
Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 577

Tencent Kubernetes Engine

Best Practices

Product Documentation

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 577

Copyright Notice

©2013-2022 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 577

Contents

Best Practices
Cluster

Cluster Model Recommendations
Enabling Disaster Recovery for Masters of Self-Deployed Clusters
Using Private DNS to Implement Automatic Domain Name Resolution When Accessing Cluster via
Private Network

Cluster Migration
Using COS as Velero Storage to Implement Backup and Restoration of Cluster Resources
Using Velero to Replicate Cluster Resources in TKE
Using Velero to Migrate Cluster Resources to TKE Across Cloud Platforms
Guide on Migrating Resources in a TKE Managed Cluster to an Serverless Cluster

Serverless Cluster
Accessing Internet through NAT Gateway
Using EIP to Access Public Network
Mastering Deep Learning in Serverless Cluster

Building Deep Learning Container Image
Running Deep Learning in EKS
FAQs

Public Network Access
Log Collection

Customized DNS Service of Serverless Cluster
Edge Cluster

TKE Edge ServiceGroup Feature
Using ServiceGroup via YAML File

TKE Edge Distributed Node Status Determination Mechanism
Security

Using KMS for Kubernetes Data Source Encryption
Pod Security Group
Container Image Signature and Verification

Service Deployment
Proper Use of Node Resources

Overview
Setting Request and Limit
Proper Resource Allocation
Auto Scaling

Application High Availability Deployment

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 577

Smooth Workload Upgrade
Parameter Adaptation for docker run
Solve the inconsistent time zone problem in the container
Container coredump Persistence
Using a Dynamic Admission Controller in TKE

Hybrid Cloud
Elastic Scaling with EKS for IDC-Based Cluster

Network
DNS

Best Practices of TKE DNS
Using NodeLocal DNS Cache in a TKE Cluster
Implementing Custom Domain Name Resolution in TKE
Configuring ExternalDNS in TKE

Using Network Policy for Network Access Control
Deploying NGINX Ingress on TKE
Nginx Ingress High-Concurrency Practices
Nginx Ingress Best Practices
Limiting the bandwidth on pods in TKE
Directly connecting TKE to the CLB of pods based on the ENI
Use CLB-Pod Direct Connection on TKE
Obtaining the Real Client Source IP in TKE
Using Traefik Ingress in TKE

Release
Using CLB to Implement Simple Blue-Green Deployment and Grayscale Release
Using Nginx Ingress to Implement Canary Release

Logs
Best Practice in TKE Log Collection
Implementing Multi-line Log Merging for EKS Log Collection
Custom Nginx Ingress Log

Monitoring
Using Prometheus to monitor Java applications
Using Prometheus to Monitor MySQL and MariaDB
Migrating Self-built Prometheus to Cloud Native Monitoring

OPS
Removing and Re-adding Nodes from and to Cluster
Using Ansible to Batch Operate TKE Nodes
Using Cluster Audit for Troubleshooting
Renewing a TKE Ingress Certificate

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 577

Using cert-manager to Issue Free Certificates
Using cert-manager to Issue Free Certificate for DNSPod Domain Name
Using the TKE NPDPlus Plug-In to Enhance the Self-Healing Capability of Nodes
Using kubecm to Manage Multiple Clusters kubeconfig
Quick Troubleshooting Using TKE Audit and Event Services
Customizing RBAC Authorization in TKE
Clearing De-registered Tencent Cloud Account Resources

DevOps
Quick Implementation of Container DevOps in TKE Using TCR Delivery Pipeline
Quick Implementation of Container DevOps in TKE Using CODING
Full Implementation of Container DevOps in TKE Using CODING
Construction and Deployment of Jenkins Public Network Framework Appications based on TKE

Example
Step 1: Configure the TKE cluster and Jenkins
Step 2:Slave pod build configuration
Build test

Using Docker as an image building service in a containerd cluster
Deploying Jenkins on TKE

Auto Scaling
Cluster Auto Scaling Practices
Using tke-autoscaling-placeholder to Implement Auto Scaling in Seconds
Installing metrics-server on TKE
Using Custom Metrics for Auto Scaling in TKE
Utilizing HPA to Auto Scale Businesses on TKE
Using VPA to Realize Pod Scaling up and Scaling down in TKE
Adjusting HPA Scaling Sensitivity Based on Different Business Scenarios

Storage
Backing up and Restoring PVC via CBS-CSI Add-on
Static Mounting of CFS-Turbo File System

Static Mounting of CFS-Turbo for TKE Clusters
Static Mounting of CFS-Turbo for EKS Clusters

Containerization
Accelerated Pull of Images Outside the Chinese Mainland
Image Layering Best Practices

Microservice
Hosting Dubbo to TKE
Hosting SpringCloud to TKE

Cost Management

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 577

Using Kubecost for TKE Cost Management
Tools for Resource Utilization Improvement

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 577

When you create a Kubernetes cluster by using TKE, you must select models from various configuration options. This
document describes and compares available feature models and gives suggestions to help you select models that are
most applicable to your services.

Kubernetes Versions
Container Network Plugins: GlobalRouter and VPC-CNI
Runtime Components: Docker and Containerd (Under Beta Testing)
Service Forwarding Modes: iptables and IPVS
Cluster Types: Managed Cluster and Self-Deployed Cluster

Node Operating Systems
Node Pool
Launch Script

Kubernetes Versions

Kubernetes versions are iterated quickly. New versions usually include many bug fixes and new features. Meanwhile,
earlier versions will be phased out. We recommend that you select the latest version that is supported by the current
TKE when creating a cluster. Subsequently, you can upgrade existing master components and nodes to the latest

versions generated during iteration.

Container Network Plugins: GlobalRouter and VPC-CNI

Network modes

TKE supports the following two network modes. For more information, see How to Choose TKE Network Mode.

GlobalRouter mode:

In this mode, container network capabilities are implemented based on container networking interfaces (CNIs)
and network bridges, whereas container routing is implemented based on the underlying VPC layer.

Best Practices
Cluster
Cluster Model Recommendations
Last updated：2022-04-21 17:22:14

https://intl.cloud.tencent.com.cn/document/product/457/38966

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 577

Containers are located on the same network plane as nodes. IP ranges of containers cover abundant IP
addresses and do not overlap those of VPC instances.

VPC-CNI mode:

In this mode, container network capabilities are implemented based on CNIs and VPC ENIs, whereas container
routing is implemented based on ENIs. The performance of this mode is approximately 10% higher than that of
the GlobalRouter mode.
Containers are located on the same network plane as nodes. The IP ranges of containers fall within those of
VPC instances.

Pods can use static IP addresses.

How to use

TKE allows you to specify network modes in the following ways:

Specify the GlobalRouter mode when creating a cluster.
Specify the VPC-CNI mode when creating a cluster. Subsequently, all pods must be created in VPC-CNI mode.
Specify the GlobalRouter mode when creating a cluster. You can enable the VPC-CNI mode for the cluster when
needed. In this case, the two modes are mixed.

Recommendations

In general cases, we recommend that you select the GlobalRouter mode, because IP ranges of containers cover
abundant IP addresses, allow high scalability, and support large-scale services.
If a subsequent service needs to run in VPC-CNI mode, you can enable the VPC-CNI mode for the GlobalRouter
cluster. In this case, the GlobalRouter mode is mixed with the VPC-CNI mode, but only some services run in VPC-
CNI mode.

If you fully understand and accept the use limits of the VPC-CNI mode and all pods in the cluster need to run in
VPC-CNI mode, we recommend that you select the VPC-CNI mode when creating the cluster.

Runtime Components: Docker and Containerd (Under Beta Testing)

Runtime components

TKE supports two types of runtime components: Docker and containerd. For more information, see How to Choose
Between containerd and Docker.

https://intl.cloud.tencent.com.cn/document/product/457/31088

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 577

Using Docker as a container runtime:

The call chain is as follows:
i. The dockershim module in kubelet adapts the container runtime interface (CRI) for the Docker runtime.

ii. The kubelet component calls dockershim by using a socket file.
iii. The dockershim module calls the API of the dockerd component, that is, the Docker HTTP API.
iv. The dockerd component calls the docker-containerd gRPC API to create or terminate the container.

Reasons for a long call chain:
Kubernetes initially supported Docker only. Later, the CRI was introduced and runtime was abstracted so that
multiple types of runtimes were supported. Docker and Kubernetes are competitors, and therefore Docker did

not implement the CRI in dockerd, and Kubernetes had to implement the CRI in dockerd itself. Internal
components of Docker were modularized to adapt to the CRI.

Using containerd (under beta testing) as a container runtime:

Containerd has supported the CRI plugin since containerd 1.1. That is, containerd can adapt to the CRI.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 577

The call chain of the containerd runtime does not include dockershim and dockerd, which exist in the call chain
of the Docker runtime.

Comparison between the two runtimes

The call chain of the containerd runtime bypasses dockerd and therefore is shorter. Accordingly, the containerd

solution requires fewer components, occupies fewer node resources, and bypasses dockerd bugs. However,
containerd has some bugs that need to be fixed. Currently, containerd is under beta testing and has fixed some
bugs.
Having been used for a long time, the Docker solution is more mature, supports the Docker API, and provides
abundant features. This solution is friendly to most users.

Recommendations

The Docker solution is more mature than the containerd solution. If you require high stability, we recommend that
you select the Docker solution.
In the following scenarios, you can select the Docker solution only:
You need to run a Docker host inside of another Docker host (Docker-in-Docker). This requirement usually occurs
during continuous integration (CI).
You need to use Docker commands on a node.

You need to call the Docker API.

In other scenarios, we recommend that you select the containerd solution.

Service Forwarding Modes: iptables and IPVS

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 577

The following figure shows how a Service is forwarded.

1. The kube-proxy component on the node watches API Server to obtain the Service and the Endpoint. Then, the

kube-proxy component converts the Service to an iptables or IPVS rule based on the forwarding mode and writes
the rule to the node.

2. The client in the cluster gains access to the Service through the cluster IP address. Then, according to the iptable
or IPVS rule, the client is load-balanced to the backend pod corresponding to the Service.

Comparison between the two forwarding modes

The IPVS mode provides higher performance but has some outstanding bugs.

The iptables mode is more mature and stable.

Recommendations

If you require extremely high stability with less than 2,000 Services running in the cluster, we recommend that you
select iptables. In other scenarios, we recommend that you preferably select IPVS.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 577

Cluster Types: Managed Cluster and Self-Deployed Cluster

TKE supports the following types of clusters:

Managed clusters:

Master components are invisible to you but are managed by Tencent Cloud.

Clusters with most new features are preferably managed.

Computing resources of master components are automatically scaled up based on the cluster scale.

You do not need to pay for master components.

Self-deployed clusters:

Master components are fully under your control.

You need to purchase master components.

Recommendations

In regular cases, we recommend that you select managed clusters. If you need to fully control master
components, such as specifying custom features to implement advanced features, you can select self-deployed
clusters.

Node Operating System

TKE supports three distributions of operating systems, Tencent Linux, Ubuntu and CentOS. The Tencent Linux
operating system uses TencentOS-kernel that is a customized kernel maintained by Tencent Cloud team. Other

operating systems use the open-source kernel provided by the official Linux community. The following shows the

https://github.com/Tencent/TencentOS-kernel

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 577

supported operating systems.

Note：

TKE-Optimized series images is once used for improving the stability of the image and providing more
features, but it is not available for the clusters in TKE console after the Tencent Linux public image is launched.
For more information, see TKE-Optimized Series Images.

Recommendations

We recommend that you use the Tencent Linux operating system. It is a public image of Tencent Cloud that contains
the TencentOS-kernel. TKE now supports this image and uses it as the default image.

Node Pool

The node pool is mainly used to batch manage nodes with the following items:

Label and Taint properties of nodes
Startup parameters of node components
Custom launch script for nodes
For more information, see Node Pool Overview.

Application scenarios

https://intl.cloud.tencent.com.cn/document/product/457/34715
https://github.com/Tencent/TencentOS-kernel
https://intl.cloud.tencent.com.cn/document/product/457/35900

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 577

Manage heterogeneous nodes by group to reduce management costs.
Use the Label and Taint properties to enable a cluster to support complex scheduling rules.
Frequently scale out and in nodes to reduce operation costs.

Routinely maintain nodes, such as upgrade node versions.

Examples

Some I/O-intensive services require models with high I/O throughput. You can create a node pool for a service of
these kinds, configure a model, centrally specify Label and Taint properties for the nodes, and configure affinity with
I/O-intensive services. You can select Labels to schedule the service to a node with a high I/O model. To avoid other
service pods from being scheduled to the node, you can select specific Taints.

When the service traffic increases, the I/O-intensive service needs more computing resources. During peak hours, the
HPA feature automatically scales out pods for the service, and the computing resources of the node become
insufficient. In this case, the auto scaling feature of the node pool automatically scales out nodes to withstand the traffic
spike.

Launch Script

Custom parameters for components

Note：
To use this feature, submit a ticket to apply for it.

When creating a cluster, you can customize some startup parameters of master components in Advanced
Settings under Cluster Information.

In Select Model step, you can customize some startup parameters of kubelet in Advanced Settings under
Worker Configurations.

https://console.intl.cloud.tencent.com.cn/workorder/category

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 577

Node launch configuration

When creating a cluster, in Advanced Settings under CVM Configuration, you can specify custom data to

configure the node launch script. In the script, you can modify component startup parameters and kernel
parameters, as shown in the following figure:

When adding a node, in Advanced Settings under CVM Configuration, you can specify custom data to

configure the node launch script. In the script, you can modify component startup parameters and kernel
parameters, as shown in the following figure:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 577

Overview

TKE includes managed clusters and self-deployed clusters. If you use a managed cluster, you do not need to be
concerned about disaster recovery. The masters of managed clusters are internally maintained by TKE. If you use a
self-deployed cluster, you need to manage and maintain the master nodes yourself.

To enable disaster recovery for a self-deployed cluster, you need to first plan a disaster recovery scheme based on
your needs and then complete the corresponding configuration during cluster creation. This document introduces how
to enable disaster recovery for the masters of a TKE self-deployed cluster for your reference.

How to Enable Disaster Recovery

To enable disaster recovery, you need to start from physical deployment. To prevent a fault in the physical layer from
causing exceptions on multiple masters, you need to widely distribute master nodes. You can use a placement group

to choose the CPM, exchange, or rack dimension to distribute master nodes, thus preventing underlying hardware or
software faults from causing exceptions on multiple masters. If you have high requirements for disaster recovery, you
can consider deploying masters across availability zones, so as to prevent situations where a large-scale fault causes
the entire IDC to become unavailable, leading to multiple master exceptions.

Using a Placement Group to Distribute Masters

1. Log in to the Placement Group Console to create a placement group. For more information, see Spread Placement
Group. See the figure below:

Enabling Disaster Recovery for Masters of
Self-Deployed Clusters
Last updated：2020-11-11 15:45:38

Note：

The placement group and the TKE self-deployed cluster need to be in the same region.

https://intl.cloud.tencent.com.cn/document/product/213/15486
https://console.intl.cloud.tencent.com.cn/cvm/ps
https://intl.cloud.tencent.com.cn/document/product/213/17020

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 577

The placement group layers are as follows. In this document, the "rack layer" is selected as an example:

Placement
Group
Layer

Description

CPM layer

A master node of a self-deployed cluster is deployed on a CVM, which is a virtual machine
running on a CPM. Multiple virtual machines may run on one CPM. If the CPM is faulty, all
virtual machines running on it will be affected. By using this layer, you can distribute master
nodes to different CPMs to prevent one faulty CPM from causing exceptions on multiple nodes.

Exchange
layer

Multiple different CPMs may be connected to the same exchange. If the exchange is faulty,
multiple CPMs will be affected. By using this layer, you can distribute master nodes to CPMs
connected to different exchanges, thereby preventing one faulty exchange from causing
exceptions on multiple master nodes.

Rack layer

Multiple different CPMs may be placed on the same rack. If a rack-level fault occurs, multiple
CPMs on the rack will become faulty. By using this layer, you can distribute master nodes to
CPMs on different racks, thereby preventing rack-level faults from causing exceptions on
multiple master nodes.

2. Refer to Creating a Cluster to create a TKE self-deployed cluster. Choose Master&Etcd Configuration >
Advanced Configuration, check Add Instance to Spread Placement Group, and select the created
placement group. See the figure below:

https://intl.cloud.tencent.com.cn/document/product/457/30637

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 577

After configuration is completed, the corresponding master nodes will be distributed to different racks to enable
rack-level disaster recovery.

Disaster Recovery with Masters Deployed Across Availability Zones

If you have high requirements for disaster recovery and want to prevent situations where a large-scale fault causes the
entire IDC to become unavailable, causing exceptions on all master nodes, you can choose to deploy masters in

different availability zones. The configuration method is as follows:
During cluster creation, in Master&Etcd Configuration, add models to multiple availability zones. See the figure
below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 577

Overview

After private network access is enabled for the current cluster, TKE will access the cluster through the domain name
by default. You need to configure Host on the access server to perform DNS queries on the private network. If no

DNS rules (Host) are configured, an error "no such host" will be reported when you access the cluster on the

access server (by running kubectl get nodes) as shown below:

In practice, configuring Host will increase your management labor costs. Therefore, we recommend you use

Tencent Cloud's newly launched Private DNS service, which helps you get things done in just three steps.

Billing description

Private DNS is billed on a pay-as-you-go basis, where the number of private domains and that of DNS requests are

billed on a natural day basis. For more information, see Billing Overview.

Available regions

Currently, Private DNS is not available in all the available regions of TKE. For the list of its available regions, see Use
Limits.

To access clusters over the private network in regions not covered by Private DNS, you need to manually configure
the Host . To use Private DNS in those regions, submit a ticket for application.

Prerequisites

A container cluster has been created and private network access has been enabled. For details, see Creating a
Cluster.

Using Private DNS to Implement Automatic
Domain Name Resolution When Accessing
Cluster via Private Network
Last updated：2022-06-10 16:48:45

https://intl.cloud.tencent.com.cn/document/product/1097
https://intl.cloud.tencent.com.cn/document/product/1097/40555
https://intl.cloud.tencent.com.cn/document/product/1097/40553
https://console.intl.cloud.tencent.com.cn/workorder/category
https://intl.cloud.tencent.com.cn/document/product/457/30637

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 577

Directions

Activating Private DNS

See Activating Private DNS.

Creating private domain

1. Log in to the Private DNS console.
2. Click Create Private Domain and configure the following options (just use the default values for other

parameters). For more information, see Creating Private Domain.

Domain: Enter tencent-cloud.com (domain name allocated by TKE for accessing the cluster).

Associated VPC: Select the node VPC that needs to access the cluster.

3. Click OK.

Configuring DNS records

1. Click the private domain name created above to enter the DNS Records page.

https://intl.cloud.tencent.com.cn/document/product/1097/40557
https://console.intl.cloud.tencent.com.cn/privatedns/domains
https://intl.cloud.tencent.com.cn/document/product/1097/40558

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 577

2. Click Add Records and configure the following options:

Host Record: Enter the secondary domain name for accessing the TKE cluster, for example, cls-

{{clsid}}.css .

Record Type: Enter A .

Record Value: Enter the private IP for accessing the TKE cluster.

Note：

You can get the **Host Record and Record Value from Cluster Management > Cluster > Basic
Info. Here, Host Record is the domain name in Access Address, and Record Value is the IP address
in Private Network Access, as shown below:

c. Click Save in the Operation column on the right.

Verifying effect

1. Run the following command to access the cluster again.

kubectl get nodes

2. When the following result is displayed, the cluster has been successfully accessed, and the node list has been
pulled.

https://console.intl.cloud.tencent.com.cn/tke2/cluster?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 577

Overview

Velero (the previous version is called Heptio Ark), an open-source tool, can safely back up and restore, perform
disaster recovery, and migrate Kubernetes cluster resources and persistent volumes. Deploying Velero in the TKE
cluster or self-built Kubenetes cluster can achieve the following features:

Back up cluster resources and restore in case of loss.
Migrate cluster resources to other clusters.
Replicate the production cluster resources to the development and test clusters.

Working principles of Velero is shown in the figure below (from Velero official website). When the user runs the backup
command, the backup process is described as follows:

1. Call the custom resource API to create a backup object, as shown in (1).
2. When BackupController detects the generated backup object, as shown in (2), it executes the backup operation, as

shown in (3).
3. Upload and store the backup cluster resources and storage volume snapshots to Velero's backend, as shown in (4)

and (5).

Cluster Migration
Using COS as Velero Storage to Implement
Backup and Restoration of Cluster Resources
Last updated：2021-11-25 17:30:44

https://velero.io/
https://velero.io/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 577

In addition, when performing a restoration operation, Velero will synchronize the data of the specified backup object
from the backend storage to the Kubernetes cluster.
For more information about Velero, see Velero official document. This document describes how to use COS as the

Velero backend storage to implement cluster backup and restoration.

Prerequisites

You have registered a Tencent Cloud account.
Activate the COS service.
Create a Kubernetes cluster of v1.10 or later version, and the cluster can use DNS and Internet services normally.
For more information, see Creating a Cluster.

Directions

Configuring COS

Creating a bucket

1. Log in to the COS console to create a bucket for Velero to store backups. For more information, see Creating
Buckets.

2. Set Access Permission for the bucket. COS supports two permission types:
Public permissions: for the sake of security, the permission of private read/write is recommended for the
bucket. For more information, see Types of Permission under Bucket Overview.
User permissions: the root account has all bucket permissions (full control) by default. You can add sub-

accounts and grant them permissions including read/write, read/write ACL, and even full control.
The sample sub-account has been granted the permissions of read/write for performing read/write on the
bucket, as shown in the figure below:

https://velero.io/
https://intl.cloud.tencent.com.cn/document/product/436
https://intl.cloud.tencent.com.cn/register
https://console.intl.cloud.tencent.com.cn/cos5
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://console.intl.cloud.tencent.com.cn/cos5
https://intl.cloud.tencent.com.cn/document/product/436/13309
https://intl.cloud.tencent.com.cn/document/product/436/13315
https://intl.cloud.tencent.com.cn/document/product/436/13312

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 577

Obtaining the bucket access credentials

Velero uses an API compatible with AWS S3 to access COS. It needs to use a pair of access key ID and a signature
created by the key for authentication. In the S3 API parameters:

 access_key_id : access key ID

 secret_access_key : key

1. Log in to CAM console to create and obtain the keys SecretId and SecretKey of the COS authorized sub-

account. Among them:
The value of SecretId corresponds to the access_key_id field.

The value of SecretKey corresponds to the secret_access_key field.

2. According to the above corresponding relationship, create the credential configuration file credentials-

velero required by Velero in the local directory. The content is as follows:

[default]

aws_access_key_id=<SecretId>

aws_secret_access_key=<SecretKey>

Installing Velero

1. Download the latest version of Velero to the cluster environment. This document uses Velero v1.5.2 as an example,
as shown below:

wget https://github.com/vmware-tanzu/velero/releases/download/v1.5.2/velero-v1.

5.2-linux-amd64.tar.gz

2. Run the following command to decompress the installation package. The installation package provides Velero
command lines and some sample files, as shown below:

tar -xvf velero-v1.5.2-linux-amd64.tar.gz

3. Run the following command to migrate the Velero executable file from the decompressed directory to the system

environment variable directory for direct use. This document takes the migration to the /usr/bin directory as

an example, as shown below:

mv velero-v1.5.2-linux-amd64/velero /usr/bin/

https://console.intl.cloud.tencent.com.cn/cam/capi
https://github.com/vmware-tanzu/velero/releases

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 577

4. Run the following commands to install Velero, create Velero and Restic workloads and other necessary resource
objects (for installation parameter descriptions, please see table below), as shown below:

velero install --provider aws --plugins velero/velero-plugin-for-aws:v1.1.0 --b

ucket <BucketName> \

 --secret-file ./credentials-velero

--use-restic

--default-volumes-to-restic

--backup-location-config

region=ap-guangzhou,s3ForcePathStyle="true",s3Url=https://cos.ap-

guangzhou.myqcloud.com

Installation parameter description:

Parameter Description

--provider Declare to use the plugin type provided by aws .

--plugins Use AWS S3 compatible API plugin "velero-plugin-for-aws".

--bucket The name of the bucket created in COS

--secret-file The access credential file for accessing COS. For more information, see
"credentials-velero" credential file created above.

--use-restic

Velero supports using the free and open-source backup tool Restic to back up and
restore Kubernetes storage volume data (hostPath volume is not supported,
For more information, see Restic Limitations). It is recommended to enable this
integration, which is a supplement to Velero's backup feature.

--default-volumes-to-restic
Enable Restic to back up all Pod volumes, provided that the --use-restic
parameter is enabled.

--backup-location-config Back up bucket access related configuration, including region, s3ForcePathStyle,
s3Url, etc.

region COS bucket region is compatible with S3 API, for example, the creation region is
Guangzhou, and the value of parameter “region” is "ap-guangzhou".

https://github.com/restic/restic
https://velero.io/docs/v1.5/restic/#limitations

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 577

Parameter Description

s3ForcePathStyle Use S3 file path format.

s3Url

S3 API access address compatible with COS. Please note that the domain name
in the access address is not the public domain name used to create the COS
bucket. It must be a URL in the format
https://cos.&dxlt;region&dxgt;.myqcloud.com. For example, if the region is
Guangzhou, then The parameter value is https://cos.ap-
guangzhou.myqcloud.com .

You can use the command velero install --help to view other installation parameters. For example, if you

do not need to back up storage volume data, you can set --use-volume-snapshots=false to disable storage

volume snapshot backup.
Check the installation process after executing the installation command, as shown in the figure below:

5. After the installation, wait for Velero and Restic workloads to be ready. Run the following command to check
whether the configured storage location is available. If "Available" is displayed, it means that the cluster can access
the COS normally, as shown in the figure below:

At this point, the Velero installation is complete. For more information about Velero installation, see Velero
documentation on the official website.

Velero backup and restoration testing

https://velero.io/docs/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 577

1. Use the Helm tool in the cluster to create a MinIO test service with persistent volumes. For the MinIO installation
method, see MinIO Installation. In this example, the MinIO service has bound a load balancer. You can use the
public network address to access the management page in the browser.

2. Log in to the MinIO Web management page and upload the image for testing, as shown in the figure below:

3. Using Velero backup, you can directly back up all objects in the cluster, or filter objects by type, namespace, / or
tag. You can run the following command to only backup all resources in the default namespace, as shown below:

velero backup create default-backup --include-namespaces default

4. Run the following command to check whether the backup task is completed. When the status of the backup task is
"Completed" and "ERRORS" is 0, it means that the backup task is completed without any errors.

velero backup get

https://github.com/minio/charts

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 577

The backup process is shown in the figure below:

5. Run the following command to delete all resources under MinIO, including PVC persistent volumes, as shown
below:

6. After deleting the MinIO resource, you can use the previous backup to test whether the deleted MinIO resource can

be successfully restored. Run the following command to temporarily update the backup storage location to read-
only mode (to prevent Velero from creating or deleting backup objects in the backup storage location during the
restoration process).

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadOnly"}}'

The execution process is shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 577

7. Run the following command to create a restoration task using the backup "default-backup" created by Velero in
Step 3 above, as shown below:

velero restore create --from-backup default-backup

Use the command velero restore get to view the status of the restoration task. If the restoration status is

"Completed" and "ERRORS" is 0, it means that the restoration task is completed, as shown in the figure below:

8. After the restoration, run the following command. You can find that the related resources of the previously deleted
MinIO have been restored successfully, as shown below:

9. Log in to the MinIO management page on the browser. You can find the previously uploaded image, indicating that
the data of the persistent volume is restored successfully, as shown below:

Note：

This document describes how to use Restic to backup and restore persistent volumes, but Restic does not
support hostPath type volumes. For more information, see Restic Limitations.

https://velero.io/docs/v1.5/restic/#limitations

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 577

10. In addition, after the restoration, you can run the following command to restore the backup storage location to
read/write mode, so that you can back up normally next time, as shown below:

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadWrite"}}'

Uninstalling Velero

Run the following command to uninstall Velero in the cluster, as shown below:

kubectl delete namespace/velero clusterrolebinding/velero

kubectl delete crds -l component=velero

Summary

This document mainly introduces Velero, a Kubernetes cluster resource backup tool, and shows how to configure
COS as Velero's backend storage, and successfully practices the backup and restoration operations of MinIO service
resources and data.

References

Velero Official Website

Restic Introduction
Restic Limitations

https://velero.io/
https://github.com/restic/restic
https://velero.io/docs/v1.5/restic/#limitations

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 577

Overview

Velero (the previous version is called Heptio Ark), an open-source tool, can safely back up and restore, perform
disaster recovery, and migrate Kubernetes cluster resources and persistent volumes. Deploying Velero in the TKE
cluster or self-built Kubenetes cluster, it can achieve the following features:

Back up cluster resources and restore in case of loss.
Migrate cluster resources to other clusters.
Replicate the production cluster resources to development and test clusters.

For more information about Velero, see Velero official document. This document describes how to use Velero to
seamlessly migrate and replicate cluster resources among TKE clusters.

Migration Principle

Install Velero instances on both the cluster to migrate and the target cluster. The Velero instances of the two clusters
point to the same COS location. The process is as follows:

1. Use Velero to perform backup operations on the cluster that needs to migrate. Generate backup data and store it in
the COS.

2. Use Velero to perform data restoration on the target cluster to implement migration.

Using Velero to Replicate Cluster Resources
in TKE
Last updated：2020-12-21 09:54:37

https://velero.io/
https://velero.io/
https://intl.cloud.tencent.com.cn/document/product/436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 577

The migration principle is shown as follows:

Prerequisites

You have registered a Tencent Cloud account.
You have activated the COS service.

There are already two TKE clusters: cluster A that needs to migrate and cluster B that has created a migration
target. For how to create a TKE cluster, see Creating a Cluster.

https://intl.cloud.tencent.com.cn/register
https://console.intl.cloud.tencent.com.cn/cos5
https://intl.cloud.tencent.com.cn/document/product/457/30637

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 577

Both cluster A and cluster B need to install Velero instances (v1.5 or later version), and share the same COS
bucket as Velero backend storage. For the installation steps, see Configuring Storage and Installing Velero.

Notes

Starting from Velero v1.5, Velero can use Restic to back up all Pod volumes without annotating each Pod

individually. By default, users are allowed to use Restic to back up all Pod volumes, except for the following
volumes:

The volumes that mount the default Service Account Secret

The type volumes that mount hostPath

The volumes that mount Kubernetes secrets and configmaps

This example requires Velero v1.5 or later version and Restic enabled to back up persistent volume data. Please
ensure that parameters --use-restic and --default-volumes-to-restic are enabled during the

Velero installation. For the installation steps, see Configuring Storage and Installing Velero.
During the migration, it is not allowed to perform any CRUD operations on the resources of the clusters on both
sides, so as to avoid data differences during the migration and data inconsistence after the final migration.
Please try to make sure that the CPU, memory and other specifications of cluster A and Cluster B are the same or

do not differ too much, so as to avoid the situation that the migrated Pods cannot be scheduled due to resource
reasons, resulting in Pending.

Directions

Creating a backup in cluster A

Checking cluster A resources before backup

Before backing up cluster A, you can view the resources and services of cluster A for Migration Result Verification
after cluster restoration.

1. This document will compare and verify the resources of the “default” and “default2” namespaces. Run the following

commands to view the Pods and PVC resources in the two namespaces in cluster A, as shown in the figure below:

https://intl.cloud.tencent.com.cn/document/product/457/38939#.E9.85.8D.E7.BD.AE.E5.AD.98.E5.82.A8
https://velero.io/docs/v1.5/restic/
https://intl.cloud.tencent.com.cn/document/product/457/38939#.E9.85.8D.E7.BD.AE.E5.AD.98.E5.82.A8

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 577

2. The MinIO COS in cluster A uses persistent volumes, and some images has been uploaded, as shown in the figure

below:

Cluster backup

1. Run the following command to back up all resources except the Velero namespace (the default namespace
installed by Velero) in the cluster. If you need to customize the scope of the backup cluster resource, you can use
the command velero create backup -h to view the available resource filter parameters.

velero backup create <BACKUP-NAME> --exclude-namespaces <NAMESPACE>

Note：

You can specify some custom Hook operations during the backup. For example, the data in the memory of
the running application needs to be persisted to disk before backup. For more information about Hook, see
Backup Hooks.

https://velero.io/docs/v1.5/backup-hooks/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 577

This document takes the creation of a “default-all” cluster backup as an example. The backup process is shown in
the figure below. If the status of the backup task is "Completed", the backup is successful.

2. Run the following command to check if there is any errors in the backup operation. If the command does not
produce any output, it means that no error occurred during the backup, as shown below:

velero backup logs <BACKUP-NAME> | grep error

3. After the backup is completed, run the following command to temporarily update the backup storage location to
read-only mode (optional, to prevent Velero from creating or deleting backup objects in the backup storage location

during the restoration), as shown below:

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadOnly"}}'

Performing a restoration in cluster B

Viewing cluster B resources before restoration

Before performing a restoration in cluster B, you can view the resources and services of cluster B for Migration Result
Verification after cluster restoration.

Note：

You can also set regular automatic backups for Velero. Run the command velero schedule -h to
view the setting method.

Note：

Please make sure that no errors occur during the backup. If Velero makes any errors during the backup,
please re-perform the backup after troubleshooting.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 577

Before the restoration, there are no workload resources under the “default” and “default2” namespaces in cluster B.
Run the following commands to view the Pods and PVC resources in the two namespaces in cluster B, as shown
below:

Cluster restoration

1. Run the following command to temporarily update Velero backup storage location in cluster B to read-only mode
(optional, to prevent Velero from creating or deleting backup objects in the backup storage location during the
restoration), as shown below:

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadOnly"}}'

2. Before the restoration, you need to ensure that the Velero resource in cluster B is synchronized with the backup file
in COS. You can use --backup-sync-period to configure the synchronization interval, which is 1 minute by

default. You can run the following command to check whether the backup of cluster A has been synchronized.

velero backup get <BACKUP-NAME>

3. After the backup is successfully obtained and checked, run the following command to restore all contents to cluster

B.

velero restore create --from-backup <BACKUP-NAME>

Note：

You can specify a custom Hook operation to perform during the restoration or after the resource restoration.
For example, you need to perform a custom database restoration operation before the database application
container starts. For more information about Hook, see Restore Hooks.

https://velero.io/docs/v1.5/restore-hooks/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 577

The restoration process is shown in the figure below:

4. After the restoration is completed, check the restoration log, and run the following command to check whether there
are any errors and skips during restoration, as shown below:

Check whether there are restoration errors during migration

velero restore logs <BACKUP-NAME> | grep error

View the skipped restoration operations during migration

velero restore logs <BACKUP-NAME> | grep skip

As shown in the figure below, you can find that no errors occurred, but some "skipped" steps occurred during
restoration. Because when backing up cluster resources, all cluster resources that did not contain the Velero
namespace were backed up. Some cluster resources of the same type and name already existed. For example,
cluster resources under kube-system. When there is a resource conflict during the restoration, Velero will skip the
restoration step. In fact, the restoration process is normal and the “skipped” logs can be ignored (you can analyze
these logs as needed).

