
Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 299

Tencent Real-Time Communication

Solution

Product Documentation

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 299

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 299

Contents

Solution
Real-Time Chorus

Quick Integration (TUIKaraoke)
iOS
Android

Solution Overview (TUIKaraoke)
Implementation Steps
Song Synchronization

iOS
Android

Lyric Synchronization
iOS
Android

Vocal Synchronization
iOS
Android

Mixing Stream Solution
iOS
Android

TUIKaraoke APIs
TRTCKaraoke (iOS)
TRTCKaraoke (Android)

FAQs
iOS
Android

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 299

Solution
Real-Time Chorus
Quick Integration (TUIKaraoke)
iOS
Last updated：2023-09-21 16:22:21

Overview

TUIKaraoke is an open-source audio/video UI component that you can integrate into your project to bring online
karaoke, seat management, gift giving/receiving, text chat, and other TRTC features to your application. TUIKaraoke
requires only a few lines of code and also supports the Android platform. Its basic features are shown below:

Note
All TUIKit components are based on two basic PaaS services of Tencent Cloud, namely TRTC and Chat. When you
activate TRTC, the Chat SDK Trial Edition (which supports up to 100 DAUs) will also be activated automatically. For
Chat billing details, see Pricing.

https://intl.cloud.tencent.com/document/product/647/35078
https://intl.cloud.tencent.com/document/product/1047/35448
https://intl.cloud.tencent.com/document/product/1047/34350

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 299

Integration

Step 1. Download and import the TUIKaraoke component

Go to GitHub, clone or download the code, copy the Source , Resources , and TXAppBasic folders and the

 TUIKaraoke.podspec file in the iOS directory to your project, and complete the following import operations:

Add the following import commands to your Podfile :

https://github.com/tencentyun/TUIKaraoke

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 299

pod 'TUIKaraoke', :path => "./", :subspecs => ["TRTC"]

pod 'TXLiteAVSDK_TRTC'

pod 'TXAppBasic', :path => "TXAppBasic/"

Open Terminal and run the following installation command in the directory of the Podfile :

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 299

pod install

Step 2. Configure permissions

Configure permission requests for your app in the info.plist file of your project. The SDKs need the following

permissions (on iOS, the mic access must be requested at runtime):

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 299

 <key>NSMicrophoneUsageDescription</key>

 <string>`TUIKaraoke` needs to access your mic.</string>

Step 3. Initialize and log in to the component

For more information on relevant APIs, see TRTCKaraoke (iOS).

https://intl.cloud.tencent.com/document/product/647/41942

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 299

 // 1. Initialize

 let karaokeRoom = TRTCKaraokeRoom.shared()

 karaokeRoom.setDelegate(delegate: self)

 // 2. Log in

 karaokeRoom.login(SDKAppID: Int32(SDKAppID), UserId: UserId, UserSig: ProfileMana

 if code == 0 {

 // Logged in

 }

 }

Parameter description:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 299

SDKAppID: TRTC application ID. If you haven't activated TRTC, log in to the TRTC console, create a TRTC
application, click Application Info, and select the Quick Start tab to view its SDKAppID .

SecretKey: TRTC application key. Each secret key corresponds to an SDKAppID . You can view your

application’s secret key on the Application Management page of the TRTC console.
userId: Current user ID, which is a custom string that can contain up to 32 bytes of letters and digits (special
characters are not supported).
userSig: The security protection signature calculated based on SDKAppID , userId , and Secretkey . You

can click here to directly generate a debugging userSig online. For more information, see UserSig.

Step 4. Implement the online karaoke scenario

1. The room owner creates a room through TUIKaraoke.createRoom.

https://console.intl.cloud.tencent.com/trtc/app
https://console.intl.cloud.tencent.com/trtc/app
https://console.intl.cloud.tencent.com/trtc/usersigtool
https://intl.cloud.tencent.com/document/product/647/35166
https://intl.cloud.tencent.com/document/product/647/41942

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 299

int roomId = "Room ID";

let param = RoomParam.init()

param.roomName = "Room name";

param.needRequest = false; // Whether permission is required for listeners to speak

param.seatCount = 8; // Number of seats in the room. Set it to `8`.

param.coverUrl = "URL of room cover image";

karaokeRoom.createRoom(roomID: Int32(roomInfo.roomID), roomParam: param) { [weak se

 guard let `self` = self else { return }

 if code == 0 {

 // Room created successfully

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 299

 }

}

2. A listener enters the room through TUIKaraoke.enterRoom.

karaokeRoom.enterRoom(roomID: roomInfo.roomID) { [weak self] (code, message) in

 guard let `self` = self else { return }

 if code == 0 {

 // Entered room successfully

 }

}

https://intl.cloud.tencent.com/document/product/647/41942

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 299

3. A listener turns their mic on through TUIKaraoke.enterSeat.

// 1. A listener calls an API to mic on

int seatIndex = 1;

karaokeRoom.enterSeat(seatIndex: seatIndex) { [weak self] (code, message) in

 guard let `self` = self else { return }

 if code == 0 {

 // Mic turned on successfully

 }

}

// 2. The listener receives the `onSeatListChange` callback and refreshes the seat

https://intl.cloud.tencent.com/document/product/647/41942

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 299

func onSeatListChange(seatInfoList: [SeatInfo]) {

}

Note
 You can implement other seat management operations as instructed in TRTCKaraoke (iOS) or by referring to the
TUIKaraoke demo project.
4. Play back songs and try out the karaoke scenario
You can get the music ID and URL to play back a song. For more information, see Music Playback APIs.

// Play back the music

karaokeRoom.startPlayMusic(musicID: musicID, originalUrl: muscicLocalPath, accompan

https://intl.cloud.tencent.com/document/product/647/41942
https://github.com/tencentyun/TUIKaraoke/
https://intl.cloud.tencent.com/document/product/647/41942#music-playback-apis2

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 299

// Stop the music

karaokeRoom.stopPlayMusic();

After completing the previous steps, you can implement the basic karaoke features. If your business needs more
features such as chat and gift giving, you can integrate the following capabilities:

Step 5. Add the text chat feature (optional)

If you want implement a text chat feature between speakers and listeners, implement message sending/receiving as
follows:
For more information on relevant APIs, see sendRoomTextMsg.

https://intl.cloud.tencent.com/document/product/647/41942#sendroomtextmsg

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 299

// Sender: Sends text chat messages

karaokeRoom.sendRoomTextMsg(message: message) { [weak self] (code, message) in

 if code == 0 {

 // Sent successfully

 }

}

// Receiver: Listens for text chat messages

karaokeRoom.setDelegate(delegate: self)

func onRecvRoomTextMsg(message: String, userInfo: UserInfo) {

 debugPrint("Received a message from" + userInfo.userName + ": " + message)

}

Step 6. Add the gift giving feature (optional)

You can implement gift giving, receiving, and displaying as follows:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 299

// Sender: Customize `IMCMD_GIFT` to distinguish between gift messages

karaokeRoom.sendRoomCustomMsg(cmd: kSendGiftCmd, message: message) { code, msg in

 if (code == 0) {

 // Sent successfully

 }

}

// Receiver: Listens for gift messages

karaokeRoom.setDelegate(delegate: self)

func onRecvRoomCustomMsg(cmd: String, message: String, userInfo: UserInfo) {

 if cmd == kSendGiftCmd {

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 299

 debugPrint("Received a gift from" + userInfo.userName + ": " + message)

 }

}

FAQs

Does the TUIKaraoke component support sound effect features such as voice change,
tone change, and reverb?

Yes. For more information, see the TUIKaraoke demo project.
Note
 If you have any suggestions or feedback, please contact colleenyu@tencent.com.

https://github.com/tencentyun/TUIKaraoke/blob/main/iOS/Source/ui/TRTCKTVViewController/SubViews/TRTCKaraokeSoundEffectAlert.swift

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 299

Android
Last updated：2023-09-25 10:58:37

Component Overview

TUIKaraoke is an open-source audio/video UI component that you can integrate into your project to bring online
karaoke, seat management, gift giving/receiving, text chat, and other TRTC features to your application. TUIKaraoke
requires only a few lines of code and also supports the iOS platform. Its basic features are shown below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 299

Component Integration

Step 1. Download and import the TUIKaraoke component

Go to GitHub, clone or download the code, copy the Source and Debug directories in the Android directory

to your project, and complete the following import operations:
Complete import in setting.gradle as shown below:

include ':Source'

include ':Debug'

https://github.com/tencentyun/TUIKaraoke

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 299

Add dependencies on TUIKaraoke to the build.gradle file in app :

api project(':Source')

Add dependencies on TRTC SDK and IM SDK to the build.gradle file in the root directory:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 299

ext {

 liteavSdk = "com.tencent.liteav:LiteAVSDK_TRTCl:latest.release"

 imSdk = "com.tencent.imsdk:imsdk-plus:latest.release"

}

Step 2. Configure permission requests and obfuscation rules

Configure permission requests for your app in AndroidManifest.xml . The SDKs need the following

permissions (on Android 6.0 and later, the mic access and storage read permission must be requested at runtime):

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 299

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" /> //

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" /> //

In the proguard-rules.pro file, add the SDK classes to the "do not obfuscate" list.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 299

-keep class com.tencent.** { *;}

Step 3. Initialize and log in to the component

For more information on relevant APIs, see TUIKaraoke.

https://intl.cloud.tencent.com/document/product/647/41943

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 299

 // 1. Initialize

 TRTCKaraokeRoom mTRTCKaraokeRoom = TRTCKaraokeRoom.sharedInstance(this);

 mTRTCKaraokeRoom.setDelegate(this);

 // 2. Log in

 mTRTCKaraokeRoom.login(SDKAppID, UserID, UserSig, new TRTCKaraokeRoomCallback.Act

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Logged in

 }

 }

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 299

 });

Parameter description:
SDKAppID: TRTC application ID. If you haven't activated the TRTC service, log in to the TRTC console, create a

TRTC application, and click Application Info. The SDKAppID is as shown below:

Secretkey: TRTC application key, which corresponds to SDKAppID . On the Application Management page in

the TRTC console, the SecretKey is as shown below:

userId: Current user ID, which is a string and can contain up to 32 bytes of letters and digits (special symbols are not

supported). You can customize it based on your actual account system.
userSig: Security protection signature calculated based on SDKAppID , userId , and Secretkey . You can

click here to directly generate a debugging userSig online. For more information, see UserSig.

Step 4. Implement the online karaoke scenario

1. The anchor creates a room through TUIKaraoke.createRoom.

https://console.intl.cloud.tencent.com/trtc/app
https://console.intl.cloud.tencent.com/trtc/app
https://console.intl.cloud.tencent.com/trtc/usersigtool
https://intl.cloud.tencent.com/document/product/647/35166
https://intl.cloud.tencent.com/document/product/647/41943

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 299

int roomId = "Room ID";

TRTCKaraokeRoomDef.RoomParam roomParam = new TRTCKaraokeRoomDef.RoomParam();

roomParam.roomName = "Room name";

roomParam.needRequest = false; // Whether your consent is required for listeners to

roomParam.seatCount = 8; // Number of seats in the room. Set it to `8`

roomParam.coverUrl = "URL of room cover image";

mTRTCKaraokeRoom.createRoom(roomId, roomParam, new TRTCKaraokeRoomCallback.ActionCa

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Room created successfully

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 299

 }

 }

});

2. A listener enters the room through TUIKaraoke.enterRoom.

mTRTCKaraokeRoom.enterRoom(roomId, new TRTCKaraokeRoomCallback.ActionCallback() {

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Entered room successfully

 }

https://intl.cloud.tencent.com/document/product/647/41943

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 299

 }

});

3. A listener mics on through TUIKaraoke.enterSeat.

// 1. A listener calls an API to mic on

int seatIndex = 1;

mTRTCKaraokeRoom.enterSeat(seatIndex, new TRTCKaraokeRoomCallback.ActionCallback()

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Mic turned on successfully

https://intl.cloud.tencent.com/document/product/647/41943

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 299

 }

 }

});

// 2. The listener receives the `onSeatListChange` callback and refreshes the seat

@Override

public void onSeatListChange(final List<TRTCKaraokeRoomDef.SeatInfo> seatInfoList)

}

Note
 You can implement other seat management operations as instructed in TRTCKaraoke (Android) or by referring to the
TUIKaraoke demo project.

4. Play back songs and try out the karaoke scenario
You can get the music ID and URL to play back a song based on your business. For more information, see Music
Playback APIs.

https://intl.cloud.tencent.com/document/product/647/41943
https://github.com/tencentyun/TUIKaraoke/
https://intl.cloud.tencent.com/document/product/647/41943#music-playback-apis2

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 299

// Play back the music

mTRTCKaraokeRoom.startPlayMusic(musicID,url);

// Stop the music

mTRTCKaraokeRoom.stopPlayMusic();

After completing the previous steps, you can implement the basic karaoke features. If your business needs more

features such as text chat and gift giving, you can integrate the following capabilities:

Step 5. Add the text chat feature (optional)

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 299

If you want the text chat feature between anchors and listeners, implement message sending/receiving as follows:
For more information on relevant APIs, see sendRoomTextMsg.

// Sender: Sends text messages

mTRTCKaraokeRoom.sendRoomTextMsg("Hello Word!", new TRTCKaraokeRoomCallback.ActionC

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Sent successfully

 }

 }

https://intl.cloud.tencent.com/document/product/647/41943#sendroomtextmsg

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 299

});

// Receiver: Listens for text messages

mTRTCKaraokeRoom.setDelegate(new TRTCKaraokeRoomDelegate() {

 @Override

 public void onRecvRoomTextMsg(String message, TRTCKaraokeRoomDef.UserInfo userInf

 Log.d(TAG, "Received a message from" + userInfo.userName + ": " + message);

 }

});

Step 6. Add the gift giving feature (optional)

If you want the gift giving and receiving features, implement gift giving, receiving, and displaying as follows:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 299

// Sender: Customize `CMD_GIFT` to distinguish between gift messages

mTRTCKaraokeRoom.sendRoomCustomMsg("CMD_GIFT",date, new TRTCKaraokeRoomCallback.Act

 @Override

 public void onCallback(int code, String msg) {

 if (code == 0) {

 // Sent successfully

 }

 }

});

// Receiver: Listens for gift messages

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 299

mTRTCKaraokeRoom.setDelegate(new TRTCKaraokeRoomDelegate() {

 @Override

 public void onRecvRoomCustomMsg(String cmd, String message, TRTCKaraokeRoomDef.

 if ("CMD_GIFT".equals(cmd)) {

 // Received a gift message

 Log.d(TAG, "Received a gift from" + userInfo.userName + ": " + message)

 }

 }

});

FAQs

Does the TUIKaraoke component support sound effect features such as voice change,
tone change, and reverb?

Yes.
Note
 If you have any suggestions or feedback, please contact colleenyu@tencent.com.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 299

Solution Overview (TUIKaraoke)
Implementation Steps
Last updated：2023-09-26 16:38:31

Introduction

To implement a complete online Karaoke scenario, multiple functional modules are required, including room
management, seat management, song selection management, and Karaoke management. The key actions and
features of each functional module are shown in the table below. In the following sections, each functional module will

be introduced in detail to provide a complete understanding of the required functions for building a Karaoke room.

