvailable userId[%s] available[%d]\n", UTF82Wide(userId).c_str(), availabl
e);
if (available) {
startRemoteSubStreamView(userId, hWnd);
} else {
stopRemoteSubStreamView(userId);
}
}

FAQs

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloudCallback__csharp.html#a15be39bb902bf917321b26701e961286
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__ITRTCCloud__csharp.html#ae029514645970e7d32470cf1c7aca716
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 62 of 160

Can there be multiple channels of screen sharing streams in the same room at the same

time?

Currently, a TRTC room can have only one screen sharing stream at a time.

When a specified window (SourceTypeWindow) is shared, if the window size changes, will

the resolution of the video stream change accordingly?

By default, the SDK automatically adjusts encoding parameters according to the size of the shared

window.

If you want a fixed resolution, call the setSubStreamEncoderParam API to set encoding parameters for

screen sharing or specify the parameters when calling the startScreenCapture API.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 63 of 160

On macOS, TRTC supports screen sharing via the primary stream and substream:

Substream sharing

In TRTC, you can share the screen via a dedicated stream, which is called the substream. In

substream sharing, an anchor publishes camera video and screen sharing images at the same

time. This is the scheme used by VooV Meeting. You can enable substream sharing by setting the

 TRTCVideoStreamType parameter to TRTCVideoStreamTypeSub when calling the startScreenCapture

API. To play substream video, call startRemoteSubStreamView .

Primary stream sharing

In TRTC, the channel via which camera images are published is the primary stream (bigstream).

In primary stream sharing, an anchor publishes screen sharing images via the primary stream. As

there is only one stream, an anchor cannot publish both camera video and screen sharing images.

You can enable this mode by setting the TRTCVideoStreamType parameter to

 TRTCVideoStreamTypeBig when calling the startScreenCapture API.

Supported Platforms

iOS Android macOS Windows Electron Chrome

✓ ✓ ✓ ✓ ✓ ✓

Getting Sharable Sources

You can call getScreenCaptureSourcesWithThumbnailSize to enumerate sharable sources. Each

sharable source is a TRTCScreenCaptureSourceInfo object.

The desktop of macOS is also a sharable source. The type of sharable windows on macOS is

 TRTCScreenCaptureSourceTypeWindow , while that of the desktop is TRTCScreenCaptureSourceTypeScreen .

You can find the following information, including type , for each TRTCScreenCaptureSourceInfo object:

Parameter Type Description

macOS

Last updated：2021-11-08 11:39:29

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a37df498cbc8d9b1135e3caafdcee906f

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 64 of 160

Parameter Type Description

type TRTCScreenCaptureSourceType
Capturing source type, which may be window

or screen

sourceId NSString

Capturing source ID. If a window is captured,

the value of this parameter is the window

handle.

If a screen is captured, the value of this

parameter is the screen ID.

sourceName NSString

Window name. If a screen is captured, the

value of this parameter is Screen0 ,
 Screen1 , and so on.

extInfo NSDictionary Extra information

Thumbnail NSImage Window thumbnail

Icon NSImage Window icon

Based on the information, you can display a list of sharable sources on the UI for users to choose

from.

Selecting Sharing Source

The TRTC SDK supports three sharing modes, which can be specified via selectScreenCaptureTarget.

Share an entire screen:

You can share an entire screen by selecting a source whose type is

 TRTCScreenCaptureSourceTypeScreen and setting rect to {0, 0, 0, 0}. This mode is supported when

you split the screen onto multiple monitors.

Share a portion of a screen:

You can share a specific portion of a screen by selecting a source whose type is

 TRTCScreenCaptureSourceTypeScreen and setting rect to a non-null value, such as {100, 100, 300,

300}.

Share a window:

You can share a window by selecting a source whose type is TRTCScreenCaptureSourceTypeWindow

and setting rect to {0, 0, 0, 0}.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a01ead6fb3106ea266caa922f5901bf18

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 65 of 160

Note：

Two additional parameters:

 capturesCursor : specifies whether to capture the cursor.

 highlight : specifies whether to highlight the window being shared and remind the user to

move the window when it is covered. The relevant UI design is implemented within the SDK.

Starting Screen Sharing

After selecting a sharing source, you can call startScreenCapture to start screen sharing.

The API pauseScreenCapture differs from stopScreenCapture in that it stops screen capturing and

displays the image captured at the moment of pausing. As a result, remote users will see a still

image until resumeScreenCapture is called.

/**
* 7.6 **Screen Sharing** Start screen sharing
* @param view Parent control of the rendering control
*/
- (void)startScreenCapture:(NSView *)view;
/**
* 7.7 **Screen Sharing** Stop screen sharing
* @return `0`: successful; negative number: failed
*/
- (int)stopScreenCapture;
/**
* 7.8 **Screen Sharing** Pause screen sharing
* @return `0`: successful; negative number: failed
*/
- (int)pauseScreenCapture;
/**
* 7.9 **Screen Sharing** Resume screen sharing
*
* @return `0`: successful; negative number: failed
*/
- (int)resumeScreenCapture;

Setting Video Quality

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a59b16baa51d86cc0465dc6edd3cbfc97
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a6f536bcc3df21b38885809d840698280
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#aa8ea0235691fc9cde0a64833249230bb
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af257a8fb6969fe908ca68a039e6dba15

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 66 of 160

You can use setSubStreamEncoderParam to set the video quality of screen sharing, including

resolution, bitrate, and frame rate. We recommend the following settings:

Clarity Resolution Frame Rate Bitrate

FHD 1920 × 1080 10 800 Kbps

HD 1280 × 720 10 600 Kbps

SD 960 × 720 10 400 Kbps

Watching Shared Screen

Watch screens shared by macOS/Windows users

When a macOS/Windows user in a room starts screen sharing, the screen will be shared through a

substream, and other users in the room will be notified through onUserSubStreamAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the substream image of the

remote user by calling the startRemoteSubStreamView API.

Watch screens shared by Android/iOS users

When an Android/iOS user starts screen sharing, the screen will be shared through the primary

stream, and other users in the room will be notified through onUserVideoAvailable in

 TRTCCloudDelegate .

Users who want to watch the shared screen can start rendering the primary stream of the remote

user by calling the startRemoteView API.

//Sample code: watch the shared screen
- (void)onUserSubStreamAvailable:(NSString *)userId available:(BOOL)available {
if (available) {
[self.trtcCloud startRemoteSubStreamView:userId view:self.capturePreviewWindow.contentView];
} else {
[self.trtcCloud stopRemoteSubStreamView:userId];
}
}

FAQs

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#abc0f3cd5c320d0e65163bd07c3c0a735
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#ac45fb0751f7dbd2466a35c8828c9911b
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a68d048ccd0d018995e33e9e714e14474
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 67 of 160

Can more than one user in a room share their screens at the same time?

Currently, a TRTC room can have only one screen sharing stream at a time.

When a specified window (SourceTypeWindow) is shared, if the window size changes, will

the resolution of the video stream change accordingly?

By default, the SDK automatically adjusts encoding parameters according to the size of the shared

window.

If you want a fixed resolution, call the setSubStreamEncoderParam API to set encoding parameters for

screen sharing or specify the parameters when calling the startScreenCapture API.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 68 of 160

For a list of the browsers that support screen sharing, see Browsers Supported. You can also use the

TRTC.isScreenShareSupported API to check whether your current browser supports screen sharing.

This document describes how to implement the screen sharing feature in the TRTC web SDK.

Note：

The TRTC web SDK does not support publishing substreams, and screen sharing streams are

published as primary streams. Therefore, if a remote screen sharing stream is from a

browser, the RemoteStream.getType() API will return main . We recommend you set userId

in such a way that you can tell from the ID that a user is sharing the screen from a browser.

The TRTC SDKs for native applications (iOS, Android, macOS, Windows, etc.) support

publishing substreams, and screen sharing streams are published as substreams. Therefore,

if a remote screen sharing stream is from a native application, the RemoteStream.getType()

API will return auxiliary .

Creating and Publishing a Screen Sharing Stream

Note：

Follow the steps below to create a screen sharing stream and publish it.

Step 1. Create a screen sharing stream

A screen sharing stream includes an audio track and a video track, and an audio track includes mic

audio and system audio.

Web

Last updated：2022-04-15 15:39:29

// Good:
// Capture only video
const shareStream = TRTC.createStream({ audio: false, screen: true, userId });
// Capture mic audio and video
const shareStream = TRTC.createStream({ audio: true, screen: true, userId });
// Capture system audio and video
const shareStream = TRTC.createStream({ screenAudio: true, screen: true, userId });

https://web.sdk.qcloud.com/trtc/webrtc/doc/en/tutorial-05-info-browser.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/en/TRTC.html#.isScreenShareSupported
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/RemoteStream.html#getType
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/RemoteStream.html#getType

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 69 of 160

Note：

You cannot set both audio and screenAudio to true , nor can you set both camera and

 screenAudio to true . For more information about screenAudio , see "Capturing System

Audio During Screen Sharing" below.

You cannot set both camera and screen to true .

Step 2. Initialize the screen sharing stream

During initialization, the browser will ask the user’s permission to share the screen. If the user denies

the permission or if the browser is not granted the permission by the system, the NotReadableError

or NotAllowedError error will be returned. In such cases, you need to instruct the user to change the

browser settings or grant the screen sharing permission and then initialize the screen sharing stream

again.

Note：

For Safari, you need to initialize the screen sharing stream from an onclick callback. For

details, see FAQs.

// Bad:
const shareStream = TRTC.createStream({ camera: true, screen: true });
// or
const shareStream = TRTC.createStream({ camera: true, screenAudio: true });

try {
await shareStream.initialize();
} catch (error) {
// If the initialization of the screen sharing stream fails, notify the user and stop performing
subsequent steps including room entry and stream publishing.
switch (error.name) {
case 'NotReadableError':
// Ask the user to check if the system has allowed the browser to record the screen.
return;
case 'NotAllowedError':
if (error.message.includes('Permission denied by system')) {
// Ask the user to check if the system has allowed the browser to record the screen.
} else {
// The user denies the permission or cancels screen sharing.
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 70 of 160

Step 3. Create a client object for screen sharing

We recommend you add the prefix share to the userId of the object to indicate that it is used for

screen sharing.

Step 4. Publish the screen sharing stream

Use the client object created in step 1 to publish the stream. If it is successful, remote users will

receive the stream.

Code

return;
default:
// An unknown error occurred during the initialization of the screen sharing stream. Ask the user
to try again.
return;
}
}

const shareClient = TRTC.createClient({
mode: 'rtc',
sdkAppId,
userId, // Example: ‘share_teacher’
userSig
});
// The client object enters the room.
try {
await shareClient.join({ roomId });
// ShareClient join room success
} catch (error) {
// ShareClient join room failed
}

try {
await shareClient.publish(shareStream);
} catch (error) {
// ShareClient failed to publish local stream
}

// We recommend you add the prefix `share` to the `userId` of the object to indicate that it is u
sed for screen sharing.
const userId = 'share_userId';
const roomId = 'roomId';

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 71 of 160

// Capture only video
const shareStream = TRTC.createStream({ audio: false, screen: true, userId });
// Capture mic audio and video
// const shareStream = TRTC.createStream({ audio: true, screen: true, userId });
// Capture system audio and video
// const shareStream = TRTC.createStream({ screenAudio: true, screen: true, userId });
try {
await shareStream.initialize();
} catch (error) {
// If the initialization of the screen sharing stream fails, notify the user and stop performing
subsequent steps including room entry and stream publishing.
switch (error.name) {
case 'NotReadableError':
// Ask the user to check if the system has allowed the browser to record the screen.
return;
case 'NotAllowedError':
if (error.message.includes('Permission denied by system')) {
// Ask the user to check if the system has allowed the browser to record the screen.
} else {
// The user denies the permission or cancels screen sharing.
}
return;
default:
// An unknown error occurred during the initialization of the screen sharing stream. Ask the user
to try again.
return;
}
}
const shareClient = TRTC.createClient({
mode: 'rtc',
sdkAppId,
userId, // Example: ‘share_teacher’
userSig
});
// The client object enters the room.
try {
await shareClient.join({ roomId });
// ShareClient join room success
} catch (error) {
// ShareClient join room failed
}
try {
await shareClient.publish(shareStream);
} catch (error) {
// ShareClient failed to publish local stream

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 72 of 160

Configuring Screen Sharing Parameters

Screen sharing parameters include resolution, frame rate, and bitrate, which you can set using the

setScreenProfile() API. Each profile value corresponds to a set of resolution, frame rate, and bitrate.

The default value is 1080p .

You can also specify a custom value for the resolution, frame rate, and bitrate.

Recommended screen sharing settings:

Profile Resolution (W x H) Frame Rate (fps) Bitrate (Kbps)

480p 640 x 480 5 900

480p_2 640 x 480 30 1000

720p 1280 x 720 5 1200

720p_2 1280 x 720 30 3000

1080p 1920 x 1080 5 1600

1080p_2 1920 x 1080 30 4000

Note：

Setting the parameters too high may cause unexpected results. We recommend you use the

above settings.

Stopping Screen Sharing

const shareStream = TRTC.createStream({ audio: false, screen: true, userId });
// For SetScreenProfile() to work, you must call it before you call initialize().
shareStream.setScreenProfile('1080p');
await shareStream.initialize();

const shareStream = TRTC.createStream({ audio: false, screen: true, userId });
// For SetScreenProfile() to work, you must call it before you call initialize().
shareStream.setScreenProfile({ width: 1920, height: 1080, frameRate: 5, bitrate: 1600 /* kbps */
});
await shareStream.initialize();

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/LocalStream.html#setScreenProfile

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 73 of 160

A user may also stop screen sharing by clicking a built-in button in the browser, so it’s necessary to

listen for the screen sharing stopping event and, if the event occurs, take the necessary action.

Publishing Both Camera and Screen Sharing Streams

A client can publish only one video track and one audio track. Therefore, to publish both the camera

and screen sharing streams, you need to create two clients.