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 577

Verifying migration result

1. Run the following command to verify the cluster resources of cluster B after the migration. You can find that the
Pods and PVC resources in the “default” and “default2” namespaces have been successfully migrated as
expected, as shown below:

2. Log in to the MinIO service in cluster B, and you can find that the images in the MinIO service are not lost,
indicating that the persistent volume data has been successfully migrated as expected.

3. At this point, the migration of resources between TKE clusters has been completed.
After the migration is completed, run the following command to restore the backup storage locations of cluster A
and cluster B to read/write mode, so that the next backup task can be performed normally, as shown below:

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadWrite"}}'

Summary

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 577

This document mainly introduces the principle, notes and operation methods of using Velero to migrate cluster
resources among TKE clusters. The cluster resources in cluster A are successfully migrated seamlessly to cluster B.
The whole migration process is simple and fast, and it is a very friendly cluster resource migration solution.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 577

Overview

The open source tool Velero (formerly known as the Heptio Ark) can safely back up and restore, perform disaster
recovery, and migrate Kubernetes cluster resources and persistent volumes. TKE supports using Velero to back up,
restore and migrate cluster resources. For more information, see Using COS as Velero Storage to Implement Backup

and Restoration of Cluster Resources and Using Velero to Migrate and Replicate Cluster Resources in TKE. This
document describes how to use Velero to seamlessly migrate self-built or other cloud platform Kubernetes clusters to
TKE.

Migration Principle

The principle of using Velero to migrate self-built or other cloud platform cluster is similar to the principle of Using
Velero to Replicate Cluster Resources in TKE. Both the source cluster and the target cluster for migration need to

install Velero instances and specify the same Tencent Cloud COS bucket. According to the actual needs, the source
cluster performs backup, and the target cluster restores cluster resources, so as to implement resource migration.
The difference is that when you migrate cluster resources from self-built or other cloud platforms to TKE, you need to
consider and solve the problem of cluster environment differences caused by cross-platform. You can refer to the
practical backup and restore strategies provided by Velero to solve the problems.

Prerequisites

There is a self-built or other cloud platform Kubernetes cluster (cluster A), and the cluster version must be v1.10 or

later.
There is a target TKE cluster (cluster B). For how to create a TKE cluster, see Creating a Cluster.
Both cluster A and cluster B need to install Velero instances (v1.5 or later version), and share the same COS
bucket as Velero backend storage. For the installation steps, see Configuring COS and Installing Velero.
Ensure that image resources can be pulled normally after migration.

It is recommended that the two clusters use the same Kubernetes version to ensure the APIs are compatible.

Using Velero to Migrate Cluster Resources to
TKE Across Cloud Platforms
Last updated：2021-12-06 11:19:29

https://velero.io/
https://intl.cloud.tencent.com.cn/zh/document/product/457/38939
https://intl.cloud.tencent.com.cn/zh/document/product/457/38940
https://intl.cloud.tencent.com.cn/zh/document/product/457/38940
https://intl.cloud.tencent.com.cn/zh/document/product/436
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/zh/document/product/457/38939

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 577

Migration Guide

Before migration, it is recommended that you make a detailed migration plan, and consider the following points during
the migration process:

Show All

Analyzing

展开&收起
Filter and classify the resource inventories that need migration and that do not need migration based on actual needs.

Considering

展开&收起
When backing up cluster resources, you need to consider whether to perform Backup Hooks during the backup.

For example, the memory data of the running application needs to be stored in disk.

When restoring (migrating) cluster resources, you need to consider whether to perform Restoring Hooks during the
restoration. For example, some initialization work needs to be prepared before restoration.

Writing

展开&收起
Write backup and restoration strategies based on the filtered and classified resource inventories. It is recommended to
use the method of creating resource inventories to perform backup and restoration in complex scenarios. The YAML
resource inventory is intuitive and easy to maintain. For simple migration or test scenarios, you can specify parameters

to implement backup and restoration.

Processing

展开&收起
Due to the cross-cloud platform migration, the relationships of the dynamic storage classes for creating PVC may be
different. You need to plan in advance whether the relationships of dynamic PVC/PV storage classes need to be
remapped. And you need to create the ConfigMap configuration of the relevant mapping before the restoration. To

solve more personalized differences, you can manually modify the backup resource inventory.

Checking

展开&收起
Check whether the migrated cluster resources meet expectations and the data is complete and available.

Directions

https://velero.io/docs/v1.5/backup-hooks/
https://velero.io/docs/v1.5/backup-hooks/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 577

The following describes the detailed steps of migrating resources from a cloud platform cluster A to TKE cluster B. For
the involved the basic knowledge of Velero backup and restoration, please refer to Practical Velero backup/restoration
Knowledge.

Creating the resources of cluster A

Deploy an Nginx workload with PVC in Velero instance in cluster A. For convenience, you can directly use dynamic
storage class to create PVC and PV.

1. Run the following command to view the dynamic storage class information supported by the current cluster, as
shown below:

Get the storage class information supported by the current cluster, where xxx

-StorageClass is the storage class code name, and xxx-Provider is the provider

code name (the same below).

$ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

xxx-StorageClass xxx-Provider Delete Immediate true 3d3h

...

2. Modify the PVC resource inventory in the with-pv.yaml file, and use the storage class named "xxx-StorageClass" in

the cluster to dynamically create, as shown below:

...

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: nginx-logs

namespace: nginx-example

labels:

app: nginx

spec:

Optional: modify the value of the PVC storage class to the cloud platform of

cluster A.

storageClassName: xxx-StorageClass

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 20Gi # Since the minimum storage of this cloud platform is 20 Gi, you

need to modify the storage to 20 Gi in this sample.

...

https://github.com/vmware-tanzu/velero/blob/v1.5.1/examples/nginx-app/with-pv.yaml

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 577

3. Run the following command to apply with-pv.yaml in the sample to create the following cluster resources (nginx-
example namespace), as shown below:

$ kubectl apply -f with-pv.yaml

namespace/nginx-example created

persistentvolumeclaim/nginx-logs created

deployment.apps/nginx-deployment created

service/my-nginx created

4. The created PVC “nginx-logs” has been mounted to the /var/log/nginx directory of the Nginx container as

the log storage of service. The sample here will test and access the Nginx service in the browser to generate log
data for the mounted PVC for data comparison after restoration, as shown below:

$ kubectl exec -it nginx-deployment-5ccc99bffb-6nm5w bash -n nginx-example

kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future ver

sion. Use kubectl kubectl exec [POD] -- [COMMAND]

Defaulting container name to nginx.

Use 'kubectl describe pod/nginx-deployment-5ccc99bffb-6nm5w -n nginx-example'

to see all of the containers in this pod

$ du -sh /var/log/nginx/

84K /var/log/nginx/

View the first two logs of accss.log and error.log.

$ head -n 2 /var/log/nginx/access.log

192.168.0.73 - - [29/Dec/2020:03:02:31 +0000] "GET /?spm=5176.2020520152.0.0.2

2d016ddHXZumX HTTP/1.1" 200 612 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10

_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.3

6" "-"

192.168.0.73 - - [29/Dec/2020:03:02:32 +0000] "GET /favicon.ico HTTP/1.1" 404

555 "http://47.242.233.22/?spm=5176.2020520152.0.0.22d016ddHXZumX" "Mozilla/5.

0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) C

hrome/87.0.4280.88 Safari/537.36" "-"

$ head -n 2 /var/log/nginx/error.log

2020/12/29 03:02:32 [error] 6#6: *597 open() "/usr/share/nginx/html/favicon.ic

o" failed (2: No such file or directory), client: 192.168.0.73, server: localh

ost, request: "GET /favicon.ico HTTP/1.1", host: "47.242.233.22", referrer: "h

ttp://47.242.233.22/?spm=5176.2020520152.0.0.22d016ddHXZumX"

2020/12/29 03:07:21 [error] 6#6: *1172 open() "/usr/share/nginx/html/0bef" fai

led (2: No such file or directory), client: 192.168.0.73, server: localhost, r

equest: "GET /0bef HTTP/1.0"

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 577

Confirming the resource inventories to migrate

1. Run the following command to output all resource inventories in cluster A.

kubectl api-resources --verbs=list -o name | xargs -n 1 kubectl get --show-kind

--ignore-not-found --all-namespaces

You can also run the following commands to distinguish namespaces based on resources and narrow the scope of
output resources:

View the resource inventories that do not distinguish namespaces:

kubectl api-resources --namespaced=false --verbs=list -o name | xargs -n 1 ku

bectl get --show-kind --ignore-not-found

View the resource inventories that distinguish namespaces:

kubectl api-resources --namespaced=true --verbs=list -o name | xargs -n 1 kub

ectl get --show-kind --ignore-not-found --all-namespaces

2. You can filter the resource inventories that need to migrate based on the actual needs. The sample here will directly
migrate Nginx workload-related resources under the "nginx-example" namespace from this cloud platform to TKE.
The resources involved are as follows:

$ kubectl get all -n nginx-example

NAME READY STATUS RESTARTS AGE

pod/nginx-deployment-5ccc99bffb-tn2sh 2/2 Running 0 2d19h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/my-nginx LoadBalancer 172.21.1.185 x.x.x.x 80:31455/TCP 2d19h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx-deployment 1/1 1 1 2d19h

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-deployment-5ccc99bffb 1 1 1 2d19h

$ kubectl get pvc -n nginx-example

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

nginx-logs Bound d-j6ccrq4k1moziu1l6l5r 20Gi RWO xxx-StorageClass 2d19h

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 577

Confirming Hook strategy

The sample has configured a Hook strategy that is "setting the file system to read-only before backing up the Nginx

workload and restoring it to read/write after the backup” in with-pv.yaml. The YAML file is as follows:

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

d-j6ccrq4k1moziu1l6l5r 20Gi RWO Delete Bound nginx-example/nginx-logs xxx-Stor

ageClass 2d19h

...

annotations:

The annotation of the backup hook strategy indicates that the nginx log direct

ory is set to read-only mode before starting the backup, and is restored to rea

d/write mode after the backup is completed.

pre.hook.backup.velero.io/container: fsfreeze

pre.hook.backup.velero.io/command: '["/sbin/fsfreeze", "--freeze", "/var/log/ngi

nx"]'

post.hook.backup.velero.io/container: fsfreeze

post.hook.backup.velero.io/command: '["/sbin/fsfreeze", "--unfreeze", "/var/log/

nginx"]'

spec:

volumes:

- name: nginx-logs

persistentVolumeClaim:

claimName: nginx-logs

containers:

- image: nginx:1.17.6

name: nginx

ports:

- containerPort: 80

volumeMounts:

- mountPath: "/var/log/nginx"

name: nginx-logs

readOnly: false

- image: ubuntu:bionic

name: fsfreeze

securityContext:

privileged: true

volumeMounts:

- mountPath: "/var/log/nginx"

name: nginx-logs

...

https://github.com/vmware-tanzu/velero/blob/v1.5.1/examples/nginx-app/with-pv.yaml

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 577

Starting migration

Write a backup and restoration strategy based on the actual situation, and begin to migrate the Nginx workload related
resources of the cloud platform.

Performing backup in cluster A

1. Create the following YAML file to back up the resources that need to migrate.

2. The backup process is shown below. When the backup status is "Completed" and the number of errors is 0, the
backup process is complete and correct.

$ kubectl apply -f backup.yaml

backup.velero.io/migrate-backup created

$ velero backup get

NAME STATUS ERRORS WARNINGS CREATED EXPIRES STORAGE LOCATION SELECTOR

migrate-backup InProgress 0 0 2020-12-29 19:24:12 +0800 CST 29d default <none>

$ velero backup get

NAME STATUS ERRORS WARNINGS CREATED EXPIRES STORAGE LOCATION SELECTOR

migrate-backup Completed 0 0 2020-12-29 19:24:28 +0800 CST 29d default <none>

3. After the backup is complete, run the following command to temporarily update the backup storage location to
read-only mode, as shown below:

apiVersion: velero.io/v1

kind: Backup

metadata:

name: migrate-backup

Must be the namespace installed by velero.

namespace: velero

spec:

The resources that only contains the nginx-example namespace.

includedNamespaces:

- nginx-example

The resources that do not distinguish namespace.

includeClusterResources: true

Specify the storage location of the backup data.

storageLocation: default

Specify the storage location of the volume snapshot.

volumeSnapshotLocations:

- default

Use restic to back up the volume.

defaultVolumesToRestic: true

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 577

Note
This can prevent Velero from creating or deleting backup objects in the backup storage location during the
restoration. (Optional)

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadOnly"}}'

Processing resource differences across cloud platforms

1. Due to differences in the dynamic storage classes used, you need to create a dynamic storage class name mapping

for the persistent volume "nginx-logs" through the ConfigMap shown below.

2. Run the following command to apply the above ConfigMap configuration, as shown below:

$ kubectl apply -f cm-storage-class.yaml

configmap/change-storage-class-config created

3. The resource inventories backed up by Velero is stored in COS in JSON format. If you have a more personalized
migration requirement, you can directly download the backup file and customize it. The sample below will add a
"jokey-test:jokey-test" annotation to the Deployment resource of Nginx. The modification process is as follows:

$ Downloads % mkdir migrate-backup

Decompress the backup file.

$ Downloads % tar -zxvf migrate-backup.tar.gz -C migrate-backup

apiVersion: v1

kind: ConfigMap

metadata:

name: change-storage-class-config

namespace: velero

labels:

velero.io/plugin-config: ""

velero.io/change-storage-class: RestoreItemAction

data:

Storage class name is mapped to Tencent cloud dynamic storage class cbs.

xxx-StorageClass: cbs

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 577

Edit the resources that need to be customized. In the sample below, "jokey-te

st" is added to the Deployment resource of Nginx: "jokey-test" annotation.

$ migrate-backup % cat resources/deployments.apps/namespaces/nginx-example/ngin

x-deployment.json

{"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{"jokey-t

est":"jokey-test",...

Repack the modified backup files.

$ migrate-backup % tar -zcvf migrate-backup.tar.gz *

4. Complete the custom modification and repackage, and log in to COS console to upload the backup file and replace

the original backup file.

Performing the restoration in cluster B

1. The sample uses the resource inventories shown below to perform the restoration (migration).

apiVersion: velero.io/v1

kind: Restore

metadata:

name: migrate-restore

namespace: velero

spec:

backupName: migrate-backup

includedNamespaces:

- nginx-example

Fill in the resource type to be restored as needed. There is no resource to

be excluded under the nginx-example namespace, so enter '*' here.

includedResources:

- '*'

includeClusterResources: null

Resources not included in the restoration. Here storageClasses resource type

s are excluded.

excludedResources:

- storageclasses.storage.k8s.io

Use the labelSelector selector to select the resource with a specific label.

Since there is no need to use the label selector to filter in this sample, ple

ase make an annotation here.

https://console.intl.cloud.tencent.com.cn/cos5/bucket

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 577

2. The execution of the restoration process is shown below. When the restoration status is "Completed" and the
number of "errors" is 0, it means the restoration process is complete and correct.

$ kubectl apply -f restore.yaml

restore.velero.io/migrate-restore created

$ velero restore get

NAME BACKUP STATUS STARTED COMPLETED ERRORS WARNINGS CREATED SELECTOR

migrate-restore migrate-backup Completed 2021-01-12 20:39:14 +0800 CST 2021-01-

12 20:39:17 +0800 CST 0 0 2021-01-12 20:39:14 +0800 CST <none>

Checking the migrated resources

1. Run the following command to check whether the running status of the migrated resource is normal, as shown
below:

Since the "nginx-example" namespace is specified to map to the "default" name

space when restoration, the restored resource will run under the "default" name

space.

$ kubectl get all -n default

NAME READY STATUS RESTARTS AGE

pod/nginx-deployment-5ccc99bffb-6nm5w 2/2 Running 0 49s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/kube-user LoadBalancer 172.16.253.216 10.0.0.28 443:30060/TCP 8d

service/kubernetes ClusterIP 172.16.252.1 <none> 443/TCP 8d

service/my-nginx LoadBalancer 172.16.254.16 x.x.x.x 80:30840/TCP 49s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx-deployment 1/1 1 1 49s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-deployment-5ccc99bffb 1 1 1 49s

From the command execution result, you can find that the running status of the migrated resource is normal.

2. Check whether the set restoration strategy is successful.

labelSelector:

matchLabels:

app: nginx

Set the relationship mapping strategy of the namespace.

namespaceMapping:

nginx-example: default

restorePVs: true

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 577

i. Run the following command to check whether the mapping of the dynamic storage class name is correct, as
shown below:

You can find that the storage class of PVC/PV is already "cbs", indicating

that the storage class mapping is successful.

$ kubectl get pvc -n default

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

nginx-logs Bound pvc-bcc17ccd-ec3e-4d27-bec6-b0c8f1c2fa9c 20Gi RWO cbs 55s

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AG

E

pvc-bcc17ccd-ec3e-4d27-bec6-b0c8f1c2fa9c 20Gi RWO Delete Bound default/nginx-

logs cbs 57s

If the storage class of PVC/PV is "cbs", the storage class mapping is successful. From the execution result of the

above command, you can find that the storage class mapping is successful.

ii. Run the following command to check whether the custom-added "jokey-test" annotation for
"deployment.apps/nginx-deployment" before restoration is successful, as shown below:

Obtain the annotation "jokey-test" successfully, indicating that the custom

modification of the resource is successful.

$ kubectl get deployment.apps/nginx-deployment -o custom-columns=annotation

s:.metadata.annotations.jokey-test

annotations

jokey-test

If the annotations can be obtained normally, the custom resource has been modified successfully. From the
execution result of the above command, you can find that the namespace mapping configuration is successful.

3. Run the following command to check whether the PVC data mounted by the workload is successfully migrated.

Check the data size in the mounted PVC data directory. The data size is 88K,

which is more than the size before the migration. The reason is that Tencent C

loud CLB actively initiated a health check and generated some logs.

$ kubectl exec -it nginx-deployment-5ccc99bffb-6nm5w -n default -- bash

Defaulting container name to nginx.

Use 'kubectl describe pod/nginx-deployment-5ccc99bffb-6nm5w -n default' to see

all of the containers in this pod.

$ du -sh /var/log/nginx

88K /var/log/nginx

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 577

From the result of the above command, you can find that the PVC data mounted by the workload is successfully
migrated. So far, the Nginx (nginx-example namespace) workload-related resources and data in the cluster A have

been successfully migrated to TKE cluster B (default namespace).

Summary

This document mainly describes the ideas and methods of using Velero to migrate the resources of the self-built or
other cloud platform clusters to TKE, and shows the sample that the cluster resources in cluster A are successfully
migrated to cluster B seamlessly. If you encounter scenarios that are not covered in this document during the actual
migration, please submit a ticket.

Appendix: Practical Velero Backup/Restoration Knowledge

Velero provides many useful backup and restoration strategies, as shown below:

Resource filtering

Velero includes all objects in a backup or restoration when no filtering options are used. You can specify parameters to
filter resources as needed during backup and restoration. For details, please refer to Resource Filtering.

Check the first two log information, which is the same as the log before the

migration, indicating that the PVC data is not lost.

$ head -n 2 /var/log/nginx/access.log

192.168.0.73 - - [29/Dec/2020:03:02:31 +0000] "GET /?spm=5176.2020520152.0.0.2

2d016ddHXZumX HTTP/1.1" 200 612 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10

_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.3

6" "-"

192.168.0.73 - - [29/Dec/2020:03:02:32 +0000] "GET /favicon.ico HTTP/1.1" 404

555 "http://47.242.233.22/?spm=5176.2020520152.0.0.22d016ddHXZumX" "Mozilla/5.

0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) C

hrome/87.0.4280.88 Safari/537.36" "-"

$ head -n 2 /var/log/nginx/error.log

2020/12/29 03:02:32 [error] 6#6: *597 open() "/usr/share/nginx/html/favicon.ic

o" failed (2: No such file or directory), client: 192.168.0.73, server: localh

ost, request: "GET /favicon.ico HTTP/1.1", host: "47.242.233.22", referrer: "h

ttp://47.242.233.22/?spm=5176.2020520152.0.0.22d016ddHXZumX"

2020/12/29 03:07:21 [error] 6#6: *1172 open() "/usr/share/nginx/html/0bef" fai

led (2: No such file or directory), client: 192.168.0.73, server: localhost, r

equest: "GET /0bef HTTP/1.0"

https://console.intl.cloud.tencent.com.cn/workorder
https://velero.io/docs/v1.5/resource-filtering/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 577

Includes:

Parameters Description

 --include-resources Specify a list of resource objects to include.

 --include-namespaces Specify a list of namespaces to include.

 --include-cluster-resources Specify whether to include resources of the cluster.

 --selector
Specify to include the resources that match the label
selector.

Excludes:

Parameters Description

 --exclude-namespaces Specify a list of namespaces to be excluded.

 --exclude-resources Specify a list of resource objects to be excluded.

 velero.io/exclude-from-

backup=true

This configuration item will configure this label attribute for
the resource object, and the resource object with this label
will be excluded.

Hook operation

Execute Hook operation during backup, for example, you need to store the memory data in disk before backup.

For details, see Backup Hooks.
Execute Hook operation during restoration, for example, you need to determine whether component
dependencies are available before restoration. For details, see Restore Hooks.
For configuring the mapping relationship between PVC/PV volumes during restoration, please refer to the
following documents. For more details, see Restore Reference.

Changing PV/PVC Storage Classes
Changing PVC selected-node

Configuration of using Restic to back up volume

Starting from Velero v1.5, Velero uses Restic to back up all Pod volumes by default instead of annotating each Pod
separately. Velero v1.5 or later is recommended

For the Velero version that is earlier than v1.5, when Velero uses Restic to back up volumes, Restic provides the
following two ways to find the Pod volumes that need to be backed up:

The used Pod volume backup selects to contain an annotation (default):

https://velero.io/docs/v1.5/backup-hooks/
https://velero.io/docs/v1.5/restore-hooks/
https://velero.io/docs/v1.5/restore-reference/
https://velero.io/docs/v1.5/restore-reference/#changing-pvpvc-storage-classes
https://velero.io/docs/v1.5/restore-reference/#changing-pvc-selected-node

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 577

kubectl -n <YOUR_POD_NAMESPACE> annotate <pod/YOUR_POD_NAME> backup.velero.io/b

ackup-volumes=<YOUR_VOLUME_NAME_1,YOUR_VOLUME_NAME_2,...>

The used Pod volume backup selects to not contain an annotation:

kubectl -n <YOUR_POD_NAMESPACE> annotate <pod/YOUR_POD_NAME> backup.velero.io/b

ackup-volumes-excludes=<YOUR_VOLUME_NAME_1,YOUR_VOLUME_NAME_2,...>

Related commands

After the backup is complete, run the following command to view the backup volume information:

kubectl -n velero get podvolumebackups -l velero.io/backup-name=<YOUR_BACKUP_NA

ME> -o yaml

After the restoration is complete, run the following command to view the restore volume information:

kubectl -n velero get podvolumerestores -l velero.io/restore-name=<YOUR_RESTORE

_NAME> -o yaml

Other operations

In addition to using the Velero command to perform the backup, it can also be triggered by creating a backup
resource (recommended). For the configuration example, see [Backup Example](https://velero.io/docs/v1.5/api-
types/backup/#definition). For detailed API field definitions, see Backup API Definition.

In addition to using the Velero command to perform the restoration, it can also be triggered by creating a
restoration resource (recommended). For the configuration example, see Restoration Example. For detailed
API field definitions, see Restore API Definition.
If there are other personalized resource configurations such as annotations and label, you can manually edit the
backup JSON resource inventory file before restoration.

https://github.com/vmware-tanzu/velero/blob/main/pkg/apis/velero/v1/backup.go
https://velero.io/docs/v1.5/api-types/restore/#definition
https://github.com/vmware-tanzu/velero/blob/main/pkg/apis/velero/v1/restore.go

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 577

Prerequisites

A TKE managed cluster on v1.18 or later (cluster A) exists.
A target EKS cluster (cluster B) on v1.20 or later has been created. For how to create an EKS cluster, see
Connecting to a Cluster.

Both clusters A and B share the same COS bucket as Velero backend storage. For how to configure a COS bucket,
see Using COS as Velero Storage to Implement Backup and Restoration of Cluster Resources.
We recommend that Clusters A and B be under the same VPC, so that you can back up data in the PVC.
Make sure that image resources can be pulled properly after migration. For how to configure an image repository in
an EKS cluster, see Image Repository FAQs.

Make sure that the Kubernetes versions of both clusters are compatible. We recommend you use the same version.
If cluster A is on a lower version, upgrade it before migration.

Migration Limitations

After workloads with a fixed IP are enabled in a TKE cluster, their IPs will change after the migration to an EKS
cluster.
EKS clusters with containerd v1.4.3 as the container runtime are not compatible with images from Docker Registry
v2.5 or earlier, or Harbor v1.10 or earlier.

In an EKS cluster, each Pod comes with 20 GiB free temporary disk space for image storage by default, which is
created and terminated along the lifecycle of the Pod.
EKS doesn't support RDMA.
EKS doesn't support kernel parameters starting with net .

EKS doesn't support the deployment of DaemonSet type workloads.

EKS doesn't support the deployment of NodePort type services.
EKS Pods can't listen on port 9100 and ports above 62000.
For more limitations, see Notes.

Migration Directions

Guide on Migrating Resources in a TKE
Managed Cluster to an Serverless Cluster
Last updated：2022-11-30 17:47:07

https://intl.cloud.tencent.com.cn/document/product/457/34048
https://intl.cloud.tencent.com.cn/document/product/457/38939
https://intl.cloud.tencent.com.cn/document/product/457/40028
https://intl.cloud.tencent.com.cn/document/product/457/34050

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 577

The following describes how to migrate resources from TKE cluster A to EKS cluster B.

Configuring COS

For detailed directions, see Using COS as Velero Storage to Implement Backup and Restoration of Cluster
Resources.

Downloading Velero

1. Download the latest version of Velero to the cluster environment. Velero v1.8.1 is used as an example in this
document.

wget https://github.com/vmware-tanzu/velero/releases/download/v1.8.1/velero-v1.

8.1-linux-amd64.tar.gz

2. Run the following command to decompress the installation package, which contains Velero command lines and
some sample files.

tar -xvf velero-v1.8.1-linux-amd64.tar.gz

3. Run the following command to migrate the Velero executable file from the decompressed directory to the system
environment variable directory, that is, /usr/bin in this document, as shown below:

cp velero-v1.8.1-linux-amd64/velero /usr/bin/

Installing Velero in clusters A and B

1. Configure the Velero client and enable CSI.

velero client config set features=EnableCSI

2. Run the following command to install Velero in clusters A and B and create Velero workloads as well as other

necessary resource objects.

Below is an example of using CSI for PVC backup:

velero install --provider aws \

--plugins velero/velero-plugin-for-aws:v1.1.0,velero/velero-plugin-for-csi:v0.

2.0 \

https://intl.cloud.tencent.com.cn/document/product/457/38939
https://github.com/vmware-tanzu/velero/releases

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 577

--features=EnableCSI \

--features=EnableAPIGroupVersions \

--bucket <BucketName> \

--secret-file ./credentials-velero \

--use-volume-snapshots=false \

--backup-location-config region=ap-guangzhou,s3ForcePathStyle="true",s3Url=http

s://cos.ap-guangzhou.myqcloud.com

Note：
EKS doesn't support DaemonSet deployment, so none of the samples in this document support the restic add-
on.

If you don't need to back up the PVC, see the following installation sample:

./velero install --provider aws --use-volume-snapshots=false --bucket gtest-125

1707795 --plugins velero/velero-plugin-for-aws:v1.1.0 --secret-file ./credentia

ls-velero --backup-location-config region=ap-guangzhou,s3ForcePathStyle="true",

s3Url=https://cos.ap-guangzhou.myqcloud.com

For installation parameters, see Using COS as Velero Storage to Implement Backup and Restoration of Cluster
Resources or run the velero install --help command.

Other installation parameters are as described below:

Installation Parameter Description

--plugins Use the AWS S3 API-compatible add-on `velero-plugin-for-aws`; use the CSI add-on
velero-plugin-for-csi to back up `csi-pv`. We recommend you enable it.

--features

Enable optional features:Enable the API group version feature. This feature is used for
compatibility with different API group versions and we recommend you enable it.Enable
the CSI snapshot feature. This feature is used to back up the CSI-supported PVC, so
we recommend you enable it.

--use-restic

Velero supports the restic open-source tool to back up and restore Kubernetes storage
volume data (hostPath volumes are not supported. For details, see here). It's used
to supplement the Velero backup feature. During the migration to an EKS cluster,
enabling this parameter will fail the backup.

--use-volume-
snapshots=false

Disable the default snapshot backup of storage volumes.

https://intl.cloud.tencent.com.cn/document/product/457/38939
https://github.com/vmware-tanzu/velero-plugin-for-csi/
https://velero.io/docs/v1.8/enable-api-group-versions-feature/
https://velero.io/docs/v1.8/csi/
https://github.com/restic/restic
https://velero.io/docs/v1.5/restic/#limitations

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 577

3. After the installation is complete, wait for the Velero workload to be ready. Run the following command to check
whether the configured storage location is available. If `Available` is displayed, the cluster can access the COS bucket.

velero backup-location get

NAME PROVIDER BUCKET/PREFIX PHASE LAST VALIDATED ACCESS MODE DEFAULT

default aws <BucketName> Available 2022-03-24 21:00:05 +0800 CST ReadWrite true

At this point, you have completed the Velero installation. For more information, see Velero Documentation.

(Optional) Installing VolumeSnapshotClass in clusters A and B

Note：

Skip this step if you don't need to back up the PVC.
For more information on storage snapshot, see Backing up and Restoring PVC via CBS-CSI Add-on.

1. Make sure you have installed the CBS-CSI add-on.

2. Grant CBS snapshot permissions for TKE_QCSRole in the CAM console. For details, see CBS-CSI.

3. Use the following YAML to create a VolumeSnapshotClass object as shown below:

apiVersion: snapshot.storage.k8s.io/v1beta1

kind: VolumeSnapshotClass

metadata:

labels:

velero.io/csi-volumesnapshot-class: "true"

name: cbs-snapclass

driver: com.tencent.cloud.csi.cbs

deletionPolicy: Delete

4. Run the following command to check whether the VolumeSnapshotClass has been created successfully as

shown below:

$ kubectl get volumesnapshotclass

NAME DRIVER DELETIONPOLICY AGE

cbs-snapclass com.tencent.cloud.csi.cbs Delete 17m

(Optional) Creating sample resource for cluster A

https://velero.io/docs/
https://intl.cloud.tencent.com.cn/document/product/457/40003
https://github.com/TencentCloud/kubernetes-csi-tencentcloud/blob/master/docs/README_CBS.md
https://console.intl.cloud.tencent.com.cn/cam/role
https://intl.cloud.tencent.com.cn/document/product/457/39136

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 577

Note：
Skip this step if you don't need to back up the PVC.

Deploy a MinIO workload with the PVC in a Velero instance in cluster A. Here, the cbs-csi dynamic storage class

is used to create the PVC and PV.

1. Use provisioner in the cluster to dynamically create the PV for the com.tencent.cloud.csi.cbs

storage class. A sample PVC is as follows:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

annotations:

volume.beta.kubernetes.io/storage-provisioner: com.tencent.cloud.csi.cbs

name: minio

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 10Gi

storageClassName: cbs-csi

volumeMode: Filesystem

2. Use the Helm tool to create a MinIO testing service that references the above PVC. For more information on MinIO
installation, see here. In this sample, a load balancer has been bound to the MinIO service, and you can access the
management page by using a public network address.

https://github.com/minio/charts

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 577

3. Log in to the MinIO web management page and upload the images for testing as shown below:

Backup and restoration

1. To create a backup in cluster A, see Creating a backup in cluster A in the Cluster Migration directions.

2. To perform a restoration in cluster B, see Performing a restoration in cluster B in the Cluster Migration directions.

3. Verify the migration result:

If you don't need to back up the PVC, see Verifying migration result in the Cluster Migration directions.

If you need to back up the PVC, perform a verification as follows:

4. Run the following command to verify the resources in cluster B after migration. You can see that the Pods, PVC,
and Service have been successfully migrated as shown below:

5. Log in to the MinIO service in cluster B. You can see that the images in the MinIO service are not lost, indicating
that the persistent volume data has been successfully migrated as expected.

https://intl.cloud.tencent.com.cn/document/product/457/38940
https://intl.cloud.tencent.com.cn/document/product/457/38940
https://intl.cloud.tencent.com.cn/document/product/457/38940

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 577

6. At this point, the migration of resources between TKE and EKS clusters has been completed.
After the migration is complete, run the following command to restore the backup storage locations of clusters A
and B to read/write mode as shown below, so that the next backup task can be performed normally:

kubectl patch backupstoragelocation default --namespace velero \

--type merge \

--patch '{"spec":{"accessMode":"ReadWrite"}}'

FAQs About EKS Usage

Failed to pull an image: See Image Repository FAQs.
Failed to perform a DNS query: This type of failure often takes the form of failing to pull a Pod image or deliver logs
to a self-built Kafka cluster. For more information, see Customized DNS Service of Elastic Cluster.

Failed to deliver logs to CLS: When you use an EKS cluster to deliver logs to CLS for the first time, you need to
authorize the service as instructed in Enabling Log Collection.
By default, up to 100 Pods can be created for each cluster. If you need to create more, see Notes on Pod
Scheduled to Virtual Node.
When Pods are frequently terminated and recreated, the Timeout to ensure pod sandbox error is

reported: The add-ons in EKS Pods communicate with the control plane for health checks. If the network remains
disconnected for six minutes after Pod creation, the control plane will initiate the termination and recreation. In this
case, you need to check whether the security group associated with the Pod has allowed access to the 169.254
route.
Pod port access failure/not ready:

Check whether the service container port conflicts with the EKS control plane port as instructed in Notes.

If the Pod can be pinged succeeded, but the telnet failed, check the security group.
When creating an instance, you can use the following features to speed up image pull: Mirror cache and Mirror
reuse.
Failed to dump business logs: After an EKS Job business exits, the underlying resources are repossessed, and
container logs can't be viewed by using the kubectl logs command, adversely affecting debugging. You can

https://intl.cloud.tencent.com.cn/document/product/457/40028
https://intl.cloud.tencent.com.cn/document/product/457/44025
https://intl.cloud.tencent.com.cn/document/product/457/40950
https://intl.cloud.tencent.com.cn/document/product/457/39760#.E9.BB.98.E8.AE.A4.E9.85.8D.E9.A2.9D
https://intl.cloud.tencent.com.cn/document/product/457/34050
https://intl.cloud.tencent.com.cn/document/product/457/44484
https://intl.cloud.tencent.com.cn/document/product/457/43136

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 577

dump the business logs by delaying the termination or setting the terminationMessage field as instructed in

How to set container's termination message?.
The Pod restarts frequently, and the ImageGCFailed error is reported: An EKS Pod has 20 GiB disk size by

default. If the disk usage reaches 80%, the EKS control plane will trigger the container image repossession process
to try to repossess the unused images and free up the space. If it fails to free up any space, ImageGCFailed:

failed to garbage collect required amount of images will be reported to remind you that the

disk space is insufficient. Common causes of insufficient disk space include:
The business has a lot of temporary output.

The business holds deleted file descriptors, so some space is not freed up.