Room Management Seat Management Song Selection Management Karaoke Management

Room List Go on/off the seat Song List Display Karaoke Play Mode

Create Room Seat Control Search for Songs Song Switching

Join Room Lock the Seat Song Selection Vocal Volume Adjustment

Leave Room Take Seat Song Top Reverb/Sound Effects

Destroy Room Mute Seat Selected Song List Lyric Synchronization

The room owner creates the Karaoke room, and users can choose to join the room they are interested in. After
entering the room, users can go on the seat to participate in the interaction and have voice interaction with the room
owner. Of course, users can also choose to go directly on the seat to participate in the chorus. These are two different

Karaoke play modes. The overall business process of the online Karaoke scenario is shown in the figure below.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 299

Room Management

Room management is mainly responsible for maintaining the room list. The main functions include creating a room,
joining a room, destroying a room, and leaving a room. Moreover, Karaoke rooms are different from ordinary rooms

and require a separate Karaoke room identifier to start related component management, such as song selection
management and Karaoke management.
Create Room: After logging into the business system, users can create a room. After creating a room, the room list
needs to be updated with the new room.
Destroy Room: After all users leave the room, the room needs to be destroyed. After destroying the room, the room

list needs to be updated with the deletion of the room.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 299

Note：
Room management is a necessary module for implementing online karaoke, but it is not the main functional module.

The specific implementation can be combined with the business system and TRTC SDK, please refer to the voice
chat room scene access solution for details.

Seat Management

The seats in the karaoke room are generally ordered and limited. Seat management is mainly responsible for defining
the number of seats in the room and managing the status of all seats in the current room according to the business
scenario. Seat management mainly includes the following functions: going on/off the seat, locking the seat, inviting to

go on the seat, and muting the seat.
After entering the room, users can only apply to go on the seat for the seats that are in idle state.
After the host agrees to let the user go on the seat, the seat status needs to be changed to a non-idle state.
After the user stops streaming and goes off the seat, the seat status needs to be reset.
The host has the right to lock the seat, invite to go on the seat, force to go off the seat, and mute the seat.
Note：

Seat management is a necessary module for implementing online karaoke, but it is not the main functional module.
The specific implementation can be combined with the business system and IM SDK, please refer to the voice chat
room scene access solution for details.

Song selection management

Basic Introduction

Song selection management is an important part of the online karaoke scene, which mainly includes the following
functions: song list display, song search, song selection and queue management, and list of selected songs.

Moreover, each karaoke room needs to maintain a list of selected songs and an automatic queue management
function, which requires the business backend to implement. Song list display and song search need to be combined
with Yinsuda Authorized Music for Live Streaming to achieve.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 299

Implementation Process

The entire song selection management mainly involves the business-side app, the business backend, and the
Yinsuda backend, each with its own functions:
Business-side app:
Call the song selection API to report song information.
Call the song cutting API to notify the business backend to update the list of selected songs.

Call the singing confirmation API to notify the business backend.
Business backend:
Maintain the list of selected songs.
Send notifications to the business-side app to update the current list of selected songs.
Yinsuda backend:
Provide APIs to obtain the recommended song list and song list details for live interactive music Song List/Song List

Details.
Provide an API to obtain the details of live interactive music Get Live Interactive Music Details (playToken, lyric
download URL).
Provide an API to search for live interactive music Search Live Interactive Music.

Karaoke Management

The karaoke system mainly includes the following functions: singing gameplay, start/stop/song cutting, vocal volume

adjustment, reverb/sound effects, and lyric synchronization. Below, we will introduce the implementation process of
the karaoke management module in detail through two typical karaoke gameplay: solo singing and real-time chorus.

Solo Singing

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 299

This is mainly a multi-user interactive Karaoke scene. After the host goes on the seat, they can select songs for
singing. Once the host successfully selects a song, all song selection information will be displayed on the song
selection platform. The host can then choose to begin singing.

(1) Solution Architecture

The overall solution architecture mainly utilizes the VOD SDK to achieve song downloading, the VOD backend to
obtain the playToken and lyric download address of the song, and the TRTC SDK to implement the singer's voice
streaming, song playback, and streaming. The overall solution architecture is as follows:

(2) Specific Implementation

In the singing scenario, different roles have different implementation processes, which can be divided into two roles:
singer and audience.

Role Description Differences

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 299

Singer The singer in the Karaoke room is evolved from
the host who selects songs and sings after going
on the seat. After leaving the room, the room is
automatically dissolved and the list of selected
songs is automatically cleared.

The role must be a host
Upstream audio and video (no video
upstream black frame)
Play BGM
Send SEI information (send lyric
information)
Song selection

Audience
The audience in the Karaoke room plays the
stream of the singer.

The role is an audience, but can also
become a host by going on the seat
Downstream audio and video streams
Receive SEI information (receive lyric
information)

The basic implementation processes for different roles are as follows:
【Host】

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 299

The host creates and joins a TRTC room, automatically goes on the seat, and becomes a singer after selecting a
song.
After selecting a song, the song/lyric is downloaded, and then the song is played through the BGM playback interface.

If the singer does not bring up the video upstream, they need to enable video upstream.
Synchronize the lyric progress of everyone through SEI information.
The singer can cut the song at any time during the singing process, and then download and sing the song/lyric again
after the download is complete.
After the host leaves the room, the TRTC room will be dissolved.

【Audience】

The audience joins the TRTC room.
Listen for changes in the room's song and load the lyrics.
Pull the stream of the singer.

Parse the SEI information sent by the singer and synchronize the lyrics.
The main task is to listen for the SEI information of the song and update the corresponding song control.

（3）API call sequence

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 299

The API calls for different roles are sequenced as follows:

Host Audience

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 299

Note：
Given the technical threshold required for the above implementation solution, TRTC provides an open-source audio
and video UI component called TUIKaraoke on its official website. By integrating the TUIKaraoke component into your

project, you can add online karaoke scenes to your application with just a few lines of code, and experience TRTC's
related capabilities in Karaoke scenarios, such as karaoke, seat management, gift giving and receiving, text chat, and
more.

Real-time Chorus

Real-time chorus refers to playing songs simultaneously on various ends while connected, and then singing together
on the seat. In multi-user mode, the singers can hear each other's voices almost without delay, achieving true real-time

chorus.

(1) Solution Architecture

In terms of media streams, the singers push and pull streams to each other, and one lead singer pushes out the

music, while other singers play the music locally, with time synchronization through NTP. In addition, the song and
the voices of all singers are mixed and processed into one stream by the mixing robot, and then pushed back to the
TRTC room. The audience only needs to pull one stream to hear the synchronized voices from all ends, perfectly
achieving the effect of multi-person chorus. The solution architecture for real-time chorus is shown in the following

figure.

https://intl.cloud.tencent.com/zh/document/product/647/41940

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 299

The advantages of this solution are:
It reduces end-to-end latency.

It provides a solution for users to join the chorus midway.
It accurately synchronizes music, lyrics, and vocals between different ends.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 299

It improves the performance of devices on different ends and the accuracy of local time, and reduces the impact of
network environment latency.
Note：

Depending on business needs, you can choose a real-time chorus solution for either pure audio or audio and video
scenarios. If it is a pure audio scenario, black frames need to be added to send SEI messages for lyric
synchronization.
The lead singer needs to use a sub-instance to upstream both the music and vocals at the same time; other singers
only need to pull each other's vocal streams and play the music locally; the audience only needs to pull one mixed

stream.
The figure shows the RTC viewing solution, where the mixing robot pushes the mixed stream back to the RTC room; in
the CDN viewing solution, the mixing robot pushes the mixed stream to the live CDN, and the audience pulls the CDN
stream to watch.

(2) Specific Implementation

We can divide the users in the online karaoke room into three roles: lead singer, chorus, and audience, as shown in
the table below.

Role Description Differences

Lead
Singer

The lead singer is responsible for
selecting songs, sending chorus
signals, and sending SEI messages.

The role must be an Anchor
Upstream music and vocals
Song selection and initiating chorus
Pushing back mixed stream
Sending SEI messages

Chorus
The chorus can receive and process
chorus signals, and participate in the
chorus on the seat.

The role must be an Anchor
Upstream vocals
Play music locally
Receive chorus signals

Audience

After entering the karaoke room, the
audience can pull the stream from the
seat and also participate in the chorus
on the seat.

The role must be an Audience
Downstream mixed stream
Receive SEI messages
Apply to become an Anchor to go on the seat

The basic implementation processes for different roles are shown in the following figure:
【Lead Singer】

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 299

The lead singer needs to select a song and send chorus signals.
The lead singer creates a sub-instance to push vocals and music, and pulls the vocals of other singers.

After pushing the stream, the lead singer is responsible for initiating the mixed stream push task.
After starting the performance, play the music and synchronize the lyrics through the playback progress callback.
SEI messages need to be sent to synchronize the song progress on the audience end.
All singers need to calibrate the local song playback progress according to NTP.
【Chorus】

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 299

The chorus pushes one vocal stream and pulls the vocal stream of the user on the seat.
The chorus needs to listen for and receive chorus signals, and pre-load music resources.

After starting the performance, play the music locally, and the chorus synchronizes the lyrics through the playback
progress callback.
All singers need to calibrate the local song playback progress according to NTP.
【Audience】

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 299

Pull the mixed stream to listen to the chorus.
Parse the song progress information in the SEI of the mixed stream for lyric synchronization.

After going on the seat, stop pulling the mixed stream, switch to pulling the vocal stream on the seat, and start the
chorus mode.

（3）API call sequence

The sequence of API calls for different roles is as follows:

Lead singer API sequence Chorus API sequence

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 299

Note：
Considering the technical expertise required for the above implementation, TRTC's official website provides an open-

source audio and video UI component called TUIKaraoke, which can be integrated into your project. With just a few
lines of code, you can add real-time karaoke scenes to your application and experience TRTC's related capabilities for
KTV scenarios, such as singing, seat management, gift exchange, text chat, and more.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 299

Song Synchronization
iOS
Last updated：2023-09-27 14:44:28

Real-time synchronization of song progress is required in the real-time solution to avoid increasing end-to-end delay
due to song errors after the start of the performance. Synchronizing the song requires using NTP time. The local
clocks of different devices are not consistent and there is a certain error, so Tencent Cloud's self-developed NTP

service needs to be introduced. At the same time, users who join the chorus midway also need to synchronize the
song progress, and only after synchronizing the progress can they participate in the chorus.

Implementation process

The method of synchronizing songs is that the main singer user agrees to start playing the song at a future point in
time (such as N seconds after delay), and other users participate in the chorus. The time of each end is based on NTP
time, which will start synchronizing after the TRTC SDK is initialized.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 299

The specific process is as follows:

1. Each end performs NTP time calibration, updates and obtains the latest NTP time T to the TRTC cloud.
2. The main singer end sends a chorus signal (custom message) to agree on the start time T2 of the chorus.
3. Preload the song locally based on T2 and play it at a scheduled time.
4. Other chorus users execute step 3 after receiving the chorus signal.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 299

5. During the process, the local song playback progress is verified, and seek calibration is performed when the
difference between TE and TC exceeds 50ms.
Note：

The 50ms error here is a typical value, which can be adjusted appropriately according to the business tolerance. It is
recommended to fluctuate around 50ms.

Timing diagram

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 299

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 299

The song synchronization timing can mainly be divided into three parts: NTP time calibration, sending and receiving

chorus signals, and correcting the song playback progress. The following will provide specific code implementation for
these three parts.

Key code implementation

1. NTP calibration time service

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 299

// Call the NTP time synchronization interface when entering the room.

[TXLiveBase updateNetworkTime];

// In the TXLiveBaseDelegate callback, determine whether the time synchronization i

- (void)onUpdateNetworkTime:(int)errCode message:(NSString *)errMsg {

 // errCode 0: 0: Time synchronization is successful and the deviation is within

 // 1: Time synchronization is successful, but the deviation may be over 30ms;

 // -1: Time synchronization failed.

 if (errCode == 0) {

 // Call TXLiveBase's getNetworkTimestamp to obtain the NTP timestamp.

 NSInteger ntpTime = [TXLiveBase getNetworkTimestamp];

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 299

 } else {

 // Call updateNetworkTime again to initiate a time synchronization.

 [TXLiveBase updateNetworkTime];

 }

}

2. Sending chorus signals on the main singer end

NSDictionary *json = @{

 @"cmd": @"startChorus",

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 299

 // Scheduled time for a tutti.

 @"startPlayMusicTS": @(startTs),

 @"musicId": @"musicId",

 @"musicDuration": @(musicDuration),

 };

NSString *jsonString = [self jsonStringFrom:json];

[trtcCloud sendCustomMessage:jsonString reliable:NO];

Note：
It is recommended that the main singer send chorus signal messages to the room at a fixed time frequency in a loop,
so that chorus users can join in midway;

The reason for not using SEI messages to send chorus signals is that the SEI information will be inserted into the
video frame, causing a lot of invalid information to be carried in the video stream pulled by the audience side.

3. Receiving chorus signals on the chorus end

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 299

- (void)onRecvCustomCmdMsgUserId:(NSString *)userId cmdID:(NSInteger)cmdId seq:(UIn

 NSString *msg = [[NSString alloc] initWithData:message encoding:NSUTF8StringEnc

 NSError *error;

 NSDictionary *json = [NSJSONSerialization JSONObjectWithData:[msg dataUsingEnco

 options:NSJSONReadingMutab

 error:&error];

 NSObject *cmdObj = [json objectForKey:@"cmd"];

 NSInteger musicDuration = [[json objectForKey:@"musicDuration"] integerValue];

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 299

 NSString *cmd = (NSString *)cmdObj;

 // tutti command

 if ([cmd isEqualToString:@"startChorus"]) {

 // tutti start time

 NSObject *startPlayMusicTsObj = [json objectForKey:@"startPlayMusicTS"];

 NSString *musicId = [json objectForKey:@"musicId"];

 NSInteger startPlayMusicTs = ((NSNumber *)startPlayMusicTsObj).longLongValu

 // The difference between the scheduled tutti time and the current time.

 NSInteger startDelayMS = labs(startPlayMusicTs - [TXLiveBase getNetworkTime

 // Start preloading, and jump the song progress according to the difference

 // between the scheduled duet time and the current NTP time.

 NSDictionary *jsonDict = @{

 @"api": @"preloadMusic",

 @"params": @{

 @"musicId": @(musicId),

 @"path": path,

 @"startTimeMS": @(startDelayMS),

 }

 };

 NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDict options

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSU

 [subCloud callExperimentalAPI:jsonString];

 // play music

 TXAudioMusicParam *param = [[TXAudioMusicParam alloc] init];

 param.ID = musicId;

 param.path = url;

 param.loopCount = 0;

 param.publish = NO;

 [[subCloud getAudioEffectManager] startPlayMusic:param onStart:^(NSInteger

 // star play callback

 } onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // lyric progress callback

 } onComplete:^(NSInteger errCode) {

 // play completely callback

 }];

 }

}

Note：

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 299

After the chorus end receives the first startChorus signal, the status should be changed from "not singing" to "singing",
and no longer respond to the startChorus signal to avoid restarting the BGM playback.

4. Song playback progress correction

self.startPlayChorusMusicTs; // The originally scheduled tutti time.

// Current playback progress

NSInteger currentProgress = [[self audioEffecManager] getMusicCurrentPosInMS:self.c

// The ideal playback time progress of the current song.

NSInteger estimatedProgress = [TXLiveBase getNetworkTimestamp] - self.startPlayChor

if (estimatedProgress >= 0 && labs(currentProgress - estimatedProgress) > 50) {

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 299

 // When the playback progress exceeds 50ms, make adjustments.