Below is an example:

client: Publish the camera stream and subscribe to all remote streams except that of

 shareClient .

shareClient: Publish the screen sharing stream and subscribe to no remote streams.

// The screen sharing client stops publishing the stream.
await shareClient.unpublish(shareStream);
// Close the screen sharing stream.
shareStream.close();
// Leave the room.
await shareClient.leave();

// The above three steps are optional. You can determine what code to use according to the actual
situation. Normally, you need to add code to determine whether the user has entered the room and
whether the stream has been published. For more code samples, see the [demo source code](https://
github.com/LiteAVSDK/TRTC_Web/blob/main/base-js/js/share-client.js).

// Listen for the screen sharing stopping event.
shareStream.on('screen-sharing-stopped', event => {
// Stop publishing the screen sharing stream.
await shareClient.unpublish(shareStream);
// Close the screen sharing stream.
shareStream.close();
// Leave the room.
await shareClient.leave();
});

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 74 of 160

Note：

You need to disable automatic subscription for shareClient so that it does not subscribe to

remote streams. For details, see the API document.

For client , you need to unsubscribe from the stream of shareClient .

Sample code:

Capturing System Audio During Screen Sharing

System audio capturing is supported only on Chrome M74 and later versions. On Chrome

for Windows and Chrome OS, you can capture the audio of the entire system, while on

Chrome for Linux and macOS, you can only capture the audio of Chrome tabs. Other

Chrome versions, OS, and browsers do not support system audio capturing.

const client = TRTC.createClient({ mode: 'rtc', sdkAppId, userId, userSig });
// Set autoSubscribe to false to disable automatic subscription for shareClient.
const shareClient = TRTC.createClient({ mode: 'rtc', sdkAppId, `share_${userId}`, userSig, autoSu
bscribe: false,});

// Unsubscribe from the stream of shareClient.
client.on('stream-added', event => {
const remoteStream = event.stream;
const remoteUserId = remoteStream.getUserId();
if (remoteUserId === `share_${userId}`) {
// Unsubscribe from the screen sharing stream.
client.unsubscribe(remoteStream);
} else {
// Subscribe to other remote streams.
client.subscribe(remoteStream);
}
});

await client.join({ roomId });
await shareClient.join({ roomId });

const localStream = TRTC.createStream({ audio: true, video: true, userId });
const shareStream = TRTC.createStream({ audio: false, screen: true, userId });

// The code for initialization and publishing is omitted. You can add the code based on your need
s.

https://web.sdk.qcloud.com/trtc/webrtc/doc/en/TRTC.html#createClient

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 75 of 160

In the pop-up window, select Share audio, and the stream published will contain system audio.

FAQs

// Set screenAudio to true when creating the screen sharing stream. Don’t set audio to true beca
use you cannot capture mic and system audio at the same time.
const shareStream = TRTC.createStream({ screenAudio: true, screen: true, userId });
await shareStream.initialize();
...

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 76 of 160

1. What should I do if the error getDisplayMedia must be called from a user gesture handler

occurs on Safari?

Safari does not support the screen capturing API getDisplayMedia . However, you can call it within

one second of the callback for an onclick event. For details, see this WebKit Bugzilla page.

// Good
async function onClick() {
// We recommend you capture the stream first.
const screenStream = TRTC.createStream({ screen: true });
await screenStream.initialize();
await client.join({ roomId: 123123 });
}
// Bad
async function onClick() {
await client.join({ roomId: 123123 });
// If it takes longer than one second for the client to enter the room, capturing will fail.
const screenStream = TRTC.createStream({ screen: true });
await screenStream.initialize();
}

2. For other questions, see WebRTC Known Issues and Solutions.

https://bugs.webkit.org/show_bug.cgi?id=198040
https://web.sdk.qcloud.com/trtc/webrtc/doc/en/tutorial-02-info-webrtc-issues.html#h2-9

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 77 of 160

Android

The TRTC SDK supports screen sharing on Android. This means you can share your screen with other

users in the same room. Pay attention to the following points regarding this feature:

Unlike the desktop edition, for Android, SDK versions earlier than v8.6 do not support substream

screen sharing. Therefore, video capturing by the camera must be stopped first before screen

sharing can start. Substream screen sharing is supported on v8.6 and later versions, so there is no

need to stop video capturing by the camera.

Screen sharing consumes CPU. On Android, a background app consuming CPU continuously is very

likely to be killed by the system. The solution to this problem is creating a floating window after

screen sharing starts. As Android does not kill apps with foreground views, your app can share the

screen continuously without being killed by the system.

Starting screen sharing

To start screen sharing on Android, simply call startScreenCapture() in TRTCCloud . However, to

ensure the stability and video quality of screen sharing, you need to do the following.

Adding an activity

Copy the activity below and paste it in the manifest file. You can skip this if the activity is already

included in your project code.

<activity
android:name="com.tencent.rtmp.video.TXScreenCapture$TXScreenCaptureAssistantActivity"
android:theme="@android:style/Theme.Translucent"/>

Setting video encoding parameters

By setting the first parameter encParams in startScreenCapture(), you can specify the encoding

quality of screen sharing. If encParams is set to null , the SDK will use the encoding parameters set

previously. We recommend the following settings:

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Resolution videoResolution 1280 × 720 1920 × 1080

Flutter

Last updated：2021-11-10 15:30:44

https://pub.dev/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/startScreenCapture.html
https://pub.dev/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/startScreenCapture.html

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 78 of 160

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Frame rate videoFps 10 fps 8 fps

Highest

bitrate
videoBitrate 1600 Kbps 2000 Kbps

Resolution

adaption
enableAdjustRes NO NO

Note：

As screen content generally does not change drastically, it is not economical to use a high

frame rate. We recommend setting it to 10 fps.

If the screen you share contains a large amount of text, you can increase the resolution and

bitrate accordingly.

The highest bitrate (videoBitrate) refers to the highest output bitrate when a shared

screen changes dramatically. If the shared content does not change a lot, the actual

encoding bitrate will be lower.

Displaying a floating window

Since Android 7.0, apps running in the background tend to be killed by the system if they consume

CPU. To prevent your app from being killed when it is sharing the screen in the background, you need

to create a floating window when screen sharing starts, which also serves the purpose of reminding

the user to avoid displaying personal information as his or her screen is being shared.

Method: displaying a common floating window

The code in tool.dart offers an example of how to create a mini floating window similar to the one in

VooV Meeting:

// Create a floating window when screen sharing starts to prevent the app from being killed when
running in the background
static void showOverlayWindow() {
SystemWindowHeader header = SystemWindowHeader(
title: SystemWindowText(
text: "Screen being shared", fontSize: 14, textColor: Colors.black45),
decoration: SystemWindowDecoration(startColor: Colors.grey[100]),
);
SystemAlertWindow.showSystemWindow(
width: 18,

https://github.com/c1avie/trtc_demo/blob/master/lib/page/trtcmeetingdemo/tool.dart

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 79 of 160

height: 95,
header: header,
margin: SystemWindowMargin(top: 200),
gravity: SystemWindowGravity.TOP,
);
}

iOS

In-app sharing

With in-app sharing, sharing is limited to the views of the current app. This feature is supported on

iOS 13 and above. As content outside the current app cannot be shared, this feature is suitable for

scenarios with high requirements on privacy protection.

Cross-app sharing

Based on Apple's ReplayKit scheme, cross-app sharing allows the sharing of content across the

system, but the steps required to implement this feature are more complicated than those for in-

app sharing as an additional extension is needed.

Scheme 1: in-app sharing on iOS

You can implement in-app sharing simply by calling the startScreenCapture API of the TRTC SDK,

passing in the encoding parameter TRTCVideoEncParam , and setting the appGroup parameter to '' .

If TRTCVideoEncParam is set to null , the SDK will use the encoding parameters set previously.

We recommend the following encoding settings for screen sharing on iOS:

Item Parameter
Recommended Value for

Regular Scenarios

Recommended Value for

Text-based Teaching

Resolution videoResolution 1280 × 720 1920 × 1080

Frame rate videoFps 10 fps 8 fps

Highest

bitrate
videoBitrate 1600 Kbps 2000 Kbps

Resolution

adaption
enableAdjustRes NO NO

Note：

https://pub.flutter-io.cn/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/startScreenCapture.html

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 80 of 160

As screen content generally does not change drastically, it is not economical to use a high

frame rate. We recommend setting it to 10 fps.

If the screen you share contains a large amount of text, you can increase the resolution and

bitrate accordingly.

The highest bitrate (videoBitrate) refers to the highest output bitrate when a shared

screen changes dramatically. If the shared content does not change a lot, the actual

encoding bitrate will be lower.

Scheme 2: cross-app sharing on iOS

Sample code

You can find the sample code for cross-app sharing in the ios directory of the TRTC demo. The

directory contains the following files:

├── Broadcast.Upload // Code for the screen recording process Broadcast Upload Extension. For
details, see step 2 below.
│ ├── Broadcast.Upload.entitlements // Code for configuring an App Group to enable communicat
ion between processes
│ ├── Broadcast.UploadDebug.entitlements // Code for configuring an App Group to enable commu
nication between processes (debug environment)
│ ├── Info.plist
│ └── SampleHandler.swift // Code for receiving screen recording data from the system
├── Resource // Resource file
├── Runner // A simple TRTC demo
├── TXLiteAVSDK_ReplayKitExt.framework //TXLiteAVSDK_ReplayKitExt SDK

You can run the demo as instructed in README.

Directions

To enable cross-app screen sharing on iOS, you need to add the screen recording process Broadcast

Upload Extension, which works with the host app to push streams. A Broadcast Upload Extension is

created by the system when a screen needs to be shared and is responsible for receiving the screen

images captured by the system. For this, you need to do the following:

1. Create an App Group and configure it in Xcode (optional) to enable communication between the

Broadcast Upload Extension and host app.

2. Create a target of Broadcast Upload Extension in your project and integrate into it

 TXLiteAVSDK_ReplayKitExt.framework from the SDK package, which is tailored for the extension

module.

3. Make the host app wait to receive screen recording data from the Broadcast Upload Extension.

https://github.com/c1avie/trtc_demo
https://github.com/c1avie/trtc_demo/blob/master/README.md

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 81 of 160

4. Edit the pubspec.yaml file and import the replay_kit_launcher plugin to make it possible to start

screen sharing by tapping a button (optional), as in TRTC Demo Screen.

Import the TRTC SDK and `replay_kit_launcher`
dependencies:
tencent_trtc_cloud: ^0.2.1
replay_kit_launcher: ^0.2.0+1

Note：

If you skip step 1, that is, if you do not configure an App Group (by passing null in the API),

you can still enable the screen sharing feature, but its stability will be compromised. Therefore,

to ensure the stability of screen sharing, we suggest that you configure an App Group as

described in this document.

Step 1. Create an App Group

Log in to https://developer.apple.com/ and do the following. You need to download the

provisioning profile again afterwards.

1. Click Certificates, IDs & Profiles.

2. Click "+" next to Identifiers.

3. Select App Groups and click Continue.

4. In the form that pops up, fill in the Description and Identifier boxes. For Identifier, type the

 AppGroup value passed in to the API. After this, click Continue.

https://develop.apple.com/

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 82 of 160

5. Select Identifiers on the top left sidebar, and click your App ID (you need to configure App ID for

the host app and extension in the same way).

6. Select App Groups and click Edit.

7. In the form that pops up, select the App Group you created, click Continue to return to the edit

page, and click Save to save the settings.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 83 of 160

8. Download the provisioning profile again and import it to Xcode.

Step 2. Create a Broadcast Upload Extension

1. In the Xcode menu, click File > New > Target..., and select Broadcast Upload Extension.

2. In the dialog box that pops up, enter the information required. You don't need to check Include

UI Extension. Click Finish to complete the creation.

3. Drag TXLiteAVSDK_ReplayKitExt.framework in the SDK package into the project and select the target

created.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 84 of 160

4. Click + Capability, and double-click App Groups, as shown below:

A file named target name.entitlements will appear in the file list as shown below. Select it, click

"+", and enter the App Group created earlier.

5. Select the target of the host app and configure it in the same way as described above.

6. In the new target, Xcode will create a SampleHandler.swift file. Replace the file content with the

following code. You need to change APPGROUP in the code to the App Group Identifier

created earlier.

import ReplayKit
import TXLiteAVSDK_ReplayKitExt

let APPGROUP = "group.com.tencent.comm.trtc.demo"

class SampleHandler: RPBroadcastSampleHandler, TXReplayKitExtDelegate {

let recordScreenKey = Notification.Name.init("TRTCRecordScreenKey")

override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {
// User has requested to start the broadcast. Setup info from the UI extension can be supplied
but optional.
TXReplayKitExt.sharedInstance().setup(withAppGroup: APPGROUP, delegate: self)
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 85 of 160

override func broadcastPaused() {
// User has requested to pause the broadcast. Samples will stop being delivered.
}

override func broadcastResumed() {
// User has requested to resume the broadcast. Samples delivery will resume.
}

override func broadcastFinished() {
// User has requested to finish the broadcast.
TXReplayKitExt.sharedInstance() .finishBroadcast()
}

func broadcastFinished(_ broadcast: TXReplayKitExt, reason: TXReplayKitExtReason) {
var tip = ""
switch reason {
case TXReplayKitExtReason.requestedByMain:
tip = "Screen sharing ended"
break
case TXReplayKitExtReason.disconnected:
tip = "App was disconnected"
break
case TXReplayKitExtReason.versionMismatch:
tip = "Integration error (SDK version mismatch)"
break
default:
break
}

let error = NSError(domain: NSStringFromClass(self.classForCoder), code: 0, userInfo: [NSLocal
izedFailureReasonErrorKey:tip])
finishBroadcastWithError(error)
}

override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer, with sampleBufferType: RPSam
pleBufferType) {
switch sampleBufferType {
case RPSampleBufferType.video:
// Handle video sample buffer
TXReplayKitExt.sharedInstance() .sendVideoSampleBuffer(sampleBuffer)
break
case RPSampleBufferType.audioApp:
// Handle audio sample buffer for app audio
break
case RPSampleBufferType.audioMic:
// Handle audio sample buffer for mic audio
break

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 86 of 160

Step 3. Make the host app wait to receive data

Before screen sharing starts, the host app must be on standby to receive screen recording data from

the Broadcast Upload Extension. To achieve this, follow these steps:

1. Make sure that camera capturing is disabled in TRTCCloud ; if not, call stopLocalPreview to disable

it.