References

Container Storage Interface Snapshot Support in Velero
Enable API Group Versions Feature
Installing MinIO from Marketplace

https://intl.cloud.tencent.com.cn/document/product/457/43136
https://velero.io/docs/v1.8/csi/
https://velero.io/docs/v1.8/enable-api-group-versions-feature/
https://intl.cloud.tencent.com.cn/document/product/457/37706

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 577

Overview

Elastic Kubernetes Service (EKS) allows you to enable services in a cluster to access internet by configuring the NAT
Gateway and route table. This document guides you through the configuration.

Directions

Creating an NAT gateway

1. Log in to the Tencent Cloud VPC console and click NAT Gateway on the left sidebar.

2. On the NAT Gateway page, click +Create.
3. In the pop-up Create NAT Gateway window, create an NAT gateway in the same region and same VPC as the

EKS cluster. For more information, see Getting Started.

Creating a route table for the NAT gateway

1. On the left sidebar, click Route Table to go to the Route Table management page.
2. On the Route Table management page, click +Create.

3. In the pop-up Create Route Table window, create a route table in the same region and same VPC as the EKS
cluster, as shown in the figure below:

Serverless Cluster
Accessing Internet through NAT Gateway
Last updated：2022-04-18 16:35:22

https://intl.cloud.tencent.com.cn/document/product/1015
https://intl.cloud.tencent.com.cn/document/product/215/31810
https://console.intl.cloud.tencent.com.cn/vpc/nat
https://intl.cloud.tencent.com.cn/document/product/1015/30251
https://console.intl.cloud.tencent.com.cn/vpc/route

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 577

Main parameters are described as follows:

Destination: select the public IP address to be accessed. You can configure a CIDR block for this parameter. For
example, if you enter 0.0.0.0/0 , all traffic will be forwarded to the NAT gateway.

Next Hop Type: select NAT Gateway.
Next Hop: select the NAT gateway created in Creating an NAT Gateway.

4. Click Create.

Associating subnets with the route table

After configuring routes, you need to select subnets and associate them with the route table. Then, traffic from the
selected subnets to internet will be routed to the NAT gateway.

1. On the Route Table page, find the route table created in the Creating a route table for the NAT gateway step and
click Associate Subnets on the right.

2. In the pop-up Associate Subnets window, select the subnets to be associated and click OK.

Note
This subnet is not a Service CIDR block but a container network.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 577

After associating the route table with the subnets, resources in the same VPC can access internet through the
public IP address of the NAT gateway.

Configuration Verification

1. On the Elastic Cluster list page, click the ID of the target cluster to go to the management page of the cluster.

2. Click Remote Login for the target container and run a ping command to check whether its pods can access
internet. If the results in the figure below are returned, it means the pods have successfully accessed the internet.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 577

Currently, EKS allows you to bind an EIP to a Pod simply by declaring it in the template annotations. For more
information, please see Annotation.

There are four annotations related to EIP:

Annotation Key Annotation Value and Description Required

 eks.tke.cloud.tencent.com/eip-

attributes

It indicates that the workload's Pod needs to be
bound to an EIP. If the value is "" , the binding
will be created with the default EIP configuration.
You can enter the EIP's TencentCloud API
parameter JSON string in "" to customize the
configuration.

Yes if
you want
to bind
an EIP

 eks.tke.cloud.tencent.com/eip-

claim-delete-policy

It indicates whether to repossess the EIP after the
Pod is deleted. Never indicates not to
repossess. The default value is to repossess.

No

 eks.tke.cloud.tencent.com/eip-

injection

If the value is true , the EIP's IP information will
be exposed in the Pod, and you can run the ip
addr command in the Pod to view the EIP
address.

No

 eks.tke.cloud.tencent.com/eip-

id-list

It indicates that an existing EIP will be used, and
only StatefulSets are supported. After the Pod is
terminated, its EIP will not be repossessed by
default. Note that the number of StatefulSet Pods
cannot exceed the number of eipId values
specified in this annotation.

No

1. If you want to bind an EIP to a workload or Pod for public network access, the simplest way is to add the
 eks.tke.cloud.tencent.com/eip-attributes: "" flag under the annotation of the

corresponding workload or Pod as follows:

Using EIP to Access Public Network
Last updated：2021-12-03 16:18:25

metadata:

name: tf-cnn

annotations:

eks.tke.cloud.tencent.com/cpu: "8"

eks.tke.cloud.tencent.com/gpu-count: "1"

eks.tke.cloud.tencent.com/gpu-type: T4

https://intl.cloud.tencent.com.cn/document/product/457/36162

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 577

2. Run the following command to view the relevant events:

kubectl describe pod [name]

You can see that there are two new events related to the EIP as shown below, which indicate a success.

3. View the log file, and you can see that the datasets can be downloaded normally as shown below:

Note：
The daily number of EIPs that can be applied for is limited, so EIP is not suitable for tasks that need to
run multiple times every day.

eks.tke.cloud.tencent.com/mem: 32Gi

eks.tke.cloud.tencent.com/eip-attributes: "" # An EIP is required and uses the

default configuration

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 577

Overview

This series of documents describe how to deploy deep learning in EKS from direct TensorFlow deployment to
subsequent Kubeflow deployment and are intended to provide a comprehensive scheme for implementing container-
based deep learning. This document focuses on how to create a deep learning container image, which offers an easier

and quicker method to deploy deep learning.

Public images cannot meet the requirements for deep learning deployment in this document. Therefore, a self-built
image is used.

In addition to the deep learning framework TensorFlow-gpu, this image also contains CUDA and cuDNN required by
GPU-based training and integrates official TensorFlow deep learning models, including SOTA models for fields such

as CV, NLP, and RS. For more information on the models, please see TensorFlow Model Garden.

Directions

1. This example uses a Docker container to create an image. Prepare a Dockerfile as follows:

FROM nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu20.04

RUN apt-get update -y \

&& apt-get install -y python3 \

python3-pip \

git \

&& git clone git://github.com/tensorflow/models.git \

&& apt-get --purge remove -y git \ # Promptly uninstall unneeded components (op

tional)

&& rm -rf /var/lib/apt/lists/* # Delete the package for installation through AP

T (optional)

&& mkdir /tf /tf/models /tf/data # Create storage models and data paths, which

can be used as mount points (optional)

ENV PYTHONPATH $PYTHONPATH:/models

ENV LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64:/usr/lib/x86_64

-linux-gnu#

Mastering Deep Learning in Serverless
Cluster
Building Deep Learning Container Image
Last updated：2021-12-03 15:49:26

https://github.com/tensorflow/models
https://docs.docker.com/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 577

RUN pip3 install --user -r models/official/requirements.txt \

&& pip3 install tensorflow

2. Run the following command for deployment:

docker build -t [name]:[tag] .

Note：
The steps to install required components such as Python, TensorFlow, CUDA, cuDNN, and model library
are not detailed in this document.

Notes

Image

For the base image nvidia/cuda, the CUDA container image provides an easy-to-use distribution for CUDA-supported
platforms and architectures. Here, CUDA 11.3.1 and cuDNN 8 are selected. For more supported tags, please see
Supported tags.

Environment variable

Before implement the best practice in this document, you need to pay special attention to the LD_LIBRARY_PATH

environment variable.

 LD_LIBRARY_PATH lists the installation paths of dynamic link libraries usually in the format of libxxxx.so ,

such as libcudart.so.[version] , ibcusolver.so.[version] , and libcudnn.so.[version] ,

and is used to link CUDA and cuDNN in this example. You can run the ll command to view the paths as shown

https://hub.docker.com/r/nvidia/cuda
https://gitlab.com/nvidia/container-images/cuda/blob/master/doc/supported-tags.md

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 577

below:

Run the following command based on the Dockerfile source code of the official image:

ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64

Here, /usr/local/nvidia/lib points to the soft link of the CUDA path and is prepared for CUDA. However, in

the tag with cuDNN, only cuDNN is installed, and LD_LIBRARY_PATH is not specified for cuDNN, which may

report a warning and make GPU resources unavailable. The error is as shown below:

Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot op

en shared object file: No such file or directory

Cannot dlopen some GPU libraries. Please make sure the missing libraries mentione

d above are installed properly if you would like to use GPU...

If such an error is reported, you can manually add the cuDNN path. Here, you can run the following command to run
the image and view the path of libcudnn.so :

docker run -it nvidia/cuda:[tag] /bin/bash

As shown in the source code, cuDNN is installed in /usr/lib by default with the apt-get install

command. In this example, the actual path of libcudnn.so.8 is under /usr/lib/x86_64-linux-gnu# ,

which is added to the end after a colon.

The actual path may vary by tag and system. The path in the source code and what you actually see shall prevail.

Subsequent Operations

For subsequent operations, please see Running Deep Learning in EKS.

https://gitlab.com/nvidia/container-images/cuda/blob/master/dist/11.3.1/ubuntu20.04-x86_64/base/Dockerfile
https://intl.cloud.tencent.com.cn/document/product/457/42060

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 577

FAQs

If you encounter any problems when performing this practice, please see FAQs for troubleshooting.

https://intl.cloud.tencent.com.cn/zh/document/product/457/42062

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 577

Overview

This series of documents describe how to deploy deep learning in EKS from direct TensorFlow deployment to
subsequent Kubeflow deployment and are intended to provide a comprehensive scheme for implementing container-
based deep learning.

Prerequisites

This document proceeds to run a deep learning task in EKS by using a self-built cluster after the steps in Building
Deep Learning Container Image are completed.
The self-built image has been uploaded to the image repository
 ccr.ccs.tencentyun.com/carltk/tensorflow-model , which can be directly pulled for use with no

rebuild required.

Directions

Creating EKS cluster

Please create an EKS cluster as instructed in Connecting to a Cluster.

Note：
As you need to run a GPU-based training task, when creating a cluster, please pay attention to the supported
resources in the AZ of the selected container network and be sure to select an AZ that supports GPU as shown

Running Deep Learning in EKS
Last updated：2021-12-03 15:54:43

https://intl.cloud.tencent.com.cn/document/product/457/42059
https://intl.cloud.tencent.com.cn/document/product/457/34048

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 577

below:

Creating CFS file system (optional)

The container will be automatically deleted, and the resources will be automatically released after the task ends.
Therefore, to persistently store models and data, we recommend you mount an external storage service such as CBS,

CFS, and COS.

In this example, CFS is used as an NFS disk to persistently store data with frequent reads and writes.

Creating CFS file system

1. Log in to the CFS console and enter the File System page.
2. Click Create. On the Create File System page that pops up, select the file system type and click Next: Detailed

Settings.
3. On the Detailed Settings page, set the relevant configuration items. For more information on CFS types and

configurations, please see Creating File Systems and Mount Targets.

https://intl.cloud.tencent.com.cn/document/product/362
https://intl.cloud.tencent.com.cn/document/product/582
https://intl.cloud.tencent.com.cn/document/product/436
https://console.intl.cloud.tencent.com.cn/cfs/fs
https://intl.cloud.tencent.com.cn/document/product/582/9132

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 577

Note：
The CFS file system must be created in the region of the cluster.

4. After confirming that everything is correct, click Buy Now and make the payment to create a file system.

Getting file system mount information

1. On the File System page, click the ID of the file system whose sub-target path needs to be obtained to enter the

file system details page.
2. Select the Mount Target Info tab and get the file system mount information next to Mount to Linux as shown

below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 577

Note：
Note down the IPv4 address in the mount target details, such as 10.0.0.161:/ , which will be used as

the NFS path in subsequent mount configuration.

Creating training task

This task uses the MNIST handwritten digit recognition dataset and two-layer CNN as an example. The sample image
is the self-built image created in the previous chapter. If you need to use a custom image, please see Creating Deep
Learning Container Image. Two task creation methods are provided below:

Console
kubectl

Taking the essence of the deep learning task into account, Job node deployment is used as an example in this
document. For more information on how to deploy a Job, please see Job Management.
The following is the example of deployment in the console:

https://console.intl.cloud.tencent.com.cn/tke2/registry/user/self/detail/tag?rid=5&reponame=carltk%2Ftensorflow-model
https://intl.cloud.tencent.com.cn/document/product/457/42059
https://intl.cloud.tencent.com.cn/document/product/457/30665

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 577

1. In the Volume (optional) configuration item, select Using NFS disk and enter the name and IPv4 address of the
CFS file system created previously as shown below:

2. In the Mount Target configuration item in Containers in the Pod, select the volume and configure the mount
target as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 577

>!
>- As the dataset may need to be downloaded online, you need to configure the public network access for the
cluster. For more information, please see Public Network Access.

>- After selecting a GPU model, when setting the request and limit, you need to assign the container CPU and
memory resources meeting the resource specifications. The actual values do not need to be accurate down to the
ones place.
When configuring in the console, you can also delete the default configuration and leave it empty to configure
"unlimited" resources, which also have the corresponding billing specifications. This approach is recommended.

>- The container running command is inherited from Docker's CMD field, whose preferred form is exec . If you

do not call the shell command, there will be no normal shell processing. Therefore, if you want to run a

command in the shell form, you need to add "sh" and "-c" at the beginning.

When you enter multiple commands and parameters in the console, each command should take a line (subject to
the line break)

Viewing running result

You can view the running result either in the console or on the command line:

https://intl.cloud.tencent.com.cn/document/product/457/42062
https://intl.cloud.tencent.com.cn/document/product/457/34057

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 577

Console
Command

After creating a Job, you will be redirected to the Job management page by default. You can also enter the page as

follows:

1. Log in to the TKE console and click Elastic Container > Elastic Cluster on the left sidebar.
2. In the elastic cluster list, click the ID of the cluster whose events you want to view to enter the cluster management

page.
3. Select Workload > Job and click the newly created Job in the Job list.

Select the Event tab to view events as shown below:

Select the Log tab to view logs as shown below:

https://console.intl.cloud.tencent.com.cn/tke2/ecluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 577

Relevant Operations

Using GPU to deploy deep learning task in TKE

Deployment in TKE is almost the same as that in EKS. Taking deployment through kubectl with a YAML file as an
example, TKE has the following differences:

When creating a TKE node, you should select a node with GPU. For more information, please see Using a GPU
Node.
As the node has built-in GPU resources, annotations and resources are not needed. Practically, you

can reserve annotations , which TKE will not process. We recommend you comment out resources , as it

may cause unreasonable resource requirements.

FAQs

If you encounter any problems when performing this practice, please see FAQs for troubleshooting.

https://intl.cloud.tencent.com.cn/document/product/457/30656
https://intl.cloud.tencent.com.cn/zh/document/product/457/42062

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 577

This document offers answers to questions that you may have when building a deep learning container image and
running deep learning in EKS.

How does a container access the public network?

As you may need to download training datasets during a task, access to the public network may be required.

However, a container in its initial status cannot access the public network, and if you directly run a command with
dataset download, the following error will be reported:

W tensorflow/core/platform/cloud/google_auth_provider.cc:184] All attempts to get

a Google authentication bearer token failed, returning an empty token. Retrieving

token from files failed with "Not found: Could not locate the credentials file.".

Retrieving token from GCE failed with "Failed precondition: Error executing an HT

TP request: libcurl code 6 meaning 'Couldn't resolve host name', error details: C

ould not resolve host: metadata".

E tensorflow/core/platform/cloud/curl_http_request.cc:614] The transmission of re

quest 0x5b328e0 (URI: https://www.googleapis.com/storage/v1/b/tfds-data/o/dataset

_info%2Fmnist%2F3.0.1?fields=size%2Cgeneration%2Cupdated) has been stuck at 0 of

0 bytes for 61 seconds and will be aborted....

For the above problem, two public network access methods are provided:

NAT Gateway: it is suitable for scenarios where many Pods in a VPC need to communicate with the public
network. Please configure as instructed in Accessing Internet Through NAT Gateway.

Note：

The created NAT gateway and route table need to be in the same region and VPC as the EKS cluster.

EIP: it is suitable for scenarios where one or a few Pods need to interconnect with the public network.

FAQs
Public Network Access
Last updated：2021-12-03 15:37:24

https://intl.cloud.tencent.com.cn/document/product/457/42059
https://intl.cloud.tencent.com.cn/document/product/457/42060
https://intl.cloud.tencent.com.cn/document/product/457/38369

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 577

This document offers answers to questions that you may have when building a deep learning container image and
running deep learning in EKS.

How do I persistently store logs?

As EKS containers will be terminated after use, you can view logs only when the Pod is in Running status. Once the

Pod status becomes Completed, the following error will be reported:

Error from server (InternalError): Internal error occurred: can not found connect

ion to pod ***

The following describes persistent log storage methods:

Redirect
Log collection configuration

Redirect

The redirect method is simpler. You only need to change the terminal stdout to which kubectl logs are

output to a file for persistent storage. To do so, run the following command:

However, when using the redirect method, you should note that the output stream will not flow to the terminal; that is,
you cannot view the log output progress on the terminal. If you want to output the content to the screen while storing
the command output to a file, you can do so in the following two methods:

Use a pipe and the tee command. Run the following command:

You can also run the logsave command to output the content to the screen while storing the command output

to the file as follows:

>?The advantage of `logsave` over `tee` is that with `logsave`, the time will be recorded for each input, and there is a
certain spacing between logs, which makes it easier for you to find logs.

Log Collection
Last updated：2021-12-03 15:47:23

kubectl logs -f tf-cnn >> info.log

kubectl logs -f tf-cnn |tee info.log

logsave [-asv] info.log kubectl logs -f tf-cnn

https://intl.cloud.tencent.com.cn/document/product/457/42059
https://intl.cloud.tencent.com.cn/document/product/457/42060

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 577

The above three commands all have a shortcoming: as their redirect is based on the kubectl logs output, they

must be used when the Pod is in Running status, and they are only used to view logs after the Pod is in Completed
status.

The redirect method is applicable to scenarios with only a small number of logs and with no requirements for
outputting and searching for a high number of logs. If your requirements are not high, we recommend you use the
redirect method.

Log collection configuration

In EKS, you can configure log collection either through environment variables or CRDs.

Using

Using

1. Configure log collection as instructed in Using Environment Variables to Configure Log Collection
ii. If you want to use keys for authorization, you can create a Secret in Opaque type and create two keys

(SecretId and SecretKey). The values of SecretId and SecretKey can be obtained in API

Key.
iii. You can find the created Secret after enabling log collection and associate SecretId with

 SecretKey

2. Get the raw logs in the console, switch to the table view, and format the JSON strings

This method has a problem: the log collection feature of EKS works by sending the collected logs as JSON strings to
the specified consumer, but the timestamps of the collected JSON strings are at the second level

In this case, logs are displayed in the console at the second level, and the logs displayed on the search and analysis

page can be sorted only by second but cannot be output sequentially at a finer time granularity. However, sometimes a
large number of logs are output in a short while, for which a millisecond granularity is often required. Therefore, we
recommend the CRD-based configuration method.

https://intl.cloud.tencent.com.cn/document/product/457/37907
https://console.intl.cloud.tencent.com.cn/cam/capi

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 577

Note：
The entry for DNS Forward configuration is no longer available. The parameters of DNS Forward configured
previously will be synced and updated in the Corefile of CoreDNS. If you want to modify the DNS service of the

cluster, please refer to the following instructions or the directions of native Kubernetes CoreDNS.

Overview

This document describes how to modify the DNS service of a cluster through modifying the CoreDNS configuration
file.

Prerequisites

You have created an serverless cluster. You need to select Deploy CoreDNS to allow the service discovery in
the cluster in the advanced configuration at the time of creation.

Directions

Default Corefile configuration

When a CoreDNS is deployed in an serverless cluster, a Configmap is mounted by default to act as the CoreDNS
configuration file (i.e. Corefile).
The default configuration of Corefile is as follows:

apiVersion: v1

kind: ConfigMap

metadata:

name: coredns

namespace: kube-system

data:

Corefile: |

Customized DNS Service of Serverless
Cluster
Last updated：2022-09-26 17:12:57

https://intl.cloud.tencent.com.cn/document/product/457/34048

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 577

.:53 {

errors

health :8081

kubernetes cluster.local in-addr.arpa ip6.arpa {

pods insecure

fallthrough in-addr.arpa ip6.arpa

ttl 30

}

prometheus :9153

forward . 183.60.83.19 183.60.82.98

cache 30

loop

reload

loadbalance

}

Each configuration item adopts the configuration of native Kubernetes. For details, see CoreDNS. Please note:

 forward ：183.60.83.19, 183.60.82.98 is the default DNS address of Tencent Cloud.

Customize configuration of Corefile

You can modify ConfigMap of CoreDNS (i.e. Corefile) to modify relevant configuration of service discovery. The use
method is consistent with that of the native kubernetes. For details, see Customizing DNS Service.

https://kubernetes.io/zh/docs/tasks/administer-cluster/dns-custom-nameservers/#coredns
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 577

Overview

TKE Edge provides the ServiceGroup feature, which only needs two YAML files to implement service deployment in
hundreds of regions, without application adaptation or transformation. This document describes how to deploy Nginx
services separately within multiple node groups.

Directions

Determining the unique key of ServiceGroup

This step performs logic planning without involving any actual operations. TKE Edge sets the UniqKey used as the

logical flag of the ServiceGroup to be created to zone .

Grouping edge nodes by label

Label the edge nodes in the TKE Edge console or by using kubectl in the TKE Edge console as instructed below:

1. Log in to the TKE console and click Edge Clusters on the left sidebar.
2. Select the target cluster ID to enter the cluster management page.

3. Click Node Management > Node to enter the node list page as shown below:

4. Select More > Edit Label on the right of the target node.

Edge Cluster
TKE Edge ServiceGroup Feature
Using ServiceGroup via YAML File
Last updated：2022-06-10 16:48:45

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 577

5. In the Edit Label pop-up window, add a label as instructed below:

See the overall architecture chapter. Select zone=nodeunit1 for nodes 12 and 14 and

 zone=nodeunit2 for nodes 21 and 23.

The label key needs to be the same as the UniqKey of the ServiceGroup. The value is a unique key

of the NodeUnit. Nodes with the same value belong to the same NodeUnit.

If there are multiple ServiceGroups in the same cluster, assign different Uniqkeys to different ServiceGroups.
6. Click OK.

Deploying DeploymentGrid

apiVersion: superedge.io/v1

kind: DeploymentGrid

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 577

metadata:

name: deploymentgrid-demo

namespace: default

spec:

gridUniqKey: zone

template:

selector:

matchLabels:

appGrid: nginx

replicas: 2

template:

metadata:

labels:

appGrid: nginx

spec:

containers:

- name: nginx

image: nginx:1.7.9

ports:

- containerPort: 80

protocol: TCP

Deploying ServiceGrid

apiVersion: superedge.io/v1

kind: ServiceGrid

metadata:

name: servicegrid-demo

namespace: default

spec:

gridUniqKey: zone

template:

selector:

appGrid: nginx

ports:

- protocol: TCP

port: 80

targetPort: 80

Note：

As shown above, the gridUniqKey field is set to zone . Therefore, you should also set the label key

to zone when grouping edge nodes by label. If there are three node groups, add three labels respectively:

 zone: zone-0 , zone: zone-1 , and zone: zone-2 .

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 577

At this point, each node group contains the Deployment and corresponding Pod of Nginx. For access to the same
 service-name on a node, the requests will be sent to the node in the target group. The verification method is as

follows:

[root@VM_1_34_centos ~]# kubectl get deploy

NAME READY UP-TO-DATE AVAILABLE AGE

deploymentgrid-demo-zone-0 2/2 2 2 85s

deploymentgrid-demo-zone-1 2/2 2 2 85s

deploymentgrid-demo-zone-2 2/2 2 2 85s

[root@VM_1_34_centos ~]# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 172.19.0.1 <none> 443/TCP 87m

servicegrid-demo-svc ClusterIP 172.19.0.177 <none> 80/TCP 80s

For node groups added to a cluster after the deployment of DeploymentGrid and ServiceGrid, this feature will

automatically create the specified Deployment and Service in the new node groups.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 577

Poor edge network conditions will trigger the Kubernetes eviction mechanism to evict Pods that do not meet the
expectations. In edge computing scenarios where the network environments of the edge nodes and the cloud are
complex, and the network quality cannot be guaranteed, problems such as API server and node disconnection tend to

occur. If native Kubernetes is used without modification, the node status will often become abnormal. This causes the
Kubernetes eviction mechanism to take effect, where Pods are evicted and the Endpoint is lost, thereby causing
service interruption and fluctuation.

To solve this problem, TKE Edge offers the innovative distributed node status determination mechanism. This
mechanism can better identify the eviction timing, guarantee system running under poor network conditions, and avoid

service interruption and fluctuation.

Use Cases

An edge use case is subject to poor network conditions in the cloud. Edge devices are located in edge cloud data
centers and mobile edge sites, facing complex network environments for their cloud connectivity, such as unreliable
environments at the cloud (console) and edge as well as between edge nodes.

Smart factory

In a smart factory, edge nodes are located in the warehouse and plant, and the master node in the console is in the
central data center of Tencent Cloud, as shown below:

TKE Edge Distributed Node Status
Determination Mechanism
Last updated：2022-06-10 19:32:52

https://intl.cloud.tencent.com.cn/document/product/457/35390

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 577

The edge devices in the warehouse and plant and the cloud cluster can be connected over the internet, 5G, and
Wi-Fi, with uneven and unguaranteed network quality.
The edge devices in the warehouse and plant are connected over the local network, which is better and more

reliable than that used to connect to cloud clusters.

Audio/Video pull

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 577

Audio/Video pull is as shown below:

Considering user experience and enterprise cost, you often need to improve the edge cache hit rate for audio/video
pull to reduce the origin-pull traffic and schedule the same file requested by users to the same service instance and its
cache file.

In the case of native Kubernetes, if Pods are frequently rebuilt due to network fluctuation, the service instance caching
performance will be compromised, and the scheduling system will schedule user requests to other service instances.

Both may have a significant or even unacceptable impact on the CDN performance.

In fact, if edge nodes are running normally, it is unnecessary to evict or rebuild Pods. To solve this problem and ensure
the service continuity, the TKE Edge team proposed a distributed node status determination mechanism.

Challenges

Native Kubernetes processing method

Poor network conditions at the cloud edge affect the communication between the kubelet running on the edge node
and the cloud API server, where the latter cannot receive the kubelet heartbeat or get a renewal and then cannot

accurately get the running statuses of the node and its Pods. If the duration exceeds the set threshold, the API server
will consider the node unavailable and perform the following operations:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 577

Set the status of the missing node to NotReady or Unknown and add the taints of NoSchedule and

 NoExecute .

Evict the Pods on the missing node and rebuild them on other nodes.

Remove the Pods on the missing node from the Service's Endpoint list.

Solution

Design principle

In edge computing, it is unreasonable to determine whether a node is normal solely based on the connection between
the edge and the API server. You need an additional determination mechanism to make the system more robust.

The network between edge nodes is more stable than that between cloud and edge nodes. You can use a more stable
infrastructure to improve the accuracy. TKE Edge adopts an innovative distributed mechanism to determine the node

status, which considers edge nodes in addition to the connection between nodes and the API server. Tests and
practices have shown that this mechanism has improved the accuracy to determine the node status in a system under
poor network conditions at the cloud edge, safeguarding service running. It works as shown below:

Each node regularly checks the health status of other nodes.
All nodes in the cluster regularly vote on the status of each node.
Cloud and edge nodes determine the node status together.

First, nodes check and vote for each other to decide whether a node is in abnormal status, and the decision will be
made only when most of the nodes agree on the same determination. Second, even though the network between
nodes is usually in a better condition than the cloud edge network, the complex situation at the edge node should be
considered, as networks are not 100% reliable. Therefore, the network between nodes is not the only standard, and
the node status should be decided by both nodes and the cloud edge. In this regard, the following design is made:

Final Node
Status

Normal to
the Cloud

Abnormal to the Cloud

Normal to other
nodes

Normal No more Pods are scheduled to this node.

Abnormal to
other nodes

Normal Existing Pods are evicted and removed from the Endpoint list. No more
Pods are scheduled to this node.

Solution features

When the cloud determines that the node status is abnormal, but other nodes consider it normal, although existing
Pods will not be evicted, new Pods will not be scheduled to the node to ensure the stability of the additional services.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 577

Existing nodes will run normally thanks to the edge autonomy capability of the edge cluster.

Due to the particularity of the edge network and topology, there are often single points of failure between node groups.
In a smart factory, although the warehouse and plant are in the same region, they are connected only through a key

linkage. Once the linkage is broken, the network will be disconnected. The solution provided in this document ensures
that the node group with more nodes will not be considered abnormal when two node groups are disconnected from
each other. Therefore, Pods will always be scheduled to the one with more nodes, avoiding excessive node loads.

Edge devices may be in different regions and not be connected. The solution provided in this document supports the
determination of statuses of nodes in multiple regions. It allows you to easily group nodes by region or other criteria for

intra-group checks. Even if nodes are regrouped, you do not need to redeploy or re-initialize detection add-ons to
adapt them to the network conditions of edge computing. After grouping, nodes will only determine the statuses of
nodes within their group.

Prerequisites

To use this feature, you need to open port 51005 of the node for distributed, smart health checks between nodes.

Directions

Note：
It takes some time to deploy and configure edge and multi-region checks. They do not take effect immediately.

Enabling edge health

Edge Health is disabled by default. It can be manually enabled as instructed below:

1. Log in to the TKE console.
2. On the cluster list page, select the target edge cluster ID to enter the cluster details page.
3. Select Basic Information on the left sidebar to enter the Basic Information page.
4. On the Basic Information page, click Enable Edge Health.

Enabling multi-region

Under Multi-region, nodes are grouped by region. Node regions are identified by the
 tencent.tkeedgehealth/topology-zone label on the node. For example,

 tencent.tkeedgehealth/topology-zone: zone0 indicates to group the node to zone0 . Nodes with the

https://console.intl.cloud.tencent.com.cn/tke2/edge?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 577

same label value are considered to be in the same region. After Multi-region is enabled, nodes in the same region will
check and vote for each other.

Note：

If this feature is enabled without the tencent.tkeedgehealth/topology-zone label, the node will

only check its own health status.
If this feature is not enabled, all nodes in a cluster will check each other, even if the node is labeled
 tencent.tkeedgehealth/topology-zone .

Setting node region label in the console

1. Log in to the TKE console.

2. On the cluster list page, select the target edge cluster ID to enter the cluster details page.
3. Select Node Management > Node on the left sidebar to enter the Node List page.
4. Select More > Edit Label on the right of the target node.

https://console.intl.cloud.tencent.com.cn/tke2/edge?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 577

5. In the Edit Label pop-up window, edit the label and click Submit as shown below:

Enabling multi-region

After enabling Edge Health, click Enable Multi-region.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 577

Overview

Tencent Cloud TKE-KMS Plugin integrates the rich key management features of Key Management Service (KMS) to
provide powerful encryption/decryption capabilities for Secret in Kubernetes cluster. This document describes how to
encrypt data for Kubernetes cluster via KMS.

Concepts

Key Management Service (KMS)

Key Management Service (KMS) is a security management solution that leverages a third-party certified hardware
security module (HSM) to generate and protect keys so you can easily create and manage keys, helping you to meet
your key management and compliance needs in multi-application and multi-business scenarios.

Prerequisites

You have created a TKE self-deployed cluster that meets the following conditions:
-Kubernetes v1.10.0 or later.

Etcd v3.0 or later.

Note：
If you want to check the version, you can go to Cluster Management page and select the cluster ID to go to
the Basic Information page to view.

Directions

Security
Using KMS for Kubernetes Data Source
Encryption
Last updated：2021-11-12 14:57:07

https://github.com/Tencent/tke-kms-plugin
https://intl.cloud.tencent.com.cn/document/product/1030/31961
https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 577

Creating a KMS key and obtaining the ID

1. Log in to the KMS Console, and go to Customer Managed CMK page.
2. At the top of the Customer Managed CMK page, select the region for which you want to create a key, and click

Create.

3. On the pop-up window, configure the parameters according to the following information, as shown below:

The key parameters are as follows. Retain the default settings for other parameters.
Key Name: this is required and must be unique within the region. It can contain letters, numbers, _ , - , and

cannot begin with KMS- . In this document, we take tke-kms as an example.

Description: this is optional and used to specify the type of data to be protected, or the application to be used in
conjunction with the CMK.
Key Usage: select Symmetric encryption and decryption.

https://console.intl.cloud.tencent.com.cn/kms2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 577

Key Material Source: select KMS or External based on the actual needs. In this document, we take KMS as
an example.

4. Click OK to go back to Customer Managed CMK page to view the created keys.

5. Click the key ID to go to Key Information page, you can view the complete ID of the key on this page. See the
figure below:

Creating and obtaining access key

Note：
If you have created an access key, please skip this step.

1. Log in to the CAM console and select Access Key > Manage API Key in the left sidebar to go to the Manage
API Key page.

2. On the Manage API Key page, click Create Key and wait for the creation to be completed.
3. You can check the key’s information including SecretId and SecretKey on Manage API Key page when

the creation is completed. See the figure below:

https://console.intl.cloud.tencent.com.cn/cam/overview

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 577

Creating a DaemonSet and deploying tke-kms-plugin

1. Log in to the TKE console and click Cluster in the left sidebar.
2. On the Cluster Management page, click the ID of the cluster that meet the conditions to go to the cluster details

page.

3. Select Create Via YAML at the top right corner on any interface of the cluster to go to Create Via YAML page.
Enter the parameters for tke-kms-plugin.yaml , as shown below:

Note：
Enter values for the following parameters based on the actual needs:

 {{REGION}} : the region where KMS key resides. You can check Region List for the valid values.

 {{KEY_ID}} : enter the KMS key ID obtained in the step of creating a KMS key and obtaining the ID.

 {{SECRET_ID}} and {{SECRET_KEY}} : enter the SecretID and SecretKey created in the step of

creating and obtaining access key.
 images: ccr.ccs.tencentyun.com/tke-plugin/tke-kms-plugin:1.0.0 : tke-kms-plugin

image address. If you want to use the self-created tke-kms-plugin image, you can replace it.

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: tke-kms-plugin

namespace: kube-system

spec:

selector:

matchLabels:

name: tke-kms-plugin

template:

metadata:

labels:

name: tke-kms-plugin

spec:

nodeSelector:

node-role.kubernetes.io/master: "true"

hostNetwork: true

restartPolicy: Always

volumes:

- name: tke-kms-plugin-dir

hostPath:

path: /var/run/tke-kms-plugin

type: DirectoryOrCreate

tolerations:

https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/1030/32175

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 577

- key: node-role.kubernetes.io/master

effect: NoSchedule

containers:

- name: tke-kms-plugin

image: ccr.ccs.tencentyun.com/tke-plugin/tke-kms-plugin:1.0.0

command:

- /tke-kms-plugin

- --region={{REGION}}

- --key-id={{KEY_ID}}

- --unix-socket=/var/run/tke-kms-plugin/server.sock

- --v=2

livenessProbe:

exec:

command:

- /tke-kms-plugin

- health-check

- --unix-socket=/var/run/tke-kms-plugin/server.sock

initialDelaySeconds: 5

failureThreshold: 3

timeoutSeconds: 5

periodSeconds: 30

env:

- name: SECRET_ID

value: {{SECRET_ID}}

- name: SECRET_KEY

value: {{SECRET_KEY}}

volumeMounts:

- name: tke-kms-plugin-dir

mountPath: /var/run/tke-kms-plugin

readOnly: false

4. Click Done and wait for the DaemonSet to be created.

Configuring kube-apiserver

1. Log in to each Master node of the cluster by referring to Logging in to Linux Instance Using Standard Login Method.

Note：
Master node security group defaults to close port 22. You need to open port 22 on the security group

interface before logging in to the node. For more information, see Adding a Security Group Rule.