 [[subCloud getAudioEffectManager] seekMusicToPosInMS:self.currentPlayMusicID pt

}

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 299

Android
Last updated：2023-09-26 16:45:13

Real-time synchronization of song progress is required in the real-time solution to avoid increasing end-to-end delay
due to song errors after the start of the performance. Synchronizing the song requires using NTP time, as the local
clocks of different devices are not consistent and have some error. Therefore, Tencent Cloud's self-developed NTP

service needs to be introduced. In addition, users who join the chorus midway also need to synchronize the song
progress before they can participate in the chorus.

Implementation process

The practice of song synchronization is as follows: The lead singer user agrees to start playing the song at a certain
point in the future (e.g., after a delay of N seconds), and other users participate in the chorus. The time of each end is
based on NTP time, which will be synchronized after TRTC SDK initialization.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 299

The specific process is as follows:

1. Each end performs NTP calibration, updates and obtains the latest NTP time T from the TRTC cloud.
2. The lead singer sends a chorus signaling (custom message), agreeing on the start time T2 for the chorus.
3. The local end preloads the song according to T2 and plays it on schedule.
4. Other chorus users perform step 3 after receiving the chorus signaling.
5. During the process, the local song playback progress is checked, and when the difference between TE and TC

exceeds 50ms, seek calibration is performed.
Note:
The 50ms error mentioned here is a typical value, and can be adjusted according to the tolerance of the business. It is
recommended to fluctuate around 50ms.

Timing diagram

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 299

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 299

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 299

The song synchronization timing can be mainly divided into three parts: NTP calibration, sending and receiving chorus
signaling, and song playback progress correction. The specific code implementation for these three parts will be
provided below.

Key code implementation

1. NTP calibration service

TXLiveBase.setListener(new TXLiveBaseListener() {

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 299

 @Override

 public void onUpdateNetworkTime(int errCode, String errMsg) {

 super.onUpdateNetworkTime(errCode, errMsg);

 // errCode 0: Calibration is successful and the deviation is within 30ms;

 // 1: Calibration is successful, but the deviation may be more than

 // -1: Calibration failed.

 if (errCode == 0) {

 // Call getNetworkTimestamp of TXLivebase to get the NTP timestamp.

 long ntpTime = TXLiveBase.getNetworkTimestamp();

 } else {

 // Call updateNetworkTime again to start a calibration.

 TXLiveBase.updateNetworkTime();

 }

 }

});

TXLiveBase.updateNetworkTime();

2. Lead singer sends chorus signaling

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 299

JSONObject jsonObject = new JSONObject();

jsonObject.put("cmd", "startChorus");

// Agree on a time for the chorus.

jsonObject.put("startPlayMusicTS", startTs);

jsonObject.put("musicId", "musicId");

String body = jsonObject.toString();

mTRTCCloud.sendCustomCmdMsg(0, body.getBytes(), false, false);

Note:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 299

It is recommended that the lead singer sends chorus signaling messages to the room at a fixed time interval, so that
the chorus users can join the chorus midway.
Reason for not using SEI messages to send chorus signaling: SEI information will be inserted into the video

frame, causing the video stream pulled by the audience side to carry a lot of invalid information.

3. Chorus end receives chorus signaling

public void onRecvCustomCmdMsg(String userId, int cmdID, int seq, byte[] message) {

 JSONObject json = new JSONObject(new String(message, "UTF-8"));

 String cmd = json.getString("cmd");

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 299

 // Chorus command

 if (cmd.equals("startChorus")) {

 // Chorus start time

 long startPlayMusicTs = json.getLong("startPlayMusicTS");

 int musicId = json.getInt("musicId");

 // The difference between the agreed chorus time and the current time

 long delayMs = Math.abs(startPlayMusicTs - getNtpTime());

 // Start preloading, and jump the song progress according to the agreed chorus

 mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"preloadMusic\\",\\"params\\": {\\

 // Play the song

 TXAudioEffectManager.AudioMusicParam param = new TXAudioEffectManager.AudioMusi

 param.publish = false;

 mTRTCCloud.getAudioEffectManager().startPlayMusic(param);

}

Note:

After the chorus end receives the first startChorus signaling, the status should change from "not in chorus" to "in
chorus", and no longer respond to startChorus signaling to avoid restarting BGM playback.

4. Song playback progress correction

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 299

long mStartPlayMusicTs = "The initially agreed chorus time"；

long currentProgress = subCloud.getAudioEffectManager().getMusicCurrentPosInMS(musi

// The ideal playback progress of the current song

long estimatedProgress = getNtpTime() - mStartPlayMusicTs;

// When the playback progress exceeds 50ms, make corrections

if (estimatedProgress >= 0 &&; Math.abs(currentProgress - estimatedProgress) > 50)

 subCloud.getAudioEffectManager().seekMusicToPosInMS(mMusicID, (int) estimatedPr

}

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 299

Lyric Synchronization
iOS
Last updated：2023-09-27 15:11:25

1.1 Implementation process

In the lyrics synchronization solution, the actions of the three different roles are as follows:

Main Singer Chorus Audience

NTP time calibration
Enable black frame insertion
Send SEI messages
Local lyrics synchronization
Update lyrics control

NTP time calibration
Local lyrics synchronization
Update lyrics control

NTP time calibration
Receive SEI messages
Update lyrics control

Among them, the main singer and chorus update the lyrics progress locally based on the synchronized song playback
progress; the audience end needs to receive SEI messages containing the latest lyrics progress sent by the main

singer end to update the local lyrics progress.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 299

Timing diagram

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 299

The synchronization of lyrics timing can mainly be divided into three parts: NTP time synchronization, enabling black
frame compensation, and local and remote lyrics synchronization. The code implementation of NTP time
synchronization has been provided in the Song Synchronization document. The following will provide specific code
implementation for the latter two parts.

Key code implementation

https://intl.cloud.tencent.com/document/product/647/57026

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 299

1. Enable Black Frame Insertion

// In pure audio mode, the main instance (vocal instance)

// needs to enable black frame padding to carry SEI messages.

NSDictionary *jsonDic = @{

 @"api": @"enableBlackStream",

 @"params":

 @{

 @"enable": @(1)

 }

 };

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 299

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[trtcCloud callExperimentalAPI:jsonString];

Note:
The experimental interface enableBlackStream needs to be called after entering the room;

On Android, the value type of the enable parameter is Boolean, and on iOS it is Integer;

The receiving end needs to call startRemoteView(userId, null) after receiving

 onUserVideoAvailable(userId, true) .

2. Sending Song Progress through SEI Message

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 299

TXAudioMusicProgressBlock progressBlock = ^(NSInteger progressMs, NSInteger duratio

 // current ntp time

 NSInteger ntpTime = [TXLiveBase getNetworkTimestamp];

 // Notify the song progress, users will scroll the lyrics here.

 NSDictionary *progressMsg = @{

 @"bgmProgressTime":@(progressMs),

 @"ntpTime":@(ntpTime),

 @"musicId": @(musicId),

 @"duration": @(durationMs),

 };

 NSData *jsonData = [NSJSONSerialization dataWithJSONObject:progressMsg options:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 299

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8S

 [trtcCloud sendSEIMsg:[jsonString dataUsingEncoding:NSUTF8StringEncoding] repea

};

Note:
The frequency at which the lead singer sends SEI messages is determined by the frequency of background music
playback event callbacks, which is usually 200ms;
The reason for not directly using CMD messages to send song progress is that the signaling transmitted

through the SEI channel can be transmitted with the video frame to the live CDN, which has better compatibility for
viewers who pull the CDN stream.

3. Synchronization of Local and Remote Lyrics

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 299

// local lyrics synchronization

TXAudioMusicProgressBlock progressBlock = ^(NSInteger progressMs, NSInteger duratio

 ...

 // TODO Update the logic of the lyrics control.

 // Determine whether it is necessary to seek the lyrics control

 // based on the latest progress and the error of the local lyrics progress.

 ...

};

// remote lyrics synchronization.

- (void)onRecvSEIMsg:(NSString *)userId message:(NSData *)message {

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 299

 NSError *err = nil;

 NSDictionary *dic = [NSJSONSerialization JSONObjectWithData:message options:NSJ

 if (err || ![dic isKindOfClass:[NSDictionary class]]) {

 // Parsing error.

 return;

 }

 NSInteger bgmProgressTime = [[dic objectForKey:@"bgmProgressTime"] integerValue

 NSInteger ntpTime = [[dic objectForKey:@"ntpTime"] integerValue];

 int32_t musicId = [[dic objectForKey:@"musicId"] intValue];

 NSInteger duration = [[dic objectForKey:@"duration"] integerValue];

 ...

 // TODO Update the logic of the lyrics control.

 // Determine whether it is necessary to seek the lyrics control

 // based on the received latest progress and the error of the local lyrics prog

 ...

}

Note
If reusing the TUIKaraoke component's lyric control, please refer to the code logic in the TUIKaraoke TRTCLyricView
section to synchronize the progress of the lyric control.

https://github.com/tencentyun/TUIKaraoke/blob/main/iOS/Source/ui/TUILyricKit/TUILyricsView.swift

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 299

Android
Last updated：2023-12-28 21:32:43

Implementation process

In the lyrics synchronization scheme, the actions of three different roles are as follows:

Lead Singer Chorus Audience

NTP time calibration
Turn on black frame
compensation
Send SEI message
Local lyrics synchronization
Update lyrics widget

NTP time calibration
Local lyrics synchronization
Update lyrics widget

NTP time calibration
Receive SEI message
Update lyrics widget

The lead singer and chorus update the lyrics progress locally according to the synchronized song playback progress;
the audience needs to receive the SEI message sent by the lead singer, which contains the latest lyrics progress, to

update the local lyrics progress.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 299

Timing diagram

The lyrics synchronization timing can be mainly divided into three parts: NTP time calibration, turning on black frame
compensation, and local and remote lyrics synchronization. The code implementation of NTP time calibration has
been given in the song synchronization, and the specific code implementation for the latter two parts will be provided
below.

https://intl.cloud.tencent.com/document/product/647/57026

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 299

Key code implementation

1. Turn on black frame compensation

// In pure audio mode, the main instance (vocal instance) needs to turn on black fr

mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"enableBlackStream\\",\\"params\\": {\

Note:
The experimental interface enableBlackStream needs to be called after entering the room.
On Android, the value type of the enable parameter is boolean, and on iOS, it is integer.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 299

The receiver needs to call startRemoteView(userId, null) when onUserVideoAvailable(userId, true) is received.

2. Send song progress through SEI message

mAudioEffectManager.setMusicObserver(mCurPlayMusicId, new TXAudioEffectManager.TXMu

 @Override

 public void onPlayProgress(int id, long curPtsMS, long durationMS) {

 JSONObject jsonObject = new JSONObject();

 // Current NTP time

 long ntpTime = TXLiveBase.getNetworkTimestamp();

 jsonObject.put("bgmProgressTime", curTime);

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 299

 jsonObject.put("ntpTime", ntpTime);

 jsonObject.put("musicId", musicId);

 jsonObject.put("duration", duration);

 jsonObject.toString().getBytes();

 mTRTCCloud.sendSEIMsg(jsonObject.toString().getBytes(), 1);

 }

}

Note:

The frequency of the lead singer sending SEI messages is determined by the frequency of background music
playback event callbacks, usually 200ms;
The reason for not directly using CMD messages to send song progress: The signaling transmitted by the SEI
channel can be transmitted to the live CDN along with the video frames, providing better compatibility for the audience
pulling the CDN stream.

3. Local and remote lyrics synchronization

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 299

// Local lyrics synchronization

mAudioEffectManager.setMusicObserver(mCurPlayMusicId, new TXAudioEffectManager.TXMu

 @Override

 public void onPlayProgress(int id, long curPtsMS, long durationMS) {

 ...

 // TODO Update lyrics widget logic:

 // Determine whether to seek the lyrics widget based on the latest progress

 ...

 }

}

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 299

// Remote lyrics synchronization

@Override

public void onRecvSEIMsg(String userId, byte[] data) {

 String result = new String(data);

 JSONObject jsonObject = new JSONObject(result);

 long bgmProgressTime = jsonObject.getLong("bgmProgressTime");

 long ntpTime = jsonObject.getLong("ntpTime");

 String musicId = jsonObject.getString("musicId");

 long duration = jsonObject.getLong("duration");

 ...

 // TODO Update lyrics widget logic:

 // If you reuse the TUIKaraoke component's lyrics widget,

 //please refer to the code logic of the TUIKaraoke LyricsView section to synchr

 ...

}

Note:

If you reuse the TUIKaraoke component's lyrics widget, please refer to the code logic of the TUIKaraoke LyricsView
section to synchronize the lyrics widget progress.

https://github.com/tencentyun/TUIKaraoke/blob/main/Android/tuikaraoke/src/main/java/com/tencent/liteav/tuikaraoke/ui/lyric/LyricView.java

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 299

Vocal Synchronization
iOS
Last updated：2023-09-26 16:52:53

Introduction to Synchronization of Vocals and Songs

Due to the existence of certain gaps between the jitter buffer for local voice collection, the jitter buffer for song
playback mixing, and the sound reaching the singer's ears, when the singer sings completely facing the lyrics and
BGM playback, remote audiences will feel that there is a certain delay between the playback of BGM, vocals, and

lyrics. The chorus solution in the TRTC SDK uses low-latency AAudio collection internally. You only need to enable
chorus mode and low-latency mode after entering the room.

Specific Code Implementation

Enable Chorus Mode

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 299

// Enable tutti mode for the main instance (vocal instance) by reducing the buffer

// and enabling audio redundancy protection.

NSDictionary *jsonDic = @{

 @"api": @"enableChorus",

 @"params": @{

 @"enable": @(YES),

 @"audioSource": @(0)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 299

[trtcCloud callExperimentalAPI:jsonString];

// Enable tutti mode for the sub-instance (accompaniment instance) by reducing the

// and enabling audio redundancy protection.

NSDictionary *jsonDic = @{

 @"api": @"enableChorus",

 @"params": @{

 @"enable": @(YES),

 @"audioSource": @(1)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[subCloud callExperimentalAPI:jsonString];

Note：
The parameter settings for enabling chorus mode through the experimental interface enableChorus are as

follows:
audioSource: 0 (vocals)

audioSource: 1 (accompaniment)

Enable Low-Latency Mode (High-Performance Audio AAudio)

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 299

// Enable high-performance audio AAudio for the main instance (vocal instance).

NSDictionary *jsonDic = @{

 @"api": @"setLowLatencyModeEnabled",

 @"params": @{

 @"enable": @(1)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[trtcCloud callExperimentalAPI:jsonString];

// Enable high-performance audio AAudio for the sub-instance (accompaniment instanc

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 299

NSDictionary *jsonDic = @{

 @"api": @"setLowLatencyModeEnabled",

 @"params": @{

 @"enable": @(1)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[subCloud callExperimentalAPI:jsonString];

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 299

Android
Last updated：2023-09-26 16:53:14

Introduction to vocal and song synchronization

Due to the jitter buffer of local vocal collection, the jitter buffer of song playback mixing, and the certain GAP between
sound playback to the human ear and singing, when the singer sings along with the lyrics and BGM, the remote
audience feels that there is a certain delay in the BGM playback, vocals, and lyrics. The chorus scheme uses low-

latency AAudio collection inside the TRTC SDK. Specifically, you only need to enable the chorus mode and low-
latency mode after entering the room.