2. Call startScreenCapture, passing in the AppGroup set in step 1 to put the SDK on standby.

3. The SDK will then wait for a user to trigger screen sharing. If a "triggering button" is not added as

described in step 4, users need to press and hold the screen recording button in the iOS Control

Center to start screen sharing.

4. You can call stopScreenCapture to stop screen sharing at any time.

@unknown default:
// Handle other sample buffer types
fatalError("Unknown type of sample buffer")
}
}
}

// Start screen sharing. You need to replace `APPGROUP` with the App Group created in the step
s above.
trtcCloud.startScreenCapture(
TRTCVideoEncParam(
videoFps: 10,
videoResolution: TRTCCloudDef.TRTC_VIDEO_RESOLUTION_1280_720,
videoBitrate: 1600,
videoResolutionMode: TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT,
),
iosAppGroup,
);

// Stop screen sharing
await trtcCloud.stopScreenCapture();

// Event notification for the start of screen sharing, which can be received through `TRTCClou
dListener`
onRtcListener(type, param){
if (type == TRTCCloudListener.onScreenCaptureStarted) {
// Screen sharing starts.

https://pub.flutter-io.cn/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/stopLocalPreview.html
https://pub.flutter-io.cn/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/startScreenCapture.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#aa8ea0235691fc9cde0a64833249230bb

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 87 of 160

Step 4. Add a screen sharing triggering button (optional)

In step 3, users need to start screen sharing manually by pressing and holding the screen recording

button in the Control Center. To make it possible to start screen sharing by tapping a button in your

app as in TRTC Demo Screen, follow these steps:

1. Add the replay_kit_launcher plugin to your project.

2. Add a button to your UI and call ReplayKitLauncher.launchReplayKitBroadcast(iosExtensionName); in

the response function of the button to activate the screen sharing feature.

// Customize a response for button tapping.
onShareClick() async {
if (Platform.isAndroid) {
if (await SystemAlertWindow.requestPermissions) {
MeetingTool.showOverlayWindow();
}
} else {
// The screen sharing feature can only be tested on a real device.
ReplayKitLauncher.launchReplayKitBroadcast(iosExtensionName);
}
}

Watching Shared Screen

Watch screens shared by Android/iOS users

When an Android/iOS user starts screen sharing, the screen is shared via the primary stream, and

other users in the room will be notified through onUserVideoAvailable in TRTCCloudListener .

Users who want to watch the shared screen can call the startRemoteView API to start rendering

the primary stream of the remote user.

FAQs

Can there be multiple channels of screen sharing streams in a room at the same time?

Currently, each TRTC room can have only one channel of screen sharing stream.

}
}

https://pub.flutter-io.cn/documentation/tencent_trtc_cloud/latest/trtc_cloud/TRTCCloud/startRemoteView.html

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 88 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (VoiceCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The live streaming modes allow a maximum of 100,000 concurrent users in each room with smooth

mic on/off. Co-anchoring latency is kept below 300 ms and watch latency below 1,000 ms. The live

streaming modes are suitable for use cases such as low-latency interactive live streaming,

interactive classrooms for up to 100,000 participants, video dating, online education, remote

training, and mega-scale conferencing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback.

In the live streaming modes, TRTC has introduced the concept of "role". Users are either in the role of

"anchor" or "audience". Anchors are assigned to access servers, and audience to proxy servers. Each

room allows up to 100,000 users in the role of audience.

For audience to speak, they must switch the role (switchRole) to “anchor”. The switching process

involves users being migrated from proxy servers to access servers. TRTC’s low-latency streaming

and smooth mic on/off technologies help keep this process short.

Live Streaming Mode

iOS and macOS

Last updated：2022-03-20 11:05:36

https://intl.cloud.tencent.com/document/product/647/35102

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 89 of 160

Sample Code

You can visit GitHub to obtain the sample code used in this document.

Note：

If your access to GitHub is slow, download the ZIP file here.

Directions

Step 1. Integrate the SDKs

https://github.com/LiteAVSDK/TRTC_iOS/tree/main/TRTC-API-Example-OC
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_TRTC_iOS_latest.zip

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 90 of 160

You can integrate the TRTC SDK into your project in the following ways:

Method 1: integrating through CocoaPods

1. Install CocoaPods. For detailed directions, please see Getting Started.

2. Open the Podfile file in the root directory of your project and add the code below.

Note：

If you cannot find a Podfile file in the directory, run the pod init command to create one

and add the code below.

target 'Your Project' do
pod 'TXLiteAVSDK_TRTC'
end

3. Run the command below to install the TRTC SDK.

pod install

After successful installation, an XCWORKSPACE file will be generated in the root directory of your

project.

4. Open the XCWORKSPACE file.

Method 2: manual integration

If you do not want to install CocoaPods, or your access to CocoaPods repositories is slow, you can

download the ZIP file of the SDK and integrate it into your project as instructed in SDK Quick

Integration > iOS.

Step 2. Add device permission requests

Add camera and mic permission requests in the Info.plist file.

Key Value

Privacy - Camera Usage

Description

The reason for requesting camera permission, for example, “camera

access is required to capture video”

https://guides.cocoapods.org/using/getting-started.html
https://intl.cloud.tencent.com/document/product/647/34615
https://intl.cloud.tencent.com/document/product/647/35092

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 91 of 160

Key Value

Privacy - Microphone

Usage Description

The reason for requesting mic permission, for example, “mic access

is required to capture audio”

Step 3. Initialize an SDK instance and configure event callbacks

1. Call the sharedInstance() API to create a TRTCCloud instance.

2. Set the attributes of delegate to subscribe to event callbacks and listen for event and error

notifications.

Step 4. Assemble the room entry parameter TRTCParams

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter Type Description Example

sdkAppId Number
Application ID, which you can view in the

TRTC console.
1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, see UserSig.
eJyrVareCeYrSy1SslI...

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

// Create a `TRTCCloud` instance
_trtcCloud = [TRTCCloud sharedInstance];
_trtcCloud.delegate = self;

// Error events must be listened for and captured, and error messages should be sent to users.
- (void)onError:(TXLiteAVError)errCode errMsg:(NSString *)errMsg extInfo:(NSDictionary *)extIn
fo {
if (ERR_ROOM_ENTER_FAIL == errCode) {
[self toastTip:@"Failed to enter room"];
[self.trtcCloud exitRoom];
}
}

https://intl.cloud.tencent.com/document/product/647/35119
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a96152963bf6ac4bc10f1b67155e04f8d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__ios.html#interfaceTRTCParams
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 92 of 160

Note：

In TRTC, users with the same userId cannot be in the same room at the same time as it will

cause a conflict.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 5. Enable camera preview and mic capturing

1. Call startLocalPreview() to enable preview of the local camera. The SDK will ask for camera

permission.

2. Call setLocalViewFillMode() to set the display mode of the local video image:

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

3. Call setVideoEncoderParam() to set the encoding parameters for the local video, which determine

the quality of your video seen by other users in the room.

4. Call startLocalAudio() to turn the mic on. The SDK will ask for mic permission.

Step 6. Set beauty filters

1. Call getBeautyManager() to get the beauty filter management class TXBeautyManager.

2. Call setBeautyStyle() to set the beauty filter style.

// Sample code: publish the local audio/video stream
[self.trtcCloud startLocalPreview:_isFrontCamera view:self.view];

// Set local video encoding parameters
TRTCVideoEncParam *encParams = [TRTCVideoEncParam new];
encParams.videoResolution = TRTCVideoResolution_640_360;
encParams.videoBitrate = 550;
encParams.videoFps = 15;

[self.trtcCloud setVideoEncoderParam:encParams];

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3fc1ae11b21944b2f354db258438100e
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a961596f832657bfca81fd675878a2d15
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a57938e5b62303d705da2ceecf119d74e
https://intl.cloud.tencent.com/document/product/647/35153
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3177329bc84e94727a1be97563800beb
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a4fb05ae6b5face276ace62558731280a
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__ios.html#interfaceTXBeautyManager
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__ios.html#a8f2378a87c2e79fa3b978078e534ef4a

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 93 of 160

 Smooth : smooth. This style features more obvious skin smoothing effect and is typically used by

influencers.

 Nature : natural. This style retains more facial details and is more natural.

 Pitu : this style is supported only in the Enterprise Edition.

3. Call setBeautyLevel() to set the skin smoothing strength (5 is recommended).

4. Call setWhitenessLevel() to set the skin brightening strength (5 is recommended).

5. Given the yellow tint of the iPhone camera, we recommended that you call setFilter() to apply the

skin brightening filter to your video. You can download the file for the filter here.

Step 7. Create a room and push streams

1. Set the role field in TRTCParams to TRTCRoleType.anchor to take the role of “anchor”.

2. Call enterRoom(), specifying appScene , and a room whose ID is the value of the roomId field in

 TRTCParams will be created.

 TRTCAppScene.LIVE : the interactive video streaming mode, which is used in the example of this

document

 TRTCAppScene.voiceChatRoom : the interactive audio streaming mode

3. After the room is created, start encoding and transferring audio/video data. The SDK will return the

onEnterRoom(result) callback. If result is greater than 0, room entry succeeds, and the value

indicates the time (ms) room entry takes; if result is less than 0, room entry fails, and the value

is the error code for the failure.

- (void)enterRoom() {
TRTCParams *params = [TRTCParams new];
params.sdkAppId = SDKAppID;
params.roomId = _roomId;
params.userId = _userId;
params.role = TRTCRoleAnchor;
params.userSig = [GenerateTestUserSig genTestUserSig:params.userId];
[self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];
}

- (void)onEnterRoom:(NSInteger)result {
if (result > 0) {
[self toastTip:@"Entered room successfully"];
} else {
[self toastTip:@"Failed to enter room"];
}
}

https://intl.cloud.tencent.com/document/product/647/34615#Enterprise
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__ios.html#af864d9466d5161e1926e47bae0e3f027
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__ios.html#a199b265f6013e0cca0ff99f731d60ff4
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a1b0c2a9e82a408881281c7468a74f2c0
https://liteav.sdk.qcloud.com/doc/res/trtc/filter/filterPNG.zip
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__ios.html#interfaceTRTCParams
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a96152963bf6ac4bc10f1b67155e04f8d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a6960aca54e2eda0f424f4f915908a3c5

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 94 of 160

Step 8. Enter the room as audience

1. Set the role field in TRTCParams to TRTCRoleType.audience to take the role of “audience”.

2. Call enterRoom() to enter the room whose ID is the value of the roomId field in TRTCParams ,

specifying appScene .

 TRTCAppScene.LIVE : the interactive video streaming mode, which is used in the example of this

document

 TRTCAppScene.voiceChatRoom : the interactive audio streaming mode

3. Watch the anchor’s video:

If you know the anchor’s userId , call startRemoteView(userId, view: view) with the anchor’s

 userId passed in to play the anchor's video.

If you do not know the anchor’s userId , find the anchor’s userId in the onUserVideoAvailable()

callback, which you will receive after room entry, and call startRemoteView(userId, view: view)

with the anchor’s userId passed in to play the anchor’s video.

Step 9. Co-anchor

1. Call switch(TRTCRoleType.TRTCRoleAnchor) to switch the role to “anchor”

(TRTCRoleType.TRTCRoleAnchor).

2. Call startLocalPreview() to enable preview of the local image.

3. Call startLocalAudio() to enable mic capturing.

Step 10. Compete across rooms

Anchors from two rooms can compete with each other without exiting their current rooms.

// Sample code: start co-anchoring
[self.trtcCloud switchRole:TRTCRoleAnchor];
[self.trtcCloud startLocalAudio:TRTCAudioQualityMusic];
[self.trtcCloud startLocalPreview:_isFrontCamera view:self.view];

// Sample code: end co-anchoring
[self.trtcCloud switchRole:TRTCRoleAudience];
[self.trtcCloud stopLocalAudio];
[self.trtcCloud stopLocalPreview]

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__ios.html#interfaceTRTCParams
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a96152963bf6ac4bc10f1b67155e04f8d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a5f4598c59a9c1e66938be9bfbb51589c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3fc1ae11b21944b2f354db258438100e
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a3177329bc84e94727a1be97563800beb

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 95 of 160

1. Anchor A calls the connectOtherRoom() API. The API uses parameters in JSON strings, so anchor A

needs to pass the roomId and userId of anchor B in the format of {"roomId": 978,"userId":

"userB"} to the API.

2. After the cross-room call is set up, anchor A will receive the onConnectOtherRoom() callback, and

all users in both rooms will receive the onUserVideoAvailable() and onUserAudioAvailable()

callbacks.

For example, after anchor A in room "001" uses connectOtherRoom() to call anchor B in room

“002” successfully all users in room "001" will receive the onUserVideoAvailable(B, available:

true) and onUserAudioAvailable(B, available: true) callbacks, and all users in room "002" will

receive the onUserVideoAvailable(A, available: true) and onUserAudioAvailable(A, available:

true) callbacks.

3. Users in both rooms can call startRemoteView(userId, view: view) to play the video of the anchor

in the other room, and audio will be played back automatically.

Step 11. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

Note：

If your application integrates multiple audio/video SDKs, please wait after you receive the

 onExitRoom callback to start other SDKs; otherwise, the device busy error may occur.