2. Run the following command to create and open the YAML file.

vim /etc/kubernetes/encryption-provider-config.yaml

https://intl.cloud.tencent.com.cn/document/product/213/5436
https://intl.cloud.tencent.com.cn/document/product/213/34272

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 577

3. Press i to switch to the edit mode and edit the YAML file. Enter the followings according to the K8s version that you

actually use:
K8S v1.13+：

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

- resources:

- secrets

providers:

- kms:

name: tke-kms-plugin

timeout: 3s

cachesize: 1000

endpoint: unix:///var/run/tke-kms-plugin/server.sock

- identity: {}

K8S v1.10 - v1.12：

apiVersion: v1

kind: EncryptionConfig

resources:

- resources:

- secrets

providers:

- kms:

name: tke-kms-plugin

timeout: 3s

cachesize: 1000

endpoint: unix:///var/run/tke-kms-plugin/server.sock

- identity: {}

4. After editing is completed, press Esc and enter :wq to save the file and go back.
5. Run the following command to edit the YAML file.

vi /etc/kubernetes/manifests/kube-apiserver.yaml

6. Press i to switch to the edit mode and add the followings to args according to the K8s version you actually use.

Note：
Self-deployed cluster of K8s v1.10.5. You need to remove kube-apiserver.yaml from the

 /etc/kubernetes/manifests directory and move it back to the directory after you have completed

the editing.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 577

K8S v1.13+：

--encryption-provider-config=/etc/kubernetes/encryption-provider-config.yaml

K8S v1.10 - v1.12：

--experimental-encryption-provider-config=/etc/kubernetes/encryption-provider

-config.yaml

7. Add Volume command to /var/run/tke-kms-plugin/server.sock . The location and content for adding

is as follows:

Note：
 /var/run/tke-kms-plugin/server.sock is a unix socket that is listened when tke kms server is

launched. kube apiserver will access tke kms server by accessing the socket.

Add the followings for volumeMounts: :

- mountPath: /var/run/tke-kms-plugin

name: tke-kms-plugin-dir

Add the followings for volume: :

- hostPath:

path: /var/run/tke-kms-plugin

name: tke-kms-plugin-dir

8. When the editing is finished, press Esc, enter :wq and save the /etc/kubernetes/manifests/kube-

apiserver.yaml file. Wait for kube-apiserver to restart.

Verification

1. Log in to the node of the cluster and run the following command to create a Secret.

kubectl create secret generic kms-secret -n default --from-literal=mykey=mydata

2. Run the following command to verify if the Secret has been decrypted correctly.

kubectl get secret kms-secret -o=jsonpath='{.data.mykey}' | base64 -d

3. If the output value is mydata , i.e. it is equal to the value of Secret, it means Secret has been decrypted correctly.

See the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 577

References

For more information about Kubernetes KMS, see Using a KMS provider for data encryption.

https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 577

Pod security groups integrate CVM security groups and Kubernetes Pods. You can use CVM security groups to define
rules, so as to allow the inbound and outbound network traffic of Pods running on different TKE nodes (currently, only
super nodes are supported, and general nodes will be supported).

Limits

Consider the following limits before using security groups for Pods:

Pods must run in TKE clusters on v1.20 or later.
Only super nodes are supported for Pod security groups, and more node types will be released.
Pod security groups cannot be used together with dual-stack clusters.
Super nodes are only supported in some regions. For more information, see Regions and Availability Zones.

Enabling Security Group Capabilities for Pods

Installing the add-on

1. Log in to the TKE console.
2. Install the SecurityGroupPolicy add-on for the cluster.

If you haven't created a cluster yet, you can install the SecurityGroupPolicy add-on during creation. For

detailed directions, see Add-On Lifecycle Management.
To enable security group capabilities for Pods in a created cluster, install the SecurityGroupPolicy add-on

on the Add-On Management page. For detailed directions, see Add-On Lifecycle Management.

3. On the Add-On Management page, view the add-on status. If the status is Success, the add-on has been
deployed, as shown below:

Pod Security Group
Last updated：2022-11-02 11:54:52

https://intl.cloud.tencent.com.cn/document/product/457/41125
https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/457/38705
https://intl.cloud.tencent.com.cn/document/product/457/38705

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 577

4. On the super node page, verify that your TKE general cluster contains a super node. Currently, you can enable
security group capabilities only for Pods scheduled to a super node.

Deploying the Sample Application

To use security groups for Pods, you must deploy SecurityGroupPolicy in your cluster. The following describes how to
use the security group policy for a Pod via CloudShell. Unless otherwise stated, the steps should be performed on the
same terminal, as the variables involved don't apply to different terminals.

Deploying the sample Pod with a security group

1. Create a security group to be used with the Pod. The following describes how to create a simple security group and
is for reference only. The rules may differ in a production cluster.
a. Search for the VPC and security group ID of the cluster. Replace my-cluster with the actual value.

my_cluster_name=my-cluster

my_cluster_vpc_id=$(tccli tke DescribeClusters --cli-unfold-argument --ClusterI

ds $my_cluster_name --filter Clusters[0].ClusterNetworkSettings.VpcId | sed 's/

\"//g')

my_cluster_security_group_id=$(tccli vpc DescribeSecurityGroups --cli-unfold-ar

gument --Filters.0.Name security-group-name --Filters.0.Values tke-worker-secur

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 577

ity-for-$my_cluster_name --filter SecurityGroupSet[0].SecurityGroupId | sed 's/

\"//g')

b. Create a security group for your Pod. Replace my-pod-security-group with the actual value. Record the

security group ID returned by the command for further use.

my_pod_security_group_name=my-pod-security-group

tccli vpc CreateSecurityGroup --GroupName "my-pod-security-group" --GroupDescri

ption "My pod security group"

my_pod_security_group_id=$(tccli vpc DescribeSecurityGroups --cli-unfold-argume

nt --Filters.0.Name security-group-name --Filters.0.Values my-pod-security-grou

p --filter SecurityGroupSet[0].SecurityGroupId | sed 's/\"//g')

echo $my_pod_security_group_id

c. Allow the traffic over TCP and UDP on port 53 from the Pod security group created in the previous step to the
cluster security group, so that the Pod can access the application through the domain name.

tccli vpc CreateSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_cluster_security_group_id --SecurityGroupPolicySet.Ingress.0.Protocol UDP -

-SecurityGroupPolicySet.Ingress.0.Port 53 --SecurityGroupPolicySet.Ingress.0.Se

curityGroupId $my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Acti

on ACCEPT

tccli vpc CreateSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_cluster_security_group_id --SecurityGroupPolicySet.Ingress.0.Protocol TCP -

-SecurityGroupPolicySet.Ingress.0.Port 53 --SecurityGroupPolicySet.Ingress.0.Se

curityGroupId $my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Acti

on ACCEPT

d. Allow the inbound traffic over any protocol and port from the Pod associated with the security group to the Pod

associated with any security group, and allow the outbound traffic over any protocol and port from the Pod
associated with the security group.

tccli vpc CreateSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Protocol ALL --Sec

urityGroupPolicySet.Ingress.0.Port ALL --SecurityGroupPolicySet.Ingress.0.Secur

ityGroupId $my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Action

ACCEPT

tccli vpc CreateSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_pod_security_group_id --SecurityGroupPolicySet.Egress.0.Protocol ALL --Secu

rityGroupPolicySet.Egress.0.Port ALL --SecurityGroupPolicySet.Egress.0.Action A

CCEPT

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 577

2. Create a Kubernetes namespace to deploy resources.

kubectl create namespace my-namespace

3. Deploy the SecurityGroupPolicy in your cluster.

a. Save the following sample security policy as my-security-group-policy.yaml . If you prefer to select a

Pod by service account tag, you can replace podSelector with serviceAccountSelector , and you must

specify a selector. If you specify multiple security groups, all their rules will take effect for the selected Pod. Replace
 $my_pod_security_group_id with the security group ID recorded in the previous step.

apiVersion: vpcresources.tke.cloud.tencent.com/v1beta1

kind: SecurityGroupPolicy

metadata:

name: my-security-group-policy

namespace: my-namespace

spec:

podSelector:

matchLabels:

app: my-app

securityGroups:

groupIds:

- $my_pod_security_group_id

Note
Consider the following limits when specifying one or multiple security groups for the Pod:

They must exist.
They must allow inbound requests from cluster security groups (for kubelet) and health checks configured
for the Pod.
Your CoreDNS Pod security groups must allow the inbound traffic over TCP and UDP on port 53 from Pod
security groups.
They must have necessary inbound and outbound rules to communicate with other Pods.

A security group policy applies only to newly scheduled Pods and doesn't affect running Pods. To
make it effective for existing Pods, you need to verify that the existing Pods meet the above limits
before manually recreating it.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 577

b. Deploy the policy.

kubectl apply -f my-security-group-policy.yaml

4. To deploy the sample application, use the my-app match tag specified by using the podSelector in the

previous step.
a. Save the following content as sample-application.yaml .

apiVersion: apps/v1

kind: Deployment

metadata:

name: my-deployment

namespace: my-namespace

labels:

app: my-app

spec:

replicas: 2

selector:

matchLabels:

app: my-app

template:

metadata:

labels:

app: my-app

spec:

terminationGracePeriodSeconds: 120

containers:

- name: nginx

image: nginx:latest

ports:

- containerPort: 80

nodeSelector:

node.kubernetes.io/instance-type: eklet

tolerations:

- effect: NoSchedule

key: eks.tke.cloud.tencent.com/eklet

operator: Exists

apiVersion: v1

kind: Service

metadata:

name: my-app

namespace: my-namespace

labels:

app: my-app

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 577

spec:

selector:

app: my-app

ports:

- protocol: TCP

port: 80

targetPort: 80

b. Run the following command to deploy the application. During deployment, Pods will be preferably scheduled to
super nodes, and the security group specified in the previous step will be applied to the Pod.

kubectl apply -f sample-application.yaml

Note：
If you don't use nodeSelector to preferably schedule the Pod to a super node, when it is scheduled to

another node, the security group will not take effect, and kubectl describe pod will output "security

groups is only support super node, node 10.0.0.1 is not super node".

5. View the Pod deployed by using the sample application. So far, the involved terminal is TerminalA .

kubectl get pods -n my-namespace -o wide

Below is the sample output:

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES

my-deployment-866ffd8886-9zfrp 1/1 Running 0 85s 10.0.64.10 eklet-subnet-q21ras

u6-8bpgyx9r <none> <none>

my-deployment-866ffd8886-b7gzb 1/1 Running 0 85s 10.0.64.3 eklet-subnet-q21rasu

6-8bpgyx9r <none> <none>

6. Go to any Pod on another terminal (TerminalB) and replace the Pod ID with the one returned in the previous

step.

kubectl exec -it -n my-namespace my-deployment-866ffd8886-9zfrp -- /bin/bash

7. Verify that the sample application works normally on TerminalB .

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 577

curl my-app

Below is the sample output:

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

...

You receive a response, as all Pods of the running application are associated with the security group you create,
which contains the following rules:

i. Allow all traffic between all Pods associated with the security group.

ii. Allow the DNS traffic from the security group to the cluster security group associated with your node. CoreDNS
Pods are running on these nodes, and your Pod will search for my-app by domain name.

8. On TerminalA , delete the security group rule that allows DNS communication from the cluster security group.

tccli vpc DeleteSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_cluster_security_group_id --SecurityGroupPolicySet.Ingress.0.Protocol UDP -

-SecurityGroupPolicySet.Ingress.0.Port 53 --SecurityGroupPolicySet.Ingress.0.Se

curityGroupId $my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Acti

on ACCEPT

tccli vpc DeleteSecurityGroupPolicies --cli-unfold-argument --SecurityGroupId

$my_cluster_security_group_id --SecurityGroupPolicySet.Ingress.0.Protocol TCP -

-SecurityGroupPolicySet.Ingress.0.Port 53 --SecurityGroupPolicySet.Ingress.0.Se

curityGroupId $my_pod_security_group_id --SecurityGroupPolicySet.Ingress.0.Acti

on ACCEPT

9. On TerminalB , try accessing the application again.

curl my-app

The trial will fail, as the Pod cannot access the CoreDNS Pod, and the cluster security group no longer allows DNS
communication from Pods associated with the security group.
If you try using an IP to access the application, you will receive a response, as all ports allow the communication
between Pods associated with the security group, and no domain name search is required.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 577

0. After the trial, run the following command to delete the sample security group policy, application, and security
group.

kubectl delete namespace my-namespace

tccli vpc DeleteSecurityGroup --cli-unfold-argument --SecurityGroupId $my_pod_s

ecurity_group_id

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 577

Image signature and signature verification can avoid man-in-the-middle attacks and the update and running of invalid
images, ensuring image consistency across the entire linkage ranging from distribution to deployment.

Container image signature

TCR Enterprise Edition supports namespace-level automatic image signature. When an image is pushed to the

registry, it will be automatically signed according to the matched signature policy to ensure image content
trustworthiness in your registry.

Image signature verification

TKE provides the image signature verification add-on Ceberus, which verifies signed images for trustworthiness. This
is to ensure that only container images signed by trusted authorizing parties are deployed in TKE clusters, thereby
reducing the risks to image security in the container environment.

Container Image Signature and Verification
Last updated：2022-12-08 17:25:19

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 577

It is easy to deploy containerized services to a Kubernetes cluster. If a service is used in a formal production
environment, you need to select a solution and adjust the configuration based on the service scenario and deployment
environment. For example, you need to set the container request and limit to ensure high availability of the deployed

service, configure health check and auto scaling to better schedule resources, and select persistent storage and
external service disclosure.

You can refer to the following documents to deploy Kubernetes services and adjust configurations based on actual
requirements:

Setting Request and Limit

Proper Resource Allocation
Auto Scaling

Service Deployment
Proper Use of Node Resources
Overview
Last updated：2022-04-18 10:42:27

https://intl.cloud.tencent.com.cn/document/product/457/37009
https://intl.cloud.tencent.com.cn/document/product/457/37010
https://intl.cloud.tencent.com.cn/document/product/457/37011

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 577

The request and limit parameters of a container need to be flexibly set based on the service type, your requirements,
and the relevant scenario. This document describes how to set request and limit based on actual production
experience. You can adjust your configurations based on this document.

How Request Works

The request value does not represent the size of the resources actually assigned to the container, but is a reference
value provided to the scheduler. The scheduler detects the resources on each node that can be assigned (assignable
node resources = total amount of node resources - sum of requests scheduled to containers in all Pods on the node)
and records the assigned resources on each node (sum of requests scheduled to containers defined in all Pods on the
node). If the amount of assignable node resources is smaller than the sum of requests in a Pod that needs to be

scheduled, the Pod will not be scheduled to the node; otherwise, it will be scheduled to the node.

If request is not configured, the scheduler cannot perceive node resource usage to make correct scheduling decisions.
As a result, scheduling may not be rational, resulting in chaotic node statuses. We recommend that you set request for
all containers to enable the scheduler to perceive node resource usage and make proper scheduling decisions. In this
way, node resources in a cluster can be properly allocated, and faults caused by uneven resource allocation can be
prevented.

Setting Default Request and Limit Values

You can use LimitRange to set the default, minimum, and maximum request and limit values for a namespace, as
shown below:

apiVersion: v1

kind: LimitRange

metadata:

name: mem-limit-range

namespace: test

spec:

limits:

- default:

memory: 512Mi

cpu: 500m

defaultRequest:

Setting Request and Limit
Last updated：2022-04-18 10:48:34

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 577

memory: 256Mi

cpu: 100m

type: Container

Setting Request and Limit Values for Important Online Applications

When node resources are insufficient, pods of low priorities will be deleted automatically to release node resources.
The following lists pods with priorities in ascending order:

1. Pods with no request or limit values
2. Pods with different request and limit values

3. Pods with the same request and limit values

We recommend that you set the same request and limit values for important online applications to ensure a high pod
priority. When a node fault occurs, these applications will not be affected because the pods used for these applications
are generally not deleted.

Improving Resource Utilization

If a large request value is set for an application but the occupied resource amount of the application is much less than

the preset value, resource utilization of the node is low.

Except for services that are sensitive to latency, we recommend that you lower the request value for non-core
applications that do always need resources in order to improve resource utilization. Services that are sensitive to
latency do not expect high node resource utilization because it affects the packet sending and receiving speeds. If
your service supports horizontal scale-out, the request value for a single replica is usually set to less than one core,

except for CPU-intensive applications. For example, the request value of CoreDNS can be set to 0.1 core, which
indicates 100 MB.

Preventing Large Request and Limit Values

If your service uses a single replica or a few replicas and the request and limit values are large, sufficient resources
will be allocated to your service. However, when a replica encounters a fault, your service will be greatly affected.
When the node where the pod resides is faulty, other nodes do not have sufficient resources to meet the pod request
because the request value is large and cluster resources are allocated in a fragmented manner. As a result, the pod

cannot be shifted or recovered.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 577

We recommend that you set small request and limit values and scale out replicas to ensure that your service is more
flexible and reliable.

Preventing High Resource Consumption by the Test Namespace

If a production cluster contains a test namespace and the request and limit values of the namespace are not

restricted, the cluster may be overloaded and production services could be affected. You can use
 ResourceQuota to restrict the request and limit values of the test namespace, as shown below:

apiVersion: v1

kind: ResourceQuota

metadata:

name: quota-test

namespace: test

spec:

hard:

requests.cpu: "1"

requests.memory: 1Gi

limits.cpu: "2"

limits.memory: 2Gi

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 577

You can set request to schedule pods to nodes with sufficient resources but cannot ensure refined control. This
document describes how to use node affinity, taint, and toleration to schedule pods to suitable nodes in order to make
full use of resources.

Using node affinity

You can use node affinity to deploy services that have special node requirements to nodes that meet these
requirements. For example, you can enable MySQL to schedule a model with high I/O to improve data reading and
writing efficiency.
You can use node affinity to deploy services that need to be associated. For example, you can ensure the web
service and Redis cache service are deployed in the same availability zone to ensure a low latency.

You can use node affinity to schedule separated pods to prevent issues caused by a single point of failure (SPOF)
or centralized traffic.

Using taint and toleration

Taint and toleration can help optimize cluster resource scheduling.

You can add taints to nodes reserved for certain applications, which prevents other pods from being scheduled to
these nodes.
You can add tolerations to pods that need to use reserved resources. Tolerations work with node affinity, to ensure

pods can be scheduled even when their affinity settings cannot be matched.

Proper Resource Allocation
Last updated：2020-07-31 15:44:03

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 577

This document describes how to use auto scaling, so that services can make full use of available resources based on
actual production experience. You can adjust your configurations based on this document.

Coping Abrupt Traffic Spikes

Typically, services have peak and off-peak hours of resource usage. To properly use resources, you can define a

Horizontal Pod Autoscaler (HPA) for services to automatically scale out the number of pods during peak hours and
scale in the number of pods during off-peak hours. For example, when the traffic of online services is low at night, the
HPA can automatically release resources of online services and use them for big data offline tasks.

To use the HPA, you need to install resource metrics (metrics.k8s.io) or custom metrics (custom.metrics.k8s.io) in
advance. The HPA controller can then query related APIs to obtain resource use information for services. In this way,

Kubernetes obtains resource usage data (metric data) of services in advance.
Previously, the HPA used resource metrics to obtain metric data. After custom metrics became available, the HPA
used more flexible metrics to control scaling. To implement HPA, Kubernetes uses metrics-server, communities use
prometheus-adapter, and cloud vendors that manage Kubernetes clusters usually use their own APIs. For example,
TKE uses HPA to implement CPU, memory, hard disk, and network metrics. You can create an HPA on the web client
and convert the metrics to a Kubernetes YAML file, as shown below:

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: nginx

spec:

scaleTargetRef:

apiVersion: apps/v1beta2

kind: Deployment

name: nginx

minReplicas: 1

maxReplicas: 10

metrics:

- type: Pods

pods:

metric:

name: k8s_pod_rate_cpu_core_used_request

target:

Auto Scaling
Last updated：2020-07-31 15:44:03

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 577

averageValue: "100"

type: AverageValue

Reducing costs

HPA implements horizontal pod scaling. When node resources are insufficient, scaled-out pods are in the pending
state. If a large number of nodes are prepared in advance, pending pods will not occur, but the cost will be high.
Typically, Kubernetes clusters managed by cloud vendors support cluster-autoscaler. This means nodes can be
dynamically added or deleted based on resource usage to maximize computing resource utilization. In addition, pay-
as-you-go is used to reduce the cost. For example, TKE uses scaling groups and extended features that contain

scaling groups (node pools).

Using vertical scaling

For applications that do not support horizontal scaling or applications with uncertain optimal request and limit ratios,
you can use VPA for vertical scaling. In this case, the request and limit values are automatically updated, and pods are
restarted. This feature may cause service unavailability for a short period. We do not recommend you use it on a large
scale in the production environment.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 577

High availability (HA) refers to the ability of an application system to maintain uninterrupted operation, which is usually
achieved by improving the fault tolerance of the system. In general, the application fault tolerance can be improved by
configuring replicas to create multiple replicas of the application, but this does not necessarily mean that the

application will have high availability.
This document describes best practices for deploying application high availability. You can choose from them based
on your situation.

Distributing and scheduling business workloads
Using a placement group to achieve disaster recovery in the physical layer

Using PodDisruptionBudget to avoid service unavailability caused by node draining
Using preStopHook and readinessProbe to ensure smooth and uninterrupted service update

Distributing and Scheduling Business Workloads

1. Using anti-affinity to prevent single-point failures

Kubernetes assumes that nodes are unreliable, so the more nodes there are, the higher the probability of nodes being
unavailable due to software or hardware failures will be. Therefore, we usually have to deploy multiple replicas of
applications and adjust the replicas value based on the actual situation. If its value is 1, there must be risks of

single-point failures. Even if its value is greater than 1 but all replicas are scheduled to the same node, the single-point

failure risks will still be there.

To prevent single-point failures, we need to have an appropriate number of replicas, and we also need to make sure
different replicas are scheduled to different nodes. We can do so with anti-affinity. See the example below:

affinity:

podAntiAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- weight: 100

labelSelector:

matchExpressions:

- key: k8s-app

operator: In

values:

- kube-dns

topologyKey: kubernetes.io/hostname

Application High Availability Deployment
Last updated：2022-08-02 17:19:05

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 577

The relevant configurations in this example are shown below:

requiredDuringSchedulingIgnoredDuringExecution
This sets anti-affinity as a required condition that must be met when Pods are scheduled. If no node meets the

condition, Pods will not be scheduled to any node (pending).
If you do not want to set anti-affinity as a required condition, you can use
 preferredDuringSchedulingIgnoredDuringExecution to instruct the scheduler to always try to meet

the anti-affinity condition. If no node meets the condition, Pods can still be scheduled to certain nodes.
labelSelector.matchExpressions

This marks the keys and values of the labels in the service’s corresponding Pod.
topologyKey
This example uses kubernetes.io/hostname to indicate that Pods are prevented from being scheduled to

the same node.
If you have higher requirements, such as preventing Pods from being scheduled to nodes in the same availability
zone to achieve remote multi-site active-active disaster tolerance, you can use failure-

domain.beta.kubernetes.io/zone . Generally, all the nodes in the same cluster are in one region. If there

are cross-region nodes, there will be considerable latency even if direct connect is used. If Pods have to be
scheduled to nodes in the same region, you can use failure-domain.beta.kubernetes.io/region .

2. Using topologySpreadConstraints

The topologySpreadConstraints feature defaults to be enabled in K8s v1.18. It is recommended that you use
 topologySpreadConstraints to distribute Pods in clusters of v1.18 or later versions to improve the service

availability.

Widely distribute and schedule Pods to each node:
For example, widely distribute and schedule all Pods of nginx to different nodes as evenly as possible. The max
allowed number variance of nginx copies on different nodes is 1 . If no more Pods can be scheduled to a node due

to reasons such as insufficient resources of the node, the remaining nginx copies are pending.

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

k8s-app: nginx

qcloud-app: nginx

name: nginx

namespace: default

spec:

replicas: 1

selector:

matchLabels:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 577

k8s-app: nginx

qcloud-app: nginx

template:

metadata:

labels:

k8s-app: nginx

qcloud-app: nginx

spec:

topologySpreadConstraints:

- maxSkew: 1

whenUnsatisfiable: DoNotSchedule

topologyKey: topology.kubernetes.io/region

labelSelector:

matchLabels:

k8s-app: nginx

containers:

- image: nginx

name: nginx

resources:

limits:

cpu: 500m

memory: 1Gi

requests:

cpu: 250m

memory: 256Mi

dnsPolicy: ClusterFirst

topologyKey: It is similar to configurations in podAntiAffinity.
labelSelector: It is similar to configurations in podAntiAffinity. It supports selecting labels of multiple Pods.
maxSkew: It must be an integer larger than 0, indicating the max allowed variation of Pod number in different
topological domain. 1 means the max allowed variation of Pod number is one.

whenUnsatisfiable: It indicates how to deal with the situations where the conditions are not met.

 DoNotSchedule means do not schedule (keep pending), and it is similar to strong anti-affinity.

 ScheduleAnyway means widely distribute and schedule Pods on node as evenly as possible, and it is similar

to weak anti-affinity (change DoNotSchedule to ScheduleAnyway).

spec:

topologySpreadConstraints:

- maxSkew: 1

whenUnsatisfiable: ScheduleAnyway

topologyKey: topology.kubernetes.io/region

labelSelector:

matchLabels:

k8s-app: nginx

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 577

If the cluster node supports cross-AZ scheduling, you can widely distribute and schedule Pods to the AZs as evenly as
possible to achieve higher levels of high availability (change topologyKey to

 topology.kubernetes.io/zone).

spec:

topologySpreadConstraints:

- maxSkew: 1

topologyKey: topology.kubernetes.io/zone

whenUnsatisfiable: ScheduleAnyway

labelSelector:

matchLabels:

k8s-app:: nginx

Moreover, you can widely distribute the Pods within each AZ when you schedule the Pods to the AZs.

spec:

topologySpreadConstraints:

- maxSkew: 1

whenUnsatisfiable: ScheduleAnyway

topologyKey: topology.kubernetes.io/zone

labelSelector:

matchLabels:

k8s-app: nginx

- maxSkew: 1

whenUnsatisfiable: ScheduleAnyway

topologyKey: kubernetes.io/hostname

labelSelector:

matchLabels:

k8s-app: nginx

Using a Placement Group to Achieve Disaster Recovery in the
Physical Layer

When the underlying hardware or software of a CVM is faulty, multiple nodes may have exceptions at the same time.
Even if anti-affinity is used to distribute Pods to different nodes, business exceptions may still be unavoidable. You can

use a placement group to distribute nodes in a physical layer, such as the CPM, exchange, or rack layer, to prevent
underlying hardware or software faults from causing multiple node exceptions. The steps are as follows:

1. Log in to the Placement Group console to create a placement group and select a layer (CPM layer, exchange layer,
or rack layer) as the node distribution policy. For more information, see Spread Placement Group.

https://intl.cloud.tencent.com.cn/document/product/213/15486
https://console.intl.cloud.tencent.com.cn/cvm/ps
https://intl.cloud.tencent.com.cn/document/product/213/17020

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 577

Note：

The placement group and the TKE self-deployed cluster need to be in the same region.

2. Add a batch of nodes, check Add the instance to a placement group in Advanced configuration, and select
the created placement group. For more information, see Adding Nodes.

3. On the "Node list" page, edit the same label for this batch of nodes to mark them. These nodes are simultaneously
added to the placement group as a single batch.

Note：
The placement group policy takes effect only for nodes of the same batch. Therefore, you need to add a
label for each batch of nodes and specify different values to mark different batches.

4. Specify node affinity for Pods where workloads need to be deployed. In this way, the Pods will be deployed on the

same batch of nodes. Meanwhile, specify Pod anti-affinity so that the Pods will be widely distributed among the
batch of nodes. The YAML sample is as follows:

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: "placement-set-uniq"

operator: In

values:

- "rack1"

podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 100

podAffinityTerm:

https://intl.cloud.tencent.com.cn/document/product/457/30652

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 577

labelSelector:

matchExpressions:

- key: app

operator: In

values:

- nginx

topologyKey: kubernetes.io/hostname

Using PodDisruptionBudget to Avoid Service Unavailability Caused
by Node Draining

Node draining involves negative impacts. The following describes the process of draining a node:

1. Cordon the node by setting it as unschedulable to prevent new Pods from being scheduled to it.
2. Delete Pods from the node.

3. Once detecting that the number of Pods decreases, ReplicaSet controller will create a new Pod to be scheduled to
a new node.

Such a process first deletes the Pods and then creates new Pods instead of using rolling update. Therefore, if all
replicas of a service are on the drained node, the service may become unavailable during the updating process.
Normally, the service may become unavailable for two reasons:

1. The service is exposed to single-point failure risks with all the replicas on the same node. Once the node is drained,
the service may become unavailable.
In such a case, you can refer to using anti-affinity to prevent single-point failures.

2. The service is deployed on multiple nodes, but these nodes are drained at the same time. All the replicas of the
service are deleted simultaneously, which may cause the service to become unavailable.

In such a case, you can configure PDB (PodDisruptionBudget) to prevent the simultaneous deletion of all replicas.
See the example below:

Example 1
Example 2

Ensure that zookeeper has at least two available replicas at the time of node draining.

apiVersion: policy/v1beta1

kind: PodDisruptionBudget

metadata:

name: zk-pdb

spec:

minAvailable: 2

selector:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 577

matchLabels:

app: zookeeper

For more details, please read Kubernetes documentation: Specifying a Disruption Budget for your Application.

Using preStopHook and readinessProbe to Ensure Smooth and
Uninterrupted Service Update

If configuration is not optimized for a service, some traffic errors may occur during the service update with the default
configuration. Please refer to the following steps when making deployment.

Service update scenarios

Some service update scenarios include:

Manually adjusting the number of service replicas.

Manually deleting Pods to trigger re-scheduling.
Draining nodes voluntarily or involuntarily, where Pods are deleted from the drained nodes and then recreated on
other nodes.
Triggering rolling update, such as modifying the image tag to upgrade the program version.
HPA (HorizontalPodAutoscaler) automatically scales out or scale in services.
VPA (VerticalPodAutoscaler) automatically scales up or scale down services.

Reasons for connection errors during service update

During a rolling update, the Pods corresponding to the service being updated will be created or terminated, and the
endpoints of the service will also add and remove Pod IP:Port corresponding to the Pods. Then kube-proxy will

update the forwarding rules according to the updated Pod IP:Port list, but such rules are not updated

immediately.

The forwarding rules are not updated immediately because Kubernetes components are decoupled from each other.

Each component uses the controller mode to ListAndWatch the resources it is interested in and responds with actions.
Therefore, all the steps in the process, including Pod creation or termination, endpoint update, and forwarding rules
update, happen in an asynchronous manner.

When forwarding rules are not immediately updated, some connection errors could occur during the service update.
The following describes two possible scenarios to analyze the reasons behind the connection errors:

Scenario 1: Pods have been created but have not fully started yet. Endpoint controller adds the Pods to the Pod

IP:Port list of the service. kube-proxy watches the update and updates the service forwarding rules

https://kubernetes.io/docs/tasks/run-application/configure-pdb/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 577

(iptables/ipvs). If there is a request made at this point, it could be forwarded to a Pod that has not fully started yet. A
connection error may occur because the Pod is not able to properly process the request yet.

Scenario 2: Pods have been terminated, but since all the steps in the process are asynchronous, the forwarding

rules have not been updated when the Pods have been fully terminated. In such a case, new requests can still be
forwarded to the terminated Pods, leading to connection errors.

Smooth update

To address problems in scenario 1, you can add readinessProbe to the containers in the Pods. After a container
fully starts, it will listen to an HTTP port to which kubelet will send readiness probe packets. If the container can
respond normally, it means the container is ready, and the container’s status will be modified to Ready. Only when

all the containers in a Pod are ready will the Pod be added by the endpoint controller to the IP:Port list in the

corresponding endpoint of the Service. Then, kube-proxy will update the forwarding rules. In this way, even if a
request is immediately forwarded to the new Pod, it will be able to normally process the request, thereby avoiding
connection errors.

To address problems in scenario 2, you can add preStop hook to the containers in the Pods so that, before the
Pods are fully terminated, they will sleep for some time during which the endpoint controller and kube-proxy can

update the endpoints and the forwarding rules. During that time, the Pods will be in the Terminating status. Even if a
request is forwarded to a terminating Pod before the forwarding rules are fully updated, the Pod can still normally
process the request because it has not been terminated yet.

Below is a YAML sample:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx

spec:

replicas: 1

selector:

matchLabels:

component: nginx

template:

metadata:

labels:

component: nginx

spec:

containers:

- name: nginx

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 577

image: "nginx"

ports:

- name: http

hostPort: 80

containerPort: 80

protocol: TCP

readinessProbe:

httpGet:

path: /healthz

port: 80

httpHeaders:

- name: X-Custom-Header

value: Awesome

initialDelaySeconds: 15

timeoutSeconds: 1

lifecycle:

preStop:

exec:

command: ["/bin/bash", "-c", "sleep 30"]

For more information, please see Kubernetes documentation: Container probes and Container Lifecycle Hooks.

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 577

After the problem of decreased availability caused during a Service's single point of failure or node draining is solved,
still another scenario that may cause availability decrease needs to be considered, that is, rolling update. A normal
rolling update of a Service may affect the Service availability due to the following causes:

Lossy rolling update of the business

If there is a call between Services in the cluster:

When a rolling update is performed on the server:

Either of the following cases may occur:

Case 1. The old replica is immediately terminated, but kube-proxy on the client node hasn't updated all the
forwarding rules and still schedules the new connection to the old replica. This will result in a connection exception,
and the error "connection refused" (the process is being stopped and no longer receives new requests) or "no route

to host" (the container is completely terminated, and its ENI and IP no longer exist) may be reported.
Case 2. The new replica starts, and kube-proxy on the client node immediately watches the new replica, updates
the forwarding rules, and schedules the new connection to the new replica. However, a process, such as a Java
process like Tomcat, starts slowly in the container, the port is not listened on, and thus the connection cannot be
processed during startup, which also results in a connection exception, and the error "connection refused" will be
reported generally.

Smooth Workload Upgrade
Last updated：2022-10-12 16:05:09

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 577

Best practices

For case 1, you can add preStop to the container to make the Pod sleep for a while before being truly

terminated, during which kube-proxy on the client node will update all the forwarding rules, and then the container
will be terminated. In this case, the Pod can still run for a while after being terminated, during which it can still

process requests normally if new requests are forwarded to it as forwarding rules are not updated promptly on the
client, so as to avoid connection exceptions. This method sounds ungraceful but has a good effect. There is no
silver bullet in a distributed architecture, and you can only try to find and implement the best solution under the
current design.