Specific code implementation

Enable chorus mode

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 299

// The main instance (vocal instance) enables chorus mode (reducing buffer interval

mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enab

// The sub-instance (accompaniment instance) enables chorus mode (reducing buffer i

subCloud.callExperimentalAPI("{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable

Note:

Parameter settings for the experimental interface enableChorus to enable chorus mode:
audioSource：0(vocals).
audioSource：1 (accompaniment).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 299

Enable low-latency mode (high-performance audio AAudio)

// The main instance (vocal instance) enables high-performance audio AAudio

mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params

// The sub-instance (accompaniment instance) enables high-performance audio AAudio

subCloud.callExperimentalAPI("{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 299

Mixing Stream Solution
iOS
Last updated：2023-09-26 16:53:38

Specific code implementation

1. Create main and sub-instances

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 299

// Create TRTCCloud main instance (vocal instance)

TRTCCloud *trtcCloud = [TRTCCloud sharedInstance];

// Create TRTCCloud sub-instance (accompaniment instance)

TRTCCloud *subCloud = [trtcCloud createSubCloud];

Note：

In the real-time chorus scheme, the lead singer needs to create the main instance-vocal instance and the sub-
instance-accompaniment instance separately for uploading vocals and accompaniment music.

2. Vocal instance enters the room and pushes the stream

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 299

TRTCParams *params = [[TRTCParams alloc] init];

params.sdkAppId = sdkAppId;

params.userId = userId;

params.userSig = userSign;

params.role = TRTCRoleAnchor;

params.roomId = roomIdIntValue;

[trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

// Turn on audio uplink and set audio quality

[trtcCloud startLocalAudio:TRTCAudioQualityMusic];

// Set media type

[trtcCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 299

// Mute remote accompaniment music

[trtcCloud muteRemoteAudio:remoteAudioId mute:YES];

Note：
In pure RTC audio scenarios, it is recommended to use VOICE_CHATROOM for entering the room.
If there is a need for video or CDN forwarding, the room entry scenario must use LIVE, as VOICE_CHATROOM will
add pure audio parameters during forwarding, causing SEI messages to fail to pass through.
The lead singer/chorus needs to muteRemoteAudio(true) to unsubscribe from the audio stream uploaded by the

accompaniment instance, otherwise, the local and remote accompaniment music will be played repeatedly.

3. Accompaniment example: Joining room and pushing stream.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 299

TRTCParams *bgmParams = [[TRTCParams alloc] init];

bgmParams.sdkAppId = sdkAppId;

bgmParams.userId = [NSString stringWithFormat:@"%@%@",userId,@"_bgm"];

bgmParams.userSig = bgmUserSign;

bgmParams.role = TRTCRoleAnchor;

bgmParams.roomId = roomIdIntValue;

[subCloud enterRoom:bgmParams appScene:TRTCAppSceneLIVE];

// Set media type

[subCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

// Enable preloading

NSDictionary *jsonDict = @{

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 299

 @"api": @"preloadMusic",

 @"params": @{

 @"musicId": @(self.currentPlayMusicID),

 @"path": path,

 @"startTimeMS": @(startMs),

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDict options:0 error

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[subCloud callExperimentalAPI:jsonString];

// Play accompaniment music and push the stream (play at the agreed time)

TXAudioMusicParam *musicParam = [[TXAudioMusicParam alloc] init];

musicParam.ID = musicID;

musicParam.path = url;

musicParam.loopCount = 0;

musicParam.publish = YES;

// Send accompaniment music to the remote end

param.publish = YES;

[[subCloud getAudioEffectManager] startPlayMusic:musicParam onStart:startBlock onPr

Note：
Pay attention to distinguish between the userId of the main instance and the sub-instance, ensuring that they are not
duplicated and easy to identify;
Accompaniment instance background music parameter musicParam seettings:
publish：YES (while the music is playing locally, remote users can also hear the music)

publish：NO (default value, the music can only be heard locally, remote users cannot hear it)

4. Initiating mixed stream transcoding and pushing back.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 299

// Create a TRTCPublishTarget object

TRTCPublishTarget *publishTarget = [[TRTCPublishTarget alloc] init];

// Push back to the room after mixing, if publishing to CDN, fill in TRTCPublishMix

publishTarget.mode = TRTCPublishMixStreamToRoom;

// The userid of the mixing robot, which cannot be duplicated with other users' use

publishTarget.mixStreamIdentity = [NSString stringWithFormat:@"%@%@",userId,@"_mix"

// Set the encoding parameters of the transcoded audio stream

TRTCStreamEncoderParam *streamEncoderParam = [[TRTCStreamEncoderParam alloc] init];

streamEncoderParam.videoEncodedFPS = 15;

streamEncoderParam.videoEncodedGOP = 3;

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 299

streamEncoderParam.videoEncodedKbps = 30;

streamEncoderParam.audioEncodedSampleRate = 48000;

streamEncoderParam.audioEncodedChannelNum = 2;

streamEncoderParam.audioEncodedKbps = 64;

streamEncoderParam.audioEncodedCodecType = 2;

// Set audio mixing parameters

TRTCStreamMixingConfig *streamMixingConfig = [[TRTCStreamMixingConfig alloc] init];

// Support filling in empty values, which will automatically mix the audio of all h

streamMixingConfig.audioMixUserList = @[];

// Initiate mixed stream transcoding and pushing request

[trtcCloud startPublishMediaStream:publishTarget encoderParam:streamEncoderParam mi

Note:
It is recommended to prioritize the lead singer to initiate mixed stream transcoding and pushing through the mixing
robot to the backend, mixing the accompaniment music and all vocal streams and pushing them back to the TRTC
room, or pushing them to the live CDN.

In automatic subscription mode, the hosts participating in the mixed stream transcoding will pull each other's single
stream by default and not receive the mixed stream pushed back to the room; the audience will automatically pull the
mixed stream pushed back to the room and no longer receive the single stream.
The mixed stream transcoding and pushing method startPublishMediaStream used here adopts a brand new backend
architecture. The old version of the application needs to provide the SdkAppId to apply for an upgrade before it can be

used.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 299

Android
Last updated：2023-09-26 16:54:10

Specific code implementation

1. Create main and sub-instances

// Create TRTCCloud main instance (vocal instance)

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 299

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(getApplicationContext());

// Create TRTCCloud sub-instance (accompaniment instance)

TRTCCloud subCloud = mTRTCCloud.createSubCloud();

Note:
In the real-time chorus scheme, the lead singer needs to create the main instance-vocal instance and the sub-
instance-accompaniment instance separately for uploading vocals and accompaniment music.

2. Vocal instance enters the room and pushes the stream

TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 299

params.sdkAppId = sdkAppId;

params.userId = mUserId;

params.userSig = userSig;

params.role = TRTCCloudDef.TRTCRoleAnchor;

params.roomId = mRoomId;

mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

// Turn on audio uplink and set audio quality

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_MUSIC);

// Set media type

mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

// Mute remote accompaniment music

mTRTCCloud.muteRemoteAudio(mUserId + "_bgm", true);

Notice：
In pure RTC audio scenarios, it is recommended to use VOICE_CHATROOM for entering the room.
If there is a need for video or CDN forwarding, the room entry scenario must use LIVE, as VOICE_CHATROOM will
add pure audio parameters during forwarding, causing SEI messages to fail to pass through.
The lead singer/chorus needs to muteRemoteAudio(true) to unsubscribe from the audio stream uploaded by the

accompaniment instance, otherwise, the local and remote accompaniment music will be played repeatedly.

3. Accompaniment instance enters the room and pushes the stream

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 299

TRTCCloudDef.TRTCParams bgmParams = new TRTCCloudDef.TRTCParams();

bgmParams.sdkAppId = sdkAppId;

bgmParams.userId = mUserId + "_bgm";

bgmParams.userSig = userSig;

bgmParams.role = TRTCCloudDef.TRTCRoleAnchor;

bgmParams.roomId = mRoomId;

subCloud.enterRoom(bgmParams, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

// Set media type

subCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

// Enable preloading

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 299

subCloud.callExperimentalAPI("{\\"api\\":\\"preloadMusic\\",\\"params\\": {\\"music

// Play accompaniment music and push the stream (play at the agreed time)

TXAudioEffectManager.AudioMusicParam param = new TXAudioEffectManager.AudioMusicPar

// Send accompaniment music to the remote end

param.publish = true;

subCloud.getAudioEffectManager().startPlayMusic(param);

Note:
Pay attention to distinguish between the userId of the main instance and the sub-instance, ensuring that they are not
duplicated and easy to identify;
Accompaniment instance background music parameter AudioMusicParam settings:

publish：true (while the music is playing locally, remote users can also hear the music)
publish：false (default value, the music can only be heard locally, remote users cannot hear it)

4. Initiate mixed stream transcoding and pushing

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 299

// Create a TRTCPublishTarget object

TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

// Push back to the room after mixing, if publishing to CDN, fill in TRTC_PublishMi

target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToRoom;

target.mixStreamIdentity.intRoomId = Integer.parseInt(mRoomId);

// The userid of the mixing robot, which cannot be duplicated with other users' use

target.mixStreamIdentity.userId = mUserId + "_mix";

// Set the encoding parameters of the transcoded audio stream

TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.TRTCS

trtcStreamEncoderParam.audioEncodedChannelNum = 2;

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 299

trtcStreamEncoderParam.audioEncodedKbps = 64;

trtcStreamEncoderParam.audioEncodedCodecType = 2;

trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

// Set audio mixing parameters

TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.TRTCS

// Support filling in empty values, which will automatically mix the audio of all h

trtcStreamMixingConfig.audioMixUserList = null;

// Initiate mixed stream transcoding and pushing request

mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, trtcStreamMixing

Note：
It is recommended to prioritize the lead singer to initiate mixed stream transcoding and pushing through the mixing

robot to the backend, mixing the accompaniment music and all vocal streams and pushing them back to the TRTC
room, or pushing them to the live CDN.
In automatic subscription mode, the hosts participating in the mixed stream transcoding will pull each other's single
stream by default and not receive the mixed stream pushed back to the room; the audience will automatically pull the
mixed stream pushed back to the room and no longer receive the single stream.

The mixed stream transcoding and pushing method startPublishMediaStream used here adopts a brand new backend
architecture. The old version of the application needs to provide the SdkAppId to apply for an upgrade before it can be
used.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 299

TUIKaraoke APIs
TRTCKaraoke (iOS)
Last updated：2023-09-25 10:59:08

 TRTCKaraokeRoom is based on Tencent Real-Time Communication (TRTC) and Tencent Cloud Chat. With

TRTCKaraoke:
A user can create a karaoke room and become a speaker, or enter a karaoke room as a listener.

The room owner can manage song requests as well as remove a speaker from a seat.
The room owner can also block a seat. Listeners cannot request to take a blocked seat.
A listener can become a speaker to request songs and sing. A speaker can also become a listener.
All users can send gifts and text as well as custom messages. Custom messages can be used to send on-screen
comments and give likes.

Note
All TUIKit components are based on two basic PaaS services of Tencent Cloud, namely TRTC and Chat. When you
activate TRTC, the Chat SDK trial edition (which supports up to 100 DAUs) will be activated automatically. For Chat
billing details, see Pricing.
 TRTCKaraokeRoom is an open-source class depending on two closed-source Tencent Cloud SDKs. For the

specific implementation process, see Karaoke (iOS).

The TRTC SDK is used as a low-latency audio chat component.
The AVChatRoom feature of the Chat SDK is used to implement chat rooms. The attribute APIs of IM are used to

store room information such as the seat list, and invitation signaling is used to send requests to speak or invite others
to speak.

 TRTCKaraokeRoom API Overview

Basic SDK APIs

API Description

sharedInstance Gets a singleton object.

destroySharedInstance Terminates a singleton object.

setDelegate Sets event callbacks.

delegateQueue Sets the thread where event callbacks are.

https://intl.cloud.tencent.com/document/product/647/35078
https://intl.cloud.tencent.com/document/product/1047/35448
https://intl.cloud.tencent.com/document/product/1047/34350
https://intl.cloud.tencent.com/document/product/647/41942
https://intl.cloud.tencent.com/document/product/647/35078
https://intl.cloud.tencent.com/document/product/1047

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 299

login Logs in.

logout Logs out.

setSelfProfile Sets profile.

Room APIs

API Description

createRoom Creates a room (called by room owner). If the room does not exist, the system will
automatically create a room.

destroyRoom Terminates a room (called by room owner).

enterRoom Enters a room (called by listener).

exitRoom Exits a room (called by listener).

getRoomInfoList Gets room list details.

getUserInfoList
Gets the user information of the specified userId . If the value is nil , the information
of all users in the room is obtained.

Music playback APIs

API Description

startPlayMusic Starts music.

stopPlayMusic Stops music.

pausePlayMusic Pauses music.

resumePlayMusic Resumes music.

Seat management APIs

API Description

enterSeat Becomes a speaker (called by room owner or listener).

leaveSeat Becomes a listener (called by speaker).

pickSeat Places a user in a seat (called by room owner).

kickSeat Removes a speaker (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 299

muteSeat Mutes/Unmutes a seat (called by room owner).

closeSeat Blocks/Unblocks a seat (called by room owner).

Local audio APIs

API Description

startMicrophone Starts mic capturing.

stopMicrophone Stops mic capturing.

setAudioQuality Sets audio quality.

muteLocalAudio Mutes/Unmutes local audio.

setSpeaker Sets whether to play sound from the device’s speaker or receiver.

setAudioCaptureVolume Sets mic capturing volume.

setAudioPlayoutVolume Sets playback volume.

setVoiceEarMonitorEnable Enables/Disables in-ear monitoring.

Remote audio APIs

API Description

muteRemoteAudio Mutes/Unmutes a specified member.

muteAllRemoteAudio Mutes/Unmutes all members.

Background music and audio effect APIs

API Description

getAudioEffectManager Gets the background music and audio effect management object
TXAudioEffectManager.

Message sending APIs

API Description

sendRoomTextMsg Broadcasts a text chat message in a room. This API is generally used for on-screen
comments.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXAudioEffectManager__android.html#interfacecom_1_1tencent_1_1liteav_1_1audio_1_1TXAudioEffectManager

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 299

sendRoomCustomMsg Sends a custom text chat message.

Invitation signaling APIs

API Description

sendInvitation Sends an invitation.

acceptInvitation Accepts an invitation.

rejectInvitation Declines an invitation.

cancelInvitation Cancels an invitation.

 TRTCKaraokeRoomDelegate API Overview

Common event callbacks

API Description

onError Callback for error.

onWarning Callback for warning.

onDebugLog Callback of log.

Room event callback APIs

API Description

onRoomDestroy The room was terminated.

onRoomInfoChange The room information changed.

onUserVolumeUpdate User volume

Seat list change callback APIs

API Description

onSeatListChange All seat changes.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 299

onAnchorEnterSeat A user became a speaker or was made a speaker by the room owner.

onAnchorLeaveSeat A user became a listener or was made a listener by the room owner.

onSeatMute The room owner muted a seat.

onUserMicrophoneMute Whether a user’s mic is muted

onSeatClose The room owner blocked a seat.

Callback APIs for room entry/exit by listener

API Description

onAudienceEnter A listener entered the room.

onAudienceExit A listener exited the room.

Message event callback APIs

API Description

onRecvRoomTextMsg A text chat message was received.

onRecvRoomCustomMsg A custom message was received.

Signaling event callback APIs

API Description

onReceiveNewInvitation Receipt of an invitation.

onInviteeAccepted Invitation accepted by invitee.

onInviteeRejected Invitation declined by invitee.

onInvitationCancelled Invitation canceled by inviter.

Song event callback APIs

API Description

onMusicProgressUpdate Music playback progress.

onMusicPrepareToPlay Music playback is ready.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 299

onMusicCompletePlaying Music playback was completed.