// Sample code: cross-room competition
NSMutableDictionary * jsonDict = [[NSMutableDictionary alloc] init];
[jsonDict setObject:@([_otherRoomIdTextField.text intValue]) forKey:@"roomId"];
[jsonDict setObject:_otherUserIdTextField.text forKey:@"userId"];
NSData* jsonData = [NSJSONSerialization dataWithJSONObject:jsonDict options:NSJSONWritingPrettyPr
inted error:nil];
NSString* jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8StringEncoding];
[self.trtcCloud connectOtherRoom:jsonString];

// Please wait for the `onExitRoom` callback after calling the room exit API.
[self.trtcCloud exitRoom];

- (void)onExitRoom:(NSInteger)reason {
NSLog(@"Exited room: reason: %ld", reason)
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a062bc48550b479a6b7c1662836b8c4a5
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a69e5b1d59857956f736c204fe765ea9a
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a533d6ea3982a922dd6c0f3d05af4ce80
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a8c885eeb269fc3d2e085a5711d4431d5
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#af85283710ba6071e9fd77cc485baed49
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__ios.html#a715f5b669ad1d7587ae19733d66954f3
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDelegate__ios.html#a6a98fcaac43fa754cf9dd80454897bea

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 96 of 160

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 97 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (VoiceCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The live streaming modes allow a maximum of 100,000 concurrent users in each room with smooth

mic on/off. Co-anchoring latency is kept below 300 ms and watch latency below 1,000 ms. The live

streaming modes are suitable for use cases such as low-latency interactive live streaming,

interactive classrooms for up to 100,000 participants, video dating, online education, remote

training, and mega-scale conferencing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback.

In the live streaming modes, TRTC has introduced the concept of "role". Users are either in the role of

"anchor" or "audience". Anchors are assigned to access servers, and audience to proxy servers. Each

room allows up to 100,000 users in the role of audience.

For audience to speak, they must switch the role (switchRole) to “anchor”. The switching process

involves users being migrated from proxy servers to access servers. TRTC’s low-latency streaming

Android

Last updated：2022-03-20 11:04:50

https://intl.cloud.tencent.com/document/product/647/35103

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 98 of 160

and smooth mic on/off technologies help keep this process short.

Sample Code

You can visit GitHub to obtain the sample code used in this document.

Note：

If your access to GitHub is slow, download the ZIP file here.

Directions

Step 1. Integrate the SDKs

https://github.com/LiteAVSDK/TRTC_Android/tree/main/TRTC-API-Example
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_TRTC_Android_latest.zip

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 99 of 160

You can integrate the TRTC SDK into your project in the following ways:

Method 1: automatic loading (AAR)

The TRTC SDK has been released to the mavenCentral repository, and you can configure Gradle to

download updates automatically.

The TRTC SDK has integrated TRTC-API-Example , which offers sample code for your reference. Use

Android Studio to open your project and follow the steps below to modify the app/build.gradle file.

1. Add the TRTC SDK dependency to dependencies .

dependencies {
compile 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'
}

2. In defaultConfig , specify the CPU architecture to be used by your application.

Note：

Currently, the TRTC SDK supports armeabi, armeabi-v7a, and arm64-v8a.

defaultConfig {
ndk {
abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}
}

3. Click Sync Now to sync the SDKs.

If you have no problem connecting to mavenCentral, the SDK will be downloaded and integrated

into your project automatically.

Method 2: manual integration

You can download the ZIP file of the SDK and integrate it into your project as instructed in SDK Quick

Integration > Android.

Step 2. Configure app permissions

Add camera, mic, and network permission requests in AndroidManifest.xml .

https://intl.cloud.tencent.com/document/product/647/34615
https://intl.cloud.tencent.com/document/product/647/35093

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 100 of 160

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus" />

Step 3. Initialize an SDK instance and configure event callbacks

1. Call the sharedInstance() API to create a TRTCCloud instance.

// Create a `TRTCCloud` instance
mTRTCCloud = TRTCCloud.sharedInstance(getApplicationContext());
mTRTCCloud.setListener(new TRTCCloudListener());

2. Set the attributes of setListener to subscribe to event callbacks and listen for event and error

notifications.

// Error notifications indicate that the SDK has stopped working and therefore must be listene
d for
@Override
public void onError(int errCode, String errMsg, Bundle extraInfo) {
Log.d(TAG, "sdk callback onError");
if (activity != null) {
Toast.makeText(activity, "onError: " + errMsg + "[" + errCode+ "]" , Toast.LENGTH_SHORT).show
();
if (errCode == TXLiteAVCode.ERR_ROOM_ENTER_FAIL) {
activity.exitRoom();
}
}
}

Step 4. Assemble the room entry parameter TRTCParams

https://intl.cloud.tencent.com/document/product/647/35125

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 101 of 160

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter Type Description Example

sdkAppId Number
Application ID, which you can view in the

TRTC console.
1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, please see UserSig.
eJyrVareCeYrSy1SslI...

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

Note：

-In TRTC, users with the same userId cannot be in the same room at the same time as it will

cause a conflict.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 5. Enable camera preview and mic capturing

1. Call startLocalPreview() to enable preview of the local camera. The SDK will ask for camera

permission.

2. Call setLocalViewFillMode() to set the display mode of the local video image:

 Fill : aspect fill. The image may be scaled up and cropped, but there are no black bars.

 Fit : aspect fit. The image may be scaled down to ensure that it’s displayed in its entirety, and

there may be black bars.

3. Call setVideoEncoderParam() to set the encoding parameters for the local video, which determine

the quality of your video seen by other users in the room.

4. Call startLocalAudio() to turn the mic on. The SDK will ask for mic permission.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#abfc1841af52e8f6a5f239a846a1e5d5c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__android.html#a674b3c744a0522802d68dfd208763b59
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a84098740a2e69e3d1f02735861614116
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#af36ab721c670e5871e5b21a41518b51d
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#ae047d96922cb1c19135433fa7908e6ce
https://intl.cloud.tencent.com/document/product/647/35153
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a9428ef48d67e19ba91272c9cf967e35e

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 102 of 160

// Sample code: publish the local audio/video stream
mTRTCCloud.setLocalViewFillMode(TRTC_VIDEO_RENDER_MODE_FIT);
mTRTCCloud.startLocalPreview(mIsFrontCamera, localView);
// Set local video encoding parameters
TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();
encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;
encParam.videoFps = 15;
encParam.videoBitrate = 1200;
encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;
mTRTCCloud.setVideoEncoderParam(encParam);
mTRTCCloud.startLocalAudio();

Step 6. Set beauty filters

1. Call getBeautyManager() to get the beauty filter management class TXBeautyManager.

2. Call setBeautyStyle() to set the beauty filter style.

 Smooth : smooth. This style features more obvious skin smoothing effect and is typically used by

influencers.

 Nature : natural. This style retains more facial details and is more natural.

 Pitu : this style is supported only in the Enterprise Edition.

3. Call setBeautyLevel() to set the skin smoothing strength (5 is recommended).

4. Call setWhitenessLevel() to set the skin brightening strength (5 is recommended).

Step 7. Create a room and push streams

1. Set the role field in TRTCParams to TRTCCloudDef.TRTCRoleAnchor to take the role of “anchor”.

2. Call enterRoom(), specifying appScene , and a room whose ID is the value of the roomId field in

 TRTCParams will be created.

 TRTCCloudDef.TRTC_APP_SCENE_LIVE : the interactive video streaming mode, which is used in the

example of this document

 TRTCCloudDef.TRTC_APP_SCENE_VOICE_CHATROOM : the interactive audio streaming mode

3. After the room is created, start encoding and transferring audio/video data. The SDK will return the

onEnterRoom(result) callback. If result is greater than 0, room entry succeeds, and the value

indicates the time (ms) room entry takes; if result is less than 0, room entry fails, and the value

is the error code for the failure.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a3fdfeb3204581c27bbf1c8b5598714fb
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__android.html#classcom_1_1tencent_1_1liteav_1_1beauty_1_1TXBeautyManager
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a46ffe2b60f916a87345fb357110adf10
https://intl.cloud.tencent.com/document/product/647/34615#Enterprise
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__android.html#a3931ccd8fa54bb846783ab4d6ca2874b
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXBeautyManager__android.html#ab08c07ce725dbb8769b61fe0c76b0e95
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__android.html#a674b3c744a0522802d68dfd208763b59
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#abfc1841af52e8f6a5f239a846a1e5d5c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#abf0525c3433cbd923fd1f13b42c416a2

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 103 of 160

public void enterRoom() {
TRTCCloudDef.TRTCParams trtcParams = new TRTCCloudDef.TRTCParams();
trtcParams.sdkAppId = sdkappid;
trtcParams.userId = userid;
trtcParams.roomId = 908;
trtcParams.userSig = usersig;
mTRTCCloud.enterRoom(trtcParams, TRTCCloudDef.TRTC_APP_SCENE_LIVE);
}
@Override
public void onEnterRoom(long result) {
if (result > 0) {
toastTip("Entered room successfully; the total time used is [\(result)] ms")
} else {
toastTip("Failed to enter the room; the error code is [\(result)]")
}
}

Step 8. Enter the room as audience

1. Set the role field in TRTCParams to TRTCCloudDef.TRTCRoleAudience to take the role of

“audience”.

2. Call enterRoom() to enter the room whose ID is the value of the roomId field in TRTCParams ,

specifying appScene .

 TRTCCloudDef.TRTC_APP_SCENE_LIVE : the interactive video streaming mode, which is used in the

example of this document

 TRTCCloudDef.TRTC_APP_SCENE_VOICE_CHATROOM : the interactive audio streaming mode

3. Watch the anchor’s video:

If you know the anchor’s userId , call startRemoteView(userId, view) with the anchor’s userId

passed in to play the anchor's video.

If you do not know the anchor’s userId , find the anchor’s userId in the onUserVideoAvailable()

callback, which you will receive after room entry, and call startRemoteView(userId, view) with the

anchor’s userId passed in to play the anchor’s video.

Step 9. Co-anchor

1. Call switchRole(TRTCCloudDef.TRTCRoleAnchor) to switch the role to “anchor”

(TRTCCloudDef.TRTCRoleAnchor).

2. Call startLocalPreview() to enable preview of the local image.

3. Call startLocalAudio() to enable mic capturing.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudDef__android.html#a674b3c744a0522802d68dfd208763b59
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#abfc1841af52e8f6a5f239a846a1e5d5c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac1a0222f5b3e56176151eefe851deb05
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a915a4b3abca0e41f057022a4587faf66
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a84098740a2e69e3d1f02735861614116
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a9428ef48d67e19ba91272c9cf967e35e

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 104 of 160

// Sample code: start co-anchoring
mTrtcCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);
mTrtcCloud.startLocalAudio();
mTrtcCloud.startLocalPreview(mIsFrontCamera, localView);
// Sample code: end co-anchoring
mTrtcCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);
mTrtcCloud.stopLocalAudio();
mTrtcCloud.stopLocalPreview();

Step 10. Compete across rooms

Anchors from two rooms can compete with each other without exiting their current rooms.

1. Anchor A calls the connectOtherRoom() API. The API uses parameters in JSON strings, so anchor A

needs to pass the roomId and userId of anchor B in the format of {"roomId": 978,"userId":

"userB"} to the API.

2. After the cross-room call is set up, anchor A will receive the onConnectOtherRoom() callback, and

all users in both rooms will receive the onUserVideoAvailable() and onUserAudioAvailable()

callbacks.

For example, after anchor A in room "001" uses connectOtherRoom() to call anchor B in room

“002” successfully, all users in room "001" will receive the onUserVideoAvailable(B, true) and

 onUserAudioAvailable(B, true) callbacks, and all users in room "002" will receive the

 onUserVideoAvailable(A, true) and onUserAudioAvailable(A, true) callbacks.

3. Users in both rooms can call startRemoteView(userId, view) to play the video of the anchor in the

other room, and audio will be played automatically.

// Sample code: cross-room competition
mTRTCCloud.ConnectOtherRoom(String.format("{\"roomId\":%s,\"userId\":\"%s\"}", roomId, usernam
e));

Step 11. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

// Please wait for the `onExitRoom` callback after calling the room exit API.
mTRTCCloud.exitRoom()
@Override
public void onExitRoom(int reason) {
Log.i(TAG, "onExitRoom: reason = " + reason);
}

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#ac1ab7e4a017b99bb91d89ce1b0fac5fd
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac9fd524ab9de446f4aaf502f80859e95
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac1a0222f5b3e56176151eefe851deb05
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ac474bbf919f96c0cfda87c93890d871f
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a57541db91ce032ada911ea6ea2be3b2c
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a41d16a97a9cb8f16ef92f5ef5bfebee1
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloudListener__android.html#ad5ac26478033ea9c0339462c69f9c89e

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 105 of 160

Note：

If your application integrates multiple audio/video SDKs, please wait after you receive the

 onExitRoom callback to start other SDKs; otherwise, the device busy error may occur.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 106 of 160

Overview

This document describes how to use the TRTC SDK to build a live streaming service that supports

both co-anchoring and high-concurrency streaming to over 10,000 users. Only the most commonly

used APIs are covered in this document. To learn about other APIs, please see the API

documentation.

Sample Code

Platform Sample Code

Windows (MFC) TRTCMainViewController.cpp

Windows (Duilib) TRTCMainViewController.cpp

Windows (C#) TRTCMainForm.cs

Online Live Streaming

1. Initialize the SDK

The first step is to get a singleton object of TRTCCloud and subscribe to the SDK’s event callbacks.

Inherit the ITRTCCloudCallback callback API class and rewrite the callback APIs for key events

including room entry/exit by local user, room entry/exit by remote user, error event, and warning

event.

Call the addCallback API to subscribe to the SDK’s events.

Note：

If addCallback is called N times, the SDK will trigger N callbacks for the same event.

Therefore, you are advised to call addCallback only once.