For case 2, you can add ReadinessProbe to the container to make the Service Endpoint be updated only

after all processes in the container are truly started. Then, kube-proxy on the client node will update the forwarding
rules to forward the incoming traffic. This ensures that the traffic will be forwarded only after the Pod is completely
ready and thus avoids connection exceptions.
Sample YAML configuration:

readinessProbe:

httpGet:

path: /healthz

port: 80

httpHeaders:

- name: X-Custom-Header

value: Awesome

initialDelaySeconds: 10

timeoutSeconds: 1

lifecycle:

preStop:

exec:

command: ["/bin/bash", "-c", "sleep 10"]

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 577

This document describes how to match parameters of docker run and the TKE console when you try to migrate a
container that has been debugged in the local Docker to the TKE platform. The following section uses the creation of a
simple GitLab service as an example.

Parameters of a GitLab Container

You can create a simple GitLab container by running the following docker run command:

docker run \

-d \

-p 20180:80 \

-p 20122:22 \

--restart always \

-v /data/gitlab/config:/etc/gitlab \

-v /data/var/log/gitlab:/var/log/gitlab \

-v /data/gitlab/data:/var/opt/gitlab \

--name gitlab \

gitlab/gitlab-ce:8.16.7-ce.0

 -d : indicates that the container runs at the backend. You do not need to specify this parameter in the TKE console

because containers always run at the backend on the TKE platform.
 -p : specifies port mapping. Two ports are mapped here, that is, container ports 80 and 22, which are mapped to

open ports 20180 and 20122 respectively. To take these mappings into effect, you need to add two port mapping
rules in the console and specify the corresponding container ports and service ports. As GitLab needs to allow access

from the public network, select Via Internet as the access method, as shown in the following figure.

 --restart : specifies whether to restart the container when it exits. You do not need to specify this parameter in

the TKE console because all containers created on the TKE platform will restart upon exit.

Parameter Adaptation for docker run
Last updated：2020-07-22 09:34:26

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 577

 -v : specifies container volumes. In the preceding command, three volumes are specified. Accordingly, you need to

add three data volumes in the TKE console and mount them to the container in Containers in the pod.
To do this, create three volumes first, as shown in the following figure.

Mount the three volumes to the container in "Containers in the pod", as shown in the following figure.

Note that Use node path is selected as the data volume type. In this case, data generated during the running process
of the container will be stored to the node where the container is located. If the container is scheduled to another node,
the data will be lost. Alternatively, you can select Use Tencent Cloud CBS. In this case, the container data will be
stored to the CBS instance and will not be lost even if the container is scheduled to other nodes.

 --name : specifies the container name. This parameter corresponds to the service name in the TKE console. The

container name and service name can be the same.

Other Parameters

The following describes other common parameters for executing the docker run command:
 -i : specifies the interactive container execution mode. This parameter is not supported because the TKE console

only allows containers to run at the backend.

 -t : assigns virtual terminals. This parameter is not supported.

 -e : specifies environment variables for container running. For example, you can run the following docker run

command:

docker run -e FOO='foo' -e BAR='bar' --name=container_name container_image

Running this command adds two environment variables for the container. You can add environment variables for a

container in advanced settings when creating a service in the TKE console. The names and values of the variables are

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 577

as follows:

Variable: FOO, value: foo.
Variable: BAR, value: bar.

Command and Arguments

You can specify the command name and arguments of a container process in docker run. For example:

docker run --name=kubedns gcr.io/google_containers/kubedns-amd64:1.7 /kube-dns --

domain=cluster.local. --dns-port=10053 -v 2

In this case, the command name of the container process is /kube-dns , and the arguments are -

domain=cluster.local. , --dns-port=10053 , and -v 2 . The following figure shows how to set these

arguments in the TKE console.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 577

Introduction

The default system time of containers in TKE clusters is Universal Time Coordinated (UTC), which may be different
with the local time zone of your nodes. During the use of containers, time zone inconsistency in containers will cause
trouble when the system time is used for operations, such as log records and database storage. In this document, we

will use "Asia/Shanghai" as the local time zone.

You cannot modify the default time of the cluster but the container. This document provides multiple solutions to time
zone inconsistencies in containers. You can choose the solution that works for you.

Solution 1: create a time zone file in Dockerfile (recommended)
Solution 2: mount the time zone configuration of the CVM to the container

Operation Environment

All operations described in this document are completed on TKE cluster nodes. The relevant operation environment is
shown below. Please use this document to solve problems based on your actual situation.

Role Region Specifications OS Kubernetes
Version

Node South China
(Guangzhou)

CPU: 1 core, memory: 1 GB,
bandwidth: 1 Mbps
System disk: 50 GB (HDD cloud
disk)

CentOS Linux 7
(Core)

1.16.3

Cause Locating

1. Log in to the target node by referring to Log in to Linux Instance Using Standard Login Method (Recommended).
2. Run the following command to query the local time:

date

Solve the inconsistent time zone problem in
the container
Last updated：2020-04-29 17:40:27

https://intl.cloud.tencent.com.cn/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 577

The following information appears:

3. Run the following commands in sequence to query the default time zone of CentOS in the container:

docker run -it centos /bin/sh

date

The following information appears:

By comparison, it is clear that the local time zone and the time zone in the container are inconsistent.
4. Run the following command to exit the container:

exit

Directions

Solution 1: create a time zone file in Dockerfile (recommended)

When creating a basic image or customizing an image based on a basic image, you can create a time zone file in
Dockerfile to solve time zone inconsistency within a container. After this, you will no longer be troubled by time zone
issues when using the image.

1. Run the following command to create the Dockerfile.txt file:

vim Dockerfile.txt

2. Press i to switch to the editing mode, and write the following information to configure the time zone file.

FROM centos

RUN rm -f /etc/localtime \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 577

&& ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \

&& echo "Asia/Shanghai" > /etc/timezone

3. Press Esc, enter :wq, and save and close the file.
4. Run the following command to create a container image:

docker build -t centos7-test:v1 -f Dockerfile.txt .

The following information appears:

5. Run the following commands in sequence to launch the container image and query the time zone in the container:

date

docker run -it centos7-test:v1 /bin/sh

date

The time zone in the container is consistent with the local time. See the figure below:

6. Run the following command to exit the container:

exit

Solution 2: mount the time zone configuration of the CVM to the container

You can also solve time zone inconsistency in a container by mounting the time configuration of the CVM to the
container. This solution can be set when the container is started, or you can use the CVM path in the YAML file to
mount volumes to the container.

Mounting CVM time configuration to the container when the container is started

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 577

When mounting the CVM time configuration to the container to overwrite the original configuration, there are two
options:

Mount local /etc/localtime : you need to ensure that the CVM time zone configuration file exists and the time

zone is correct.
Mount local /usr/share/zoneinfo/Asia/Shanghai : when the local /etc/localtime does not exist

or the time zone is incorrect, you can directly mount the configuration file.

Choose one of the following methods based on your situation to mount the CVM time configuration to the container:

Method 1: mount local /etc/localtime ;

i. Run the following commands in sequence to query the local time and mount the local /etc/localtime into

the container:

date

docker run -it -v /etc/localtime:/etc/localtime centos /bin/sh

date

If the following information appears, the time zone in the container is consistent with the local time:

ii. Run the following command to exit the container:

exit

Method 2: mount local /usr/share/zoneinfo/Asia/Shanghai :

i. Run the following commands in sequence to query the local time and mount local
 /usr/share/zoneinfo/Asia/Shanghai into the container:

date

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 577

docker run -it -v /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime centos /bi

n/sh

date

If the following information appears, the time zone in the container is consistent with the local time:

ii. Run the following command to exit the container:

exit

Using data volumes in the YAML file to mount the CVM time zone configuration to the container

This section uses mountPath:/etc/localtime as an example to illustrate how to mount the CVM time zone

configuration to the container using volumes in the YAML file. This will solve time zone inconsistency in the container.

1. Run the following command on the node to create the pod.yaml file:

vim pod.yaml

2. Press i to switch to the editing mode and enter the following.

apiVersion: v1

kind: Pod

metadata:

name: test

namespace: default

spec:

restartPolicy: OnFailure

containers:

- name: nginx

image: nginx-test

imagePullPolicy: IfNotPresent

volumeMounts:

- name: date-config

mountPath: /etc/localtime

command: ["sleep", "60000"]

volumes:

- name: date-config

hostPath:

path: /etc/localtime

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 577

3. Press Esc, enter :wq, and save and close the file.
4. Run the following command to create a pod:

kubectl create -f pod.yaml

The following information appears:

5. Run the following commands in sequence to query the time zone in the container:

date

kubectl exec -it test date

If the following information appears, the time zone is consistent with the local system time zone.

 

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 577

Operation Scenarios

Sometimes, containers may fail to work properly after an exception occurs. If there is no sufficient information in the
business log to help you identify the cause, you need to use coredump for further analysis. This document how to
generate and save coredump for containers.

Prerequisites

You have logged in to the TKE console.

Directions

Enabling coredump

1. Run the following command on the node to set the storage path format of the core file for the node:

Run the following command on the node:

echo "/tmp/cores/core.%h.%e.%p.%t" > /proc/sys/kernel/core_pattern

Main parameters are described as follows:

%h: host name (in a Pod, the host name is the Pod name) (recommended).
%e: program file name (recommended).
%p: process ID (optional).
%t: coredump time (optional).

The complete path where the core file is generated is as follows:

Container coredump Persistence
Last updated：2020-12-10 11:29:37

Note：

This document only applies to TKE clusters.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 577

/tmp/cores/core.nginx-7855fc5b44-p2rzt.bash.36.1602488967

2. After configuring the node, you need not modify the existing container configuration. The container configuration will
automatically take effect through inheritance. If you require batch execution on multiple nodes, perform the

corresponding operation accordingly:

For existing nodes, see Performing batch operations on TKE nodes by using Ansible.
For new nodes, see Configuring the launch script of a node.

Enabling the COS add-on

To prevent the loss of the core file after the container restarts, you need to mount a volume for the container. As the
cost of mounting an independent cloud disk for each pod is too high, you need to mount the component to COS. For

the directions, see Installing the COS add-on.

Creating a bucket

Log in to the COS console, and manually create a COS bucket for storing the core file generated by the container
coredump. In this document, a custom bucket named coredump is created as an example. For directions, see
Creating a bucket.

Creating a Secret

You can choose any of the following three methods to create a Secret for accessing COS based on your needs:

To use COS via the console, see Creating a secret that can access COS.
To use COS via a YAML file, see Creating a secret that can access COS.
To create a Secret by using the kubectl command line tool, refer to the following code snippet:

kubectl create secret generic cos-secret -n kube-system --from-literal=SecretId

=AKI*****************lV --from-literal=SecretKey=paQ9***************sZF

Creating a PV and PVC

To use the COS plug-in, you need to manually create a PV and PVC and then bind them.

Creating a PV

Note：

Remember to replace SecretId, SecretKey, and namespace.

https://intl.cloud.tencent.com.cn/document/product/457/38427
https://intl.cloud.tencent.com.cn/document/product/457/30655
https://intl.cloud.tencent.com.cn/document/product/457/38706#.E5.AE.89.E8.A3.85-cos-.E6.89.A9.E5.B1.95.E7.BB.84.E4.BB.B6
https://console.intl.cloud.tencent.com.cn/cos5/bucket
https://intl.cloud.tencent.com.cn/document/product/457/36160
https://intl.cloud.tencent.com.cn/document/product/457/36160
https://intl.cloud.tencent.com.cn/document/product/457/36160

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 577

1. On the details page of the target cluster, choose Storage > PersistentVolume in the left sidebar to go to the
"PersistentVolume" page.

2. Click Create to go to the "Create a PersistentVolume" page and set the PV parameters as required, as shown in

the figure below:

Main parameters are described as follows:
Creation Method: select Static.
Secret: select the Secret created in Creating a Secret. In this document, coredump is used as an example

(under the kube-system namespace).
Bucket List: select the bucket created for storing the coredump file.
Bucket Sub-directory: specify the root directory here. If you need to specify a sub-directory, please create one
in the bucket in advance.

3. Click Create a PersistentVolume to complete the process.

Creating a PVC

1. On the details page of the target cluster, choose Storage > PersistentVolumeClaim in the left sidebar to go to

the "PersistentVolumeClaim" page.
2. Click Create to go to the "Create a PersistentVolumeClaim" page and set the PVC parameters as required, as

shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 577

Main parameters are described as follows:
Namespace: the namespace must be the same as the namespace where the container of the PVC for mounting
COS belongs. If there are multiple namespaces, you can create multiple pairs of PVs and PVCs.
PersistentVolume: select the PV created in Creating a PV.

3. Click Create a PersistentVolumeClaim to complete the process.

Mounting COS

Using the console to create a Pod to use the PVC

1. On the details page of the target cluster, choose Workload > Deployment to go to the "Deployment" page.
2. Click Create to go to the "Create a Workload" page. For more information, see Creating a Deployment. Then,

mount a volume as required, as shown in the figure below:

Note：

This step creates a Deployment workload as an example.

https://intl.cloud.tencent.com.cn/document/product/457/30662

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 577

Main parameters are described as follows:
Volume: add the PVC created in Creating a PVC.

Mount Target: click Add a mount target to set a mount target. Here, select the added volume "core". Import
the PVC specified in Volume, and mount it to the destination path. In this document, /tmp/cores is used as

an example.
3. Click Create a Workload to complete the process.

Using a YAML file to create a Pod to use the PVC

You can create a Pod by using a YAML file. Below is a sample:

containers:

- name: pod-cos

command: ["tail", "-f", "/etc/hosts"]

image: "centos:latest"

volumeMounts:

- mountPath: /tmp/cores

name: core

volumes:

- name: core

persistentVolumeClaim:

Replaced by your pvc name.

claimName: coredump

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 577

Reference

Using COS

https://intl.cloud.tencent.com.cn/document/product/457/36160

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 577

Operation Scenario

The dynamic admission controller Webhook can change the request object or completely reject a request during
access authentication. The way it calls the Webhook service makes it independent of cluster components.
The dynamic admission controller has a high degree of flexibility and allows you to configure various custom

admission control settings. The following figure shows the position of dynamic admission control in the API request
call chain. For more information, visit the official Kubernetes website.

As shown in the figure, dynamic admission control is divided into two phases: Mutating and Validating. During the
Mutating phase, incoming requests can be modified. Subsequently, during the Validating phase, the dynamic
admission controller validates incoming requests to determine whether to allow them to pass. These two phases can
be used independently or in combination.

This document introduces a simple use case for calling the dynamic admission controller in TKE. You can refer to this

document and take your actual requirements into consideration when performing the relevant operations.

Directions

Viewing and verifying the plug-in

The existing TKE cluster versions (1.10.5 and later) enable the validating admission webhook and mutating admission
webhook APIs by default. If your cluster version is earlier than 1.10.5, you can run the following command to check

Using a Dynamic Admission Controller in TKE
Last updated：2021-05-24 14:28:39

https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 577

whether the plug-in has been enabled in your current cluster.

kube-apiserver -h | grep enable-admission-plugins

If the returned result includes MutatingAdmissionWebhook and ValidatingAdmissionWebhook , the

dynamic admission controller is already enabled in the cluster, as shown in the figure below:

Certificate issuance

To ensure that the dynamic admission controller calls a trustworthy Webhook server, it needs to call the Webhook
service (TLS certification) via HTTPS. Therefore, you need to issue a certificate to the Webhook server. During
registration of the dynamic admission controller Webhook, you need to bind the caBundle field (caBundle

field in the resource list of ValidatingWebhookConfiguration and MutatingAdmissionWebhook) with

a trustworthy certificate authority (CA) to verify whether the Webhook server certificate is trustworthy. This document
introduces two recommended methods for issuing certificates: making a self-signed certificate and using the K8S CSR
API to issue a certificate.

Note：

When ValidatingWebhookConfiguration and MutatingAdmissionWebhook use the

 clientConfig.service configuration (and the Webhook service is in the cluster), the domain name of

the certificate issued to the server must be <svc_name>.<svc_namespace>.svc .

Method 1: making a self-signed certificate

This method is not dependent on Kubernetes clusters and is relatively independent. It’s similar to the way in which
websites make their own self-signed certificates. Currently, many tools can be used to make a self-signed certificate.
This document uses OpenSSL as an example. The procedure is as follows:

1. Run the following command to generate a ca.key with 2048 key digits.

openssl genrsa -out ca.key 2048

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 577

2. Run the following command to generate a ca.crt based on the ca.key .

"webserver.default.svc" is the domain name of the Webhook server in the cluster. The -days parameter is used

to specify the validity period of the certificate.

openssl req -x509 -new -nodes -key ca.key -subj "/CN=webserver.default.svc" -da

ys 10000 -out ca.crt

3. Run the following command to generate a server.key with 2048 key digits.

openssl genrsa -out server.key 2048

4. Create the configuration file csr.conf used to generate a certificate signature request (CSR). See the sample

below:

[req]

default_bits = 2048

prompt = no

default_md = sha256

distinguished_name = dn

[dn]

C = cn

ST = shaanxi

L = xi'an

O = default

OU = websever

CN = webserver.default.svc

subjectAltName = @alt_names

[alt_names]

DNS.1 = webserver.default.svc

[v3_ext]

authorityKeyIdentifier=keyid,issuer:always

basicConstraints=CA:FALSE

keyUsage=keyEncipherment,dataEncipherment

extendedKeyUsage=serverAuth,clientAuth

subjectAltName=@alt_names

5. Run the following command to generate a CSR based on the configuration file csr.conf .

openssl req -new -key server.key -out server.csr -config csr.conf

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 577

6. Run the following commands to use ca.key , ca.crt , and server.csr to issue the generated server

certificate (x509 signature).

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key \

-CAcreateserial -out server.crt -days 10000 \

-extensions v3_ext -extfile csr.conf

7. Run the following command to view the Webhook server certificate.

openssl x509 -noout -text -in ./server.crt

The generated certificates and key files are described as follows:

 ca.crt : the CA certificate

 ca.key : the CA certificate key, used to issue a server certificate

 server.crt : the issued server certificate

 server.key : the issued server certificate key

Method 2: using the K8S CSR API to issue a certificate

You can also use the Kubernetes CA system to issue a certificate. You can execute the following script to use the
Kubernetes cluster root certificate and root key to issue a trustworthy certificate user.

Note：
The username must be the domain name of the Webhook service in the cluster.

USERNAME='webserver.default.svc' # Set the username to be created to the domain n

ame of the Webhook service in the cluster

Use OpenSSL to generate a self-signed certificate key

openssl genrsa -out ${USERNAME}.key 2048

Use OpenSSL to generate a self-signed CSR file, with CN indicating the user nam

e and O indicating the group name

openssl req -new -key ${USERNAME}.key -out ${USERNAME}.csr -subj "/CN=${USERNAME}

/O=${USERNAME}"

Create a Kubernetes CSR

cat <<EOF | kubectl apply -f -

apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequest

metadata:

name: ${USERNAME}

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 577

spec:

request: $(cat ${USERNAME}.csr | base64 | tr -d '\n')

usages:

- digital signature

- key encipherment

- server auth

EOF

Approve the certificate as trustworthy

kubectl certificate approve ${USERNAME}

Obtain the self-signed certificate CRT

kubectl get csr ${USERNAME} -o jsonpath={.status.certificate} > ${USERNAME}.crt

 ${USERNAME} .crt: the Webhook server certificate

 ${USERNAME} .key: the Webhook server certificate key

Use Cases

This document uses ValidatingWebhookConfiguration resources to illustrate how to call the dynamic

admission controller Webhook.
To ensure accessibility, the sample code is forked from the original code library to implement a simple API for dynamic
admission Webhook requests and responses. For the detailed API format, see Webhook request and response. The
sample code can be obtained in Sample Code. This document uses it as the Webhook server code.

1. Prepare the caBundle content corresponding to the actual certificate issuance method.

If you use method 1 to issue a certificate, run the following command to use base64 to encode ca.crt

and generate the caBundle field content.

cat ca.crt | base64 --wrap=0

If you use method 2 to issue a certificate, the cluster root certificate is the caBundle field content. The

procedure for obtaining it is as follows:

a. Log in to the TKE console and click Clusters in the left sidebar.
b. On the "Cluster Management" page, click the ID of the target cluster.
c. On the cluster details page, click Basic Information on the left.
d. On the "Basic Information" page, obtain the clusters.cluster[].certificate-authority-data

field in "Kubeconfig" in the "Cluster APIServer Info" module. This field has been encoded in base64 , and

no further processing is needed.

https://github.com/larkintuckerllc/hello-dynamic-admission-control.git
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#request
https://github.com/imjokey/hello-dynamic-admission-control
https://console.intl.cloud.tencent.com.cn/tke2/cluster?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 577

2. Copy the generated ca.crt (CA certificate), server.crt (HTTPS certificate), and server.key

(HTTPS key) to the main directory of the project, as shown in the figure below:

3. Modify the Dockerfile in the project and add three certificate files to the container working directory, as shown in the

figure below:

4. Run the following command to build a Webhook server image.

docker build -t webserver .

5. Deploy a Webhook backend service with the domain name of "weserver.default.svc" and modify the adapted
 controller.yaml , as shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 577

6. Register and create resources of the ValidatingWebhookConfiguration type, and modify the

 admission.yaml file in the adapted project, as shown in the figure below:

The Webhook triggering rule configured in this sample is as follows: when an API of pods type and version "v1"

is created, Webhook is triggered. The configuration of clientConfig corresponds to the above Webhook

backend service created in the cluster. The caBundle field content is the content of the ca.crt obtained in

method 1.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 577

7. After registration, create test resources of the Pod type and the API version of "v1", as shown in the figure below:

8. The test code prints the request log. You can view the Webhook server log to see that the dynamic admission
controller has triggered a webhook call, as shown in the figure below:

9. At this moment, you can see that the test pod has been created successfully. As the test Webhook server code
includes the allowed: true configuration item, the test pod has been created successfully, as shown in the

figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 577

For further verification, you can change "allowed" to "false" and then repeat the above steps to rebuild a Webserver
server image and redeploy controller.yaml and admission.yaml resources. If the request of your

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 577

reattempt to create pods resources is intercepted by the dynamic admission controller, then the configured dynamic
admission policy has taken effect, as shown in the figure below:

Summary

This document mainly introduces the concept and functionality of the dynamic admission controller Webhook, as well
as how to issue certificates needed by the dynamic admission controller in a TKE cluster. This document also
describes a simple use case for configuring and using the dynamic admission Webhook feature.

References

Kubernetes Dynamic Admission Control by Example
Dynamic Admission Control

https://codeburst.io/kubernetes-dynamic-admission-control-by-example-d8cc2912027c
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 577

Use Cases

As your IDC resources may be limited, if you need to handle business traffic surges, the computing resources in your
IDC may be insufficient to meet the requirements. In this case, you can use public cloud resources to handle temporary
traffic. Based on custom scheduling policies and by leveraging TKE Serverless Container Service, TKE Resilience

Chart adds supernodes to elastically migrate workloads in your IDC cluster to the cloud, so your cluster can get
greater elastic scalability and enjoy the following benefits:

1. The hardware and maintenance costs of your IDC/private cloud do not increase.
2. You can implement high availability for applications at the IDC/private cloud grade and public cloud grade.
3. You can use public cloud resources as needed in a pay-as-you-go manner.

Notes

1. You have activated TKE Serverless cluster.
2. Your IDC is connected to a VPC through Direct Connect over the private network.
3. The address of the API server in the IDC cluster can be accessed over the VPC.
4. Your own IDC cluster can access the public network, as it needs to call TencentCloud APIs over the public

network.

TKE Resilience Chart Feature Description

Component description

TKE Resilience Chart mainly consists of a supernode manager, scheduler, and toleration controller as detailed below:

Alias Component
Name

Description

Hybrid Cloud
Elastic Scaling with EKS for IDC-Based
Cluster
Last updated：2022-10-19 16:39:53

https://intl.cloud.tencent.com.cn/zh/product/eks
https://console.intl.cloud.tencent.com.cn/tke2/ecluster/startUp?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 157 of 577

Alias Component
Name

Description

eklet Supernodes
manager

It manages the lifecycle of PodSandboxes and provides APIs related to native
kubelet and nodes.

tke-
scheduler Scheduler

It migrates workloads to the cloud elastically according to scheduling policies and
is only installed in non-TKE Kubernetes Distro K8s clusters. TKE Kubernetes
Distro is a K8s distribution released by TKE to help you create exactly the same
K8s cluster in TKE. Currently, it has been open sourced at GitHub. For more
information, please see TKE Kubernetes Distro.

admission-
controller

Toleration
controller

It adds a toleration to a Pod in pending status to make it able to be
scheduled to a supernode.

Main features

1. If you want to connect an TKE Serverless Pod to a Pod in your local cluster, the local cluster should be in an
underlay network model (where a CNI plugin based on BGP routing instead of SDN encapsulation, such as Calico,
is used), and you need to add the local Pod's CIDR block routing information in the VPC. For more information, see
Interconnection Between Cluster in GlobalRouter Mode and IDC

2. The workload resilience feature switch AUTO_SCALE_EKS=true|false is available in global and local

dimensions respectively to control whether workloads in pending status should be elastically scheduled to EKS

as detailed below:

Global switch: AUTO_SCALE_EKS in kubectl get cm -n kube-system eks-config is enabled by

default.
Local switch: spec.template.metadata.annotations ['AUTO_SCALE_EKS']

Global Switch Local Switch Behavior

AUTO_SCALE_EKS=true AUTO_SCALE_EKS=false Successfully scheduled

AUTO_SCALE_EKS=true Undefined Successfully scheduled

AUTO_SCALE_EKS=true AUTO_SCALE_EKS=true Successfully scheduled

AUTO_SCALE_EKS=false AUTO_SCALE_EKS=false Failed to be scheduled

AUTO_SCALE_EKS=false Undefined Failed to be scheduled

AUTO_SCALE_EKS=false AUTO_SCALE_EKS=true Successfully scheduled

Undefined AUTO_SCALE_EKS=false Successfully scheduled

https://github.com/tkestack/tke-K8S-distro
https://intl.cloud.tencent.com.cn/document/product/457/46007

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 158 of 577

Global Switch Local Switch Behavior

Undefined Undefined Successfully scheduled

Undefined AUTO_SCALE_EKS=true Successfully scheduled

3. If you use K8s community edition, you need to specify the scheduler as tke-scheduler in workloads. In TKE

Kubernetes Distro, you don't need to specify the scheduler.
4. In the workloads, set the number of retained replicas in the local cluster through LOCAL_REPLICAS: N .

5. Workload scale-out:

If the local cluster resources are insufficient and the settings of the global and local switches for the "successfully
scheduled" behavior are satisfied, workloads in pending status will be scaled out to EKS.

If the number of actually created workload replicas reaches N and the settings of the global and local switches for
the "successfully scheduled" behavior are satisfied, workloads in pending status will be scaled out to TKE

Serverless cluster.

6. Workload scale-in:

For TKE Kubernetes Distro, instances in TKE Serverless cluster will be scaled in preferentially.

For K8s community edition, workloads will be scaled in randomly.

7. Scheduling rule restrictions:

DaemonSet Pods cannot be scheduled to supernodes. This feature is available only in TKE Kubernetes Distro. In
K8s community edition, DaemonSet Pods will be scheduled to supernodes but DaemonsetForbidden will be

displayed.

Pods in kube-system and tke-eni-ip-webhook namespaces cannot be scheduled to supernodes.

Ports whose securityContext.sysctls ["net.ipv4.ip_local_port_range"] value includes

61000–65534 cannot be scheduled.
Pods in Pod.Annotations [tke.cloud.tencent.com/vpc-ip-claim-delete-policy] cannot be

scheduled.
Ports whose container (initContainer).ports [].containerPort (hostPort) value includes

61000–65534 cannot be scheduled.
Ports with a container (initContainer) where the probe points to 61000–65534 cannot be scheduled.

PersistentVolumes (PVs) except nfs, Cephfs, hostPath, and qcloudcbs cannot be scheduled.
Pods with fixed IP enabled cannot be scheduled to supernodes.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 159 of 577

8. Supernodes support custom DNS configuration: after you add the eks.tke.cloud.tencent.com/resolv-

conf annotation to a supernode, /etc/resolv.conf in the generated CVM instance will be updated to the

custom content.

Note：
The original DNS configuration on the supernodes will be overwritten, and your custom configuration will
prevail.

eks.tke.cloud.tencent.com/resolv-conf: |

nameserver 4.4.4.4

nameserver 8.8.8.8

Directions

Getting tke-resilience helm chart

git clone https://github.com/tkestack/charts.git

Configuring relevant information

Edit charts/incubator/tke-resilience/values.yaml and configure the following information:

cloud:

appID: "{Tencent Cloud account APPID}"

ownerUIN: "{Tencent Cloud account ID}"

secretID: "{Tencent Cloud account secretID}"

secretKey: "{Tencent Cloud account secretKey}"

vpcID: "{ID of the VPC where the EKS Pod resides}"

regionShort: "{Abbreviation of the region where the EKS Pod resides}"

regionLong: "{Full name of the region where the EKS Pod resides}"

subnets:

- id: "{ID of the subnet where the EKS Pod resides}"

zone: "{AZ where the EKS Pod resides}"

eklet:

PodUsedApiserver: "{API server address of the current cluster}"

Note：

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 160 of 577

For more information on the regions and AZs where TKE Serverless container service is available, please see
Regions and AZs.

Installing TKE Resilience Chart

You can use the local Helm client to connect to the cluster.

Run the following command to use a Helm chart to install TKE Resilience Chart in a third-party cluster:

helm install tke-resilience --namespace kube-system ./tke-resilience --debug

Run the following command to check whether the required components in the Helm application are installed. This
document uses a TKE Kubernetes Distro cluster with no tke-scheduler installed as an example.

kubectl get Pod -n kube-system | grep resilience

eklet-tke-resilience-5f9dcd99df-rgsmc 1/1 Running 0 43h

eks-admission-tke-resilience-5bb588dc44-9hvhs 1/1 Running 0 44h

You can see that one supernode has been deployed in the cluster.

kubectl get node

NAME STATUS ROLES AGE VERSION

10.0.1.xx Ready <none> 2d4h v1.20.4-tke.1

10.0.1.xx Ready master 2d4h v1.20.4-tke.1

eklet-subnet-xxxxxxxx Ready <none> 43h v2.4.6

Creating test case

Create a demo application nginx-deployment , which has four replicas (three in TKE Serverless cluster and one

in the local cluster). Below is the sample YAML configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 4

strategy:

type: RollingUpdate

selector:

matchLabels:

app: nginx

https://intl.cloud.tencent.com.cn/zh/document/product/457/41125
https://intl.cloud.tencent.com.cn/document/product/457/30684

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 161 of 577

template:

metadata:

annotations:

AUTO_SCALE_EKS: "true"

LOCAL_REPLICAS: "1" # Set the number of running replicas in the local cluster to

1

labels:

app: nginx

spec:

#schedulerName: tke-scheduler If it is a third-party cluster, you need to run the

scheduler as `tke-scheduler`

containers:

- name: nginx

image: nginx

imagePullPolicy: IfNotPresent

Check whether the replica status and distribution meet the expectations.

kubectl get Pod -owide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES

nginx-deployment-77b9b9bc97-cq9ds 1/1 Running 0 27s 10.232.1.88 10.0.1.xxx <none>

<none>

nginx-deployment-77b9b9bc97-s9vzc 1/1 Running 0 27s 10.0.1.118 eklet-subnet-xxxxx

xxx <none> <none>

nginx-deployment-77b9b9bc97-sd4z5 1/1 Running 0 27s 10.0.1.7 eklet-subnet-xxxxxxx

x <none> <none>

nginx-deployment-77b9b9bc97-z86tx 1/1 Running 0 27s 10.0.1.133 eklet-subnet-xxxxx

xxx <none> <none>

Check the scale-in feature. As a TKE Kubernetes Distro cluster is used, TKE Serverless cluster instances will be
scaled in preferentially. Here, the number of application replicas is adjusted from 4 to 3.

kubectl scale deployment nginx-deployment --replicas=3

As shown below, replicas in Tencent Cloud are scaled in first, which meets the expectation:

kubectl get Pod -owide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES

nginx-deployment-77b9b9bc97-cq9ds 1/1 Running 0 7m38s 10.232.1.88 10.0.1.xxx <non

e> <none>

nginx-deployment-77b9b9bc97-s9vzc 1/1 Running 0 7m38s 10.0.1.118 eklet-subnet-xxx

xxxxx <none> <none>

nginx-deployment-77b9b9bc97-sd4z5 1/1 Running 0 7m38s 10.0.1.7 eklet-subnet-xxxxx

xxx <none> <none>

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 162 of 577

Overview

As DNS is the first step in service access in a Kubernetes cluster, its stability and performance are of great
importance. How to configure and use DNS in a better way involves many aspects. This document describes the best
practices of DNS.

Selecting the Most Appropriate CoreDNS Version

The following table lists the default CoreDNS versions deployed in TKE clusters on different versions.

TKE Version CoreDNS Version

v1.22 v1.8.4

v1.20 v1.8.4

v1.18 v1.7.0

v1.16 v1.6.2

v1.14 v1.6.2

Due to historical reasons, CoreDNS 1.6.2 may still be deployed in clusters on v1.18 or later. If the current CoreDNS
version doesn't meet your requirements, you can manually upgrade it as follows:

Upgrading to v1.7.0
Upgrading to v1.8.4

Configuring an Appropriate Number of CoreDNS Replicas

Network
DNS
Best Practices of TKE DNS
Last updated：2022-12-08 17:25:19

https://github.com/coredns/coredns/releases/tag/v1.8.4
https://github.com/coredns/coredns/releases/tag/v1.8.4
https://github.com/coredns/coredns/releases/tag/v1.7.0
https://github.com/coredns/coredns/releases/tag/v1.6.2
https://github.com/coredns/coredns/releases/tag/v1.6.2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 163 of 577

1. The default number of CoreDNS replicas in TKE is 2 , and podAntiAffinity is configured to deploy the

two replicas on different nodes.
2. If your cluster has more than 80 nodes, we recommend you install NodeLocal DNSCache as instructed in Using

NodeLocal DNS Cache in a TKE Cluster.
3. Generally, you can determine the number of CoreDNS replicas based on the QPS of business access to DNS,

number of nodes, or total number of CPU cores. After you install NodeLocal DNSCache, we recommend you use
up to 10 CoreDNS replicas. You can configure the number of replicas as follows:
Number of replicas = min (max (ceil (QPS/10000), ceil (number of cluster nodes/8)), 10)

Sample:
If the cluster has ten nodes and the QPS of DNS service requests is 22,000, configure the number of replicas to
3.
If the cluster has 30 nodes and the QPS of DNS service requests is 15,000, configure the number of replicas to
4.
If the cluster has 100 nodes and the QPS of DNS service requests is 50,000, configure the number of replicas to

10 (NodeLocal DNSCache has been deployed).
4. You can install the DNSAutoScaler add-on in the console to automatically adjust the number of CoreDNS replicas

(smooth upgrade should be configured in advance). Below is its default configuration:

data:

ladder: |-

{

"coresToReplicas":

[

[1, 1],

[128, 3],

[512,4],

],

"nodesToReplicas":

[

[1, 1],

[2, 2]

]

}

Using NodeLocal DNSCache

NodeLocal DNSCache can be deployed in a TKE cluster to improve the service discovery stability and performance. It
improves cluster DNS performance by running a DNS caching agent on cluster nodes as a DaemonSet.
For more information on NodeLocal DNSCache and how to deploy NodeLocal DNSCache in a TKE cluster, see Using
NodeLocal DNS Cache in a TKE Cluster.

https://intl.cloud.tencent.com.cn/document/product/457/34061
https://intl.cloud.tencent.com.cn/document/product/457/39122
https://intl.cloud.tencent.com.cn/document/product/457/34061

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 164 of 577

Configuring Smooth Upgrade

During node restart or CoreDNS upgrade, some CoreDNS replicas may be unavailable for a period of time. You can
configure the following items to maximize the DNS service availability and implement smooth upgrade.