Basic SDK APIs

sharedInstance

This API is used to get a TRTCKaraokeRoom singleton object.

https://intl.cloud.tencent.com/document/product/647/41940

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 299

/**

* Get a `TRTCKaraokeRoom` singleton object

*

* - returns: `TRTCKaraokeRoom` instance

* - note: To terminate a singleton object, call {@link TRTCKaraokeRoom#destroyShare

*/

+ (instancetype)sharedInstance NS_SWIFT_NAME(shared());

destroySharedInstance

This API is used to terminate a TRTCKaraokeRoom singleton object.
Note
After the instance is terminated, the externally cached TRTCKaraokeRoom instance can no longer be used. You

need to call sharedInstance again to get a new instance.

https://intl.cloud.tencent.com/document/product/647/41940

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 299

/**

* Terminate the `TRTCKaraokeRoom` singleton object

*

* - note: After the instance is terminated, the externally cached `TRTCKaraokeRoom`

*/

+ (void)destroySharedInstance NS_SWIFT_NAME(destroyShared());

setDelegate

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 299

This API is used to set the event callbacks of TRTCKaraokeRoom. You can use TRTCKaraokeRoomDelegate to

get different status notifications of TRTCKaraokeRoom.

/**

* Set the event callbacks of the component

*

* You can use `TRTCKaraokeRoomDelegate` to get different status notifications of `T

*

* - parameter delegate Callback API

* - note: Callbacks in `TRTCKaraokeRoom` are sent to you in the main queue by defau

*/

https://intl.cloud.tencent.com/document/product/647/41940
https://intl.cloud.tencent.com/document/product/647/41940

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 299

- (void)setDelegate:(id<TRTCKaraokeRoomDelegate>)delegate NS_SWIFT_NAME(setDelegate

Note
 setDelegate is the delegate callback of TRTCKaraokeRoom .

setDelegateQueue

This API is used to set the thread queue for event callbacks. The main thread (MainQueue) is used by default.

/**

* Set the queue for event callbacks

*

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 299

* - parameter queue. The status notifications of `TRTCKaraokeRoom` will be sent to

*/

- (void)setDelegateQueue:(dispatch_queue_t)queue NS_SWIFT_NAME(setDelegateQueue(que

The parameters are described below:

Parameter Type Description

queue dispatch_queue_t
The status notifications of TRTCKaraokeRoom are sent to the thread
queue you specify.

login

Login

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 299

- (void)login:(int)sdkAppID

 userId:(NSString *)userId

 userSig:(NSString *)userSig

 callback:(ActionCallback _Nullable)callback NS_SWIFT_NAME(login(sdkAppID:userI

The parameters are described below:

Parameter Type Description

sdkAppId int You can view the SDKAppID via Application Management > Application

https://console.intl.cloud.tencent.com/trtc/app

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 299

Info in the TRTC console.

userId String The ID of the current user, which is a string that can contain only letters (a-z
and A-Z), digits (0-9), hyphens (-), and underscores (_).

userSig String Tencent Cloud's proprietary security signature. For how to calculate and use it,
see FAQs > UserSig.

callback ActionCallback The callback for login. The code is 0 if login succeeds.

logout

Log out

https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 299

- (void)logout:(ActionCallback _Nullable)callback NS_SWIFT_NAME(logout(callback:));

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for logout. The code is 0 if logout succeeds.

setSelfProfile

This API is used to set the profile.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 299

- (void)setSelfProfile:(NSString *)userName avatarURL:(NSString *)avatarURL callbac

The parameters are described below:

Parameter Type Description

userName String The username.

avatar String The address of the profile photo.

callback ActionCallback The callback for profile configuration. The code is 0 if the operation

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 299

succeeds.

Room APIs

createRoom

This API is used to create a room (called by room owner).

- (void)createRoom:(int)roomID roomParam:(RoomParam *)roomParam callback:(ActionCal

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 299

The parameters are described below:

Parameter Type Description

roomId int

The room ID. You need to assign and manage room IDs in a
centralized manner. Multiple roomID values can be aggregated
into a room list. Currently, Tencent Cloud does not provide
management services for room lists. Please manage your own
room lists.

roomParam TRTCCreateRoomParam
Room information, such as room name, seat list information, and
cover information. To manage seats, you must enter the number of
seats in the room.

callback ActionCallback The callback for room creation. The code is 0 if the operation
succeeds.

The process of creating a karaoke room and becoming a speaker is as follows:
1. A user calls createRoom to create a karaoke room, passing in room attributes (e.g., room ID, whether listeners

need room owner’s permission to speak, number of seats).
2. After creating the room, the user calls enterSeat to become a speaker.

3. The user will receive an onSeatListChanget notification about the change of the seat list, and can update the

change to the UI.
4. The user will also receive an onAnchorEnterSeat notification that someone became a speaker, and mic

capturing will be enabled automatically.

destroyRoom

This API is used to terminate a room (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 299

- (void)destroyRoom:(ActionCallback _Nullable)callback NS_SWIFT_NAME(destroyRoom(ca

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for room termination. The code is 0 if the operation succeeds.

enterRoom

This API is used to enter a room (called by listener).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 299

- (void)enterRoom:(NSInteger)roomID callback:(ActionCallback _Nullable)callback NS_

The parameters are described below:

Parameter Type Description

roomId int The room ID.

callback ActionCallback The callback for room entry. The code is 0 if the operation succeeds.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 299

The process of entering a room as a listener is as follows:
1. A user gets the latest karaoke room list from your server. The list may contain the roomId and room information

of multiple karaoke rooms.

2. The user selects a room, and enters the room by calling enterRoom with the room ID passed in.

3. After entering the room, the user receives an onRoomInfoChange notification about room attribute change from

the component. The attributes can be recorded, and corresponding changes can be made to the UI, including room
name, whether room owner’s permission is required for listeners to speak, etc.
4. The user will receive an onSeatListChange notification about the change of the seat list and can update the

change to the UI.
5. The user will also receive an onAnchorEnterSeat notification that someone became a speaker.

exitRoom

Leave room

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 299

- (void)exitRoom:(ActionCallback _Nullable)callback NS_SWIFT_NAME(exitRoom(callback

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for room exit. The code is 0 if the operation succeeds.

getRoomInfoList

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 299

This API is used to get room list details. The room name and cover are set by the room owner via roomInfo when

calling createRoom() .

Note

You don’t need this API if both the room list and room information are managed on your server.

- (void)getRoomInfoList:(NSArray<NSNumber *> *)roomIdList callback:(KaraokeInfoCall

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 299

roomIdList List<Integer> The room ID list.

callback RoomInfoCallback The callback of room details.

getUserInfoList

This API is used to get the information of specific users (userId).

- (void)getUserInfoList:(NSArray<NSString *> * _Nullable)userIDList callback:(Karao

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 299

Parameter Type Description

userIdList List<String>
The user IDs to query. If this parameter is null , the information of
all users in the room is queried.

userlistcallback UserListCallback The callback of user details.

Music Playback APIs

startPlayMusic

This API is used to play music (called after becoming a speaker).
Note

After music playback starts, you will receive an onMusicPrepareToPlay notification.

During music playback, all members in the room will continuously receive an onMusicProgressUpdate

notification.
After music playback stops, you will receive an onMusicCompletePlaying notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 299

- (void)startPlayMusic:(int32_t)musicID originalUrl:(NSString *)originalUrl accompa

The parameters are described below:

Parameter Type Description

musicID int32_t The music ID.

originalUrl String The absolute path of the vocal track.

accompanyUrl String The absolute path of the instrumental track.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 299

After this API is called, the song being played will stop.

stopPlayMusic

This API is used to stop music (called during music playback).
Note

After music playback stops, you will receive an onMusicCompletePlaying notification.

- (void)stopPlayMusic NS_SWIFT_NAME(stopPlayMusic());

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 299

pausePlayMusic

This API is used to pause music (called during music playback).
Note
The onMusicProgressUpdate notification will be paused.

No onMusicCompletePlaying notification will be received.

- (void)pausePlayMusic NS_SWIFT_NAME(pausePlayMusic());

resumePlayMusic

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 299

This API is used to resume music (called after music playback is paused).
Note
No onMusicPrepareToPlay notification will be received.

- (void)resumePlayMusic NS_SWIFT_NAME(resumePlayMusic());

Seat Management APIs

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 299

enterSeat

This API is used to become a speaker (called by room owner or listener).
Note
After a user becomes a speaker, all members in the room will receive an onSeatListChange notification and an

 onAnchorEnterSeat notification.

- (void)enterSeat:(NSInteger)seatIndex callback:(ActionCallback _Nullable)callback

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 299

Parameter Type Description

seatIndex int The number of the seat to be taken.

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. In cases where listeners need the room owner’s permission to

take a seat, you can call sendInvitation first to send a request and, after receiving

 onInvitationAccept , call this API.

leaveSeat

This API is used to become a listener (called by speaker).
Note
 After a speaker becomes a listener, all members in the room will receive an onSeatListChange notification and

an onAnchorLeaveSeat notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 299

- (void)leaveSeat:(ActionCallback _Nullable)callback NS_SWIFT_NAME(leaveSeat(callba

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for the operation.

pickSeat

This API is used to place a user in a seat (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 299

Note
 After the room owner makes someone a speaker, all members in the room will receive an onSeatListChange

notification and an onAnchorEnterSeat notification.

- (void)pickSeat:(NSInteger)seatIndex userId:(NSString *)userId callback:(ActionCal

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to place the listener in.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 299

userId String The User ID.

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. In cases where the room owner needs listeners’ permission to
make them speakers, you can call sendInvitation first to send a request and, after receiving

 onInvitationAccept , call pickSeat .

kickSeat

This API is used to remove a speaker (called by room owner).
Note
 After a speaker is removed from a seat, all members in the room will receive an onSeatListChange notification

and an onAnchorLeaveSeat notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 299

- (void)kickSeat:(NSInteger)seatIndex callback:(ActionCallback _Nullable)callback N

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to remove the speaker from.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 299

Calling this API will immediately modify the seat list.

muteSeat

This API is used to mute/unmute a seat (called by room owner).
Note

 After a seat is muted/unmuted, all members in the room will receive an onSeatListChange notification and an

 onSeatMute notification.

- (void)muteSeat:(NSInteger)seatIndex isMute:(BOOL)isMute callback:(ActionCallback

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 299

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to mute/unmute.

isMute boolean true : Mute; false : Unmute

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. The speaker on the seat specified by seatIndex will call

 muteAudio to mute/unmute his or her audio.

closeSeat

This API is used to block/unblock a seat (called by room owner).
Note
 After a seat is blocked/unblocked, all members in the room will receive an onSeatListChange notification and

an onSeatClose notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 299

- (void)closeSeat:(NSInteger)seatIndex isClose:(BOOL)isClose callback:(ActionCallba

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to block/unblock.

isClose boolean true : Block; false : Unblock

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 299

Calling this API will immediately modify the seat list. The speaker on the seat specified by seatIndex will leave

the seat.

Local Audio APIs

startMicrophone

This API is used to start mic capturing.

- (void)startMicrophone;

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 299

stopMicrophone

This API is used to stop mic capturing.

- (void)stopMicrophone;

setAudioQuality

This API is used to set audio quality.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 299

- (void)setAuidoQuality:(NSInteger)quality NS_SWIFT_NAME(setAuidoQuality(quality:))

The parameters are described below:

Parameter Type Description

quality int The audio quality. For more information, see setAudioQuality().

muteLocalAudio

This API is used to mute/unmute local audio.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a955cccaddccb0c993351c656067bee55

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 299

- (void)muteLocalAudio:(BOOL)mute NS_SWIFT_NAME(muteLocalAudio(mute:));

The parameters are described below:

Parameter Type Description

mute boolean Whether to mute or unmute audio. For more information, see muteLocalAudio().

setSpeaker

This API is used to set whether to play sound from the device’s speaker or receiver.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a37f52481d24fa0f50842d3d8cc380d86

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 299

- (void)setSpeaker:(BOOL)userSpeaker NS_SWIFT_NAME(setSpeaker(userSpeaker:));

The parameters are described below:

Parameter Type Description

useSpeaker boolean true : Speaker; false : Receiver

setAudioCaptureVolume

This API is used to set the mic capturing volume.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 299

- (void)setAudioCaptureVolume:(NSInteger)volume NS_SWIFT_NAME(setAudioCaptureVolume

The parameters are described below:

Parameter Type Description

volume int The capturing volume. Value range: 0-100 (default: 100)

setAudioPlayoutVolume

This API is used to set the playback volume.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 299

- (void)setAudioPlayoutVolume:(NSInteger)volume NS_SWIFT_NAME(setAudioPlayoutVolume

The parameters are described below:

Parameter Type Description

volume int The playback volume. Value range: 0-100 (default: 100)

muteRemoteAudio

This API is used to mute/unmute a specified user.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 299

- (void)muteRemoteAudio:(NSString *)userId mute:(BOOL)mute NS_SWIFT_NAME(muteRemote

The parameters are described below:

Parameter Type Description

userId String The user ID.

mute boolean true : Mute; false : Unmute

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 157 of 299

muteAllRemoteAudio

This API is used to mute/unmute all users.

- (void)muteAllRemoteAudio:(BOOL)isMute NS_SWIFT_NAME(muteAllRemoteAudio(isMute:));

The parameters are described below:

Parameter Type Description

isMute boolean true : Mute; false : Unmute

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 158 of 299

setVoiceEarMonitorEnable

This API is used to enable/disable in-ear monitoring.

- (void)setVoiceEarMonitorEnable:(BOOL)enable NS_SWIFT_NAME(setVoiceEarMonitor(enab

The parameters are described below:

Parameter Type Description

enable boolean true : Enable; false : Disable

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 159 of 299

Background Music and Audio Effect APIs

getAudioEffectManager

This API is used to get the background music and audio effect management object TXAudioEffectManager.

- (TXAudioEffectManager * _Nullable)getAudioEffectManager;

Message Sending APIs

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a3646dad993287c3a1a38a5bc0e6e33aa

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 160 of 299

sendRoomTextMsg

This API is used to broadcast a text chat message in a room, which is generally used for on-screen comments.

- (void)sendRoomTextMsg:(NSString *)message callback:(ActionCallback _Nullable)call

The parameters are described below:

Parameter Type Description

message String A text chat message.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 161 of 299

sendRoomCustomMsg

This API is used to send a custom text chat message.

- (void)sendRoomCustomMsg:(NSString *)cmd message:(NSString *)message callback:(Act

The parameters are described below:

Parameter Type Description

cmd String A custom command word used to distinguish between different message

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 162 of 299

types.

message String A text chat message.

callback ActionCallback The callback for the operation.

Invitation Signaling APIs

sendInvitation

This API is used to send an invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 163 of 299

- (NSString *)sendInvitation:(NSString *)cmd

 userId:(NSString *)userId

 content:(NSString *)content

 callback:(ActionCallback _Nullable)callback NS_SWIFT_NAME(sendI

The parameters are described below:

Parameter Type Description

cmd String Custom command of business

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 164 of 299

userId String The user ID of the invitee.

content String The content of the invitation.

callback ActionCallback The callback for the operation.

Response parameters:

Parameter Type Description

inviteId String The invitation ID.

acceptInvitation

This API is used to accept an invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 165 of 299

- (void)acceptInvitation:(NSString *)identifier callback:(ActionCallback _Nullable)

The parameters are described below:

Parameter Type Description

id String The invitation ID.

callback ActionCallback The callback for the operation.

rejectInvitation

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 166 of 299

This API is used to decline an invitation.