Windows

Last updated：2022-01-05 11:57:22

https://intl.cloud.tencent.com/document/product/647/35119
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/MFCDemo/TRTCMainViewController.cpp
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/DuilibDemo/TRTCMainViewController.cpp
https://github.com/tencentyun/TRTCSDK/blob/master/Windows/CSharpDemo/TRTCMainForm.cs

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 107 of 160

C++

C#

// TRTCMainViewController.h

// Inherit the `ITRTCCloudCallback` callback API class
class TRTCMainViewController : public ITRTCCloudCallback
{
public:
TRTCMainViewController();
virtual ~TRTCMainViewController();

virtual void onError(TXLiteAVError errCode, const char* errMsg, void* arg);
virtual void onWarning(TXLiteAVWarning warningCode, const char* warningMsg, void* arg);
virtual void onEnterRoom(uint64_t elapsed);
virtual void onExitRoom(int reason);
virtual void onRemoteUserEnterRoom(const char* userId);
virtual void onRemoteUserLeaveRoom(const char* userId, int reason);
virtual void onUserVideoAvailable(const char* userId, bool available);
virtual void onUserAudioAvailable(const char* userId, bool available);
...
private:
ITRTCCloud * m_pTRTCSDK = NULL；
...
}

// TRTCMainViewController.cpp

TRTCMainViewController::TRTCMainViewController()
{
// Create a `TRTCCloud` instance
m_pTRTCSDK = getTRTCShareInstance();

// Subscribe to the SDK’s events
m_pTRTCSDK->addCallback(this);
}

TRTCMainViewController::~TRTCMainViewController()
{
// Unsubscribe from the SDK’s events
if(m_pTRTCSDK) {
m_pTRTCSDK->removeCallback(this);
}

// Release the `TRTCCloud` instance
if(m_pTRTCSDK != NULL) {

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 108 of 160

2. Assemble TRTCParams

 TRTCParams is the most critical parameter in the SDK. It contains four required fields: sdkAppId ,

 userId , userSig , and roomId .

SDKAppID

Log in to the TRTC console. If you don't have an application yet, create one, and you will see its

 SDKAppID .

userId

A custom string, which you can keep in line with the naming of your account. Please note that

there cannot be users with identical userId in a room.

userSig

Calculated based on SDKAppID and userID . For details, see UserSig.

roomId

A custom number. Note that you cannot assign the same roomId to two rooms under the

same application. For string-type room ID, use strRoomId in TRTCParams .

3. Enable preview of the local camera

Camera capturing is disabled by default. You can call startLocalPreview to turn the local camera on

and enable preview, and stopLocalPreview to disable camera capturing and preview.

Before enabling preview of the local camera, you can call setLocalViewFillMode to set the video

display mode to Fill or Fit . Video may be resized proportionally in both modes, but they differ in

destroyTRTCShareInstance();
m_pTRTCSDK = null;
}
}

// Error notifications indicate that the SDK has stopped working and therefore must be listened f
or.
virtual void TRTCMainViewController::onError(TXLiteAVError errCode, const char* errMsg, void* ar
g)
{
if (errCode == ERR_ROOM_ENTER_FAIL) {
LOGE(L"onError errorCode[%d], errorInfo[%s]", errCode, UTF82Wide(errMsg).c_str());
exitRoom();
}
}

https://console.cloud.tencent.com/rav
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 109 of 160

that:

In the Fill mode, the image fills the entire screen. If the dimensions of the image do not match

those of the screen after scaling, the parts that do not fit are cropped.

In the Fit mode, the image is displayed in whole. If the dimensions of the image do not match

those of the screen after scaling, the unoccupied space is painted black.

C++

C#

4. Enable mic capturing

Mic capturing is disabled by default. Call startLocalAudio to enable local audio capturing and send

the data captured, and stopLocalAudio to disable audio capturing. You can call startLocalAudio

after startLocalPreview .

Note：

After you call startLocalAudio , the SDK will check mic access and will ask for mic permission

from the user if it does not have access.

5. Create a room and push streams

Call enterRoom to create a room, setting role to TRTCRoleAnchor (anchor) and specifying roomId

in the TRTCParams parameter.

void TRTCMainViewController::onEnterRoom(uint64_t elapsed)
{
// Get the handle of the rendering window
CWnd *pLocalVideoView = GetDlgItem(IDC_LOCAL_VIDEO_VIEW);
HWND hwnd = pLocalVideoView->GetSafeHwnd();

if(m_pTRTCSDK)
{
// Call the APIs below to set the rendering mode and rendering window
m_pTRTCSDK->setLocalViewFillMode(TRTCVideoFillMode_Fit);
m_pTRTCSDK->startLocalPreview(hwnd);
}

}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 110 of 160

Specify appScene , which indicates the application scenario. TRTCAppSceneLIVE (online live

streaming) is used in the example of this document.

If the room is created successfully, you will receive the onEnterRoom callback, in which the

 elapsed field represents the time (ms) room entry takes.

If room creation fails, you will receive the onError callback, which contains errCode (error code,

whose value is ERR_ROOM_ENTER_FAIL ; for other error code values, please see TXLiteAVCode.h),

 errMsg (error message), and extraInfo (reserved parameter).

C++

C#

// TRTCMainViewController.cpp

void TRTCMainViewController::startBroadCasting()
{
// For the definition of `TRTCParams`, please see the header file `TRTCCloudDef.h`.
TRTCParams params;
params.sdkAppId = sdkappid;
params.userId = userid;
params.userSig = usersig;
params.roomId = 908; // Set it to the ID of the room you want to enter
params.role = TRTCRoleAnchor; //Anchor
if(m_pTRTCSDK)
{
m_pTRTCSDK->enterRoom(params, TRTCAppSceneLIVE);
}
}

void TRTCMainViewController::onError(TXLiteAVError errCode, const char* errMsg, void* arg)
{
if(errCode == ERR_ROOM_ENTER_FAIL)
{
LOGE(L"onError errorCode[%d], errorInfo[%s]", errCode, UTF82Wide(errMsg).c_str());
// Check whether `userSig` is valid, network is normal, etc.
}
}

...

void TRTCMainViewController::onEnterRoom(uint64_t elapsed)
{
LOGI(L"onEnterRoom elapsed[%lld]", elapsed);

// Enable local video preview. For details, please see the sections below about encoding settings

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 111 of 160

6. Enable/Disable the privacy mode

At some points during a live stream, you may not want to publish your video or audio for privacy

concerns. You can call muteLocalVideo to stop publishing local video and muteLocalAudio to stop

publishing local audio.

7. Enter the room as audience

Call enterRoom to enter the room, specifying the room number via the roomId field in TRTCParams .

Set appScene to TRTCAppSceneLIVE (online live streaming), and role to TRTCRoleAudience

(audience).

C++

C#

If the anchor is in the room, you can find the anchor’s userid in the onUserVideoAvailable callback

in TRTCCloudDelegate , and then call startRemoteView to display the anchor’s video.

Call setRemoteViewFillMode to set the video display mode to Fill or Fit . Video may be resized

proportionally in both modes, but they differ in that:

In the Fill mode, the image fills the entire screen. If the dimensions of the image do not match

those of the screen after scaling, the excess parts are cropped.

In the Fit mode, the image is displayed in whole. If the dimensions of the image do not match

those of the screen after scaling, the blank area is filled with black bars.

and local video preview
}

void TRTCMainViewController::startPlaying()
{
// For the definition of `TRTCParams`, please see the header file `TRTCCloudDef.h`.
TRTCParams params;
params.sdkAppId = sdkappid;
params.userId = userid;
params.userSig = usersig;
params.roomId = 908; // Set it to the ID of the room you want to enter
params.role = TRTCRoleAudience; // Viewer
if(m_pTRTCSDK)
{
m_pTRTCSDK->enterRoom(params, TRTCAppSceneLIVE);
}
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 112 of 160

C++

C#

Note：

In the TRTCAppSceneLIVE mode, there is no limit on the number of users in the role of

“audience” (TRTCRoleAudience) in a room.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

8. Co-anchor

Both audience and anchors can call the switchRole API of TRTCCloud to switch their roles. The most

common application for the API is co-anchoring: audience call this API to switch their role to “anchor”

so as to interact with the room owner.

9. Exit the room

Call exitRoom to exit the room. Whether the live streaming has ended or not, the SDK will start a

complex handshake process where it releases all resources used by the live streaming. The process

finishes only after you receive the onExitRoom callback.

C++

C#

void TRTCMainViewController::onUserVideoAvailable(const char* userId, bool available){
if (available) {
// Get the handle of the rendering window
CWnd *pRemoteVideoView = GetDlgItem(IDC_REMOTE_VIDEO_VIEW);
HWND hwnd = pRemoteVideoView->GetSafeHwnd();

// Set the rendering mode of the remote video
m_pTRTCSDK->setRemoteViewFillMode(TRTCVideoFillMode_Fill);
// Call the API below to play the remote video
m_pTRTCSDK->startRemoteView(userId, hwnd);
} else {
m_pTRTCSDK->stopRemoteView(userId);
}
}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 113 of 160

// TRTCMainViewController.cpp

void TRTCMainViewController::exitRoom()
{
if(m_pTRTCSDK)
{
m_pTRTCSDK->exitRoom();
}
}
....
void TRTCMainViewController::onExitRoom(int reason)
{
// Exited room successfully. `reason` is a reserved parameter and is not used for the time being.

}

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 114 of 160

Application Scenarios

TRTC supports four room entry modes. Video call (VideoCall) and audio call (VoiceCall) are the

call modes, and interactive video streaming (Live) and interactive audio streaming

(VoiceChatRoom) are the live streaming modes.

The live streaming modes allow a maximum of 100,000 concurrent users in each room with smooth

mic on/off. Co-anchoring latency is kept below 300 ms and watch latency below 1,000 ms. The live

streaming modes are suitable for use cases such as low-latency interactive live streaming,

interactive classrooms for up to 100,000 participants, video dating, online education, remote

training, and mega-scale conferencing.

How It Works

TRTC services use two types of server nodes: access servers and proxy servers.

Access server

This type of nodes use high-quality lines and high-performance servers and are better suited to

drive low-latency end-to-end calls.

Proxy server

This type of servers use mediocre lines and average-performance servers and are better suited to

power high-concurrency stream pulling and playback.

In the call modes, all users in a TRTC room are assigned to access servers and are in the role of

“anchor”. This means the users can speak to each other at any point during the call (up to 50 users

can send data at the same time). This makes the call modes suitable for use cases such as online

conferencing, but the number of users in each room is capped at 300.

Electron

Last updated：2022-03-20 11:06:11

https://intl.cloud.tencent.com/document/product/647/36069

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 115 of 160

Sample Code

You can obtain the sample code used in this document at GitHub.

Directions

Step 1. Run the official SimpleDemo

We recommend that you read Demo Quick Start > Electron first and follow the instructions to run the

official SimpleDemo .

If you run SimpleDemo successfully, then you know how to install Electron in your project.

If not, there may be a problem in the download or installation process. Try troubleshooting the

problem by following the instructions in Electron's installation document.

Step 2. Integrate trtc-electron-sdk into your project

If you can run SimpleDemo successfully, then you know how to set up the Electron environment.

You can develop your project based on the demo we provide to get started quickly.

You can also run the following command to install trtc-electron-sdk in your project.

npm install trtc-electron-sdk --save

https://github.com/tencentyun/TRTCSDK/tree/master/Electron
https://intl.cloud.tencent.com/document/product/647/35089
https://www.electronjs.org/docs/tutorial/installation

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 116 of 160

Step 3. Initialize an SDK instance and configure event callbacks

Create a trtc-electron-sdk instance:

import TRTCCloud from 'trtc-electron-sdk';
let trtcCloud = new TRTCCloud();

Listen for the onError event:

// Error events must be listened for and captured, and error messages should be sent to users.
let onError = function(err) {
console.error(err);
}
trtcCloud.on('onError',onError);

Step 4. Assemble the room entry parameter TRTCParams

When calling the enterRoom() API, you need to pass in a key parameter TRTCParams, which includes

the following required fields:

Parameter
Field

Type
Description Example

sdkAppId Number

Application ID, which can be found in

Application Management > Application

Info in the console

1400000123

userId String

Can contain only letters (a-z and A-Z), digits

(0-9), underscores, and hyphens. We

recommend you set it based on your

business account system.

test_user_001

userSig String
 userSig is calculated based on userId . For

the calculation method, see UserSig.
eJyrVareCeYrSy1SslI...

roomId Number
Numeric room ID. For string-type room ID,

use strRoomId in TRTCParams .
29834

import {
TRTCParams,
TRTCRoleType
} from "trtc-electron-sdk/liteav/trtc_define";

let param = new TRTCParams();
param.sdkAppId = 1400000123;

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#enterRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCParams.html
https://console.cloud.tencent.com/trtc/app
https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 117 of 160

Note：

-In TRTC, users with the same userId cannot be in the same room at the same time as it will

cause a conflict.

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Step 5. Enable camera preview and mic capturing

1. Call startLocalPreview() to enable preview of the local camera. The SDK will ask for camera

permission.

2. Call setLocalViewFillMode() to set the display mode of the local video image.

 TRTCVideoFillMode.TRTCVideoFillMode_Fill : aspect fill. The image may be scaled up and

cropped, but there are no black bars.

 TRTCVideoFillMode.TRTCVideoFillMode_Fit : aspect fit. The image may be scaled down to ensure

that it’s displayed in its entirety, and there may be black bars.

3. Call setVideoEncoderParam() to set the encoding parameters of the local video, which determine

the quality of your video seen by other users in the room.

4. Call startLocalAudio() to turn the mic on. The SDK will ask for mic permission.

param.roomId = 29834;
param.userId = 'test_user_001';
param.userSig = 'eJyrVareCeYrSy1SslI...';
param.role = TRTCRoleType.TRTCRoleAnchor; // Set the role to "anchor"

// Sample code: publish the local audio/video stream
trtcCloud.startLocalPreview(view);
trtcCloud.startLocalAudio();
trtcCloud.setLocalViewFillMode(TRTCVideoFillMode.TRTCVideoFillMode_Fill);

// Set local video encoding parameters
let encParam = new TRTCVideoEncParam();
encParam.videoResolution = TRTCVideoResolution.TRTCVideoResolution_640_360;
encParam.resMode = TRTCVideoResolutionMode.TRTCVideoResolutionModeLandscape;
encParam.videoFps = 25;
encParam.videoBitrate = 600;
encParam.enableAdjustRes = true;
trtcCloud.setVideoEncoderParam(encParam);

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalPreview
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setVideoEncoderParam
https://intl.cloud.tencent.com/document/product/647/35153
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalAudio

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 118 of 160

Step 6. Set beauty filters

1. Call setBeautyStyle(style, beauty, white, ruddiness) to enable filters.

2. Parameter description:

 style : style, which may be smooth or natural. The smooth style features more obvious skin

smoothing effect and is suitable for entertainment scenarios.