Configuring the session persistence timeout period of the IPVS UDP protocol

If the cluster uses the IPVS mode of kube-proxy and the business itself doesn't provide the UDP service, you can

reduce the session persistence timeout period of the IPVS UDP protocol to minimize the service unavailability.

1. If the cluster is on v1.18 or later, kube-proxy provides the --ipvs-udp-timeout parameter with the default

value of 0s , or the system default value 300s can be used. We recommend you configure --ipvs-udp-

timeout=10s . Configure the kube-proxy DaemonSet as follows:

spec:

containers:

- args:

- --kubeconfig=/var/lib/kube-proxy/config

- --hostname-override=$(NODE_NAME)

- --v=2

- --proxy-mode=ipvs

- --ipvs-scheduler=rr

- --nodeport-addresses=$(HOST_IP)/32

- --ipvs-udp-timeout=10s

command:

- kube-proxy

name: kube-proxy

2. If the cluster is on v1.16 or earlier, kube-proxy doesn't support this parameter, and you can use the ipvsadm

tool to batch modify the information on nodes as follows:

yum install -y ipvsadm

ipvsadm --set 900 120 10

3. After completing the configuration, verify the result as follows:

ipvsadm -L --timeout

Timeout (tcp tcpfin udp): 900 120 10

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 165 of 577

Note：
After completing the configuration, you need to wait for five minutes before proceeding to the subsequent steps.
If your business uses the UDP service, submit a ticket for assistance.

Configuring graceful shutdown for CoreDNS

You can configure lameduck to make replicas that have already received a shutdown signal continue providing

the service for a certain period of time. Configure the CoreDNS ConfigMap as follows (below is only part of the
configuration of CoreDNS 1.6.2; for the configuration of other versions, see Manual Upgrade):

.:53 {

health {

lameduck 30s

}

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

upstream

fallthrough in-addr.arpa ip6.arpa

}

}

Configuring CoreDNS service readiness confirmation

After a new replica starts, you need to check its service readiness and add it to the backend list of the DNS service.

1. Open the ready plugin and configure the CoreDNS ConfigMap as follows (below is only part of the configuration

of CoreDNS 1.6.2; for the configuration of other versions, see Manual Upgrade):

.:53 {

ready

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

upstream

fallthrough in-addr.arpa ip6.arpa

}

}

2. Add the ReadinessProbe configuration for CoreDNS:

readinessProbe:

failureThreshold: 5

https://console.intl.cloud.tencent.com.cn/workorder/category

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 166 of 577

httpGet:

path: /ready

port: 8181

scheme: HTTP

initialDelaySeconds: 30

periodSeconds: 10

successThreshold: 1

timeoutSeconds: 5

Configuring CoreDNS to Access Upstream DNS over UDP

If CoreDNS needs to communicate with the DNS server, it will use the client request protocol (UDP or TCP) by default.

However, in TKE, the upstream service of CoreDNS is the DNS service in the VPC by default, which offers limited
support for TCP. Therefore, we recommend you configure using UDP as follows (especially when NodeLocal
DNSCache is installed):

.:53 {

forward . /etc/resolv.conf {

prefer_udp

}

}

Configuring CoreDNS to Filter HINFO Requests

As the DNS service in the VPC doesn't support DNS requests of the HINFO type, we recommend you configure as
follows to filter such requests on the CoreDNS side (especially when NodeLocal DNSCache is installed):

.:53 {

template ANY HINFO . {

rcode NXDOMAIN

}

}

Configuring CoreDNS to Return "The domain name doesn't exist" for
IPv6 AAAA Record Queries

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 167 of 577

If the business doesn't need to resolve IPv6 domain names, you can configure as follows to reduce the communication
costs:

.:53 {

template ANY AAAA {

rcode NXDOMAIN

}

}

Note：
Do not use this configuration in IPv4/IPv6 dual-stack clusters.

Configuring Custom Domain Name Resolution

For more information, see Implementing Custom Domain Name Resolution in TKE.

Manual Upgrade

Upgrading to v1.7.0

1. Edit the coredns ConfigMap.

kubectl edit cm coredns -n kube-system

Modify the content as follows:

.:53 {

template ANY HINFO . {

rcode NXDOMAIN

}

errors

health {

lameduck 30s

}

ready

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

fallthrough in-addr.arpa ip6.arpa

https://intl.cloud.tencent.com.cn/document/product/457/39125

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 168 of 577

}

prometheus :9153

forward . /etc/resolv.conf {

prefer_udp

}

cache 30

reload

loadbalance

}

2. Edit the coredns Deployment.

kubectl edit deployment coredns -n kube-system

Replace the image as follows:

image: ccr.ccs.tencentyun.com/tkeimages/coredns:1.7.0

Upgrading to v1.8.4

1. Edit the coredns ClusterRole.

kubectl edit clusterrole system:coredns

Modify the content as follows:

rules:

- apiGroups:

- '*'

resources:

- endpoints

- services

- pods

- namespaces

verbs:

- list

- watch

- apiGroups:

- discovery.k8s.io

resources:

- endpointslices

verbs:

- list

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 169 of 577

- watch

2. Edit the coredns ConfigMap.

kubectl edit cm coredns -n kube-system

Modify the content as follows:

.:53 {

template ANY HINFO . {

rcode NXDOMAIN

}

errors

health {

lameduck 30s

}

ready

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

fallthrough in-addr.arpa ip6.arpa

}

prometheus :9153

forward . /etc/resolv.conf {

prefer_udp

}

cache 30

reload

loadbalance

}

3. Edit the coredns Deployment.

kubectl edit deployment coredns -n kube-system

Replace the image as follows:

image: ccr.ccs.tencentyun.com/tkeimages/coredns:1.8.4

Suggestions on Business Configuration

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 170 of 577

In addition to the best practices of the DNS service, you can also perform appropriate optimization configuration on
the business side to improve the DNS user experience.

1. By default, a domain name in a Kubernetes cluster generally can be resolved after multiple resolution requests. By

viewing /etc/resolv.conf in a Pod, you will see that the default value of ndots is 5 . For example,

when the kubernetes.default.svc.cluster.local Service in the debug namespace is queried:

The domain name has four dots (.), so the system tries adding the first search to use

 kubernetes.default.svc.cluster.local.debug.svc.cluster.local for query, but cannot find

the domain name.

The system continues to use kubernetes.default.svc.cluster.local.svc.cluster.local for

query, but still cannot find the domain name.
The system continues to use kubernetes.default.svc.cluster.local.cluster.local for query,

but still cannot find the domain name.
The system tries using kubernetes.default.svc.cluster.local without adding the extension. The

query succeeds, and the responding ClusterIP is returned.

2. The above simple Service domain name can be resolved successfully after four resolutions, and there are a large
number of useless DNS requests in the cluster. Therefore, you need to set an appropriate ndots value based

on the access type configured for the business to reduce the number of queries:

spec:

dnsConfig:

options:

- name: ndots

value: "2"

containers:

- image: nginx

imagePullPolicy: IfNotPresent

name: diagnosis

3. In addition, you can optimize the domain name configuration for your business to access Services:

The Pod should access a Service in the current namespace through <service-name> .

The Pod should access a Service in another namespace through <service-name>.<namespace-name> .

The Pod should access an external domain name through a fully qualified domain name (FQDN) with a dot

(.) added at the end to reduce useless searches.

Related Content

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 171 of 577

Configuration description

errors
It outputs an error message.

health

It reports the health status and is used for health check configuration such as livenessProbe . It listens on port

8080 by default and uses the path http://localhost:8080/health .

Note：
If there are multiple server blocks, health can be configured only once or configured for different ports.

com {

whoami

health :8080

}

net {

erratic

health :8081

}

lameduck
It is used to configure the graceful shutdown duration. It is implemented as follows: the hook executes sleep

when CoreDNS receives a shutdown signal to ensure that the service can continue to run for a certain period of
time.

ready

It reports the plugin status and is used for service readiness check configuration such as readinessProbe . It

listens on port 8181 by default and uses the path http://localhost:8181/ready .

kubernetes
It is a Kubernetes plugin that can resolve Services in the cluster.

prometheus

It is a metrics data API used to get the monitoring data. Its path is http://localhost:9153/metrics .

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 172 of 577

forward (proxy)
It forwards requests failed to be processed to an upstream DNS server and uses the /etc/resolv.conf

configuration of the host by default.

According to the configuration of forward aaa bbb , the upstream DNS server list [aaa,bbb] is

maintained internally.
When a request arrives, an upstream DNS server will be selected from the [aaa,bbb] list to forward the

request according to the preset policy (random|round_robin|sequential , where random is the

default policy). If forwarding fails, another server will be selected for forwarding, and regular health check will be

performed on the failed server until it becomes healthy.
If a server fails the health check multiple times (twice by default) in a row, its status will be set to down , and it

will be skipped in subsequent server selection.
If all servers are down, the system randomly selects a server for forwarding.
Therefore, CoreDNS can intelligently switch between multiple upstream servers. As long as there is an available
server in the forwarding list, the request can succeed.

cache
It is the DNS cache.

reload
It hotloads the Corefile. It will reload the new configuration in two minutes after the ConfigMap is modified.

loadbalance

It provides the DNS-based load balancing feature by randomizing the order of records in the answer.

Resource usage of CoreDNS

Memory
CPU

It is subject to the number of Pods and Services in the cluster.
It is affected by the size of enabled cache.

It is affected by the QPS.

Below is the official data of CoreDNS:
MB required (default settings) = (Pods + Services) / 1000 + 54

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 173 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 174 of 577

Operation Scenario

By running NodeLocal DNSCache in a form of Daemonset on the cluster node, you can greatly improve the DNS
resolution performance in the cluster, and can effectively avoid DNS 5-second delay due to conntrack conflicts.

This document describes in detail how to use NodeLocal DNS Cache in a TKE cluster.

Principle

A hostNetwork Pod is deployed on every node of a cluster by using DaemonSet. This Pod is node-cache, and can
cache DNS requests for Pods on this node. If cache misses occur, this Pod will obtain them through a TCP request to
the upstream kube-dns service. The principle is shown in the following figure:

Using NodeLocal DNS Cache in a TKE
Cluster
Last updated：2021-04-20 10:35:47

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dns/nodelocaldns?spm=a2c6h.12873639.0.0.b8e3669eIhJqEN
https://www.weave.works/blog/racy-conntrack-and-dns-lookup-timeouts

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 175 of 577

Prerequisites

You have created a cluster of Kubernetes 1.14 or later in the TKE console, and nodes exist in this cluster.

Directions

1. Deploy NodeLocal DNS Cache with one click. The YAML example is as follows:

Note：

NodeLocal DNS Cache does not have high availability (HA), so there will be a single point of failure risk for the
nodelocal dns cache (Pod Evicted/OOMKilled/ConfigMap error/DaemonSet Upgrade). However, this issue is
actually a common failure that can occur in any single point proxy (such as kube-proxy and cni pod).

https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 176 of 577

apiVersion: v1

kind: ServiceAccount

metadata:

name: node-local-dns

namespace: kube-system

labels:

kubernetes.io/cluster-service: "true"

addonmanager.kubernetes.io/mode: Reconcile

apiVersion: v1

kind: ConfigMap

metadata:

name: node-local-dns

namespace: kube-system

data:

Corefile: |

cluster.local:53 {

errors

cache {

success 9984 30

denial 9984 5

}

reload

loop

bind 169.254.20.10

forward . __PILLAR__CLUSTER__DNS__ {

force_tcp

}

prometheus :9253

health 169.254.20.10:8080

}

in-addr.arpa:53 {

errors

cache 30

reload

loop

bind 169.254.20.10

forward . __PILLAR__CLUSTER__DNS__ {

force_tcp

}

prometheus :9253

}

ip6.arpa:53 {

errors

cache 30

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 177 of 577

reload

loop

bind 169.254.20.10

forward . __PILLAR__CLUSTER__DNS__ {

force_tcp

}

prometheus :9253

}

.:53 {

errors

cache 30

reload

loop

bind 169.254.20.10

forward . /etc/resolv.conf {

force_tcp

}

prometheus :9253

}

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: node-local-dns

namespace: kube-system

labels:

k8s-app: node-local-dns

spec:

updateStrategy:

rollingUpdate:

maxUnavailable: 10%

selector:

matchLabels:

k8s-app: node-local-dns

template:

metadata:

labels:

k8s-app: node-local-dns

annotations:

prometheus.io/port: "9253"

prometheus.io/scrape: "true"

spec:

serviceAccountName: node-local-dns

priorityClassName: system-node-critical

hostNetwork: true

dnsPolicy: Default # Don't use cluster DNS.

tolerations:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 178 of 577

- key: "CriticalAddonsOnly"

operator: "Exists"

- effect: "NoExecute"

operator: "Exists"

- effect: "NoSchedule"

operator: "Exists"

containers:

- name: node-cache

image: ccr.ccs.tencentyun.com/hale/k8s-dns-node-cache:1.15.13

resources:

requests:

cpu: 25m

memory: 5Mi

args: ["-localip", "169.254.20.10", "-conf", "/etc/Corefile", "-setupiptables=tr

ue"]

securityContext:

privileged: true

ports:

- containerPort: 53

name: dns

protocol: UDP

- containerPort: 53

name: dns-tcp

protocol: TCP

- containerPort: 9253

name: metrics

protocol: TCP

livenessProbe:

httpGet:

host: 169.254.20.10

path: /health

port: 8080

initialDelaySeconds: 60

timeoutSeconds: 5

volumeMounts:

- mountPath: /run/xtables.lock

name: xtables-lock

readOnly: false

- name: config-volume

mountPath: /etc/coredns

- name: kube-dns-config

mountPath: /etc/kube-dns

volumes:

- name: xtables-lock

hostPath:

path: /run/xtables.lock

type: FileOrCreate

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 179 of 577

- name: kube-dns-config

configMap:

name: kube-dns

optional: true

- name: config-volume

configMap:

name: node-local-dns

items:

- key: Corefile

path: Corefile.base

2. Set the specified DNS resolution access address of kubelet to the local DNS cache created in Step 1. This
document provides the following two configuration methods You can choose the method according to your needs:

Execute the following commands in sequence to modify the kubelet launch parameters and restart it.

sed -i '/CLUSTER_DNS/c\CLUSTER_DNS="--cluster-dns=169.254.20.10"' /etc/kubernet

es/kubelet

systemctl restart kubelet

Restart after configuring the dnsconfig of a single Pod as needed. The YAML core references are as follows:

You must set the nameserver to 169.254.20.10.

To ensure the internal domain name of the cluster can be resolved normally, you must configure searches .

Suitably reducing the ndots value is useful for accelerating the external domain name access of clusters.

When the Pod does not use the internal domain name of a cluster with multiple dots, we recommend that you set
the value to 2.

dnsConfig:

nameservers: ["169.254.20.10"]

searches:

- default.svc.cluster.local

- svc.cluster.local

- cluster.local

options:

- name: ndots

value: "2"

Configuration Verification

This test cluster is a Kubernetes version 1.14 cluster. After the NodeLocal DNSCache component is deployed through
the preceding steps, you can perform verification by referring to the following methods:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 180 of 577

1. Select a debug pod, and restart after adjusting kubelet parameters or configuring dnsConfig.
2. Dig Internet domain name, try to capture packets on the coredns pod.
3. If it shows that 169.254.20.10 is working normally, it means that the NodeLocal DNSCache component has been

deployed successfully. This is shown in the following figure:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 181 of 577

Overview

When using TKE or EKS, you may need to resolve the custom internal domain names in the following scenarios:

You build an external centralized storage service, and need to send the monitoring or log collection data in the
cluster to the external storage service through a fixed internal domain name.

During the containerization of traditional services, the code of some services is configured to call other internal
services with a fixed domain name, and the configuration cannot be modified, that is, the Service name of
Kubernetes cannot be used for calling.

Solutions

This document describes the following three solutions for using custom domain name resolution in a cluster:

Solutions Advantages

Using CoreDNS Hosts plugin to
configure arbitrary domain
name resolution

This solution is simple and intuitive. You can add arbitrary resolution records.

Using CoreDNS Rewrite plugin
to map a domain name to the
service in the cluster

There is no need to know the IP address of the resolution record in advance,
but the IP address mapped by the resolution record must be deployed in the
cluster.

Using CoreDNS Forward plugin
to set the external DNS as the
upstream DNS

You can manage a large number of resolution records. As all records are
managed in the external DNS, you do not need to modify the CoreDNS
configuration when adding or deleting records.

Note：

In the first two solutions, you need to modify CoreDNS configuration file each time you add a resolution record
(no need to restart). Please select the solution based on your actual needs.

Implementing Custom Domain Name
Resolution in TKE
Last updated：2021-09-22 14:26:35

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 182 of 577

Examples

Using CoreDNS Hosts plugin to configure arbitrary domain name resolution

1. Run the following command to modify the configmap of CoreDNS , as shown below:

kubectl edit configmap coredns -n kube-system

2. Modify the hosts configuration to add the domain name to the hosts , as shown below:

hosts {

192.168.1.6 harbor.oa.com

192.168.1.8 es.oa.com

fallthrough

}

Note：
Map harbor.oa.com to 192.168.1.6 and map es.oa.com to 192.168.1.8.

The complete configurations are as follows:

apiVersion: v1

data:

Corefile: |2-

.:53 {

errors

health

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

upstream

fallthrough in-addr.arpa ip6.arpa

}

hosts {

192.168.1.6 harbor.oa.com

192.168.1.8 es.oa.com

fallthrough

}

prometheus :9153

forward . /etc/resolv.conf

cache 30

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 183 of 577

reload

loadbalance

}

kind: ConfigMap

metadata:

labels:

addonmanager.kubernetes.io/mode: EnsureExists

name: coredns

namespace: kube-system

Using CoreDNS Rewrite plugin to map a domain name to the service in the cluster

If you need to deploy a service with a custom domain name in a cluster, you can use the Rewrite plugin of CoreDNS to
resolve the specified domain name to the ClusterIP of a Service.

1. Run the following command to modify the configmap of CoreDNS , as shown below:

kubectl edit configmap coredns -n kube-system

2. Run the following command to add the Rewrite configuration, as shown below:

rewrite name es.oa.com es.logging.svc.cluster.local

Note：
Map the es.oa.com to the es service deployed under the logging namespace. Separate

multiple domain names with carriage returns.

The complete configurations are as follows:

apiVersion: v1

data:

Corefile: |2-

.:53 {

errors

health

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

upstream

fallthrough in-addr.arpa ip6.arpa

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 184 of 577

}

rewrite name es.oa.com es.logging.svc.cluster.local

prometheus :9153

forward . /etc/resolv.conf

cache 30

reload

loadbalance

}

kind: ConfigMap

metadata:

labels:

addonmanager.kubernetes.io/mode: EnsureExists

name: coredns

namespace: kube-system

Using CoreDNS Forward plugin to set the external DNS as the upstream DNS

1. Check the forward configuration. The default configuration of forward is as follows, which means that the

domain name that is not in the cluster is resolved by the nameserver configured in the

 /etc/resolv.conf file of the node where CoreDNS is located.

forward . /etc/resolv.conf

2. Configure forward and replace /etc/resolv.conf explicitly with the external DNS server address, as

shown below:

forward . 10.10.10.10

The complete configurations are as follows:

apiVersion: v1

data:

Corefile: |2-

.:53 {

errors

health

kubernetes cluster.local. in-addr.arpa ip6.arpa {

pods insecure

upstream

fallthrough in-addr.arpa ip6.arpa

}

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 185 of 577

prometheus :9153

forward . 10.10.10.10

cache 30

reload

loadbalance

}

kind: ConfigMap

metadata:

labels:

addonmanager.kubernetes.io/mode: EnsureExists

name: coredns

namespace: kube-system

3. Configure the resolution record of the custom domain name to the external DNS. It is recommended to add the
nameserver in /etc/resolv.conf on the node to the upstream of external DNS. Because some services rely

on Tencent Cloud internal DNS resolution, if it is not set as the upstream of self-built DNS, some services may not
work properly. This document takes BIND 9 as an example to modify the configuration file and write the upstream
DNS address into forwarders, as shown below:

Note：
If the external DNS Server and the request source are not in the same Region, some Tencent domain names
that do not support cross-region access may become invalid.

options {

forwarders {

183.60.83.19;

183.60.82.98;

};

...

References

CoreDNS Hosts
CoreDNS Rewrite
CoreDNS Forward

https://www.isc.org/bind/
https://coredns.io/plugins/hosts/
https://coredns.io/plugins/rewrite/
https://coredns.io/plugins/forward/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 186 of 577

This document introduces how to configure ExternalDSN in a Tencent Cloud TKE cluster.

What is ExternalDNS?

ExternalDNS can sync the public Kubernetes Services and Ingress to the DNS provider.

Inspired by Kubernetes DNS, Kubernetes' cluster-internal DNS server, ExternalDNS makes Kubernetes resources

discoverable via public DNS servers. Like KubeDNS, it retrieves a list of resources (Services, Ingresses, etc.) from
the Kubernetes API to determine a desired list of DNS records. Unlike KubeDNS, however, it's not a DNS server itself,
but merely configures other DNS providers accordingly. For more information, see ExternalDNS Readme.

Directions

Configuring CAM Permissions for the API Key

Go to the Tencent Cloud CAM console and get the SecretId and SecretKey of the API key. Make sure the current user
is assigned with the following permissions.

{

"version": "2.0",

"statement": [

{

"effect": "allow",

"action": [

"dnspod:ModifyRecord",

"dnspod:DeleteRecord",

"dnspod:CreateRecord",

"dnspod:DescribeRecordList",

"dnspod:DescribeDomainList"

],

"resource": [

"*"

]

},

{

"effect": "allow",

"action": [

"privatedns:DescribePrivateZoneList",

Configuring ExternalDNS in TKE
Last updated：2022-10-12 11:37:14

https://github.com/kubernetes-sigs/external-dns
https://console.intl.cloud.tencent.com.cn/cam/overview

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 187 of 577

"privatedns:DescribePrivateZoneRecordList",

"privatedns:CreatePrivateZoneRecord",

"privatedns:DeletePrivateZoneRecord",

"privatedns:ModifyPrivateZoneRecord"

],

"resource": [

"*"

]

}

]

}

Deploying ExternalDNS Service

Configuring PrivateDNS or DNSPod

Tencent Cloud DNSPod provides free intelligent resolution services to all types of domain names. It features massive
processing capability, flexible scalability and superior security, providing stable, fast and secure domain name

resolution for your sites.

Tencent Cloud Private DNS is a private domain resolution and management service based on Tencent Cloud Virtual
Private Cloud (VPC), providing you with safe, stable, and efficient private network resolution service. It supports quick
building of a DNS system in VPCs to fulfill your needs.

To use private network DNS in Tencent Cloud environment:

Add the following parameter in the YAML file: --tencent-cloud-zone-type=private

Create a DNS domain in the PrivateDNS console. The DNS records are included in the DNS domain name
records.

To use public network DNS in Tencent Cloud environment:
Add the following parameter in the YAML file: --tencent-cloud-zone-type=public

Create a DNS domain in the DNSPod console. The DNS records are included in the DNS domain name records.

Deploying resource objects in the Kuberentes cluster

apiVersion: v1

kind: ServiceAccount

metadata:

name: external-dns

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: external-dns

rules:

https://intl.cloud.tencent.com.cn/document/product/1097
https://console.dnspod.cn/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 188 of 577

- apiGroups: [""]

resources: ["services","endpoints","pods"]

verbs: ["get","watch","list"]

- apiGroups: ["extensions","networking.k8s.io"]

resources: ["ingresses"]

verbs: ["get","watch","list"]

- apiGroups: [""]

resources: ["nodes"]

verbs: ["list"]

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: external-dns-viewer

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: external-dns

subjects:

- kind: ServiceAccount

name: external-dns

namespace: default

apiVersion: v1

kind: ConfigMap

metadata:

name: external-dns

data:

tencent-cloud.json: |

{

"regionId": "ap-shanghai", # (Required) ID of the region where the cluster locate

s

"secretId": "******",

"secretKey": "******",

"vpcId": "vpc-******" (Required), ID of the VPC where the cluster is deployed

}

apiVersion: apps/v1

kind: Deployment

metadata:

name: external-dns

spec:

strategy:

type: Recreate

selector:

matchLabels:

app: external-dns

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 189 of 577

template:

metadata:

labels:

app: external-dns

spec:

containers:

- args:

- --source=service

- --source=ingress

- --domain-filter=external-dns-test.com # Make ExternalDNS see only the hosted zo

nes matching provided domain, omit to process all available hosted zones

- --provider=tencentcloud

- --policy=sync # Set it to `upssert-only` to prevent ExternalDNS from deleting a

ny records

- --tencent-cloud-zone-type=private # Only look at private hosted zones. To use p

ublic DNS service, set it to `public`.

- --tencent-cloud-config-file=/etc/kubernetes/tencent-cloud.json

image: ccr.ccs.tencentyun.com/tke-market/external-dns:v1.0.0

imagePullPolicy: Always

name: external-dns

resources: {}

terminationMessagePath: /dev/termination-log

terminationMessagePolicy: File

volumeMounts:

- mountPath: /etc/kubernetes

name: config-volume

readOnly: true

dnsPolicy: ClusterFirst

restartPolicy: Always

schedulerName: default-scheduler

securityContext: {}

serviceAccount: external-dns

serviceAccountName: external-dns

terminationGracePeriodSeconds: 30

volumes:

- configMap:

defaultMode: 420

items:

- key: tencent-cloud.json

path: tencent-cloud.json

name: external-dns

name: config-volume

Example

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 190 of 577

Creating a Service named “nginx”

apiVersion: v1

kind: Service

metadata:

name: nginx

annotations:

external-dns.alpha.kubernetes.io/hostname: nginx.external-dns-test.com # Public d

omain name address

external-dns.alpha.kubernetes.io/internal-hostname: nginx-internal.external-dns-t

est.com # Private domain name address

external-dns.alpha.kubernetes.io/ttl: "600"

spec:

type: LoadBalancer

ports:

- port: 80

name: http

targetPort: 80

selector:

app: nginx

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx

spec:

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- image: nginx

name: nginx

ports:

- containerPort: 80

name: http

 nginx.external-dns-test.com will record the service's loadbalancer VIP.

 nginx-internal.external-dns-test.com will record the service's ClusterIP. The TTL of all DNS

records is 600.

Verification

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 191 of 577

A Service named “nginx” is created with the ClusterIP 192.168.254.214 and Loadbalancer VIP

 129.211.179.31 . As shown below:

Log in to a node in the same VPC as the cluster. PING the domain name in the annotation of nginx service. The

domain name will be resolved to the ClusterIP and Loadbalancer VIP. As shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 192 of 577

Network Policy Introduction

A network policy is a resource provided by Kubernetes to define the Pod-based network isolation policy. It specifies
whether a group of Pods can communicate with other groups of Pods and other network endpoints.

Scenarios

In TKE, Pod Networking is implemented by a high-performance Pod network based on the VPC at the IaaS layer, and

service proxy is provided by the ipvs and iptables modes supported by kube-proxy. TKE provides network isolation
through the Network Policy add-on.

Enabling NetworkPolicy in TKE

The NetworkPolicy add-on is available for TKE now. You can install it with a few steps. For directions, see Network
Policy.

NetworkPolicy Configuration Example

Note

The apiVersion of the resource object varies based on the cluster Kubernetes version. You can run the
command kubectl api-versions to view the apiVersion of the current resource object.

The Pods in the nsa namespace can access one another and cannot be accessed by any other Pods.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npa

Using Network Policy for Network Access
Control
Last updated：2022-07-21 15:58:03

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://intl.cloud.tencent.com.cn/document/product/457/39120

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 193 of 577

namespace: nsa

spec:

ingress:

- from:

- podSelector: {}

podSelector: {}

policyTypes:

- Ingress

The Pods in nsa namespace cannot be accessed by any Pods.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npa

namespace: nsa

spec:

podSelector: {}

policyTypes:

- Ingress

Pods in the nsa namespace can only be accessed by Pods in the namespace with the app: nsb tag on port 6379 or
the TCP port.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npa

namespace: nsa

spec:

ingress:

- from:

- namespaceSelector:

matchLabels:

app: nsb

ports:

- protocol: TCP

port: 6379

podSelector: {}

policyTypes:

- Ingress

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 194 of 577

Pods in the nsa namespace can access port 5978 or the TCP port of the network endpoint with a CIDR block of
14.215.0.0/16 but cannot access any other network endpoints. This method can be used to configure an allowlist to
allow in-cluster services to access external network endpoints.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npa

namespace: nsa

spec:

egress:

- to:

- ipBlock:

cidr: 14.215.0.0/16

ports:

- protocol: TCP

port: 5978

podSelector: {}

policyTypes:

- Egress

Pods in the default namespace can only be accessed by the network endpoint with a CIDR block of 14.215.0.0/16

on port 80 or the TCP port and cannot be accessed by any other network endpoints.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npd

namespace: default

spec:

ingress:

- from:

- ipBlock:

cidr: 14.215.0.0/16

ports:

- protocol: TCP

port: 80

podSelector: {}

policyTypes:

- Ingress

Feature Testing of NetworkPolicy

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 195 of 577

Run the K8s community's e2e test for NetworkPolicy . The results are as follows:

NetworkPolicy Feature Supported

should support a default-deny policy Yes

should enforce policy to allow traffic from pods within server namespace based on PodSelector Yes

should enforce policy to allow traffic only from a different namespace, based on
NamespaceSelector

Yes

should enforce policy based on PodSelector with MatchExpressions Yes

should enforce policy based on NamespaceSelector with MatchExpressions Yes

should enforce policy based on PodSelector or NamespaceSelector Yes

should enforce policy based on PodSelector and NamespaceSelector Yes

should enforce policy to allow traffic only from a pod in a different namespace based on
PodSelector and NamespaceSelector

Yes

should enforce policy based on Ports Yes

should enforce multiple, stacked policies with overlapping podSelectors Yes

should support allow-all policy Yes

should allow ingress access on one named port Yes

should allow ingress access from namespace on one named port Yes

should allow egress access on one named port No

should enforce updated policy Yes

should allow ingress access from updated namespace Yes

should allow ingress access from updated pod Yes

should deny ingress access to updated pod Yes

should enforce egress policy allowing traffic to a server in a different namespace based on
PodSelector and NamespaceSelector

Yes

should enforce multiple ingress policies with ingress allow-all policy taking precedence Yes

should enforce multiple egress policies with egress allow-all policy taking precedence Yes

https://github.com/kubernetes/kubernetes/blob/release-1.18/test/e2e/network/network_policy.go

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 196 of 577

NetworkPolicy Feature Supported

should stop enforcing policies after they are deleted Yes

should allow egress access to server in CIDR block Yes

should enforce except clause while egress access to server in CIDR block Yes

should enforce policies to check ingress and egress policies can be controlled independently
based on PodSelector

Yes

Feature Testing of NetworkPolicy (legacy)

A large number of Nginx services are deployed in the Kubernetes cluster, and a fixed service is measured with
ApacheBench (ab). The QPS values in Kube-router-enabled and Kube-router-disabled scenarios are compared to

measure the performance loss caused by Kube-router.

Test environment

VM quantity: 100
VM configuration: 2 CPU cores, 4 GB memory
VM OS: Ubuntu
Kubernetes version: 1.10.5

kube-router version: 0.2.0

Test process

1. Deploy one service corresponding to two Pods (Nginx) as the test group.

2. Deploy 1,000 services with each of them corresponding to 2/6/8 Pods (Nginx) as the interference group.

3. Deploy a NetworkPolicy rule to ensure that all Pods are selected to produce a sufficient number of iptables rules.

apiVersion: extensions/v1beta1

kind: NetworkPolicy

metadata:

name: npd

namespace: default

spec:

ingress:

- from:

- ipBlock:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 197 of 577

cidr: 14.215.0.0/16

ports:

- protocol: TCP

port: 9090

- from:

- ipBlock:

cidr: 14.215.0.0/16

ports:

- protocol: TCP

port: 8080

- from:

- ipBlock:

cidr: 14.215.0.0/16

ports:

- protocol: TCP

port: 80

podSelector: {}

policyTypes:

- Ingress

4. Perform an A/B test to test the service in the test group and record the QPS.
The following figure shows the obtained performance curve.

In the legend:
1000service2000pod, 1000service6000pod, and 1000service8000pod are the performances when kube-route

is not enabled for Pod.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 198 of 577

1000service2000pod-kube-route, 1000service6000pod-kube-route, and 1000service8000pod-kube-route are
the performances when kube-route is enabled for Pod.

X axis: A/B concurrency

Y axis: QPS

Test conclusion

As the number of Pods increases from 2,000 to 8,000, the performance when Kube-router is enabled is 10% to 20%
lower than when it is disabled.

Notes

Kube-router versions provided by Tencent Cloud

The NetworkPolicy add-on is based on the community’s Kube-Router project. During the development of this add-on,
the Tencent Cloud PaaS team actively built a community, provided features, and fixed bugs. The PRs we committed

that were incorporated into the community are listed as follows:

processing k8s version for NPC #488
Improve health check for cache synchronization #498
Make the comments of the iptables rules in NWPLCY chains more accurate and reasonable #527
Use ipset to manage multiple CIDRs in a network policy rule #529
Add support for 'except' feature of network policy rule#543

Avoid duplicate peer pods in npc rules variables #634
Support named port of network policy #679

https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router/pull/488
https://github.com/cloudnativelabs/kube-router/pull/498
https://github.com/cloudnativelabs/kube-router/pull/527
https://github.com/cloudnativelabs/kube-router/pull/529
https://github.com/cloudnativelabs/kube-router/pull/543
https://github.com/cloudnativelabs/kube-router/pull/634
https://github.com/cloudnativelabs/kube-router/pull/679

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 199 of 577

Overview

Nginx Ingress provides robust features and extremely high performance as well as multiple deployment modes. This
document introduces the three deployment schemes of Nginx Ingress on Tencent Kubernetes Engine (TKE):
Deployment + LB, Daemonset + HostNetwork + LB, and Deployment + LB directly connected to Pod and their

deployment methods.