- (void)rejectInvitation:(NSString *)identifier callback:(ActionCallback _Nullable)

The parameters are described below:

Parameter Type Description

id String The invitation ID.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 167 of 299

cancelInvitation

This API is used to cancel an invitation.

- (void)cancelInvitation:(NSString *)identifier callback:(ActionCallback _Nullable)

The parameters are described below:

Parameter Type Description

id String The invitation ID.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 168 of 299

 TRTCKaraokeRoomDelegate Event Callback APIs

Common Event Callback APIs

onError

Callback for error.
This callback indicates that the SDK encountered an unrecoverable error. Such errors must be listened for, and UI
reminders should be sent to users depending if necessary.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 169 of 299

- (void)onError:(int)code

 message:(NSString*)message

NS_SWIFT_NAME(onError(code:message:));

The parameters are described below:

Parameter Type Description

code int The error code.

message String The error message.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 170 of 299

onWarning

Callback for warning.

- (void)onWarning:(int)code

 message:(NSString *)message

NS_SWIFT_NAME(onWarning(code:message:));

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 171 of 299

code int Error code

message String Warning message

onDebugLog

Callback for log.

- (void)onDebugLog:(NSString *)message

NS_SWIFT_NAME(onDebugLog(message:));

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 172 of 299

The parameters are described below:

Parameter Type Description

message String Log information

Room Event Callback APIs

onRoomDestroy

Callback for room termination. When the owner terminates the room, all users in the room will receive this callback.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 173 of 299

- (void)onRoomDestroy:(NSString *)message

NS_SWIFT_NAME(onRoomDestroy(message:));

The parameters are described below:

Parameter Type Description

message String Callback information

onRoomInfoChange

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 174 of 299

Callback for change of room information. This callback is sent after successful room entry. The information in
 roomInfo is passed in by the room owner during room creation.

- (void)onRoomInfoChange:(KaraokeInfo *)roomInfo

NS_SWIFT_NAME(onRoomInfoChange(roomInfo:));

The parameters are described below:

Parameter Type Description

roomInfo RoomInfo Room information

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 175 of 299

onUserMicrophoneMute

Callback of whether a user’s mic is muted. When a user calls muteLocalAudio , all members in the room will

receive this callback.

- (void)onUserMicrophoneMute:(NSString *)userId mute:(BOOL)mute

NS_SWIFT_NAME(onUserMicrophoneMute(userId:mute:));

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 176 of 299

userId String The User ID.

mute boolean Volume. Value range: 0-100

onUserVolumeUpdate

Notification to all members of the volume after the volume reminder is enabled.

- (void)onUserVolumeUpdate:(NSArray<TRTCVolumeInfo *> *)userVolumes totalVolume:(NS

NS_SWIFT_NAME(onUserVolumeUpdate(userVolumes:totalVolume:));

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 177 of 299

The parameters are described below:

Parameter Type Description

userVolumes List List of user volumes

totalVolume int Total volume. Value range: 0-100

Seat Callback APIs

onSeatListChange

Callback for all seat changes.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 178 of 299

- (void)onSeatInfoChange:(NSArray<KaraokeSeatInfo *> *)seatInfolist

NS_SWIFT_NAME(onSeatListChange(seatInfoList:));

The parameters are described below:

Parameter Type Description

seatInfoList List<SeatInfo> Full seat list

onAnchorEnterSeat

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 179 of 299

Someone became a speaker or was made a speaker by the owner.

- (void)onAnchorEnterSeat:(NSInteger)index

 user:(KaraokeUserInfo *)user

NS_SWIFT_NAME(onAnchorEnterSeat(index:user:));

The parameters are described below:

Parameter Type Description

index int The seat taken

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 180 of 299

user UserInfo Details of the user who took the seat

onAnchorLeaveSeat

A speaker became a listener or was moved to listeners by the room owner.

- (void)onAnchorLeaveSeat:(NSInteger)index

 user:(KaraokeUserInfo *)user

NS_SWIFT_NAME(onAnchorLeaveSeat(index:user:));

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 181 of 299

Parameter Type Description

index int The seat previously occupied by the speaker

user UserInfo Details of the user who took the seat

onSeatMute

The room owner muted/unmuted a seat.

- (void)onSeatMute:(NSInteger)index

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 182 of 299

 isMute:(BOOL)isMute

NS_SWIFT_NAME(onSeatMute(index:isMute:));

The parameters are described below:

Parameter Type Description

index int The seat muted/unmuted

isMute boolean true : Muted; false : Unmuted

onSeatClose

The room owner blocked/unblocked a seat.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 183 of 299

- (void)onSeatClose:(NSInteger)index

 isClose:(BOOL)isClose

NS_SWIFT_NAME(onSeatClose(index:isClose:));

The parameters are described below:

Parameter Type Description

index int The seat blocked/unblocked

isClose boolean true : Blocked; false : Unblocked

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 184 of 299

Callback APIs for Room Entry/Exit by Listener

onAudienceEnter

A listener entered the room.

- (void)onAudienceEnter:(KaraokeUserInfo *)userInfo

NS_SWIFT_NAME(onAudienceEnter(userInfo:));

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 185 of 299

Parameter Type Description

userInfo UserInfo Information of the listener who entered the room

onAudienceExit

A listener exited the room.

- (void)onAudienceExit:(KaraokeUserInfo *)userInfo

NS_SWIFT_NAME(onAudienceExit(userInfo:));

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 186 of 299

The parameters are described below:

Parameter Type Description

userInfo UserInfo Information of the listener who exited the room

Message Event Callback APIs

onRecvRoomTextMsg

Callback for receiving a text chat message.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 187 of 299

- (void)onRecvRoomTextMsg:(NSString *)message

 userInfo:(KaraokeUserInfo *)userInfo

NS_SWIFT_NAME(onRecvRoomTextMsg(message:userInfo:));

The parameters are described below:

Parameter Type Description

message String A text chat message.

userInfo UserInfo Information of the sender

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 188 of 299

onRecvRoomCustomMsg

A custom message was received.

- (void)onRecvRoomCustomMsg:(NSString *)cmd

 message:(NSString *)message

 userInfo:(KaraokeUserInfo *)userInfo

NS_SWIFT_NAME(onRecvRoomCustomMsg(cmd:message:userInfo:));

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 189 of 299

command String Custom command word used to distinguish between different message types

message String A text chat message.

userInfo UserInfo Information of the sender

Invitation Signaling Callback APIs

onReceiveNewInvitation

An invitation was received.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 190 of 299

- (void)onReceiveNewInvitation:(NSString *)identifier

 inviter:(NSString *)inviter

 cmd:(NSString *)cmd

 content:(NSString *)content

NS_SWIFT_NAME(onReceiveNewInvitation(identifier:inviter:cmd:content:));

The parameters are described below:

Parameter Type Description

id String The invitation ID.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 191 of 299

inviter String The user ID of the inviter.

cmd String A custom command word specified by business.

content UserInfo Content specified by business

onInviteeAccepted

The invitee accepted the invitation

- (void)onInviteeAccepted:(NSString *)identifier

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 192 of 299

 invitee:(NSString *)invitee

NS_SWIFT_NAME(onInviteeAccepted(identifier:invitee:));

The parameters are described below:

Parameter Type Description

id String The invitation ID.

invitee String The user ID of the invitee.

onInviteeRejected

The invitee declined the invitation

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 193 of 299

- (void)onInviteeRejected:(NSString *)identifier

 invitee:(NSString *)invitee

NS_SWIFT_NAME(onInviteeRejected(identifier:invitee:));

The parameters are described below:

Parameter Type Description

id String The invitation ID.

invitee String The user ID of the invitee.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 194 of 299

onInvitationCancelled

The inviter canceled the invitation.

- (void)onInvitationCancelled:(NSString *)identifier

 invitee:(NSString *)invitee NS_SWIFT_NAME(onInvitationCancell

The parameters are described below:

Parameter Type Description

id String The invitation ID.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 195 of 299

invitee String The user ID of the invitee.

Music Playback Status Callback APIs

onMusicPrepareToPlay

Music playback is ready.

- (void)onMusicPrepareToPlay:(int32_t)musicID

NS_SWIFT_NAME(onMusicPrepareToPlay(musicID:));

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 196 of 299

The parameters are described below:

Parameter Type Description

musicID int32_t musicID passed in for playback

onMusicProgressUpdate

Music playback progress.

- (void)onMusicProgressUpdate:(int32_t)musicID

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 197 of 299

 progress:(NSInteger)progress total:(NSInteger)total

NS_SWIFT_NAME(onMusicProgressUpdate(musicID:progress:total:));

The parameters are described below:

Parameter Type Description

musicID int32_t musicID passed in for playback

progress NSInteger Current playback progress in ms

total NSInteger Total duration in ms

onMusicCompletePlaying

Music playback was completed.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 198 of 299

- (void)onMusicCompletePlaying:(int32_t)musicID

NS_SWIFT_NAME(onMusicCompletePlaying(musicID:));

The parameters are described below:

Parameter Type Description

musicID int32_t musicID passed in for playback

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 199 of 299

TRTCKaraoke (Android)
Last updated：2023-09-25 10:59:36

 TRTCKaraokeRoom includes the following features, which are based on Tencent Real-Time Communication

(TRTC) and Tencent Cloud Chat.
A user can create a karaoke room and become a speaker or enter a karaoke room as a listener.

The room owner can manage song requests as well as remove a speaker from a seat.
The room owner can also block a seat. A listener cannot request to take a blocked seat to become a speaker.
A listener can become a speaker to request songs and sing. A speaker can also become a listener.
All users can send gifts as well as custom chat messages. Custom messages can be used to send on-screen
comments and give likes.

Note
All TUIKit components are based on two basic PaaS services of Tencent Cloud, namely TRTC and Chat. When you
activate TRTC, the Chat SDK trial edition (which supports up to 100 DAUs) will be activated automatically. For Chat
billing details, see Pricing.
 TRTCKaraokeRoom is an open-source class that depends on two closed-source Tencent Cloud SDKs. For the

specific implementation process, see Karaoke (Android).

The TRTC SDK is used as a low-latency audio chat component.
The AVChatRoom feature of the Chat SDK is used to implement chat rooms. The attribute APIs of Chat are used to

store room information such as the seat list, and invitation signaling is used to send requests to speak or invite others
to speak.

 TRTCKaraokeRoom API Overview

Basic SDK APIs

API Description

sharedInstance Gets a singleton object.

destroySharedInstance Terminates a singleton object.

setDelegate Sets event callbacks.

setDelegateHandler Sets the thread where event callbacks are.

login Logs in.

https://intl.cloud.tencent.com/document/product/647/35078
https://intl.cloud.tencent.com/document/product/1047/35448
https://intl.cloud.tencent.com/document/product/1047/34350
https://intl.cloud.tencent.com/document/product/647/41941
https://intl.cloud.tencent.com/document/product/647/35078
https://intl.cloud.tencent.com/document/product/1047

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 200 of 299

logout Logs out.

setSelfProfile Sets profile.

Room APIs

API Description

createRoom Creates a room (called by room owner). If the room does not exist, the system will
automatically create a room.

destroyRoom Terminates a room (called by room owner).

enterRoom Enters a room (called by listener).

exitRoom Exits a room (called by listener).

getRoomInfoList Gets room list details.

getUserInfoList
Gets the user information of the specified userId . If the value is null , the information
of all users in the room is obtained.

Music playback APIs

API Description

startPlayMusic Starts music.

stopPlayMusic Stops music.

pausePlayMusic Pauses music.

resumePlayMusic Resumes music.

Seat management APIs

API Description

enterSeat Becomes a speaker (called by room owner or listener).

leaveSeat Becomes a listener (called by speaker).

pickSeat Places a user in a seat (called by room owner).

kickSeat Removes a speaker (called by room owner).

muteSeat Mutes/Unmutes a seat (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 201 of 299

closeSeat Blocks/Unblocks a seat (called by room owner).

Local audio APIs

API Description

startMicrophone Starts mic capturing.

stopMicrophone Stops mic capturing.

setAudioQuality Sets audio quality.

muteLocalAudio Mutes/Unmutes local audio.

setSpeaker Sets whether to use the device speaker or receiver to play audio.

setAudioCaptureVolume Sets mic capturing volume.

setAudioPlayoutVolume Sets playback volume.

setVoiceEarMonitorEnable Enables/Disables in-ear monitoring.

Remote audio APIs

API Description

muteRemoteAudio Mutes/Unmutes a specified member.

muteAllRemoteAudio Mutes/Unmutes all members.

Background music and audio effect APIs

API Description

getAudioEffectManager Gets the background music and audio effect management object
TXAudioEffectManager.

Message sending APIs

API Description

sendRoomTextMsg Broadcasts a text chat message in a room. This API is generally used for on-screen
comments.

sendRoomCustomMsg Sends a custom text message.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXAudioEffectManager__android.html#interfacecom_1_1tencent_1_1liteav_1_1audio_1_1TXAudioEffectManager

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 202 of 299

Invitation signaling APIs

API Description

sendInvitation Sends an invitation.

acceptInvitation Accepts an invitation.

rejectInvitation Declines an invitation.

cancelInvitation Cancels an invitation.

 TRTCKaraokeRoomDelegate API Overview

Common event callbacks

API Description

onError Callback for error.

onWarning Callback for warning.

onDebugLog Callback of log.

Room event callback APIs

API Description

onRoomDestroy The room was terminated.

onRoomInfoChange The room information changed.

onUserVolumeUpdate The user volume.

Seat list change callback APIs

API Description

onSeatListChange All seat changes.

onAnchorEnterSeat A user became a speaker or was made a speaker by the room owner.

onAnchorLeaveSeat A user became a listener or was made a listener by the room owner.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 203 of 299

onSeatMute The room owner muted a seat.

onUserMicrophoneMute Whether a user’s mic is muted.

onSeatClose The room owner blocked a seat.

Callback APIs for room entry/exit by listener

API Description

onAudienceEnter A listener entered the room.

onAudienceExit A listener exited the room.

Message event callback APIs

API Description

onRecvRoomTextMsg A text chat message was received.

onRecvRoomCustomMsg A custom message was received.

Signaling Event Callback APIs

API Description

onReceiveNewInvitation Receipt of an invitation.

onInviteeAccepted Invitation accepted by invitee.

onInviteeRejected Invitation declined by invitee.

onInvitationCancelled The inviter canceled the invitation.