 TRTCBeautyStyle.TRTCBeautyStyleSmooth : smooth, which features more obvious skin smoothing

effect and is suitable for shows

 TRTCBeautyStyle.TRTCBeautyStyleNature : natural, which retains more facial details and is more

natural

 beauty : strength of the beauty filter. Value range: 0-9. 0 indicates that the filter is disabled.

The larger the value, the more obvious the effect.

 white : strength of the skin brightening filter. Value range: 0-9. 0 indicates that the filter is

disabled. The larger the value, the more obvious the effect.

 ruddiness : strength of the rosy skin filter. Value range: 0-9. 0 indicates that the filter is

disabled. The larger the value, the more obvious the effect. This parameter is unavailable on

Windows currently.

// Enable beauty filters
trtcCloud.setBeautyStyle(TRTCBeautyStyle.TRTCBeautyStyleNature, 5, 5, 5);

Step 7. Create a room and push streams

1. If role in TRTCParams is set to TRTCRoleType.TRTCRoleAnchor , the current user is in the role of an

anchor.

2. Call enterRoom() , specifying the appScene parameter, and a room whose ID is the value of the

 roomId field in TRTCParams will be created.

 TRTCAppScene.TRTCAppSceneLIVE : the interactive video streaming mode, which features smooth

mic on/off and anchor latency below 300 ms. Up to 100,000 users can play the anchor’s video

at the same time, with playback latency as low as 1,000 ms. The example in this document

uses this mode.

 TRTCAppScene.TRTCAppSceneVoiceChatRoom : the interactive audio streaming mode, which features

smooth mic on/off and anchor latency below 300 ms. Up to 100,000 users can play the anchor’s

audio at the same time, with playback latency as low as 1,000 ms.

For more information about TRTCAppScene , see TRTCAppScene.

3. After the room is created, start encoding and transferring audio/video data. The SDK will return the

onEnterRoom(result) callback. If result is greater than 0, room entry succeeds, and the value

indicates the time (ms) room entry takes; if result is less than 0, room entry fails, and the value

is the error code for the failure.

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#setBeautyStyle
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCParams.html
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/global.html#TRTCAppScene
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onEnterRoom

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 119 of 160

Step 8. Enter the room as audience

1. Set the role field in TRTCParams to TRTCRoleType.TRTCRoleAudience to take the role of

“audience”.

2. Call enterRoom() to enter the room whose ID is the value of the roomId field in TRTCParams ,

specifying appScene :

 TRTCAppScene.TRTCAppSceneLIVE : interactive video streaming

 TRTCAppScene.TRTCAppSceneVoiceChatRoom : interactive audio streaming

3. Watch the anchor's video:

If you know the anchor’s userId , call startRemoteView(userId, view) with the anchor’s userId

passed in to play the anchor's video.

If you do not know the anchor’s userId , find the anchor’s userId in the

onUserVideoAvailable() callback, which you will receive after room entry, and call

startRemoteView(userId, view) with the anchor’s userId passed in to play the anchor’s video.

let onEnterRoom = function (result) {
if (result > 0) {
console.log(`onEnterRoom, room entry succeeded and took ${result} seconds`);
} else {
console.warn(`onEnterRoom: failed to enter room ${result}`);
}
};

trtcCloud.on('onEnterRoom', onEnterRoom);

let param = new TRTCParams();
param.sdkAppId = 1400000123;
param.roomId = 29834;
param.userId = 'test_user_001';
param.userSig = 'eJyrVareCeYrSy1SslI...';
param.role = TRTCRoleType.TRTCRoleAnchor;
trtcCloud.enterRoom(param, TRTCAppScene.TRTCAppSceneLIVE);

<div id="video-container"></div>
<script>
const videoContainer = document.querySelector('#video-container');
const roomId = 29834;
// Callback for room entry
let onEnterRoom = function(result) {
if (result > 0) {
console.log(`onEnterRoom, room entry succeeded and took ${result} seconds`);
} else {

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCParams.html
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startRemoteView
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserVideoAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startRemoteView

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 120 of 160

Step 9. Co-anchor

1. Call switchRole(TRTCRoleType.TRTCRoleAnchor) to switch the role to “anchor”

(TRTCRoleType.TRTCRoleAnchor).

2. Call startLocalPreview() to enable local camera preview.

3. Call startLocalAudio() to enable mic capturing.

console.warn(`onEnterRoom: failed to enter room ${result}`);
}
};
// This callback is triggered when the anchor publishes/unpublishes streams from the camera.
let onUserVideoAvailable = function(userId, available) {
if (available === 1) {
let id = `${userId}-${roomId}-${TRTCVideoStreamType.TRTCVideoStreamTypeBig}`;
let view = document.getElementById(id);
if (!view) {
view = document.createElement('div');
view.id = id;
videoContainer.appendChild(view);
}
trtcCloud.startRemoteView(userId, view);
trtcCloud.setRemoteViewFillMode(userId, TRTCVideoFillMode.TRTCVideoFillMode_Fill);
} else {
let id = `${userId}-${roomId}-${TRTCVideoStreamType.TRTCVideoStreamTypeBig}`;
let view = document.getElementById(id);
if (view) {
videoContainer.removeChild(view);
}
}
};

trtcCloud.on('onEnterRoom', onEnterRoom);
trtcCloud.on('onUserVideoAvailable', onUserVideoAvailable);

let param = new TRTCParams();
param.sdkAppId = 1400000123;
param.roomId = roomId;
param.userId = 'test_user_001';
param.userSig = 'eJyrVareCeYrSy1SslI...';
param.role = TRTCRoleType.TRTCRoleAudience; // Set the role to "audience"
trtcCloud.enterRoom(param, TRTCAppScene.TRTCAppSceneLIVE);
</script>

// Sample code: start co-anchoring
trtcCloud.switchRole(TRTCRoleType.TRTCRoleAnchor);

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#switchRole
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalPreview
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startLocalAudio

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 121 of 160

Step 10. Compete across rooms

Anchors from two rooms can compete with each other without exiting their current rooms.

1. Anchor A calls the connectOtherRoom() API. The API uses parameters in JSON strings, so anchor A

needs to pass the roomId and userId of anchor B in the format of {"roomId": 978,"userId":

"userB"} to the API.

2. After the cross-room call is set up, anchor A will receive the onConnectOtherRoom(userId, errCode,

errMsg) callback, and all users in both rooms will receive the onUserVideoAvailable() and

onUserAudioAvailable() callbacks.

For example, after anchor A in room "001" uses connectOtherRoom() to call anchor B in room

“002” successfully, all users in room "001" will receive the onUserVideoAvailable(B, true) and

 onUserAudioAvailable(B, true) callbacks, and all users in room "002" will receive the

 onUserVideoAvailable(A, true) and onUserAudioAvailable(A, true) callbacks.

3. Users in both rooms can call startRemoteView(userId, view) to play the video of the anchor in the

other room. Audio will be played automatically.

trtcCloud.startLocalAudio();
trtcCloud.startLocalPreview(frontCamera, view);

// Sample code: end co-anchoring
trtcCloud.switchRole(TRTCRoleType.TRTCRoleAudience);
trtcCloud.stopLocalAudio();
trtcCloud.stopLocalPreview()

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#connectOtherRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onConnectOtherRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserVideoAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onUserAudioAvailable
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#startRemoteView

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 122 of 160

Step 11. Exit the room

Call exitRoom() to exit the room. The SDK disables and releases devices such as cameras and mics

during room exit. Therefore, room exit is not an instant process. It completes only after the

onExitRoom() callback is received.

// Sample code: cross-room competition
let onConnectOtherRoom = function(userId, errCode, errMsg) {
if(errCode === 0) {
console.log(`Connected to the room of anchor ${userId}`);
} else {
console.warn(`Failed to connect to the anchor's room: ${errMsg}`);
}
};

const paramJson = '{"roomId": "978","userId": "userB"}';
trtcCloud.connectOtherRoom(paramJson);
trtcCloud.on('onConnectOtherRoom', onConnectOtherRoom);

https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCloud.html#exitRoom
https://web.sdk.qcloud.com/trtc/electron/doc/zh-cn/trtc_electron_sdk/TRTCCallback.html#event:onExitRoom

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 123 of 160

Note：

If your Electron application integrates multiple audio/video SDKs, please wait after you receive

the onExitRoom callback to start other SDKs; otherwise the device busy error may occur.

// Please wait for the `onExitRoom` callback after calling the room exit API.
let onExitRoom = function (reason) {
console.log(`onExitRoom, reason: ${reason}`);
};
trtcCloud.exitRoom();
trtcCloud.on('onExitRoom', onExitRoom);

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 124 of 160

This document describes how to enter a room as audience and start co-anchoring. The process of

entering a room and publishing streams as an anchor in live streaming scenarios is the same as that

in call scenarios. Please see Real-Time Audio/Video Call.

Example

You can click Demo to try out the audio/video features, or log in to GitHub to get the sample code

related to this document.

Step 1. Create a client object

Create a client object using TRTC.createClient(). Set the parameters as follows:

 mode : TRTC mode, which should be set to live

 sdkAppId : the sdkAppId you obtain from Tencent Cloud

 userId : user ID

 userSig : user signature

Step 2. Enter a room as audience

Call Client.join() to enter a TRTC room. Below are the request parameters:

 roomId : room ID

 role : role

 anchor (default): users in the role of “anchor” can publish local streams and play remote

streams.

Web

Last updated：2022-03-10 09:48:45

const client = TRTC.createClient({
mode: 'live',
sdkAppId,
userId,
userSig
});

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/tutorial-11-basic-video-call.html
https://web.sdk.qcloud.com/trtc/webrtc/demo/api-sample/basic-live.html
https://github.com/LiteAVSDK/TRTC_Web/tree/main/base-react-next/src/pages/basic-live
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/TRTC.html#.createClient
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#join

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 125 of 160

 audience . Users in the role of “audience” can play remote streams but cannot publish local

streams. To co-anchor and publish local streams, audience must switch the role to anchor

using Client.switchRole().

Step 3. Play a live stream

1. After receiving client.on('stream-added') , which is used to listen for remote streams, call

Client.subscribe() to subscribe to the remote stream.

Note：

To ensure that you are notified when a remote user enters the room, please subscribe to the

 client.on('stream-added') callback before you call Client.join() to enter the room.

2. In the callback that indicates successful subscription to a remote stream, call [Stream.play()]

(https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Stream.html#play) to play the stream on a

// Enter a room as audience
client
.join({ roomId, role: 'audience' })
.then(() => {
console.log('Entered room successfully');
})
.catch(error => {
console.error('Failed to enter room' + error);
});

client.on('stream-added', event => {
const remoteStream = event.stream;
console.log('New remote stream:' + remoteStream.getId());
// Subscribe to the remote stream
client.subscribe(remoteStream);
});
client.on('stream-subscribed', event => {
const remoteStream = event.stream;
console.log('Subscribed to remote stream successfully:' + remoteStream.getId());
// Play the remote stream
remoteStream.play('remote_stream-' + remoteStream.getId());
});

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#switchRole
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#subscribe
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#join

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 126 of 160

webpage. The `play` method allows a parameter that is a div element ID. The SDK will create an

audio/video tag in the div element and play the stream on it.

Step 4. Co-anchor

Step 4.1. Switch roles

Call Client.switchRole() to switch the role to anchor .

Step 4.2. Co-anchor

1. Call TRTC.createStream() to create a local audio/video stream. In the example below, the

audio/video stream is captured by the camera and mic. The parameters include:

 userId : ID of the user to whom the local stream belongs

 audio : whether to enable audio

 video : whether to enable video

const localStream = TRTC.createStream({ userId, audio: true, video: true });

2. Call LocalStream.initialize() to initialize the local audio/video stream.

client.on('stream-subscribed', event => {
const remoteStream = event.stream;
console.log('Subscribed to remote stream successfully:' + remoteStream.getId());
// Play the remote stream
remoteStream.play('remote_stream-' + remoteStream.getId());
});

client
.switchRole('anchor')
.then(() => {
// Role switched to “anchor” successfully
})
.catch(error => {
console.error('Failed to switch role' + error);
});

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#switchRole
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/TRTC.html#.createStream
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/LocalStream.html#initialize

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 127 of 160

3. Play the local stream after it is initialized

4. Call Client.publish() to publish the local stream and start co-anchoring.

Step 5. Exit the room

Call Client.leave() to exit the room. The live streaming session ends.

localStream
.initialize()
.then(() => {
console.log('Local stream initialized successfully');
})
.catch(error => {
console.error('Failed to initialize local stream' + error);
});

localStream
.initialize()
.then(() => {
console.log('Local stream initialized successfully');
localStream.play('local_stream');
})
.catch(error => {
console.error('Failed to initialize local stream' + error);
});

client
.publish(localStream)
.then(() => {
console.log('Local stream published successfully');
})
.catch(error => {
console.error('Failed to publish local stream' + error);
});

client
.leave()
.then(() => {
// Exited room successfully
})
.catch(error => {
console.error('Failed to leave room' + error);
});

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#publish
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#leave

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 128 of 160

Note：

The value of appScene must be the same on each client. Inconsistent appScene may cause

unexpected problems.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 129 of 160

In applications such as online education, live showroom, video conferencing, online medical

consultation, and remote banking, it is often necessary to record entire video calls or live streaming

sessions for purposes including content moderation, archiving, and playback. The on-cloud recording

feature of TRTC can help meet these demands.

Overview

The on-cloud recording feature of TRTC allows you to record an audio/video stream in real time using

a RESTful API. It is flexible, light, and easy-to-use, saving you the trouble of deploying servers and

recording modules.