Nginx Ingress Introduction

Nginx Ingress is an implementation of Kubernetes Ingress. By watching the Ingress resources of Kubernetes clusters,
it converts Ingress rules into an Nginx configuration to enable Nginx to perform Layer-7 traffic forwarding, as shown in
the figure below:

Nginx Ingress can be implemented in the following two modes. This document mainly introduces the implementation
of Kubernetes in the open-source community:

Implementation of Kubernetes in the Open-Source Community

Official Implementation of Nginx

Deploying NGINX Ingress on TKE
Last updated：2020-12-16 12:18:07

https://github.com/kubernetes/ingress-nginx
https://github.com/nginxinc/kubernetes-ingress

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 200 of 577

Suggestions for deployment solution selection

Based on a comparison of the three deployment solutions for Nginx Ingress on TKE, this document offers the following
selection suggestions:

1. Deployment + LB: this solution is relatively simple and applicable to general scenarios, but performance issues may

arise in large-scale and high-concurrency scenarios. If your performance requirements are low, you can consider
adopting this solution.

2. Daemonset + HostNetwork + LB: the use of hostNetwork offers good performance, but manual maintenance of
CLBs and Nginx Ingress nodes is required and auto scaling cannot be implemented. Therefore, we do not
recommend this solution.

3. Deployment + LB directly connected to pod: this solution offers good performance, without the need for manual
CLB maintenance, making this the ideal solution. However, in this solution, clusters need to support VPC-CNI. If
the existing clusters use the VPC-CNI network plug-in or the Global Router network plug-in and have enabled
support for VPC-CNI (mixed use of two modes), we recommend that you adopt this solution.

Solution 1: Deployment + LB

The simplest way to deploy Nginx Ingress on TKE is to deploy Nginx Ingress Controller in Deployment mode and
create a LoadBalancer-type Service for it (automatically creating a CLB or binding an existing CLB) to enable the CLB

to receive external traffic and forward it into Nginx Ingress, as shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 201 of 577

Currently, by default, a LoadBalancer-type Service on TKE is implemented based on NodePort: the CLB binds the
NodePort of each node as the RS (Real Server) and forwards traffic to the NodePort of each node. Then through
Iptables or IPVS, nodes route requests to the corresponding backend pod of the Service (namely the pod of Nginx

Ingress Controller). Subsequently, if nodes are added or deleted, the CLB will automatically update the node
NodePort binding.
Run the following commands to install Nginx Ingress:

kubectl create ns nginx-ingress

kubectl apply -f https://raw.githubusercontent.com/TencentCloudContainerTeam/mani

fest/master/nginx-ingress/nginx-ingress-deployment.yaml -n nginx-ingress

Solution 2: Daemonset + HostNetwork + LB

In solution 1, traffic passes through a NodePort layer, introducing one more layer for forwarding, which leads to the
following issues:

The forwarding path is relatively long: after reaching NodePort, traffic goes through the LB within Kubernetes and is

then forwarded through Iptables or IPVS to Nginx. This increases network time consumption.
Passing through NodePort will necessarily cause SNAT. If traffic is too concentrated, port exhaustion or conntrack
insertion conflicts can easily occur, leading to packet loss and causing some traffic exceptions.
The NodePort of each node also serves as a CLB. If the CLB is bound with the NodePorts of a large number of
nodes, the LB status is distributed among each node, which can easily cause a global load imbalance.

The CLB carries out health probes on NodePort, and probe packets are ultimately forwarded to the Pods of Nginx
Ingress. If the CLB is bound with too many nodes, and the Nginx Ingress has a small number of pods, the probe
packets will put immense pressure on Nginx Ingress.

In solution 2, the following solution is proposed:
Nginx Ingress uses hostNetwork, and the CLB is directly bound with node IP address + port (80,443), without passing
through NodePort. With the use of hostNetwork, the pods of Nginx Ingress cannot be scheduled to the same node. To

avoid port listening conflicts, you can preselect some nodes as edge nodes dedicated to the deployment of Nginx
Ingress and label them. Then, Nginx Ingress can be deployed as a DaemonSet on these nodes. The following figure
shows the architecture:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 202 of 577

To install Nginx Ingress, perform the following steps:

1. Run the following command to attach a label to the nodes planned for the deployment of Nginx Ingress (be sure to
replace the node names):

kubectl label node 10.0.0.3 nginx-ingress=true

2. Run the following commands to deploy Nginx Ingress on these nodes:

kubectl create ns nginx-ingress

kubectl apply -f https://raw.githubusercontent.com/TencentCloudContainerTeam/ma

nifest/master/nginx-ingress/nginx-ingress-daemonset-hostnetwork.yaml -n nginx-i

ngress

3. Manually create a CLB, create a TCP listener for ports 80 and 443, and bind them with ports 80 and 443 of the
nodes where Nginx Ingress has been deployed.

Solution 3: Deployment + LB Directly Connected to Pod

Solution 2 offers more advantages than solution 1, but it has the following issues:

It increases the OPS cost for manual maintenance of the CLB and Nginx Ingress nodes.

Nginx Ingress nodes need to be planned in advance. When Nginx Ingress nodes are added or deleted, you need to
manually bind or unbind nodes on the CLB console.
Automatic scaling is not supported.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 203 of 577

In solution 3, the following solution is proposed:

If the network mode is VPC-CNI and all pods use ENI, you can directly bind the CLB with the ENI pods, bypassing
NodePort. This saves the trouble of manual management of the CLB and enables support for automatic scaling, as

shown in the figure below:
If the network mode is Global Router, you can go to the cluster information page and enable VPC-CNI support for
the cluster. This enables the mixed use of the two network modes, as shown in the figure below:

After ensuring that the cluster supports VPC-CNI, run the following commands in sequence to install Nginx Ingress:

kubectl create ns nginx-ingress

kubectl apply -f https://raw.githubusercontent.com/TencentCloudContainerTeam/ma

nifest/master/nginx-ingress/nginx-ingress-deployment-eni.yaml -n nginx-ingress

FAQs

How can private network Ingress be supported?

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 204 of 577

In solution 2: Daemonset + HostNetwork + LB, the CLB is manually managed. When creating a CLB, you can select
public network or private network. In solution 1: Deployment + LB and solution 3: Deployment + LB directly connected
to pod, public network CLBs are created by default.

To use a private network, you can redeploy YAML and add a key to the Service in nginx-ingress-controller, for
example, service.kubernetes.io/qcloud-loadbalancer-internal-subnetid , with value set to the

annotation of the subnet ID created by the private network CLB. Refer to the following code:

apiVersion: v1

kind: Service

metadata:

annotations:

service.kubernetes.io/qcloud-loadbalancer-internal-subnetid: subnet-xxxxxx # valu

e should be replaced with a subnet ID in the VPC where the cluster belongs.

labels:

app: nginx-ingress

component: controller

name: nginx-ingress-controller

How can an existing LB be shared?

In solution 1: Deployment + LB and solution 3: Deployment + LB directly connected to Pod, new CLBs are
automatically created by default. The traffic entry address of Ingress depends on the IP address of the newly created
CLB. If a business is dependent upon the entry address, you can bind Nginx Ingress with an existing CLB.

The specific method is to redeploy YAML and add a key to the Service in nginx-ingress-controller, such as
 service.kubernetes.io/tke-existed-lbid , with value set to the annotation of the CLB ID. Refer to the

following code:

apiVersion: v1

kind: Service

metadata:

annotations:

service.kubernetes.io/tke-existed-lbid: lb-6swtxxxx # value should be replaced wi

th the CLB ID.

labels:

app: nginx-ingress

component: controller

name: nginx-ingress-controller

What’s the size of the Nginx Ingress public network bandwidth?

There are two types of Tencent Cloud accounts: bill-by-IP accounts and bill-by-CVM accounts:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 205 of 577

Bill-by-IP account type: bandwidth is moved to the CLB or IP address for management.
If your account is a bill-by-IP account, the Nginx Ingress bandwidth equals the purchased CLB bandwidth, which is
10 Mbps by default (pay-as-you-go) and can be adjusted as needed.

Bill-by-CVM account type: bandwidth is managed on CVMs.
If your account is a bill-by-CVM account, Nginx Ingress uses a public network CLB, and the public network
bandwidth of Nginx Ingress is the sum of the bandwidth of all TKE nodes bound with the CLB. If solution 3:
Deployment + LB directly connected to pod is adopted, the CLB is directly connected to pods, which means that
the CLB is directly bound with ENI. In that case, the public network bandwidth of Nginx Ingress is the sum of the

bandwidth of all nodes where Nginx Ingress Controller Pods are scheduled.

How can I create an Ingress?

When you deploy Nginx Ingress on TKE and need to use Nginx Ingress to manage Ingress, if you cannot create an
Ingress on the TKE console, you can use YAML to create an Ingress and you need to specify the annotation of Ingress
Class for each Ingress. Refer to the following code:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: test-ingress

annotations:

kubernetes.io/ingress.class: nginx # this is the key part

spec:

rules:

- host: *

http:

paths:

- path: /

backend:

serviceName: nginx-v1

servicePort: 80

How can I enable monitoring?

For Nginx Ingress installed through the method in How can I create an Ingress, the metrics port has been opened and
can be used for Prometheus collection. If prometheus-operator is installed in the cluster, you can use ServiceMonitor
to collect monitoring data for Nginx Ingress. Refer to the following code:

Note：

You can refer to Distinguishing Between Tencent Cloud Account Types to identify your account type.

https://intl.cloud.tencent.com.cn/document/product/684/15246

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 206 of 577

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

name: nginx-ingress-controller

namespace: nginx-ingress

labels:

app: nginx-ingress

component: controller

spec:

endpoints:

- port: metrics

interval: 10s

namespaceSelector:

matchNames:

- nginx-ingress

selector:

matchLabels:

app: nginx-ingress

component: controller

For native Prometheus configuration, refer to the following code:

- job_name: nginx-ingress

scrape_interval: 5s

kubernetes_sd_configs:

- role: endpoints

namespaces:

names:

- nginx-ingress

relabel_configs:

- action: keep

source_labels:

- __meta_kubernetes_service_label_app

- __meta_kubernetes_service_label_component

regex: nginx-ingress;controller

- action: keep

source_labels:

- __meta_kubernetes_endpoint_port_name

regex: metrics

After collecting monitoring data, you can configure the dashboards provided by the Nginx Ingress community for
grafana and display data.
In actual operation, you can directly copy JSON data and import it to grafana to import dashboards. nginx.json

is used to display the various regular monitoring dashboards for Nginx Ingress, as shown in the figure below:

https://github.com/kubernetes/ingress-nginx/tree/master/deploy/grafana/dashboards

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 207 of 577

 request-handling-performance.json is used to display the performance monitoring dashboard of Nginx

Ingress, as shown in the figure below:

References

TKE Service YAML Sample
TKE Service Using an Existing CLB
Distinguishing Between Tencent Cloud Account Types

https://intl.cloud.tencent.com.cn/document/product/457/36833
https://intl.cloud.tencent.com.cn/document/product/457/36835
https://intl.cloud.tencent.com.cn/document/product/684/15246

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 208 of 577

Overview

Nginx Ingress Controller implements the Kubernetes Ingress API based on Nginx. When Nginx, which is a high-
performance gateway, runs in the production environment, you need to optimize its parameters to make full use of its
high performance. The deployment YAML file in Deploying Nginx Ingress on TKE has already optimized some

performance parameters for Nginx.
This document introduces the methods and principles for optimizing the global configuration and kernel parameters of
Nginx Ingress to better adapt to high-concurrency business scenarios.

Optimizing Kernel Parameters

You can use the following methods to optimize the kernel parameters of Nginx Ingress and use the initContainers
method to configure the kernel parameters. For more information, see Configuration examples.

Increasing the size of the connection queue
Expanding the range of source ports
Reusing TIME_WAIT
Increasing the maximum number of file handles
Configuration examples

Increasing the size of the connection queue

In a high-concurrence environment, queue overflow may occur if the connection queue is too small, failing to establish

some connections. The size of the connection queue of the process listener socket is controlled by the
 net.core.somaxconn kernel parameter. By adjusting the value of this parameter, you can enlarge the Nginx

Ingress connection queue.

When a process calls the listen system to listen on ports, it passes in the backlog parameter, which determines the
size of the socket connection queue. The value of the backlog parameter is not greater than that of somaxconn. When

the Go program standard library listens, it reads and uses the somaxconn value as the queue size by default.
However, Nginx does not read somaxconn when listening on the socket, but reads nginx.conf . In the listening

port configuration items in nginx.conf , you can configure the backlog parameter to specify a connection queue

size for Nginx port listening. The following shows a sample configuration:

Nginx Ingress High-Concurrency Practices
Last updated：2022-08-02 10:01:36

https://intl.cloud.tencent.com.cn/document/product/457/38072

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 209 of 577

server {

listen 80 backlog=1024;

...

If the value of backlog is not specified, it defaults to 511. The detailed description of the backlog parameter is as
follows:

backlog=number

sets the backlog parameter in the listen() call that limits the maximum length fo

r the queue of pending connections. By default, backlog is set to -1 on FreeBSD,

DragonFly BSD, and MacOS, and to 511 on other platforms.

By default, even if the set value of somaxconn exceeds 511, the maximum size of the connection queue for Nginx port

listening is still 511. For this reason, connection queue overflow may occur in a high-concurrency environment.

Nginx Ingress performs the preceding configuration differently. Nginx Ingress Controller can automatically read and
use the value of somaxconn as the backlog value and write it to the generated nginx.conf file. Therefore, the
connection queue size of Nginx Ingress is determined by somaxconn only, and the size defaults to 4096 in TKE.
In a high-concurrency environment, we recommend that you run the following command to set the somaxconn value to

65535:

sysctl -w net.core.somaxconn=65535

Expanding the range of source ports

In a high-concurrency environment, Nginx Ingress uses large numbers of source ports to establish connections with
the upstream. The range of source ports is randomly selected from the range defined in the
 net.ipv4.ip_local_port_range kernel parameter. In a high-concurrency environment, a small port range

can easily exhaust source ports, resulting in abnormal connections.
The default source port range of pods created in a TKE environment is 32768 - 60999. We recommend that you run
the following command to expand the range to 1024 - 65535:

sysctl -w net.ipv4.ip_local_port_range="1024 65535"

Reusing TIME_WAIT

If the concurrency of non-persistent connections is high, the number of connections in the TIME_WAIT state in netns

will also be large, By default, connections in the TIME_WAIT state have to wait for a period of 2MSL before being
released, and therefore the source ports will be occupied for a long time. When the number of connections in this state
exceeds a certain number, new connections may fail to be established.

https://github.com/kubernetes/ingress-nginx/blob/controller-v0.34.1/internal/ingress/controller/nginx.go#L592

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 210 of 577

We recommend that you run the following command to enable TIME_WAIT reuse for Nginx Ingress, which reuses
TIME_WAIT connections for new TCP connections:

sysctl -w net.ipv4.tcp_tw_reuse=1

Increasing the maximum number of file handles

When Nginx is used as a reverse proxy, each request establishes a connection with the client and upstream server
respectively, which occpuies two file handles. Therefore, the theoretical maximum number of connections that Nginx
can process simultaneously is half the maximum number of file handles set for the system.

The maximum number of file handles of the system is controlled by the fs.file-max kernel parameter, which

defaults to 838860 in TKE. We recommend that you run the following command to set the maximum number of file

handles to 1048576:

sysctl -w fs.file-max=1048576

Configuration examples

Add initContainers for pods of Nginx Ingress Controller and configure the kernel parameters. The following shows a
sample code:

initContainers:

- name: setsysctl

image: busybox

securityContext:

privileged: true

command:

- sh

- -c

- |

sysctl -w net.core.somaxconn=65535

sysctl -w net.ipv4.ip_local_port_range="1024 65535"

sysctl -w net.ipv4.tcp_tw_reuse=1

sysctl -w fs.file-max=1048576

Optimizing the Global Configuration

In addition to optimizing the kernel parameters, you can optimize the global configuration of Nginx by using the

following methods:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 211 of 577

Increasing the maximum number of keepalive connection requests
Increasing the maximum number of keepalive idle connections
Increasing the maximum number of connections for a single worker

Configuration examples

Increasing the maximum number of keepalive connection requests

For keepalive connections between Nginx and the client or upstream server, the keepalive_requests parameter
controls the maximum number of requests that can be processed by a single keepalive connection, which defaults to
100. When the number of requests for a keepalive connection exceeds the default, the connection will be
disconnected and then re-established.

For Ingress in a private network, the QPS of a single client may be high (for example, 10,000 QPS), and Nginx may
frequently disconnect its keepalive connections with the client, resulting in large numbers of connections in the
TIME_WAIT state. To prevent this issue in a high-concurrency environment, we recommend that you increase the
maximum number of requests for keepalive connections between Nginx and clients. This maximum number is
determined by the keep-alive-requests parameter in Nginx Ingress, and you can set it to 10000. For more

information, see keep-alive-requests.

The number of keepalive connection requests between Nginx and the upstream is determined by upstream-

keepalive-requests . For more information on the configuration method, see upstream-keepalive-requests.

Note：
In non-high-concurrency environments, you do not need to configure this parameter. If you set it to a higher
value, load imbalance may occur. This is because, when keepalive connections between Nginx and the

upstream are retained too long, the number of connection scheduling times will decrease and the connections
will be too "rigid", leading to a traffic load imbalance.

Increasing the maximum number of idle keepalive connections

For connections between Nginx and the upstream, you can configure the keepalive parameter, which determines the
maximum number of idle connections and defaults to 320. In a high-concurrency environment, large numbers of
requests and connections exist. However, in an actual production environment, requests are not fully balanced, and

some connections may be temporarily idle. When the number of idle connections increases and idle connections are
removed, Nginx may frequently disconnect from and reconnect to the upstream, significantly increasing the number of
TIME_WAIT connections.
In a high-concurrency environment, we recommend that you set keepalive to 1000. For more information, see
upstream-keepalive-connections.

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#keep-alive-requests
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#upstream-keepalive-requests
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#upstream-keepalive-connections

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 212 of 577

Increasing the maximum number of connections for a single worker

The max-worker-connections parameter controls the maximum number of connections that can be used by

each worker process, which defaults to 16384 in TKE. In a high-concurrency environment, we recommend that you
set the value of this parameter to a greater value, for example, 65536, so that Nginx can handle more connections. For

more information, see max-worker-connections.

Configuration examples

The global configuration of Nginx is implemented through the configmap configuration (Nginx Ingress Controller will
read and automatically load the configuration.) The following shows a sample code:

apiVersion: v1

kind: ConfigMap

metadata:

name: nginx-ingress-controller

Nginx Ingress performance optimization: https://www.nginx.com/blog/tuning-ngin

x/

data:

The number of requests that can be processed by a persistent connection between

Nginx and the client, which defaults to 100. We recommend that you increase this

number in high-concurrency scenarios.

Reference: https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configur

ation/configmap/#keep-alive-requests

keep-alive-requests: "10000"

The maximum number of idle persistent connections (not the maximum number of co

nnections) between Nginx and the upstream, which defaults to 320. We recommend th

at you increase this number in high-concurrency scenarios to prevent the frequent

establishment of connections from significantly increasing the number of TIME_WAI

T connections.

Reference: https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configur

ation/configmap/#upstream-keepalive-connections

upstream-keepalive-connections: "2000"

The maximum number of connections that can be used by each worker process, whic

h defaults to 16384

Reference: https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configur

ation/configmap/#max-worker-connections

max-worker-connections: "65536"

References

Deploying Nginx Ingress on TKE
ConfigMaps

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#max-worker-connections
https://intl.cloud.tencent.com.cn/document/product/457/38072
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 213 of 577

Tuning NGINX for Performance
Module ngx_http_upstream_module

https://www.nginx.com/blog/tuning-nginx/
http://nginx.org/en/docs/http/ngx_http_upstream_module.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 214 of 577

Overview

TKE supports the installation of Nginx-ingress addon and uses it to access Ingress traffic. For more information about
Nginx-ingress, see Nginx-ingress Instructions. This document describes the best practices of Nginx-ingress addon.

Prerequisites

You have installed Nginx-ingress addon.

Operation Directions

Opening multiple Nginx Ingress traffic entries for the cluster

After the Nginx-ingress addon is installed, there will be a Nginx-ingress operator addon under kube-system . You

can use this addon to create multiple Nginx Ingress instances. Each Nginx Ingress instance uses a different
IngressClass and uses a different CLB as a traffic entry, so that different ingresses can be bound to different traffic
entries. You can create multiple Nginx Ingress instances for the cluster based on your actual needs.

1. Log in to the TKE console and click Cluster in the left sidebar.

2. On the Cluster Management page, click the ID of the target cluster to go to the cluster details page.
3. In the left sidebar, click Add-on Management to go to the Add-on List page.
4. Click the installed Nginx-ingress addon to go to the details page.
5. Click Add Nginx Ingress Instance to configure the Nginx Ingress instances as needed, and specify a different

IngressClass name for each instance.

Note：

For the details of installing Nginx Ingress instance, see Installing Nginx-ingress Instance.

6. When creating an Ingress, you can specify a specific IngressClass to bind the Ingress to a specific Nginx Ingress
instance. You can create Ingress via console or YAML.

Create an Ingress via console
Creating an Ingress via YAML

Nginx Ingress Best Practices
Last updated：2021-12-06 10:55:40

https://intl.cloud.tencent.com.cn/document/product/457/39143
https://intl.cloud.tencent.com.cn/document/product/457/38981
https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/457/38981

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 215 of 577

See Creating an Ingress for more information on how to create an Ingress in the console.

Ingress Type: select Nginx Load Balancer.
Class: select the Nginx Ingress instance created in the previous steps.

Performance optimization

CLB-to-Pod direct access mode

When the cluster network mode is Global Router, CLB-to-Pod direct access mode is not enabled by default. It is
recommended to enable CLB-to-Pod direct access mode based on the following directions:

1. Enable the VPC-CNI mode for the cluster.
2. When creating a Nginx Ingress instance, you can check Select CLB-to-Pod direct access mode to enable traffic

to bypass the NodePort and reach the Pod directly to improve performance

Note：
For the details of installing Nginx Ingress instance, see Installing Nginx-ingress Instance.

Adjusting the LB bandwidth limit

As the traffic entry, if LB needs a higher concurrency or throughput, you can set the bandwidth limit based on the
actual needs when creating a Nginx Ingress instance and allocate a higher bandwidth for Nginx Ingress.

If you have a bill-by-CVM account (Checking Account Type), the bandwidth limit is determined by the node bandwidth.
You can adjust the node bandwidth limit based on the following conditions:

If the CLB-to-Pod direct access mode is enabled, the total LB bandwidth is the sum of the bandwidths of the nodes
where the Nginx Ingress instance Pods locate. It is recommended to plan some nodes with high public network
bandwidth to deploy Nginx Ingress instances (Specify a node pool as DaemonSet to deploy).
If the CLB-to-Pod direct access mode is not enabled, the total bandwidth of LB is the sum of the public network
bandwidths of all nodes.

Nginx Ingress parameter optimization

The Nginx Ingress instance can optimize the kernel parameters and the configuration of Nginx Ingress by default. For
details, see Nginx Ingress High-Concurrency Practices. You can refer to the following directions to customize.

Modifying the kernel parameters
Modifying Nginx Ingress configuration

https://intl.cloud.tencent.com.cn/document/product/457/30673
https://intl.cloud.tencent.com.cn/document/product/457/38970
https://intl.cloud.tencent.com.cn/document/product/457/38981
https://intl.cloud.tencent.com.cn/document/product/684/15246
https://intl.cloud.tencent.com.cn/document/product/457/38300

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 216 of 577

Edit the deployed Daemonset or Deployment of nginx-ingress-conntroller (depending on the instance deployment
options), and modify initContainers (You cannot modify the resources under kube-system in the console. Please use
Kubectl to modify.), as shown below:

Improving the observability of Nginx Ingress

Enabling monitoring and log

After creating a Nginx Ingress instance, you can enable the log and monitoring configuration of the instance in
Log/Monitoring, which is convenient for troubleshooting and viewing the status metrics of the instance, as shown
below:

The log configuration relies on Cloud Log Service. For how to enable, see Nginx-ingress Log Configuration.

Note：

It is strongly recommend to enable monitoring and log configurations for all Nginx Ingress instances.

Viewing monitoring dashboard

1. After enabling the monitoring configuration, you can click View Monitoring to go to the cloud native monitoring, as
shown below:

https://intl.cloud.tencent.com.cn/document/product/614
https://intl.cloud.tencent.com.cn/document/product/457/38983

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 217 of 577

2. Enter the Grafana dashboard and switch to the NGINX Ingress controller dashboard to check the monitoring
views, as shown below:

Log search and log dashboard

After enabling the log configuration, you can click More under Operation on the right side of an instance in the Nginx
Ingress list page, and select Check access logs in CLS or View Access Log Dashboard. as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 218 of 577

Click Check access logs in CLS to go to the CLS and select the logset and topic corresponding to the instance in

Search and Analyze to view the access and error logs of Nginx Ingress.
Click View Access Log Dashboard to go to the dashboard that displays statistics based on the Nginx Ingress log
data.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 219 of 577

Overview

This document describes how to restrict the Pod bandwidth in TKE. Currently, TKE does not support Pod speed
restriction; however, you can modify the CNI plugin to achieve it based on your actual scenario.

Notes

TKE supports using the bandwidth plugin of the community to restrict the network speed. Currently, it can be used

in GlobalRouter mode and VPC-CNI shared ENI mode.
Currently, it is not supported for the VPC-CNI dedicated ENI mode.

Directions

Modifying CNI plugin

GlobalRouter mode

The GlobalRouter network mode is a routing policy for communication between the container network and VPC based
on the global routing capabilities of the underlying VPC. It is suitable for common scenarios and seamlessly
compatible with standard Kubernetes features. For more information, see GlobalRouter Mode.

1. Log in to the Pod node as instructed in Logging in to Linux Instance Using Standard Login Method.
2. Run the following command to view the configuration of tke-bridge-agent :

kubectl edit daemonset tke-bridge-agent -n kube-system

Add args --bandwidth to enable the support for the bandwidth plugin.

VPC-CNI shared ENI mode

The VPC-CNI mode is container network capability implemented based on CNI and VPC ENI and is suitable for

scenarios with high requirements for latency.
The open-source bandwidth plugin supports traffic shaping at the Pod entry and exit as well as bandwidth control. For
more information, see VPC-CNI Mode.

Limiting the bandwidth on pods in TKE
Last updated：2022-03-23 18:17:29

https://intl.cloud.tencent.com.cn/document/product/457/38968
https://intl.cloud.tencent.com.cn/document/product/213/5436
https://intl.cloud.tencent.com.cn/document/product/457/38970

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 220 of 577

1. Log in to the Pod node as instructed in Logging in to Linux Instance Using Standard Login Method.
2. Run the following command to view the configuration of tke-eni-agent :

kubectl edit daemonset tke-eni-agent -n kube-system

Add args --bandwidth to enable the support for the bandwidth plugin.

Note：
You can enable this feature simply by adding the above parameters to tke-eni-agent and disable it by

removing the parameters. Deployment, enablement, and disablement are supported, which take effect only for
new Pods.

Specifying annotation in Pod

You can configure in the method provided by the community:

Use the kubernetes.io/ingress-bandwidth annotation to specify the inbound bandwidth cap.

Use the kubernetes.io/egress-bandwidth annotation to specify the outbound bandwidth cap.

Sample:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx

spec:

replicas: 1

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

annotations:

kubernetes.io/ingress-bandwidth: 10M

kubernetes.io/egress-bandwidth: 20M

spec:

containers:

- name: nginx

image: nginx

https://intl.cloud.tencent.com.cn/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 221 of 577

Configuration Verification

You can verify whether the configuration succeeds in the following two methods:

Method 1: log in to the Pod node and run the following command to check whether the caps have been added:

tc qdisc show

If a result similar to the following is returned, the caps have been added successfully:

qdisc tbf 1: dev vethc09123a1 root refcnt 2 rate 10Mbit burst 256Mb lat 25.0ms

qdisc ingress ffff: dev vethc09123a1 parent ffff:fff1 ----------------

qdisc tbf 1: dev 6116 root refcnt 2 rate 20Mbit burst 256Mb lat 25.0ms

Method 2: run the following command to use iperf for testing:

iperf -c <service IP> -p <service port> -i 1

If a result similar to the following is returned, the caps have been added successfully:

--

Client connecting to 172.16.0.xxx, TCP port 80

TCP window size: 12.0 MByte (default)

--

[3] local 172.16.0.xxx port 41112 connected with 172.16.0.xx port 80

[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 257 MBytes 2.16 Gbits/sec

[3] 1.0- 2.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 2.0- 3.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 3.0- 4.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 4.0- 5.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 5.0- 6.0 sec 1.12 MBytes 9.38 Mbits/sec

[3] 6.0- 7.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 7.0- 8.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 8.0- 9.0 sec 1.18 MBytes 9.90 Mbits/sec

[3] 9.0-10.0 sec 1.12 MBytes 9.38 Mbits/sec

[3] 0.0-10.3 sec 268 MBytes 218 Mbits/se

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 222 of 577

Overview

Kubernetes designs and provides two types of native resources at the cluster access layer, 'Service' and 'Ingress',
which are responsible for the network access layer configurations of layer 4 and layer 7, respectively. The traditional
solution is to create an Ingress- or LoadBalancer-type service to bind Tencent Cloud CLBs and open services to the

public. In this way, user traffic is loaded on the NodePort of the user node, and then forwarded to the container
network through the KubeProxy component. This solution has some limitations in business performance and
capabilities.

To address these limitations, the Tencent Cloud TKE team provides a new network mode for users who use
independent or managed clusters. that is, TKE directly connects to the CLB of pods based on the ENI.

This mode provides enhanced performance and business capabilities. This document describes the differences
between the two modes and how to use the direct connection mode.

Solution Comparison

Comparison
Item

Direct Connection NodePort Forwarding Local Forwarding

Performance Zero loss NAT forwarding and inter-
node forwarding

Minor loss

Pod update
The access layer backend
automatically synchronizes updates,
so the update process is stable

The access layer backend
NodePort remains
unchanged

Services may be
interrupted without
update
synchronization

Cluster
dependency

Cluster version and VPC-CNI
network requirements

- -

Business
capability
restriction

Least restriction
Unable to obtain the source
IP address or implement
session persistence

Conditional session
persistence

Directly connecting TKE to the CLB of pods
based on the ENI
Last updated：2021-05-17 17:06:15

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 223 of 577

Analysis of Problems with the Traditional Mode

Performance and features

In a cluster, KubeProxy forwards the traffic from user NodePort through NAT to the cluster network. This

process has the following problems:

NAT forwarding causes certain loss in request performance.

NAT operations cause performance loss.
The destination address of NAT forwarding may cause the traffic to be forwarded across nodes in a container
network.
NAT forwarding changes the source IP address of the request, so the client cannot obtain the source IP address.
When the CLB traffic is concentrated on several NodePorts, the over-concentrated traffic will cause excessive

SNAT forwarding by NodePorts, which will exhaust the traffic capacity of the port. This problem may also lead to
conntrack insertion conflicts, resulting in packet loss and performance deterioration.
Forwarding by KubeProxy is random and does not support session persistence.

Each NodePort of KubeProxy has independent load-balancing capabilities. As such capabilities cannot be

concentrated in one place, global load balancing is difficult to achieve.

To address the preceding problems, the technical suggestion previously provided to users was to adopt local

forwarding to avoid the problems caused by KubeProxy NAT forwarding. However, due to the randomness of

forwarding, session persistence remains unsupported when multiple replicas are deployed on a node. Moreover, when
local forwarding coincides with rolling updates, services can be easily interrupted. This places higher requirements on
the rolling update policies and downtime of businesses.

Service availability

When a service is accessed through NodePorts, the design of NodePorts is highly fault-tolerant. The CLB binds the

NodePorts of all nodes in the cluster as the backend. When any node of the cluster accesses the service, the traffic will
be randomly allocated to the workloads of the cluster. Therefore, the unavailability of NodePorts or pods does not
affect the traffic access of the service.

Similar to local access, in cases where the backend of the CLB is directly connected to user pods, if the CLB cannot
be promptly bound to the new pod when the service is processing a rolling update, the number of CLB backends of

the service entry may be seriously insufficient or even exhausted as a result of rapid rolling updates. Therefore, when
the service is processing a rolling update, the security and stability of the rolling update can be ensured if the CLB of
the access layer is healthy.

CLB control plane performance

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 224 of 577

The control plane APIs of the CLB include APIs for creating, deleting, and modifying layer-4 and layer-7 listeners,
creating and deleting layer-7 rules, and binding each listener or the rule backend. Most of these APIs are
asynchronous APIs, which require the polling of request results, and API calls are time-consuming. When the scale of

the user cluster is large, the synchronization of a large amount of access layer resources can impose high latency
pressure on components.

Comparison of the New and Old Modes

Performance comparison

TKE has launched the direct pod connection mode, which optimizes the control plane of the CLB. In the overall
synchronization process, this new mode mainly optimizes batch calls and backend instance queries where remote
calls are relatively frequent. After the optimization, the performance of the control plane in a typical ingress

scenario is improved by 95% to 97% compared with the previous version. At present, the synchronization time
is mainly the waiting time of asynchronous APIs.

Backend node data surge

For cluster scaling, the relevant data is as follows:

Layer-7
Rule
Quantity

Cluster
Node
Quantity

Cluster
Node
Quantity
(Update)

Performance
Before
Optimization
(s)

Optimized
Batch Calling
Performance
(s)

Re-optimized
Backend Instance
Query
Performance (s)

Time
Consumption
Reduction
(%)

200 1 10 1313.056 227.908 31.548 97.597%

200 1 20 1715.053 449.795 51.248 97.011%

200 1 30 2826.913 665.619 69.118 97.555%

200 1 40 3373.148 861.583 90.723 97.310%

200 1 50 4240.311 1085.03 106.353 97.491%

Layer-7 rule data surge

For first-time activation and deployment of services in the cluster, the relevant data is as follows:

Layer-7
Rule
Quantity

Layer-7
Rule
Quantity
(Update)

Cluster
Node
Quantity

Performance
Before
Optimization
(s)

Optimized
Batch Calling
Performance
(s)

Re-optimized
Backend Instance
Query
Performance (s)

Time
Consumption
Reduction
(%)

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 225 of 577

Layer-7
Rule
Quantity

Layer-7
Rule
Quantity
(Update)

Cluster
Node
Quantity

Performance
Before
Optimization
(s)

Optimized
Batch Calling
Performance
(s)

Re-optimized
Backend Instance
Query
Performance (s)

Time
Consumption
Reduction
(%)

1 100 50 1631.787 451.644 68.63 95.79%

1 200 50 3399.833 693.207 141.004 95.85%

1 300 50 5630.398 847.796 236.91 95.79%

1 400 50 7562.615 1028.75 335.674 95.56%

The following figure shows the comparison:

In addition to control plane performance optimization, the CLB can directly access the pods of the container network,
which is the integral part of component business capabilities. This not only prevents the loss of NAT forwarding
performance, but also eliminates the impact of NAT forwarding on the business features in the cluster. However, the
support for optimal access to the container network remains unavailable when the project is launched.

The new mode integrates the feature that allows pods to have an ENI entry under the cluster CNI network mode in
order to implement direct access to the CLB. CCN solutions are already available for implementing direct CLB
backend access to the container network.

In addition to the capability of direct access, availability during rolling updates must be ensured. To implement this, we
use the official feature ReadinessGate , which was officially released in version 1.12 and is mainly used to control

the conditions of pods.