Song event callback APIs

API Description

onMusicProgressUpdate Music playback progress.

onMusicPrepareToPlay Music playback is ready.

onMusicCompletePlaying Music playback was completed.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 204 of 299

Basic SDK APIs

sharedInstance

This API is used to get a TRTCKaraokeRoom singleton object.

 public static synchronized TRTCKaraokeRoom sharedInstance(Context context);

The parameters are described below:

https://intl.cloud.tencent.com/document/product/647/41941

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 205 of 299

Parameter Type Description

context Context
Android context, which will be converted to ApplicationContext for the calling
of system APIs.

destroySharedInstance

This API is used to terminate a TRTCKaraokeRoom singleton object.
Note
After the instance is terminated, the externally cached TRTCKaraokeRoom instance can no longer be used. You

need to call sharedInstance again to get a new instance.

https://intl.cloud.tencent.com/document/product/647/41941

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 206 of 299

public static void destroySharedInstance();

setDelegate

This API is used to set the event callbacks of TRTCKaraokeRoom. You can use TRTCKaraokeRoomDelegate to

get different status notifications of TRTCKaraokeRoom.

https://intl.cloud.tencent.com/document/product/647/41941
https://intl.cloud.tencent.com/document/product/647/41941

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 207 of 299

public abstract void setDelegate(TRTCKaraokeRoomDelegate delegate);

Note

 setDelegate is the delegate callback of TRTCKaraokeRoom .

setDelegateHandler

This API is used to set the thread where event callbacks are.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 208 of 299

public abstract void setDelegateHandler(Handler handler);

The parameters are described below:

Parameter Type Description

handler Handler
The status notifications of TRTCKaraokeRoom are sent to the handler thread you
specify.

login

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 209 of 299

Login

public abstract void login(int sdkAppId,

 String userId, String userSig,

TRTCKaraokeRoomCallback.ActionCallback callback);

The parameters are described below:

Parameter Type Description

sdkAppId int You can view the SDKAppID via Application Management > Application
Info in the TRTC console.

https://console.intl.cloud.tencent.com/trtc/app

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 210 of 299

userId String The ID of the current user, which is a string that can contain only letters (a-z
and A-Z), digits (0-9), hyphens (-), and underscores (_).

userSig String Tencent Cloud's proprietary security signature. For how to calculate and use it,
see FAQs > UserSig.

callback ActionCallback The callback for login. The code is 0 if login succeeds.

logout

Log out

https://intl.cloud.tencent.com/document/product/647/35166

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 211 of 299

public abstract void logout(TRTCKaraokeRoomCallback.ActionCallback callback);

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for logout. The code is 0 if logout succeeds.

setSelfProfile

This API is used to set the profile.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 212 of 299

public abstract void setSelfProfile(String userName, String avatarURL, TRTCKaraokeR

The parameters are described below:

Parameter Type Description

userName String The username.

avatar String The address of the profile photo.

callback ActionCallback
The callback for profile configuration. The code is 0 if the operation
succeeds.

Room APIs

createRoom

This API is used to create a room (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 213 of 299

public abstract void createRoom(int roomId, TRTCKaraokeRoomDef.RoomParam roomParam,

The parameters are described below:

Parameter Type Description

roomId int

The room ID. You need to assign and manage room IDs in a
centralized manner. Multiple roomID values can be aggregated
into a karaoke room list. Currently, Tencent Cloud does not
provide management services for karaoke room lists. Please
manage your own room lists.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 214 of 299

roomParam TRTCCreateRoomParam Room information, such as room name, seat list information, and
cover information. To manage seats, you must enter the number of
seats in the room.

callback ActionCallback
The callback for room creation. The code is 0 if the operation
succeeds.

The process of creating a karaoke room and becoming a speaker is as follows:
1. A user calls createRoom to create a karaoke room, passing in room attributes (i.e., room ID, whether listeners

need room owner’s permission to speak, number of seats).
2. After creating the room, the user calls enterSeat to become a speaker.

3. The user will receive an onSeatListChanget notification about the change of the seat list, and can update the

change to the UI.
4. The user will also receive an onAnchorEnterSeat notification that someone became a speaker, and mic

capturing will be enabled automatically.

destroyRoom

This API is used to terminate a room (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 215 of 299

public abstract void destroyRoom(TRTCKaraokeRoomCallback.ActionCallback callback);

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for room termination. The code is 0 if the operation succeeds.

enterRoom

This API is used to enter a room (called by listener).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 216 of 299

public abstract void enterRoom(int roomId, TRTCKaraokeRoomCallback.ActionCallback c

The parameters are described below:

Parameter Type Description

roomId int The room ID.

callback ActionCallback The callback for room entry. The code is 0 if the operation succeeds.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 217 of 299

The process of entering a room as a listener is as follows:
1. A user gets the latest karaoke room list from your server. The list may contain the roomId and room information

of multiple karaoke rooms.

2. The user selects a room, and enters the room by calling enterRoom with the room ID passed in.

3. After entering the room, the user receives an onRoomInfoChange notification about room attribute change from

the component. The attributes can be recorded, and corresponding changes can be made to the UI, including room
name, whether room owner’s permission is required for listeners to speak, etc.
4. The user will receive an onSeatListChange notification about the change of the seat list and can update the

change to the UI.
5. The user will also receive an onAnchorEnterSeat notification that someone became a speaker.

exitRoom

Leave room

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 218 of 299

public abstract void exitRoom(TRTCKaraokeRoomCallback.ActionCallback callback);

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for room exit. The code is 0 if the operation succeeds.

getRoomInfoList

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 219 of 299

This API is used to get room list details. The room name and cover are set by the room owner via roomInfo when

calling createRoom() .

Note

You don’t need this API if both the room list and room information are managed on your server.

public abstract void getRoomInfoList(List<Integer> roomIdList, TRTCKaraokeRoomCallb

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 220 of 299

roomIdList List<Integer> The list of room IDs.

callback RoomInfoCallback The callback of room details.

getUserInfoList

This API is used to get the user information of a specified userId .

public abstract void getUserInfoList(List<String> userIdList, TRTCKaraokeRoomCallba

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 221 of 299

Parameter Type Description

userIdList List<String>
The IDs of the users to query. If this parameter is null , the
information of all users in the room is queried.

userlistcallback UserListCallback The callback of user details.

Music Playback APIs

startPlayMusic

This API is used to play music (called after becoming a speaker).
Note

After music playback starts, you will receive an onMusicPrepareToPlay notification.

During music playback, all members in the room will continuously receive an onMusicProgressUpdate

notification.
After music playback stops, you will receive an onMusicCompletePlaying notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 222 of 299

public abstract void startPlayMusic(int musicID, String originalUrl, String accompa

The parameters are described below:

Parameter Type Description

musicID int The music ID.

originalUrl String The absolute path of the vocal track.

accompanyUrl String The absolute path of the instrumental track.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 223 of 299

After this API is called, the song that is currently playing will stop.

stopPlayMusic

This API is used to stop music (called during music playback).
Note

After music playback stops, you will receive an onMusicCompletePlaying notification.

public abstract void stopPlayMusic();

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 224 of 299

pausePlayMusic

This API is used to pause music (called during music playback).
Note
The onMusicProgressUpdate notification will be paused.

No onMusicCompletePlaying notification will be received.

public abstract void pausePlayMusic();

resumePlayMusic

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 225 of 299

This API is used to resume music (called after music playback is paused).
Note
No onMusicPrepareToPlay notification will be received.

public abstract void resumePlayMusic();

Seat Management APIs

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 226 of 299

enterSeat

This API is used to become a speaker (called by room owner or listener).
Note
After a user becomes a speaker, all users in the room will receive an onSeatListChange notification and an

 onAnchorEnterSeat notification.

public abstract void enterSeat(int seatIndex, TRTCKaraokeRoomCallback.ActionCallbac

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 227 of 299

Parameter Type Description

seatIndex int The number of the seat to be taken.

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. In cases where listeners need the room owner’s permission to

take a seat, you can call sendInvitation first to send a request and, after receiving

 onInvitationAccept , call this API.

leaveSeat

This API is used to become a listener (called by speaker).
Note
After a speaker becomes a listener, all members in the room will receive an onSeatListChange notification and

an onAnchorLeaveSeat notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 228 of 299

public abstract void leaveSeat(TRTCKaraokeRoomCallback.ActionCallback callback);

The parameters are described below:

Parameter Type Description

callback ActionCallback The callback for the operation.

pickSeat

This API is used to place a user in a seat (called by room owner).

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 229 of 299

Note
 After the room owner makes someone a speaker, all members in the room will receive an onSeatListChange

notification and an onAnchorEnterSeat notification.

public abstract void pickSeat(int seatIndex, String userId, TRTCKaraokeRoomCallback

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to place the listener in.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 230 of 299

userId String The user ID.

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. In cases where the room owner needs listeners’ permission to
make them speakers, you can call sendInvitation first to send a request and, after receiving

 onInvitationAccept , call pickSeat .

kickSeat

This API is used to remove a speaker (called by room owner).
Note
After a speaker is removed from a seat, all members in the room will receive an onSeatListChange notification

and an onAnchorLeaveSeat notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 231 of 299

public abstract void kickSeat(int seatIndex, TRTCKaraokeRoomCallback.ActionCallback

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to remove the speaker from.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 232 of 299

Calling this API will immediately modify the seat list.

muteSeat

This API is used to mute/unmute a seat (called by room owner).
Note

After a seat is muted/unmuted, all members in the room will receive an onSeatListChange notification and an

 onSeatMute notification.

public abstract void muteSeat(int seatIndex, boolean isMute, TRTCKaraokeRoomCallbac

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 233 of 299

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to mute/unmute.

isMute boolean true : Mute; false : Unmute

callback ActionCallback The callback for the operation.

Calling this API will immediately modify the seat list. The speaker on the seat specified by seatIndex will call

 muteAudio to mute/unmute his or her audio.

closeSeat

This API is used to block/unblock a seat (called by room owner).
Note
After a seat is blocked/unblocked, all members in the room will receive an onSeatListChange notification and an

 onSeatClose notification.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 234 of 299

public abstract void closeSeat(int seatIndex, boolean isClose, TRTCKaraokeRoomCallb

The parameters are described below:

Parameter Type Description

seatIndex int The number of the seat to block/unblock.

isClose boolean true : Block; false : Unblock

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 235 of 299

Calling this API will immediately modify the seat list. The speaker on the seat specified by seatIndex will leave

the seat.

Local Audio APIs

startMicrophone

This API is used to start mic capturing.

public abstract void startMicrophone();

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 236 of 299

stopMicrophone

This API is used to stop mic capturing.

public abstract void stopMicrophone();

setAudioQuality

This API is used to set audio quality.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 237 of 299

public abstract void setAudioQuality(int quality);

The parameters are described below:

Parameter Type Description

quality int The audio quality. For more information, see setAudioQuality().

muteLocalAudio

This API is used to mute/unmute local audio.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a955cccaddccb0c993351c656067bee55

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 238 of 299

public abstract void muteLocalAudio(boolean mute);

The parameters are described below:

Parameter Type Description

mute boolean Whether to mute or unmute audio. For more information, see muteLocalAudio().

setSpeaker

This API is used to set whether to play sound from the device’s speaker or receiver.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a37f52481d24fa0f50842d3d8cc380d86

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 239 of 299

public abstract void setSpeaker(boolean useSpeaker);

The parameters are described below:

Parameter Type Description

useSpeaker boolean true : Speaker; false : Receiver

setAudioCaptureVolume

This API is used to set the mic capturing volume.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 240 of 299

public abstract void setAudioCaptureVolume(int volume);

The parameters are described below:

Parameter Type Description

volume int The capturing volume. Value range: 0-100 (default: 100)

setAudioPlayoutVolume

This API is used to set the playback volume.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 241 of 299

public abstract void setAudioPlayoutVolume(int volume);

The parameters are described below:

Parameter Type Description

volume int The playback volume. Value range: 0-100 (default: 100)

muteRemoteAudio

This API is used to mute/unmute a specified user.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 242 of 299

public abstract void muteRemoteAudio(String userId, boolean mute);

The parameters are described below:

Parameter Type Description

userId String The user ID.

mute boolean true : Mute; false : Unmute

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 243 of 299

muteAllRemoteAudio

This API is used to mute/unmute all users.

public abstract void muteAllRemoteAudio(boolean mute);

The parameters are described below:

Parameter Type Description

mute boolean true : Mute; false : Unmute

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 244 of 299

setVoiceEarMonitorEnable

This API is used to enable/disable in-ear monitoring.

public abstract void setVoiceEarMonitorEnable(boolean enable);

The parameters are described below:

Parameter Type Description

enable boolean true : Enable; false : Disable

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 245 of 299

Background Music and Audio Effect APIs

getAudioEffectManager

This API is used to get the background music and audio effect management object TXAudioEffectManager.

public abstract TXAudioEffectManager getAudioEffectManager();

Message Sending APIs

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TRTCCloud__android.html#a3646dad993287c3a1a38a5bc0e6e33aa

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 246 of 299

sendRoomTextMsg

This API is used to broadcast a text chat message in a room, which is generally used for on-screen comments.

public abstract void sendRoomTextMsg(String message, TRTCKaraokeRoomCallback.Action

The parameters are described below:

Parameter Type Description

message String A text chat message.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 247 of 299

sendRoomCustomMsg

This API is used to send a custom text message.

public abstract void sendRoomCustomMsg(String cmd, String message, TRTCKaraokeRoomC

The parameters are described below:

Parameter Type Description

cmd String A custom command word used to distinguish between different message

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 248 of 299

types.

message String A text chat message.

callback ActionCallback The callback for the operation.

Invitation Signaling APIs

sendInvitation

This API is used to send an invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 249 of 299

public abstract String sendInvitation(String cmd, String userId, String content, TR

The parameters are described below:

Parameter Type Description

cmd String Custom command of business

userId String The user ID of the invitee.

content String The content of the invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 250 of 299

callback ActionCallback The callback for the operation.

Response parameters:

Parameter Type Description

inviteId String The invitation ID.

acceptInvitation

This API is used to accept an invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 251 of 299

public abstract void acceptInvitation(String id, TRTCKaraokeRoomCallback.ActionCall

The parameters are described below:

Parameter Type Description

id String The invitation ID.

callback ActionCallback The callback for the operation.

rejectInvitation

This API is used to decline an invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 252 of 299

public abstract void rejectInvitation(String id, TRTCKaraokeRoomCallback.ActionCall

The parameters are described below:

Parameter Type Description

id String Invitation ID

callback ActionCallback The callback for the operation.

cancelInvitation

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 253 of 299

This API is used to cancel an invitation.

public abstract void cancelInvitation(String id, TRTCKaraokeRoomCallback.ActionCall

The parameters are described below:

Parameter Type Description

id String The invitation ID.

callback ActionCallback The callback for the operation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 254 of 299

 TRTCKaraokeRoomDelegate Event Callback APIs

Common Event Callback APIs

onError

Callback for error.
This callback indicates that the SDK encountered an unrecoverable error. Such errors must be listened for, and UI

reminders should be sent to users depending if necessary.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 255 of 299

void onError(int code, String message);

The parameters are described below:

Parameter Type Description

code int The error code.

message String The error message.

onWarning

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 256 of 299

Callback for warning.

void onWarning(int code, String message);

The parameters are described below:

Parameter Type Description

code int The error code.

message String The warning message.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 257 of 299

onDebugLog

Callback for log.

void onDebugLog(String message);

The parameters are described below:

Parameter Type Description

message String Log information.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 258 of 299

Room Event Callback APIs

onRoomDestroy

Callback for room termination. When the owner terminates the room, all users in the room will receive this callback.

void onRoomDestroy(String roomId);

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 259 of 299

roomId String The room ID.

onRoomInfoChange

Callback for change of room information. This callback is sent after successful room entry. The information in
 roomInfo is passed in by the room owner during room creation.

void onRoomInfoChange(TRTCKaraokeRoomDef.RoomInfo roomInfo);

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 260 of 299

Parameter Type Description

roomInfo RoomInfo Room information.

onUserMicrophoneMute

Callback of whether a user’s mic is muted. When a user calls muteLocalAudio , all members in the room will

receive this callback.

void onUserMicrophoneMute(String userId, boolean mute);

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 261 of 299

The parameters are described below:

Parameter Type Description

userId String The user ID.

mute boolean The volume level. Value range: 0-100

onUserVolumeUpdate

Notification to all members of the volume after the volume reminder is enabled.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 262 of 299

void onUserVolumeUpdate(List<TRTCCloudDef.TRTCVolumeInfo> userVolumes, int totalVol

The parameters are described below:

Parameter Type Description

userVolumes List List of user volumes.

totalVolume int The total volume. Value range: 0-100

Seat Callback APIs

onSeatListChange

Callback for all seat changes.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 263 of 299

void onSeatListChange(List<SeatInfo> seatInfoList);

The parameters are described below:

Parameter Type Description

seatInfoList List<SeatInfo> The full seat list.

onAnchorEnterSeat

Someone became a speaker or was made a speaker by the owner.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 264 of 299

void onAnchorEnterSeat(int index, TRTCKaraokeRoomDef.UserInfo user);

The parameters are described below:

Parameter Type Description

index int The seat taken.

user UserInfo The details of the user who took the seat.

onAnchorLeaveSeat

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 265 of 299

A speaker became a listener or was made a listener by the room owner.

void onAnchorLeaveSeat(int index, TRTCKaraokeRoomDef.UserInfo user);

The parameters are described below:

Parameter Type Description

index int The seat previously occupied by the speaker.

user UserInfo The details of the user who became a listener.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 266 of 299

onSeatMute

The room owner muted/unmuted a seat.

void onSeatMute(int index, boolean isMute);

The parameters are described below:

Parameter Type Description

index int The seat muted/unmuted.

isMute boolean

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 267 of 299

 true : Muted; false : Unmuted

onSeatClose

The room owner blocked/unblocked a seat.

void onSeatClose(int index, boolean isClose);

The parameters are described below:

Parameter Type Description

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 268 of 299

index int The seat blocked/unblocked.

isClose boolean true : Blocked; false : Unblocked

Callback APIs for Room Entry/Exit by Listener

onAudienceEnter

A listener entered the room.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 269 of 299

void onAudienceEnter(TRTCKaraokeRoomDef.UserInfo userInfo);

The parameters are described below:

Parameter Type Description

userInfo UserInfo The information of the listener who entered the room.

onAudienceExit

A listener exited the room.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 270 of 299

void onAudienceExit(TRTCKaraokeRoomDef.UserInfo userInfo);

The parameters are described below:

Parameter Type Description

userInfo UserInfo The information of the listener who exited the room.