Recording mode: Single-stream recording records the audio and video of each user in a room

separately, while mixed-stream recording records all audios and videos in a room into one result.

Stream subscription: You can determine whose streams you receive or do not receive using an

allowlist/blocklist.

Transcoding parameters: In the mixed-stream recording mode, you can determine the output

video quality by specifying transcoding parameters.

Stream-mixing parameters: For mixed-stream recording, we offer multiple auto-arranged layout

templates. You can also customize a layout template.

File storage: Currently, you can save recording files only in COS or VOD of Tencent Cloud.

(We plan to add support for storage and video-on-demand services of third-party cloud vendors in

the future. To save files to third-party platforms, you will need to provide your cloud service

account and the storage parameters.)

Callback notification: By configuring a callback domain in the console, you can receive

notifications about on-cloud recording events via your callback server.

Single-stream recording

On-Cloud Recording

Last updated：2022-03-14 11:36:54

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 130 of 160

The diagram above shows the workflow of single-stream recording. In room 1234, anchor 1 and

anchor 2 are publishing streams. If you subscribe to their streams and enable single-stream

recording, the TRTC backend will record the audio and video data of anchor 1 and anchor 2

separately. The recording results will include:

1. An M3U8 index file of anchor 1’s video

2. Multiple TS segment files of anchor 1’s video

3. An M3U8 index file of anchor 1’s audio

4. Multiple TS segment files of anchor 1’s audio

5. An M3U8 index file of anchor 2’s video

6. Multiple TS segment files of anchor 2’s video

7. An M3U8 index file of anchor 2’s audio

8. Multiple TS segment files of anchor 2’s audio

The backend will then upload the files to the cloud storage server you specify. You need to download

the files and merge/transcode them. We offer a script for merging audio and video streams.

Mixed-stream recording

https://intl.cloud.tencent.com/zh/document/product/647/45169#.E5.8D.95.E6.B5.81.E6.96.87.E4.BB.B6.E5.90.88.E5.B9.B6.E8.84.9A.E6.9C.AC

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 131 of 160

The above shows the workflow of mixed-stream recording. In room 1234, anchor 1 and anchor 2 are

publishing streams. If you subscribe to their streams and enable mixed-stream recording, the TRTC

backend will mix the streams of anchor 1 and anchor 2 according to the layout template you specify

and then record them into one result, which will include:

1. An M3U8 index file of the mixed video

2. Multiple TS segment files of the mixed video

The backend will then upload the files to the cloud storage server you specify. You need to download

the files and merge/transcode them. We offer a script for merging audio and video streams.

Note：

The rate limit for the recording API is 20 queries per second.

The timeout period for a query is 6 seconds.

We allow up to 100 ongoing recording tasks at the same time. If you need to record more,

please submit a ticket.

In the single-stream recording mode, you can record up to 25 streams in a room at the same

time.

Directions

1. Start recording

Call the RESTful API CreateCloudRecording from your server to start on-cloud recording. Pay attention

to the following parameters:

TaskId

This parameter uniquely identifies a recording task. Note it as you will need to provide it for other

actions on the same task later.

RecordMode

Single-stream recording separately records the audios and videos of individual anchors whose

streams you receive before uploading the results (including M3U8 and TS segment files) to the

cloud.

Mixed-stream recording records all the audios and videos of anchors whose streams you receive

into one result (including M3U8 and TS segment files) before uploading it to the cloud.

https://intl.cloud.tencent.com/zh/document/product/647/45169#.E5.8D.95.E6.B5.81.E6.96.87.E4.BB.B6.E5.90.88.E5.B9.B6.E8.84.9A.E6.9C.AC
https://console.intl.cloud.tencent.com/workorder/category?step=0&source=14

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 132 of 160

SubscribeStreamUserIds

By default, on-cloud recording records all the streams (max 25) you receive in a room. You can use

this parameter to specify whose streams you want to record and can change its value during

recording.

StorageParams

You can use this parameter to specify the cloud storage/video-on-demand service you want to save

recording files to. Make sure you use a valid value and that the cloud storage/video-on-demand

service you use is available. Below are the naming conventions of recording files:

Naming of recording files

M3U8 file in the single-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>__UserId_s_<userid>__UserId_e_<mediaid>_<type>.m

3u8

TS segment file in the single-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>__UserId_s_<userid>__UserId_e_<mediaid>_<type>_<

utc>.ts

MP4 file in the single-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>__UserId_s_<userid>__UserId_e_<mediaid>_<index>.

mp4

M3U8 file in the mixed-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>.m3u8

TS segment file in the mixed-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>_<utc>.ts

MP4 file in the mixed-stream recording mode:

<prefix>/<taskid>/<sdkappid>_<roomid>_<index>.mp4

Naming of recovered files

The on-cloud recording feature has a high availability scheme that can recover recording files if

the server fails. To prevent the recovered files from replacing the original files, we add a prefix

 ha<1/2/3> to the names of recovered files. The numbers indicate the times (max 3) the high

availability scheme is used.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 133 of 160

M3U8 file in the single-stream recording mode:

<prefix>/<taskid>/ha<1/2/3>_<sdkappid>_<roomid>__UserId_s_<userid>__UserId_e_<mediai

d>_<type>.m3u8

TS segment file in the single-stream recording mode:

<prefix>/<taskid>/ha<1/2/3>_<sdkappid>_<roomid>__UserId_s_<userid>__UserId_e_<mediai

d>_<type>_<utc>.ts

M3U8 file in the mixed-stream recording mode:

<prefix>/<taskid>/ha<1/2/3>_<sdkappid>_<roomid>.m3u8

TS segment file in the mixed-stream recording mode:

<prefix>/<taskid>/ha<1/2/3>_<sdkappid>_<roomid>_<utc>.ts

Field description

<prefix>: filename prefix, which is not used if not specified

<taskid>: task ID, which is unique and is returned by the start recording API

<sdkappid>: application ID

<roomid>: room ID

<userid>: Base64-encoded ID of a user whose stream is recorded

<mediaid>: indicates whether the primary stream (main) or substream (aux) is recorded

<type>: the type of stream that is recorded (audio or video)

<utc>: recording start time (UTC+0) (year, month, day, hour, minute, second, millisecond)

<index>: index of a segment, which starts from 1. This field is used only if the size of an MP4 file

reaches 2 GB or its length reaches 24 hours and needs to be segmented.

ha<1/2/3>: prefix for a file recovered by the high availability scheme. For example, if the scheme

is used for the first time, the recovered file is named

<prefix>/<taskid>/ha1_<sdkappid>_<roomid>.m3u8.

Note：

If <roomid> is a string, it will be encoded into Base64. In the result, "/" is replaced with "-" and

"=" is replaced with "."

<userid> is encoded into Base64. In the result, "/" is replaced with "-" and "=" is replaced with

"."

Recording start time

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 134 of 160

Recording starts when you start receiving data from an anchor. Recording start time is the Unix time

on the server when recording starts.

You can query the start time of a recording task in three ways:

Using the DescribeCloudRecording API. BeginTimeStamp in the response parameters indicates the

recording start time (ms).

Below is a response of the DescribeCloudRecording API, in which BeginTimeStamp is 1622186279144 .

{
"Response": {
"Status": "xx",
"StorageFileList": [
{
"TrackType": "xx",
"BeginTimeStamp": 1622186279144,
"UserId": "xx",
"FileName": "xx"
}
],
"RequestId": "xx",
"TaskId": "xx"
}
}

Viewing the M3U8 file (the #EXT-X-TRTC-START-REC-TIME directive)

According to the M3U8 file below, the Unix time (ms) when recording started was 1622425551884.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-ALLOW-CACHE:NO
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:70
#EXT-X-TRTC-START-REC-TIME:1622425551884
#EXT-X-TRTC-VIDEO-METADATA:WIDTH:1920 HEIGHT:1080
#EXTINF:12.074
1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094551825.ts
#EXTINF:11.901
1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094603825.ts
#EXTINF:12.076
1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094615764.ts
#EXT-X-ENDLIST

Via a recording callback

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 135 of 160

If you have registered recording callbacks, you will receive a callback for the generation of recording

files (event type 307), in which BeginTimeStamp indicates the recording start time.

According to the callback below, the Unix time (ms) when recording started was 1622186279144.

{
"EventGroupId": 3,
"EventType": 307,
"CallbackTs": 1622186289148,
"EventInfo": {
"RoomId": "xx",
"EventTs": "1622186289",
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"FileName": "xx.m3u8",
"UserId": "xx",
"TrackType": "audio",
"BeginTimeStamp": 1622186279144
}
}
}

MixWatermark

TRTC allows you to watermark videos during mixed-stream recording. You can add up to 25 marks to

a video in your desired positions.

Field Description

Top Vertical offset of the watermark from the top-left corner of the video

Left Horizontal offset of the watermark from the top-left of the video

Width Watermark width

Height Watermark height

url URL of the watermark file

MixLayoutMode

TRTC supports the grid layout (default), floating layout, screen sharing layout, and custom layout.

Grid layout

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 136 of 160

The videos of anchors are scaled and positioned automatically according to the total number of

anchors in a room. Each video has the same size. Up to 25 videos can be displayed.

When there is only one video:

The video is scaled to fill the canvas.

When there are two videos:

The width of each video is half of the canvas width.

The height of each video is the same as the canvas height.

When there are three or four videos:

The canvas is split evenly into four windows and each video is displayed in one window.

When the number of videos is between four and nine:

The canvas is split evenly into nine windows and each video is displayed in one window.

When the number of videos is between 10 and 16:

The canvas is split evenly into 16 windows and each video is displayed in one window.

When there are more than 16 videos:

The canvas is split evenly into 25 windows and each video is displayed in one window.

As shown below:

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 137 of 160

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 138 of 160

Floating layout

By default, the video of the first anchor (you can also specify an anchor) who enters the room is

scaled to fill the screen. When other anchors enter the room, their videos appear smaller and are

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 139 of 160

superimposed over the large video from left to right starting from the bottom of the canvas

according to their room entry sequence. If the total number of videos is 17 or less, there will be four

windows in each row (4 × 4); if it is greater than 17, there will be five windows in each row (5 × 5).

Up to 25 videos can be displayed. A user who publishes only audio will still be displayed in one

window.

When there are 17 or fewer videos:

The width and height of each video are 23.5% of the canvas width and height.
The horizontal space and vertical space between two neighboring videos are 1.2% of the canvas
width and height.
The right/left and top/bottom margin are 1.2% of the canvas width and height.

When there are more than 17 videos:

The width and height of each video are 18.8% of the canvas width and height.
The horizontal space and vertical space between two neighboring videos are 1% of the canvas wi
dth and height.
The right/left and top/bottom margin are 1% of the canvas width and height.

As shown below:

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 140 of 160

Screen sharing layout

The video of a specified anchor occupies a larger part of the canvas on the left side (if you do not

specify an anchor, the left window will display the canvas background). The videos of other anchors

are smaller and are positioned on the right side. If the total number of videos is 17 or less, the small

videos are positioned from top to bottom in up to two columns on the right side, with eight videos

per column at most. If there are more than 17 videos, the additional videos are positioned at the

bottom of the canvas from left to right. Up to 24 videos can be displayed. A user who publishes only

audio will still is displayed in one window.

When there are five or fewer videos:

The size of each small video on the right is 1/5 the canvas width and 1/4 the canvas height.

The width of the large video on the left is 4/5 the canvas width, and its height is the same as the

canvas height.

When the number of videos is between 5 and 7:

The size of each small video on the right are 1/7 the canvas width and 1/6 the canvas height.

The width of the large video on the left is 6/7 the canvas width, and its height is the same as the

canvas height.

When there are eight or nine videos:

The size of each small video on the right is 1/9 the canvas width and 1/8 the canvas height.

The width of the large video on the left is 8/9 the canvas width, and its height is the same as the

canvas height.

When the number of videos is between 10 and 17:

The size of each small video on the right side is 1/10 the canvas width and 1/8 the canvas height.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 141 of 160

The width of the large video on the left side is 4/5 the canvas width, and its height is the same as

the canvas height.

When there are more than 17 videos:

The size of each small video on the right and bottom is 1/10 the canvas width and 1/8 the canvas

height.

The width of the large video on the left is 4/5 the canvas width, and its height is 7/8 the canvas

height.

As shown below:

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 142 of 160

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 143 of 160

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 144 of 160

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 145 of 160

Custom layout

You can also use MixLayoutList to customize a layout for anchor videos.

2. Query the recording task

You can use the DescribeCloudRecording API to query the status of an ongoing recording task. If the

queried task has already ended, an error will be returned.

The file list (StorageFile) that is returned will include all the M3U8 files of the recording as well as

the Unix time when recording started. If the task queried is a recording to VOD task, the

 StorageFile returned will be empty.

3. Modify recording parameters

You can use the ModifyCloudRecording API to modify recording parameters, including

 SubscribeStreamUserIds and MixLayoutParams (valid only for mixed-stream recording). Note that to

modify parameters, you need to respecify all the parameters, including MixLayoutParams and

 SubscribeStreamUserIds , and not just the one you want to modify. As a result, we recommend you

note all the values before modifying a parameter, or you will need to calculate them again.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 146 of 160

4. Stop recording

You can call the DeleteCloudRecording API to stop recording. A recording task will also end

automatically if there are no anchors in a room for longer than the specified time period

(MaxIdleTime). We recommend that you call the API to stop recording when you no longer need the

service.

Advanced Features

Recording in MP4 format

To record in MP4 format, set OutputFormat to hls+mp4 when calling the CreateCloudRecording API.

TRTC will still record in HLS format, but once recording ends, it will download the HLS file from its

COS bucket, convert it into MP4 format, and upload the MP4 file to the COS bucket.

Please note that COS download access is required for the above to work.

An MP4 file will be segmented if one of the following conditions is met.

1. The recording lasts for 24 hours or longer.

2. The MP4 file is 2 GB or larger.

The figure below shows the workflow of recording in MP4 format.

Recording to VOD

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 147 of 160

To record to VOD, specify the CloudVod parameter in StorageParams when calling the

 CreateCloudRecording API. After recording ends, the backend will save the file in MP4 format to VOD

using the method you specify and send you a playback URL via a callback. In the single-stream

recording mode, there will be a playback URL for each anchor whose stream is recorded; in the

mixed-stream recording mode, there will be only one playback URL. When you record to VOD, pay

attention to the following:

1. CloudVod and CloudStorage are mutually exclusive. If you specify both, the recording task will fail

to start.

2. If you use DescribeCloudRecording to query a recording to VOD task, the StorageFile returned

will be empty.

The figure below shows the workflow of recording to VOD, in which "cloud storage" refers to the

internal storage of the recording backend. You don’t need to specify a COS bucket for it.

Script for merging single-stream recording files

We offer a script for merging single-stream audio and video files into MP4 files.

Note：

If two segment files are more than 15 seconds apart, during which no audio or video data is

recorded (if the substream is disabled, its data will be ignored), the two segments will be

considered to belong to different sections, one being the ending segment of the previous

section, and the other the starting segment of the next section.

https://intl.cloud.tencent.com/pdf/document/647/35099?lang=en&domain=intl.cloud.tencent.com

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 148 of 160

Section-based merge (-m 0)

In this mode, the recording files of each user (UserId) are merged by section. An MP4 file is

generated for each section.

User-based merge (-m 1)

In this mode, the recording files of each user (UserId) are merged into one MP4 file. You can use

the -s option to specify whether to fill in the blanks between sections.

Environment requirements

Python 3

Centos: sudo yum install python3

Ubuntu: sudo apt-get install python3

Python 3 dependency

-sortedcontainers：pip3 install sortedcontainers

Directions

1. Run the merge script: python3 TRTC_Merge.py [option]

2. An MP4 file will be generated in the directory of the recording files.

E.g.: python3 TRTC_Merge.py -f /xxx/file -m 0

Below is a list of the options:

Option Description

-f
Directory of the recording files. If there are multiple users (UserId), their recording

files will be merged separately.

-m

 0 : section-based marge (default). In this mode, the recording files of each user

(UserId) are merged by section. Multiple MP4 files may be generated for each user.

 1 : user-based merge. In this mode, the recording files of each user (UserId) are

merged into one MP4 file.

-s
Indicates whether to delete the blanks between sections in the user-based merge

mode, in which case the files generated will be shorter than the recording duration.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 149 of 160

Option Description

-a

 0 : primary stream merge (default). The audio of a user (UserId) is merged with the

user’s primary stream, not the substream.

 1 : automatic merge. If a user (UserId) has a primary stream, the user’s audio is

merged with the primary stream; if not, it is merged with the substream.

 2 : substream merge. The audio of a user (UserId) is merged with the user’s

substream, not the primary stream.

-p

Frame rate (fps) of the output video, which is 15 by default. Value range: 5-120. If

you enter a value smaller than 5 , 5 will be used; if you enter a value greater than

 120 , 120 will be used.

-r
Resolution of the output video. For example, -r 640 360 indicates that the resolution

of the output video is 640 × 360.

File Naming

Audio-video file: UserId_timestamp_av.mp4

Audio-only file: UserId_timestamp.m4a

Note：

 UserId is the Base64-encoded ID of a user whose stream is recorded. For details, see the

naming of recording files. timestamp is the starting time of the first TS segment of a section.

Callback APIs

You can register callbacks by providing an HTTP/HTTPS gateway to receive callbacks. When an on-

cloud recording event occurs, the system will send a callback notification to your callback server.

Callback format

Callbacks are sent to your server in the form of HTTP/HTTPS POST requests, which consist of the

following parts:

Character encoding: UTF-8

Request: The request body is in JSON format.

Response: HTTP STATUS CODE = 200. The server ignores the content of the response packet. For

protocol-friendliness, we recommend adding JSON: {"code":0}`` to the response.

Field description

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 150 of 160

The header of a callback contains the following fields.

Field Description

Content-Type application/json

Sign Signature value

SdkAppId SDK application ID

The body of a callback contains the following fields.

Field Type Description

EventGroupId Number Event group ID, which is 3 for on-cloud recording

EventType Number Event type

CallbackTs Number Unix time (ms) when the callback was sent to your server

EventInfo JSON Object Event information

Event types

Field Type Description

EVENT_TYPE_CLOUD_RECORDING_RECORDER_START 301

On-cloud recording -

The recording module

was started.

EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP 302

On-cloud recording -

The recording module

was stopped.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START 303

On-cloud recording -

The upload module

was started.

EVENT_TYPE_CLOUD_RECORDING_FILE_INFO 304

On-cloud recording -

The first M3U8 file was

generated and

uploaded successfully.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP 305
On-cloud recording -

The upload finished.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 151 of 160

Field Type Description

EVENT_TYPE_CLOUD_RECORDING_FAILOVER 306

On-cloud recording -

The recording task

was migrated.

EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE 307

On-cloud recording -

The first TS segment

was available and an

M3U8 file was

generated.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_ERROR 308

On-cloud recording -

The upload module

encountered an error.

EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR 309

On-cloud recording -

An error occurred

during the download

of the image decoding

file.

EVENT_TYPE_CLOUD_RECORDING_MP4_STOP 310

On-cloud recording -

The task of recording

in MP4 format ended

and the name of the

MP4 file generated

was returned.

EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT 311

On-cloud recording -

Upload was completed

for the recording to

VOD task.

EVENT_TYPE_CLOUD_RECORDING_VOD_STOP 312

On-cloud recording -

The recording to VOD

task ended.

Event information

Field Type Description

RoomId String/Number Room ID (same type as Room ID on the client)

EventTs Number Unix timestamp (s) when the event occurred

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 152 of 160

Field Type Description

UserId String User ID of the recording robot

TaskId String Recording ID, which uniquely identifies a recording task

Payload JsonObject The content of this field varies with event type.

If the event type is 301 (EVENT_TYPE_CLOUD_RECORDING_RECORDER_START):

Field Type Description

Status Number
 0 : The recording module was started successfully. 1 : The recording

module failed to be started.

{
"EventGroupId": 3,
"EventType": 301,
"CallbackTs": 1622186275913,
"EventInfo": {
"RoomId": "xx",
"EventTs": "1622186275",
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0
}
}
}

If the event type is 302 (EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP):

Field Type Description

LeaveCode Number

 0 : The recording module ended the recording normally.

 1 : The recording robot was removed from the room.

 2 : The room was closed.

 3 : The server removed the recording robot from the room.

 4 : The server closed the room.

 99 : There were no anchors in the room except the recording robot,

which quit after the specified time period elapsed.

 100 : The recording robot quit after timeout.

 101 : The recording robot was removed due to repeat entry by the

same user.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 153 of 160

{
"EventGroupId": 3,
"EventType": 302,
"CallbackTs": 1622186354806,
"EventInfo": {
"RoomId": "xx",
"EventTs": "1622186354",
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"LeaveCode": 0
}
}
}

If the event type is 303 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START):

Field Type Description

Status Number
 0 : The upload module was started successfully.

 1 : The upload module failed to be started.

{
"EventGroupId": 3,
"EventType": 303,
"CallbackTs": 1622191965320,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191965,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0
}
}
}

If the event type is 304 (EVENT_TYPE_CLOUD_RECORDING_FILE_INFO):

Field Type Description

FileList String Name of the M3U8 file generated

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 154 of 160

{
"EventGroupId": 3,
"EventType": 304,
"CallbackTs": 1622191965350,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191965,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"FileList": "xx.m3u8"
}
}
}

If the event type is 305 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP):

Field Type Description

Status Number

 0 : The recording task ended and all the files were uploaded to the

specified third-party cloud storage service.

 1 : The recording task ended, but at least one file on the server or in

backup storage failed to be uploaded.

 2 : The files that failed to be uploaded earlier were uploaded to the

specified third-party cloud storage service.

{
"EventGroupId": 3,
"EventType": 305,
"CallbackTs": 1622191989674,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191989,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0
}
}
}

If the event type is 306 (EVENT_TYPE_CLOUD_RECORDING_FAILOVER):

Field Type Description

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 155 of 160

Field Type Description

Status Number 0 : The migration was completed.

{
"EventGroupId": 3,
"EventType": 306,
"CallbackTs": 1622191989674,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191989,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0
}
}
}

If the event type is 307 (EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE):

Field Type Description

FileName String Name of the M3U8 file generated

UserId String ID of the user whose stream was recorded in the file

TrackType String Valid values: audio/video/audio_video

BeginTimeStamp Number Unix timestamp on the server when recording started

{
"EventGroupId": 3,
"EventType": 307,
"CallbackTs": 1622186289148,
"EventInfo": {
"RoomId": "xx",
"EventTs": "1622186289",
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"FileName": "xx.m3u8",
"UserId": "xx",
"TrackType": "audio",
"BeginTimeStamp": 1622186279144

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 156 of 160

}
}
}

If the event type is 308 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_ERROR):

Field Type Description

Code String Error code returned by the third-party cloud storage service

Message String Error message returned by the third-party cloud storage service

{
"Code": "InvalidParameter",
"Message": "AccessKey invalid"
}
{
"EventGroupId": 3,
"EventType": 308,
"CallbackTs": 1622191989674,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191989,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Code": "xx",
"Message": "xx"
}
}
}

If the event type is 309 (EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR):

Field Type Description

Url String The URL from which the file failed to be downloaded

{
"EventGroupId": 3,
"EventType": 309,
"CallbackTs": 1622191989674,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191989,

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 157 of 160

"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Url": "http://xx",
}
}
}

If the event type is 310 (EVENT_TYPE_CLOUD_RECORDING_MP4_STOP):

Field Type Description

Status Number

 0 : The task ended and all the files were uploaded to the specified third-

party cloud storage service.

 1 : The task ended, but at least one file on the server or in backup

storage failed to be uploaded.

 2 : The task stopped due to an error, for example, failure to download

HLS files from COS.

FileList String Name of the MP4 file generated

{
"EventGroupId": 3,
"EventType": 310,
"CallbackTs": 1622191989674,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191989,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0,
"FileList": ["xxxx1.mp4", "xxxx2.mp4"]
}
}
}

If the event type is 311 (EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT):

Field Type Description

Status Number

 0 : The recording file was successfully uploaded to VOD.

 1 : The recording file failed to be uploaded.

 2 : An error occurred.

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 158 of 160

Field Type Description

UserId String
ID of the user whose stream is recorded. In the mixed-stream recording

mode, this field is empty.

TrackType String Valid values: audio/video/audio_video

MediaId String Valid values: main/aux

FileId String Unique ID of the recording file in VOD

VideoUrl String Playback URL of the recording file in VOD

CacheFile String
Name of the MP4 file converted from the recording file (before it was

uploaded to VOD)

Errmsg String Error message when Status is not 0

Callback for successful upload:

{
"EventGroupId": 3,
"EventType": 311,
"CallbackTs": 1622191965320,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191965,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0,
"TencentVod": {
"UserId": "xx",
"TrackType": "audio_video",
"MediaId": "main",
"FileId": "xxxx",
"VideoUrl": "http://xxxx"
}
}
}
}

Callback for failed upload:

{
"EventGroupId": 3,

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 159 of 160

"EventType": 311,
"CallbackTs": 1622191965320,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191965,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 1,
"Errmsg": "xxx",
"TencentVod": {
"UserId": "123",
"TrackType": "audio_video",
"CacheFile": "xxx.mp4"
}
}
}
}

If the event type is 312 (EVENT_TYPE_CLOUD_RECORDING_VOD_STOP):

Field Type Description

Status Number
 0 : The task ended after upload was completed.

 1 : The task ended due to an error.

{
"EventGroupId": 3,
"EventType": 312,
"CallbackTs": 1622191965320,
"EventInfo": {
"RoomId": "20015",
"EventTs": 1622191965,
"UserId": "xx",
"TaskId": "xx",
"Payload": {
"Status": 0
}
}
}

Best Practices

Tencent Real-Time Communication

©2013-2019 Tencent Cloud. All rights reserved. Page 160 of 160

To ensure the high availability of the recording service, we recommend the following practices when

you use the RESTful APIs:

1. Pay attention to the HTTP response after you call CreateCloudRecording . If your request fails, fix

the problem according to the status code and try again.

The status code consists of two parts, for example InvalidParameter.SdkAppId .

 InternalError.xxxxx indicates that a server error occurred. You can retry until the request

succeeds and TaskId is returned. We recommend you use the exponential backup algorithm

for retry. For example, you can wait for three seconds for the first retry, six seconds for the

second, 12 seconds for the third, and so on.

 InValidParameter.xxxxx indicates that a parameter value entered was invalid. Please check the

parameter.

 FailedOperation.RestrictedConcurrency indicates that you reached the maximum number (100

by default) of ongoing recording tasks allowed. To raise the limit, please contact technical

support.

2. The UserId and UserSig you pass in when calling CreateCloudRecording are for the recording

robot. Please make sure that they are different from those of other users in the room. In addition,

the room users join from the TRTC client must be of the same type as the room you specify when

calling the API. For example, if the room created in the TRTC SDK is a string, the room specified for

on-cloud recording must also be a string.

3. You can obtain the information of a recording file in the following ways.

Call DescribeCloudRecording 15 seconds after a CreateCloudRecording request succeeds. If the

status returned is idle , it indicates that no audio or video data is available for recording.

Please check whether there are anchors publishing data in the room.

After a CreateCloudRecording request succeeds, if there are anchors publishing data in the

room, you can splice the name of the recording file according to the naming conventions.

If you have registered on-cloud recording callbacks, the information of recording files will be

sent to your server via callbacks.

You can specify a COS bucket to save recording files when calling the CreateCloudRecording API,

so after a recording task ends, you can find the recording file in the COS bucket.

4. Make sure the validity period of the recording user’s UserSig is set longer than the duration of the

recording task. This is to avoid cases where the high availability scheme fails to resume a

recording task after an internet disconnection because the UserSig is already expired.