Message Event Callback APIs

onRecvRoomTextMsg

Callback for receiving a text chat message.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 271 of 299

void onRecvRoomTextMsg(String message, TRTCKaraokeRoomDef.UserInfo userInfo);

The parameters are described below:

Parameter Type Description

message String A text chat message.

userInfo UserInfo Information of the sender.

onRecvRoomCustomMsg

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 272 of 299

A custom message was received.

void onRecvRoomCustomMsg(String cmd, String message, TRTCKaraokeRoomDef.UserInfo us

The parameters are described below:

Parameter Type Description

command String A custom command word used to distinguish between different message types.

message String A text chat message.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 273 of 299

userInfo UserInfo Information of the sender.

Invitation Signaling Callback APIs

onReceiveNewInvitation

An invitation was received.

void onReceiveNewInvitation(String id, String inviter, String cmd, String content);

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 274 of 299

The parameters are described below:

Parameter Type Description

id String The invitation ID.

inviter String The user ID of the inviter.

cmd String A custom command word specified by business.

content String Content specified by business

onInviteeAccepted

The invitee accepted the invitation.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 275 of 299

void onInviteeAccepted(String id, String invitee);

The parameters are described below:

Parameter Type Description

id String The invitation ID.

invitee String The user ID of the invitee.

onInviteeRejected

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 276 of 299

The invitee declined the invitation.

void onInviteeRejected(String id, String invitee);

The parameters are described below:

Parameter Type Description

id String The invitation ID.

invitee String The user ID of the invitee.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 277 of 299

onInvitationCancelled

The inviter canceled the invitation.

void onInvitationCancelled(String id, String inviter);

The parameters are described below:

Parameter Type Description

id String The invitation ID.

inviter String The user ID of the inviter.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 278 of 299

Music Playback Status Callback APIs

onMusicPrepareToPlay

Music playback is ready.

void onMusicPrepareToPlay(int musicID);

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 279 of 299

Parameter Type Description

musicID int The musicID passed in for playback.

onMusicProgressUpdate

Music playback progress.

void onMusicProgressUpdate(int musicID, long progress, long total);

The parameters are described below:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 280 of 299

Parameter Type Description

musicID int The musicID passed in for playback.

progress long The current playback progress in ms.

total long The total duration in ms.

onMusicCompletePlaying

Music playback was completed.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 281 of 299

void onMusicCompletePlaying(int musicID);

The parameters are described below:

Parameter Type Description

musicID int The musicID passed in for playback.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 282 of 299

FAQs
iOS
Last updated：2023-09-26 17:01:07

Ear Monitor-related Issues

In Karaoke scenarios, ear monitoring is likely to be used. How can I enable the ear
monitoring function?

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 283 of 299

[[trtcCloud getAudioEffectManager] enableVoiceEarMonitor:YES];

What if there is no effect after enabling the ear monitoring function?

Due to the high hardware latency of Bluetooth headsets, please try to prompt the host to wear wired headphones on

the user interface. At the same time, please note that not all phones can achieve excellent ear monitoring effects after
enabling this feature. The TRTC SDK has already blocked this effect on some phones with poor ear monitoring
performance.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 284 of 299

Is the ear monitoring latency too high?

Please check if you are using a Bluetooth headset. Due to the high hardware latency of Bluetooth headsets, please try
to use wired headphones as much as possible.
In addition, you can try to improve the high latency of ear monitoring by enabling hardware ear monitoring through the

experimental interface setSystemAudioKitEnabled. Currently, for Huawei and Vivo devices, the SDK uses hardware
ear monitoring by default, while other devices use software ear monitoring by default.

// Enable hardware ear monitoring

NSDictionary *jsonDic = @{

 @"api": @"setSystemAudioKitEnabled",

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 285 of 299

 @"params": @{@"enable": @(1)}

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[trtcCloud callExperimentalAPI:jsonString];

NTP Time Synchronization Issues

Reminder: “NTP time sync finished, but result maybe inaccurate”？

NTP time synchronization is successful, but the deviation may be more than 30ms, reflecting poor client network

environment and continuous rtt jitter.

Reminder: “Error in AddressResolver: No address associated with hostname”？

NTP time synchronization failure may be due to temporary anomalies in the local carrier DNS resolution under the
current network environment. Please try again later.

NTP service retry processing logic?

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 286 of 299

Network Speed Test Recommendations

Online Karaoke scenarios have high network requirements for users, especially real-time chorus. A high-quality and
stable network environment is necessary for a good Karaoke experience. Therefore, it is recommended to perform a

network speed test on the user before entering the room, and give a UI layer reminder to users who do not meet the
network requirements, prohibiting them from joining the Karaoke room or participating in chorus.
Initiating network speed test with TRTC SDK:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 287 of 299

TRTCSpeedTestParams *speedTestParams = [[TRTCSpeedTestParams alloc] init];

speedTestParams.sdkAppId = SDK_APP_ID;

speedTestParams.userId = userId;

speedTestParams.userSig = userSig;

// If the actual bandwidth is higher than the expected value, the test result is th

// if the actual bandwidth is lower than the expected value, the test result is the

speedTestParams.expectedDownBandwidth = 3000; // Expected downstream bandwidth, ran

speedTestParams.expectedUpBandwidth = 3000; // Expected upstream bandwidth, ranging

[trtcCloud startSpeedTest:speedTestParams];

Note：

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 288 of 299

Expected upstream bandwidth, ranging from 10 to 5000 kbps
Please perform the network speed test before entering the room. Network speed testing in the room will affect the
normal audio and video transmission effects, and due to too much interference, the network speed test results will also

be inaccurate.
TRTC SDK network speed test result callback:

- (void)onSpeedTestResult:(TRTCSpeedTestResult *)result {

 NSString *tquality = @"Unknown";

 switch (result.quality) {

 case TRTCQuality_Unknown:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 289 of 299

 tquality = @"Unknown";

 break;

 case TRTCQuality_Excellent:

 tquality = @"The current network is excellent";

 break;

 case TRTCQuality_Good:

 tquality = @"The current network is good";

 break;

 case TRTCQuality_Poor:

 tquality = @"The current network is poor";

 break;

 case TRTCQuality_Bad:

 tquality = @"The current network is bad";

 break;

 case TRTCQuality_Vbad:

 tquality = @"The current network is very bad";

 break;

 case TRTCQuality_Down:

 tquality = @"The current network does not meet TRTC\\`s minimum request

 break;

 default:

 break;

 }

 if (result.success) {

 [mTextTestResult addObject:@"test successfull！\\n"];

 [mTextTestResult addObject:[NSString stringWithFormat:@"IP address：%@ \\n",

 [mTextTestResult addObject:[NSString stringWithFormat:@"uplink packet loss

 [mTextTestResult addObject:[NSString stringWithFormat:@"downlink packet los

 [mTextTestResult addObject:[NSString stringWithFormat:@"network lantency：%u

 [mTextTestResult addObject:[NSString stringWithFormat:@"downlink bandwidth：

 [mTextTestResult addObject:[NSString stringWithFormat:@"uplink bandwidth：%l

 [mTextTestResult addObject:[NSString stringWithFormat:@"downlink bandwidth：

 } else {

 [mTextTestResult addObject:@"test successfull！\\n"];

 [mTextTestResult addObject:[NSString stringWithFormat:@"errMsg：%@ \\n", res

 }

}

Joining a Chorus Midway

The real-time chorus solution theoretically has no limit on the number of chorus participants, supporting multiple
people to participate in the chorus simultaneously, as well as joining the chorus midway.

The following are the key actions for joining a chorus midway:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 290 of 299

NTP time synchronization
Enable chorus experimental interface
Enter the room and start streaming on the microphone

Receive chorus signaling, obtain accompaniment resources and chorus agreed time
Calculate the difference between the agreed time and the current time, preload and seek accompaniment
Start participating in the chorus and synchronize accompaniment progress and lyrics progress in real-time
For the specific implementation process and code implementation of the above key actions, please refer to the
documentation onsong synchronization, lyrics synchronization, vocal synchronization.

https://intl.cloud.tencent.com/zh/document/product/647/57025
https://intl.cloud.tencent.com/zh/document/product/647/57028
https://intl.cloud.tencent.com/zh/document/product/647/57032

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 291 of 299

Android
Last updated：2023-09-27 11:28:11

Ear Monitor-related Issues

In Karaoke scenarios, ear monitoring is likely to be used. How can I enable the ear
monitoring function?

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 292 of 299

mTRTCCloud.getAudioEffectManager().enableVoiceEarMonitor(true)

What if there is no effect after enabling the ear monitoring function?

Due to the high hardware latency of Bluetooth headsets, please try to prompt the host to wear wired headphones on

the user interface. At the same time, please note that not all phones can achieve excellent ear monitoring effects after
enabling this feature. The TRTC SDK has already blocked this effect on some phones with poor ear monitoring
performance.

Is the ear monitoring latency too high?

Please check if you are using a Bluetooth headset. Due to the high hardware latency of Bluetooth headsets, please try
to use wired headphones as much as possible.

In addition, you can try to improve the high latency of ear monitoring by enabling hardware ear monitoring through the
experimental interface setSystemAudioKitEnabled. Currently, for Huawei and Vivo devices, the SDK uses hardware
ear monitoring by default, while other devices use software ear monitoring by default.

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 293 of 299

// Enable hardware ear monitoring

mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"setSystemAudioKitEnabled\\", \\"param

NTP Time Synchronization Issues

Reminder: “NTP time sync finished, but result maybe inaccurate”？

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 294 of 299

NTP time synchronization is successful, but the deviation may be more than 30ms, reflecting poor client network
environment and continuous rtt jitter.

Reminder: “Error in AddressResolver: No address associated with hostname”？

NTP time synchronization failure may be due to temporary anomalies in the local carrier DNS resolution under the

current network environment. Please try again later.

NTP service retry processing logic?

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 295 of 299

Network Speed Test Recommendations

Online Karaoke scenarios have high network requirements for users, especially real-time chorus. A high-quality and
stable network environment is necessary for a good Karaoke experience. Therefore, it is recommended to perform a
network speed test on the user before entering the room, and give a UI layer reminder to users who do not meet the

network requirements, prohibiting them from joining the Karaoke room or participating in chorus.
Initiating network speed test with TRTC SDK:

TRTCCloudDef.TRTCSpeedTestParams speedTestParams = new TRTCCloudDef.TRTCSpeedTestPa

speedTestParams.sdkAppId = SDK_APP_ID;

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 296 of 299

speedTestParams.userId = userId;

speedTestParams.userSig = userSig;

// If the actual bandwidth is higher than the expected value, the test result is th

// if the actual bandwidth is lower than the expected value, the test result is the

speedTestParams.expectedDownBandwidth = 3000; // Expected downstream bandwidth, ran

speedTestParams.expectedUpBandwidth = 3000; // Expected upstream bandwidth, ranging

mTRTCCloud.startSpeedTest(speedTestParams);

Note:
Expected upstream bandwidth, ranging from 10 to 5000 kbps
Please perform the network speed test before entering the room. Network speed testing in the room will affect the

normal audio and video transmission effects, and due to too much interference, the network speed test results will also
be inaccurate.
TRTC SDK network speed test result callback:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 297 of 299

@Override

public void onSpeedTestResult(TRTCCloudDef.TRTCSpeedTestResult result) {

 String tquality = "Unknown";

 switch (result.quality) {

 case 0:

 tquality = "Unknown";

 break;

 case 1:

 tquality = "The current network is very good";

 break;

 case 2:

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 298 of 299

 tquality = "The current network is good";

 break;

 case 3:

 tquality = "The current network is average";

 break;

 case 4:

 tquality = "The current network is poor";

 break;

 case 5:

 tquality = "The current network is very poor";

 break;

 case 6:

 tquality = "The current network does not meet TRTC's minimum requiremen

 break;

 }

 if (result.success) {

 mTextTestResult.append("Speed test successful!" + "\\n");

 mTextTestResult.append("IP address: " + result.ip + "\\n");

 mTextTestResult.append("Uplink packet loss rate: " + result.upLostRate + "\

 mTextTestResult.append("Downlink packet loss rate: " + result.downLostRate

 mTextTestResult.append("Network latency: " + result.rtt + "ms\\n");

 mTextTestResult.append("Downlink bandwidth: " + result.availableDownBandwid

 mTextTestResult.append("Uplink bandwidth: " + result.availableUpBandwidth +

 mTextTestResult.append("Network quality: " + tquality + "\\n");

 } else {

 mTextTestResult.append("Speed test failed!" + "\\n");

 mTextTestResult.append("Error message: " + result.errMsg + "\\n");

 }

}

Joining a Chorus Midway

The real-time chorus solution theoretically has no limit on the number of chorus participants, supporting multiple
people to participate in the chorus simultaneously, as well as joining the chorus midway.
The following are the key actions for joining a chorus midway:
NTP time synchronization

Enable chorus experimental interface
Enter the room and start streaming on the microphone
Receive chorus signaling, obtain accompaniment resources and chorus agreed time
Calculate the difference between the agreed time and the current time, preload and seek accompaniment
Start participating in the chorus and synchronize accompaniment progress and lyrics progress in real-time

Tencent Real-Time Communication

©2013-2022 Tencent Cloud. All rights reserved. Page 299 of 299

For the specific implementation process and code implementation of the above key actions, please refer to the
documentation onsong synchronization, lyrics synchronization, vocal synchronization.

https://intl.cloud.tencent.com/zh/document/product/647/57026
https://intl.cloud.tencent.com/zh/document/product/647/57028
https://intl.cloud.tencent.com/zh/document/product/647/57033