By default, a pod has three possible conditions: PodScheduled, Initialized, and ContainersReady. When the state of all
pods is Ready, Pod Ready also becomes ready. However, in cloud-native scenarios, the status of pods needs to be
determined in combination with other factors. ReadinessGate allows us to add fences for pod status

determination so that the pod status can be determined and controlled by a third party, and the pod status can be
associated with a third party.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 226 of 577

CLB traffic comparison

Traditional NodePort mode

The request process is as follows:

1. The request traffic reaches the CLB.
2. The request is forwarded by the CLB to the NodePort of a certain node.
3. KubeProxy performs NAT forwarding for the traffic from the NodePort, with the destination address being the IP

address of a random pod.
4. The request reaches the container network and is then forwarded to the corresponding node based on the pod

address.
5. The request reaches the node to which the destination pod belongs and is then forwarded to the pod.

New direct pod connection mode

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 227 of 577

The request process is as follows:

1. The request traffic reaches the CLB.
2. The request is forwarded by the CLB to the ENI of a certain pod.

Differences between direct connection and local access

There is little difference in terms of performance. When local access is enabled, traffic is not subject to NAT
operations or cross-node forwarding, and only another route to the container network is added.
The source IP address can be obtained correctly without NAT operations. The session persistence feature may be

abnormal in this condition: when multiple pods exist on a node, traffic is randomly allocated to different pods. This
mechanism may cause session persistence problems.

Introduction of ReadinessGate

Issues related to rolling updates

To introduce ReadinessGate, the cluster version must be 1.12 or later.
When users start the rolling update of an app, Kubernetes performs the rolling update according to the update

policy. However, the identifications that it uses to determine whether a batch of pods has started only includes the
statuses of the pods, but does not consider whether a health check is configured for the pods in the CLB and the pods

have passed the check. If such pods cannot be scheduled in time when the access layer components experience a
heavy load, the pods that have successfully completed the rolling update may not be providing services to external
users, resulting in service interruption.
In order to associate the backend status of the CLB and rolling update, the new feature ReadinessGate , which

was introduced in Kubernetes 1.12, was introduced into the TKE access-layer components. With this feature, only

after the TKE access-layer components confirm that the backend binding is successful and the health check is

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 228 of 577

passed, will the state of ReadinessGate be configured to enable the pods to enter the Ready state, thus

facilitating the rolling update of the entire workload.

Using ReadinessGate in a cluster

Kubernetes clusters provide a service registration mechanism. With this mechanism, you only need to register your

services to a cluster as MutatingWebhookConfigurations resources. When a pod is created, the cluster will

deliver notifications to the configured callback path. At this time, the pre-creation operation can be performed for the
pod, that is, ReadinessGate can be added to the pod.

注意：

This callback process must be based on HTTPS. That is, the CA that issues requests must be configured in

 MutatingWebhookConfigurations , and a certificate issued by the CA must be configured on the

server.

Disaster recovery of the ReadinessGate mechanism

Service registration or certificates in user clusters may be deleted by users, but these system component resources
should not be modified or destroyed by users. However, such problems will inevitably occur due to users’ exploration
of clusters or improper operations.
The access layer components will check the integrity of the resources above during launch. If their integrity is

compromised, the components will rebuild these resources to enhance the robustness of the system.

QPS and network latency comparison

Direct connection and NodePorts are the access layer solutions for service applications. In fact, the workloads
deployed by users are the ultimate workers, and therefore the capabilities of user workloads directly determine the
QPS and other metrics of services.
For these two access-layer solutions, we performed some comparative tests on network link latency under low

workload pressure. The latency of direct connection on the network link of the access layer can be reduced by 10%,
and traffic in the VPC network was greatly reduced. During the tests, the cluster size was gradually increased from 20
nodes to 80 nodes, and the wrk tool was used to test the network latency of the cluster. The comparison of QPS and
network latency between direct connection and NodePorts is shown in the following figure:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 229 of 577

KubeProxy design ideas

 KubeProxy has some disadvantages, but based on the various features of CLB and VPC network, we have a

more localized access layer solution. KubeProxy offers a universal and fault-tolerant design for the cluster access

layer. It is basically applicable to clusters in all business scenarios. As an official component, this design is very
appropriate.

New Mode Usage Guide

Prerequisites

The Kubernetes version of the cluster is 1.12 or later.

2. The VPC-CNI ENI mode is enabled for the cluster network mode.
3. The workloads used by a service in direct connection mode adopts the VPC-CNI ENI mode.

Console operation instructions

1. Log in to the TKE console.
2. Refer to the steps of creating a service in the console and go to the "Create a Service" page to configure the service

parameters as required.

https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/457/36833

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 230 of 577

Configure the main parameters, as shown in the following figure:

Service Access Mode: select Provide Public Network Access or VPC Access.
Network Mode: select Direct CLB-Pod Connection Mode.
Workload Binding: select Import Workload. In the window that appears, select the backend workload in
VPC-CNI mode.

3. Click Create Service to complete the creation process.

Kubectl operation instructions

Workload example: nginx-deployment-eni.yaml

注意：

Note: spec.template.metadata.annotations declares

 tke.cloud.tencent.com/networks: tke-route-eni , meaning that the workload uses the VPC-

CNI ENI mode.

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 231 of 577

app: nginx

name: nginx-deployment-eni

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

annotations:

tke.cloud.tencent.com/networks: tke-route-eni

labels:

app: nginx

spec:

containers:

- image: nginx:1.7.9

name: nginx

ports:

- containerPort: 80

protocol: TCP

Service example: nginx-service-eni.yaml

注意：

 metadata.annotations declares service.cloud.tencent.com/direct-access:

"true" , meaning that, when synchronizing the CLB, the service configures the access backend by using

the direct connection method.

apiVersion: v1

kind: Service

metadata:

annotations:

service.cloud.tencent.com/direct-access: "true"

labels:

app: nginx

name: nginx-service-eni

spec:

externalTrafficPolicy: Cluster

ports:

- name: 80-80-no

port: 80

protocol: TCP

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 232 of 577

targetPort: 80

selector:

app: nginx

sessionAffinity: None

type: LoadBalancer

Deploying the preceding items in a cluster

注意：

In the deployment environment, you must first connect to a cluster (if you do not have a cluster, create one.)
You can refer to the Help Document to configure kubectl to connect to a cluster.

➜ ~ kubectl apply -f nginx-deployment-eni.yaml

deployment.apps/nginx-deployment-eni created

➜ ~ kubectl apply -f nginx-service-eni.yaml

service/nginx-service-eni configured

➜ ~ kubectl get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES

nginx-deployment-eni-bb7544db8-6ljkm 1/1 Running 0 24s 172.17.160.191 172.17.0.

3 <none> 1/1

nginx-deployment-eni-bb7544db8-xqqtv 1/1 Running 0 24s 172.17.160.190 172.17.0.

46 <none> 1/1

nginx-deployment-eni-bb7544db8-zk2cx 1/1 Running 0 24s 172.17.160.189 172.17.0.

9 <none> 1/1

➜ ~ kubectl get service -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

kubernetes ClusterIP 10.187.252.1 <none> 443/TCP 6d4h <none>

nginx-service-eni LoadBalancer 10.187.254.62 150.158.221.31 80:32693/TCP 6d1h a

pp=nginx

Summary

Currently, TKE uses ENI to implement the direct pod connection mode. We will further optimize this feature, including
in the following respects:

Implement direct pod connection under a common container network, without dependency on the VPC-ENI network
mode.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 233 of 577

Support the removal of the CLB backend before pod deletion.

Comparison with similar solutions in the industry:

AWS has a similar solution that implements direct pod connection through ENI.

Google Kubernetes Engine (GKE) has a similar solution that integrates the Network Endpoint Groups (NEG)
feature of Google Cloud Load Balancing (CLB) to implement direct connection to pods at the access layer.

References

1. Service
2. Ingress
3. Strategy

4. Pod readiness
5. Preserving the client source IP
6. How to Choose TKE Network Mode
7. GlobalRouter VPC-CNI Mode Description
8. Connecting to a Cluster
9. Kubernetes Ingress with AWS ALB Ingress Controller

0. GKE Container-native Load Balancing Through Standalone Zonal NEGs

https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/ingress
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://intl.cloud.tencent.com.cn/document/product/457/30639
https://aws.amazon.com/cn/blogs/opensource/kubernetes-ingress-aws-alb-ingress-controller/
https://cloud.google.com/kubernetes-engine/docs/how-to/standalone-neg

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 234 of 577

Overview

Kubernetes officially provides a NodePort-type Service. This means it provides all nodes with the same port through
which a Service can be opened. Traditionally, most Services of the Cloud Load Balancer (CLB) type are implemented
based on NortPort. Specifically, the CLB backend is bound with the NodePort of each node. When the CLB receives

external traffic, it forwards the traffic to the NodePort of one of the nodes. Then, traffic is forwarded through the CLB
within Kubernetes to pods by using iptables or ipvs. See the figure below:

TKE adopts the same approach to implement the default CLB-type Service and Ingress. Currently, however, it also
supports the CLB-pod direct connection mode, in which the CLB backend is directly bound with pod IP + Port, without

Use CLB-Pod Direct Connection on TKE
Last updated：2022-03-30 18:20:48

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 235 of 577

being bound with the NodePort of nodes. See the figure below:

Analysis of Implementation Methods

Analysis of issues in the traditional NodePort method

Traditionally, users create a cloud Ingress or LB-type Service by using a CLB directly bound to Nodeport. However,
the traditional method involves the following issues:

After traffic is forwarded from the CLB to NodePort, it needs to go through SNAT before being forwarded to pods.
This causes additional performance loss.
If traffic is overly concentrated on a few NodePorts (for example, when gateways are deployed on a few nodes by
using nodeSelector), source port exhaustion or conntrack insertion conflicts may occur.
The NodePort of each node also serves as a CLB. If the CLB is bound with the NodePorts of too many nodes, the

CLB status may be overly distributed, leading to a global load imbalance.

Advantages of the CLB-pod direct connection method

The CLB-pod direct connection method not only solves the issues of the traditional NodePort method but also offers
the following advantages:

As there is no SNAT, externalTrafficPolicy: Local is no longer needed to obtain the source IP

address.

Session persistence is easier to achieve. You only need to enable session persistence for the CLB, without having
to set sessionAffinity in the Service.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 236 of 577

Operation Scenarios

The CLB-pod direct connection method can be used in the following scenarios:

You need to obtain the actual source IP address of the client in Layer-4 but do not expect to use the
 externalTrafficPolicy: Local method.

The network performance needs to be further improved.
Session persistence needs to be easier to achieve.
Load imbalance in global connection scheduling needs to be resolved.

Prerequisites

The Kubernetes version of the cluster must be 1.12 or later.
For CLB-pod direct connection, you need to check whether pods are Ready. Specifically, check whether Pods are

Running and have passed the readinessProbe and the CLB’s pod health monitoring. This is dependent on the
 ReadinessGate feature, which is supported in Kubernetes 1.12 and later versions.

The VPC-CNI ENI mode must be enabled for the cluster network mode. You can refer to Confirming whether

ENI is enabled to perform confirmation.
Currently, CLB-pod direct connection is implemented based on ENI and does not support the common network
mode.

Directions

Confirming whether ENI is enabled

Perform the following steps based on your actual situation:

If you have selected VPC-CNI for "Container network plugin" during cluster creation, then the pods created use ENI
by default and you can skip this step.
If you have selected Global Router for "Container network plugin" during cluster creation and then enabled VPC-
CNI support, then the two modes are used at the same time. In that case, created pods do not use ENI by default.

In this case, you need to use YAML to create workloads and specify the annotation
 tke.cloud.tencent.com/networks: tke-route-eni for pods to declare the use of ENI. In addition,

you need to add requests and limits such as tke.cloud.tencent.com/eni-ip: "1" for one of the

containers. The YAML sample is as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 237 of 577

labels:

app: nginx

name: nginx-deployment-eni

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

annotations:

tke.cloud.tencent.com/networks: tke-route-eni

labels:

app: nginx

spec:

containers:

- image: nginx

name: nginx

resources:

requests:

tke.cloud.tencent.com/eni-ip: "1"

limits:

tke.cloud.tencent.com/eni-ip: "1"

Declaring the direct connection mode during Service creation

When opening services through a CLB Service, you need to declare the use of the direct connection mode. The steps
are as follows:

Using the console to create a Service

To use the console to create a Service, select Direct CLB-Pod Connection Mode. For more information, see
Creating a Service. See the figure below:

https://intl.cloud.tencent.com.cn/document/product/457/36833

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 238 of 577

Using YAML to create a Service

To use YAML to create a Service, you need to add the annotation service.cloud.tencent.com/direct-

access: "true" for the Service. A sample is as follows:

Note：
For more information on how to use YAML to create a Service, see Creating a Service.

apiVersion: v1

kind: Service

metadata:

annotations:

service.cloud.tencent.com/direct-access: "true"

labels:

app: nginx

name: nginx-service-eni

spec:

externalTrafficPolicy: Cluster

ports:

- name: 80-80-no

port: 80

protocol: TCP

https://intl.cloud.tencent.com.cn/document/product/457/36833#creating-a-service

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 239 of 577

targetPort: 80

selector:

app: nginx

sessionAffinity: None

type: LoadBalancer

Declaring the direct connection mode during Ingress creation

When opening services through an Ingress, you also need to declare the use of the direct connection mode. The steps

are as follows:

Using the console to create an Ingress

To use the console to create an Ingress, select Direct CLB-Pod Connection Mode. For more information, see
Creating an Ingress. See the figure below:

Using YAML to create an Ingress

To use YAML to create an Ingress, you need to add the annotation ingress.cloud.tencent.com/direct-

access: "true" for the Ingress. A sample is as follows:

Note：

For more information on how to use YAML to create an Ingress, see Creating an Ingress.

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

annotations:

ingress.cloud.tencent.com/direct-access: "true"

kubernetes.io/ingress.class: qcloud

name: test-ingress

namespace: default

https://intl.cloud.tencent.com.cn/document/product/457/30673#creating-an-ingress
https://intl.cloud.tencent.com.cn/document/product/457/30673#creating-an-ingress

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 240 of 577

spec:

rules:

- http:

paths:

- backend:

serviceName: nginx

servicePort: 80

path: /

References

TKE in Direct Connection to the CLB of Pods Based on ENI

Enabling VPC-CNI for a Cluster

https://mp.weixin.qq.com/s/fJtlm5Qjm2BfzekC4RegCQ
https://intl.cloud.tencent.com.cn/document/product/457/38971

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 241 of 577

Application Scenarios

When your business requires to know the sources of service requests, the backend server must be able to accurately
obtain the real client source IP of the request client. Possible scenarios:

Audit the source of a service request. For example unusual login location alarms.

Trace the source of a security attack or security event, such as APT attacks and DDoS attacks.
Analyze data, such as service traffic region statistics.

Implementation Methods

In TKE, the default external load balancer is Tencent Cloud Load Balancer, which serves as the first access entry for
incoming traffic. The CLB forwards request traffic loads to Kubernetes Service (default) of Kubernetes worker nodes.
During this load-balancing process, the real client source IP is preservec (pass-through forwarded). However, in

Kubernetes Service forwarding scenarios, data packets will go through SNAT during forwarding no matter whether
the CLB forwarding mode is iptables or ipvs, which means that the real client source IP will not be preserved. For your
reference, this document provides the following four methods for obtaining the real client source IP in TKE use cases.
You can choose an appropriate method based on your actual needs.

Preserving the client source IP through Service resource configuration

The advantage and disadvantage of this method are as follows:

Advantage: you only need to configure Kubernetes Service resources.

Disadvantage: potential risks of traffic load imbalance across pods (endpoints) may occur.

To enable the feature of preserving the client source IP, you can configure the
 Service.spec.externalTrafficPolicy field in Service resources. This field has two possible values,

 Cluster (default) and Local , which respectively indicate whether to route external traffic to the local or cluster

Obtaining the Real Client Source IP in TKE
Last updated：2020-12-21 17:05:11

https://intl.cloud.tencent.com.cn/product/clb

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 242 of 577

endpoints of nodes, as shown in the figure below:

 Cluster : hides the client source IP. Service traffic of the LoadBalancer and NodePort types may be

forwarded to the pods of other nodes.
 Local : preserves the client source IP and prevents service traffic of the LoadBalancer and NodePort

types from being forwarded to the pods of other nodes. For more information, see Create an External Load
Balancer. The sample YAML configuration is as follows:

apiVersion: v1

kind: Service

metadata:

name: example-Service

spec:

selector:

app: example-Service

ports:

- port: 8765

targetPort: 9376

externalTrafficPolicy: Local

type: LoadBalancer

https://kubernetes.io/zh/docs/tasks/access-application-cluster/create-external-load-balancer/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 243 of 577

Obtaining the source IP address in the TKE native CLB-to-pod direct connection forwarding
mode

The advantage and disadvantage of this method are as follows:

Advantage: this feature is supported by native TKE. You only need to complete configuration in the console based
on the corresponding reference document.

Disadvantage: the VPC-CNI network mode needs to be enabled for the cluster.

The CLB-to-pod direct connection forwarding is a TKE native feature, which is actually CLB pass-through forwarding
and bypasses Kubernetes Service traffic forwarding) is used, the source IP address of a request received by backend
pods is the real source IP address of the client. This method applies to layer-4 and layer-7 service forwarding
scenarios. The following figure shows how the forwarding works:

For more information and configuration details, see Using CLB-to-Pod Direct Connection on TKE.

Obtaining the source IP address through the HTTP header

The advantage and disadvantage of this method are as follows:

Advantage: this method is recommended for layer-7 (HTTP/HTTPS) traffic forwarding scenarios. The fields in the
HTTP header can be directly obtained through web service proxy configuration or backend application code. In this
way, the real source IP address of a client can be obtained easily and efficiently.

Disadvantage: this method only applies to layer-7 (HTTP/HTTPS) traffic forwarding scenarios, not layer-4
forwarding scenarios.

In layer-7 (HTTP/HTTPS) service forwarding scenarios, the real source IP address of a client can be obtained from
the X-Forwarded-For and X-Real-IP fields in the HTTP header. There are two use cases in TKE, as shown

https://intl.cloud.tencent.com.cn/document/product/457/38408

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 244 of 577

in the figure below:

Scenario 1: using TKE Ingress to obtain the real source IP address

CLB (CLB layer-7) stores the real source IP address of a client in the X-Forwarded-For and X-Real-IP

fields of the HTTP header by default. When service traffic goes through Service layer-4 forwarding, both fields are

retained, and the backend can obtain the real source IP address of the client through web server proxy configuration
or application code. For more information, see Obtain Acutual IP for Layer 7 Load Balancing. The process for
obtaining the source IP address in the TKE console is as follows:

1. Create a NodePort-type Service for workloads. In this document, nginx is used as an example, as shown in the
figure below:

https://intl.cloud.tencent.com.cn/product/clb
https://intl.cloud.tencent.com.cn/document/product/214/3728

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 245 of 577

2. Create an Ingress access entry for Service. In this document, test is used as an example, as shown in the figure
below:

3. After the configuration takes effect, you can obtain the real source IP address of a client from the X-Forwarded-

For or X-Real-IP field of the HTTP header on the backend. The following figure shows the packet capture

test results on the backend:

Scenario 2: using Nginx Ingress to obtain the real source IP address

Nginx Ingress service deployment requires Nginx Ingress to be able to perceive the real source IP address of a client.
You can preserve the client source IP by create an external load balancer or using CLB-Pod direct connection on
TKE. When forwarding requests, Nginx Ingress uses the X-Forwarded-For and X-Real-IP fields to store

the client source IP, and the backend can obtain the real client source IP from these fields. The configuration process
is as follows:

https://kubernetes.io/zh/docs/tasks/access-application-cluster/create-external-load-balancer/
https://intl.cloud.tencent.com.cn/document/product/457/38408

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 246 of 577

1. Nginx Ingress can be installed through TKE marketplace, custom YAML configuration, or the official (helm)
installation method. For more information on its principles and deployment methods, see deployment solution 1 or 3
in Deploying Nginx Ingress on TKE. If you choose solution 1 for deployment, you must change the value of the

 externalTrafficPolicy field of Nginx Ingress Controller Service to Local .

After the installation is completed, a CLB (layer-4) access entry is automatically created for Nginx Ingress
Controller Service, which can be checked in the TKE console as shown in the figure below:

2. Create an Ingress for the backend server that requires forwarding, and configure forwarding rules. The sample

YAML file is as follows:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

annotations:

kubernetes.io/ingress.class: nginx # ingressClass is "nginx".

name: example

namespace: default

spec:

rules: # Configure service forwarding rules

- http:

paths:

- backend:

serviceName: nginx

servicePort: 80

path: /

3. After the configuration takes effect, you can obtain the real client source IP from the X-Forwarded-For or X-

Real-IP field of the HTTP header on the backend. The following figure shows the packet capture test results on

https://intl.cloud.tencent.com.cn/document/product/457/38072

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 247 of 577

the backend:

Obtaining the real source IP through TOA kernel component loading

The advantage and disadvantages of this method are as follows:

Advantage: in the TCP transmission mode, only the first TCP connection packet is reconstructed at the kernel

layer with almost no performance loss.
Disadvantages:

You must load the TOA kernel component on cluster worker nodes and call functions on the server side to obtain
the source IP address and port information carried by requests. The configuration and usage are relatively
complex.

In the UDP transmission mode, each data packet is reconstructed to include option data (the source IP address
and source port), which results in performance loss on the network transmission connection.

For the principles and loading method of the TOA kernel component, see Obtaining the Real IPs of Access Users.

References

How Tencent CLB obtains real client IP addresses: Obtaining Real IP for Layer 7 Load Balancing
Introduction to Tencent CLB: Cloud Load Balancer

Deploying Nginx Ingress on TKE
Introduction to the TKE network mode: GlobalRouter VPC-CNI Mode Description
Using CLB-to-Pod Direct Connection on TKE
Introduction to TOA module usage: Obtaining the Real IPs of Access Users
Description of external load balancer configuration for Kubernetes: Create an External Load Balancer

https://intl.cloud.tencent.com.cn/document/product/608/14426
https://intl.cloud.tencent.com.cn/document/product/214/3728
https://intl.cloud.tencent.com.cn/product/clb
https://intl.cloud.tencent.com.cn/document/product/457/38072
https://intl.cloud.tencent.com.cn/document/product/457/38408
https://intl.cloud.tencent.com.cn/document/product/608/14426
https://kubernetes.io/zh/docs/tasks/access-application-cluster/create-external-load-balancer/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 248 of 577

Operation Scenario

Traefik is an excellent reverse proxy tool. Compared with Nginx, Traefik offers the following advantages:

Native support for the dynamic configuration of, for example, Kubernetes CRD resources such as Ingress and
IngressRoute (Nginx requires reloading of the full configuration each time, which may affect connections in some

cases).
Native support for service discovery. After dynamic configuration, such as by using Ingress and IngressRoute,
Traefik will automatically watch the backend endpoint and synchronize it to the backend list of the CLB.
Elegant Dashboard management page.
Native support for metrics and seamless integration with Prometheus and Kubernetes.

More advanced features, such as multi-version canary release, traffic replication, automatic generation of free
HTTPS certificates, and middleware.

This document introduces how to install Traefik in a TKE cluster and provides use cases for Ingress and IngressRoute
via Traefik.

Prerequisites

You have created a TKE cluster and can connect to the cluster via Kubectl.
You have installed Helm.

Directions

Installing Traefik

This document describes the installation of Traefik in a TKE cluster as an example. For the detailed installation
method, see the official documentation.

1. Run the following command to add the Helm chart repo source of Traefik. See the sample below:

helm repo add traefik https://helm.traefik.io/traefik

Using Traefik Ingress in TKE
Last updated：2021-01-13 17:03:34

https://doc.traefik.io/traefik/
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/document/product/457/30639
https://helm.sh/docs/intro/install/
https://doc.traefik.io/traefik/getting-started/install-traefik/#use-the-helm-chart

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 249 of 577

2. Prepare the installation configuration file values-traefik.yaml . See the sample below:

providers:

kubernetesIngress:

publishedService:

enabled: true # Display the external IP address of Ingress as the LB IP address

of Traefik.

additionalArguments:

- "--providers.kubernetesingress.ingressclass=traefik" # Indicates the ingress

class name.

- "--log.level=DEBUG"

service:

annotations:

service.cloud.tencent.com/direct-access: "true" # For gateway applications, we

recommend that you use direct connection between the LB and pods (bypassing Nod

ePort). If you use the VPC-CNI and Global Router network modes at the same tim

e, use this annotation to display the declaration of direct binding of the LB t

o pods (bypassing NodePort). If you selected the VPC-CNI network mode during cl

uster creation, the declaration need not be displayed (because, by default, the

LB is directly connected to pods). For more information, see the official docum

entation at https://intl.cloud.tencent.com.cn/document/product/457/38408.

service.kubernetes.io/tke-existed-lbid: lb-lb57hvgl # Use this annotation to bi

nd the LB created in advance, so that even if Traefik is rebuilt in the future,

the traffic entry will remain unchanged. If you do not specify this annotation,

a new LB will be automatically created by default. For more information, see th

e official documentation at https://intl.cloud.tencent.com.cn/document/product/

457/36835.

ports:

web:

expose: true

exposedPort: 80 # HTTP port number that is externally exposed. To use a standar

d port number in the Chinese mainland, ICP filing is required.

websecure:

expose: true

exposedPort: 443 # HTTPS port number that is externally exposed. To use a stand

ard port number in the Chinese mainland, ICP filing is required.

deployment:

enabled: true

replicas: 1

podAnnotations:

tke.cloud.tencent.com/networks: "tke-route-eni" # When VPC-CNI and Global Route

r network modes are used at the same time, display a statement to indicate the

ENI to be used by pods. This should be used together with the request and limit

of eni-ip below.

resources:

requests:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 250 of 577

tke.cloud.tencent.com/eni-ip: "1"

limits:

tke.cloud.tencent.com/eni-ip: "1"

3. Run the following command to install Traefik to your TKE cluster. See the sample below:

kubectl create ns ingress

helm upgrade --install traefik -f values-traefik.yaml traefik/traefik

4. Run the following command to obtain the IP address of the traffic entry (for example, EXTERNAL-IP as shown
below). See the sample below:

$ kubectl get service -n ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

traefik LoadBalancer 172.22.252.242 49.233.239.84 80:31650/TCP,443:32288/TCP 42

h

Using an Ingress

Traefik allows you to use the Ingress resources of Kubernetes as a dynamic configuration. You can directly create
Ingress resources in your cluster and use them to externally open your cluster. You need to add the specified Ingress

class (defined during Traefik installation). See the sample below:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: test-ingress

annotations:

kubernetes.io/ingress.class: traefik # Indicates the ingress class name.

spec:

rules:

- host: traefik.demo.com

http:

paths:

- path: /test

backend:

Note：

To view the full default configuration, run helm show values traefik/traefik .

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 251 of 577

serviceName: nginx

servicePort: 80

Using IngressRoute

Traefik not only supports standard Kubernetes Ingress resources but also supports the unique CRD resources of
Traefik, such as IngressRoute. It can support more advanced features that an Ingress does not provide. See the
IngressRoute usage example below:

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

name: test-ingressroute

spec:

entryPoints:

- web

routes:

- match: Host(`traefik.demo.com`) && PathPrefix(`/test`)

kind: Rule

services:

- name: nginx

port: 80

Note：

At present, TKE does not display Traefik as a product, so you cannot use the TKE console to create an Ingress
in a visualized manner. Instead, you need to use YAML to create the Ingress.

Note：

For more information on the usage of Traefik, see the Traefik Official Documentation.

https://doc.traefik.io/traefik/routing/providers/kubernetes-crd/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 252 of 577

Operation Scenarios

To implement blue-green deployment or Grayscale Release in a Tencent Cloud Kubernetes cluster, you usually need
to deploy extra open-source tools in the cluster, such as Nginx Ingress and Traefik or deploy services to Service Mesh
to utilize its capabilities. These solutions are relatively difficult to implement. If you only have simple requirements for

blue-green deployment or Grayscale Release, you don’t expect to import too many components into the cluster, and
don’t require complex usage, you can refer to this document to utilize the native features of Kubernetes and the LB
plug-in of TKE/EKS clusters to implement simple blue-green deployment and Grayscale Release.

How It Works

Users usually use Kubernetes workloads, such as Deployment and StatefulSet, to deploy businesses. Each workload
manages a group of pods. With Deployment as an example, the following figure shows how it works:

Release
Using CLB to Implement Simple Blue-Green
Deployment and Grayscale Release
Last updated：2020-11-11 14:51:59

Note：

This document only applies to TKE clusters and EKS clusters.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 253 of 577

For each workload, a corresponding Service is created, and the Service matches backend pods via a selector. This

allows other services or external requests to access the Service and the services provided by backend pods. To open
services to external users, you can directly set the Service type to LoadBalancer, and the LB plug-in will automatically
create a Tencent CLB as the traffic entry.

How blue-green deployment works

Using Deployment as an example, assume that two different versions of Deployment have been deployed in a cluster,
and its pods have the same label, but the two versions correspond to two different label values. In this case, the

Service selects the pods of one of the versions via the selector. We can modify the label value, which indicates the

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 254 of 577

service version, in the selector of the Service to switch services from one version to the other. See the figure below:

How Grayscale Release works

Users usually create a Service for each workload, but Kubernetes does not require Services to have a one-to-one
correspondence to workloads. When a Service matches backend pods via a selector, if the pods of different
workloads are selected by the same selector, then the Service corresponds to multiple workload versions. By
adjusting the number of replicas of different workload versions, you can adjust the weight of different service versions.

See the figure below:

Directions

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 255 of 577

Using YAML to create resources

This document introduces the following two methods for using YAML to deploy workloads and create Services:

Method 1: on the details page of the TKE or EKS cluster, click Use YAML to Create Resources in the upper right
corner and input the YAML sample file content in this document to the editing interface.

Method 2: save the sample YAML as a file and use kubectl to specify the YAML file to create resources, for
example, kubectl apply -f xx.yaml .

Deploying multiple versions of workloads

1. Deploy the first version of Deployment in the cluster. Here nginx is used as an example. The YAML sample is as
follows:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-v1

spec:

replicas: 3

selector:

matchLabels:

app: nginx

version: v1

template:

metadata:

labels:

app: nginx

version: v1

spec:

containers:

- name: nginx

image: "openresty/openresty:centos"

ports:

- name: http

protocol: TCP

containerPort: 80

volumeMounts:

- mountPath: /usr/local/openresty/nginx/conf/nginx.conf

name: config

subPath: nginx.conf

volumes:

- name: config

configMap:

name: nginx-v1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 256 of 577

apiVersion: v1

kind: ConfigMap

metadata:

labels:

app: nginx

version: v1

name: nginx-v1

data:

nginx.conf: |-

worker_processes 1;

events {

accept_mutex on;

multi_accept on;

use epoll;

worker_connections 1024;

}

http {

ignore_invalid_headers off;

server {

listen 80;

location / {

access_by_lua '

local header_str = ngx.say("nginx-v1")

';

}

}

}

2. Deploy the second version of Deployment. Here nginx is used as an example. The YAML sample is as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-v2

spec:

replicas: 3

selector:

matchLabels:

app: nginx

version: v2

template:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 257 of 577

metadata:

labels:

app: nginx

version: v2

spec:

containers:

- name: nginx

image: "openresty/openresty:centos"

ports:

- name: http

protocol: TCP

containerPort: 80

volumeMounts:

- mountPath: /usr/local/openresty/nginx/conf/nginx.conf

name: config

subPath: nginx.conf

volumes:

- name: config

configMap:

name: nginx-v2

apiVersion: v1

kind: ConfigMap

metadata:

labels:

app: nginx

version: v2

name: nginx-v2

data:

nginx.conf: |-

worker_processes 1;

events {

accept_mutex on;

multi_accept on;

use epoll;

worker_connections 1024;

}

http {

ignore_invalid_headers off;

server {

listen 80;

location / {

access_by_lua '

local header_str = ngx.say("nginx-v2")

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 258 of 577

';

}

}

}

You can log in to the TKE Console and go to the workload details page of the cluster to view the deployment
information, as shown in the figure below:

Implementing blue-green deployment

1. Create a LoadBalancer-type Service for the deployed Deployment to open services to external users and specify
that the v1 version is used. The YAML sample is as follows:

apiVersion: v1

kind: Service

metadata:

name: nginx

spec:

type: LoadBalancer

ports:

- port: 80

protocol: TCP

name: http

selector:

app: nginx

version: v1

2. Run the following commands to test the access.

for i in {1..10}; do curl EXTERNAL-IP; done; # Replace EXTERNAL-IP with the CLB

IP address of the Service.

The returned results are as follows. All of them are responses from the v1 version.

nginx-v1

nginx-v1

nginx-v1

https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 259 of 577

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v1

3. Use the console or kubectl to modify the selector of the Service to enable the selector to select the v2 service
version:

Modification via the console:

a. Go to the cluster details page, and choose Services and Routes > Service in the left sidebar.
b. On the "Service" page, locate the Service to be modified and click Edit YAML to its right, as shown in the

figure below:

Modify the selector content as follows:

selector:

app: nginx

version: v2

Modification via kubectl:

kubectl patch service nginx -p '{"spec":{"selector":{"version":"v2"}}}'

4. Run the following commands to test the access again.

$ for i in {1..10}; do curl EXTERNAL-IP; done; # Replace EXTERNAL-IP with the C

LB IP address of the Service.

The returned results are as follows. All of them are responses from the v2 version. This means you have
successfully implemented blue-green deployment.

nginx-v2

nginx-v2

nginx-v2

nginx-v2

nginx-v2

nginx-v2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 260 of 577

nginx-v2

nginx-v2

nginx-v2

nginx-v2

Implementing Grayscale Release

1. Grayscale Release is different from blue-green deployment. You do not need to specify the v1 version to be used by
the Service. You only need to delete the version label in the selector so that the Service will simultaneously

select the pods of the two Deployment versions. The YAML sample is as follows:

apiVersion: v1

kind: Service

metadata:

name: nginx

spec:

type: LoadBalancer

ports:

- port: 80

protocol: TCP

name: http

selector:

app: nginx

2. Run the following commands to test the access.

for i in {1..10}; do curl EXTERNAL-IP; done; # Replace EXTERNAL-IP with the CLB

IP address of the Service.

The returned results are as follows. Half of them are responses from the v1 version, and the other half from the v2
version.

nginx-v1

nginx-v1

nginx-v2

nginx-v2

nginx-v2

nginx-v1

nginx-v1

nginx-v1

nginx-v2

nginx-v2

3. Use the console or kubectl to adjust the replicas of Deployment versions v1 and v2. Specifically, set v1 to 1 replica

and v2 to 4 replicas.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 261 of 577

Modification via the console:
a. Go to the "Deployment" management page of the cluster and choose More > Edit YAML to the right of the v1

Deployment version.

b. On the YAML editing page, change replicas of v1 to 1 and click Done.

c. Repeat the above steps to change replicas of v2 to 4 and click Done.

Modification via kubectl:

kubectl scale deployment/nginx-v1 --replicas=1

kubectl scale deployment/nginx-v2 --replicas=4

4. Run the following commands to perform an access test again.

for i in {1..10}; do curl EXTERNAL-IP; done; # Replace EXTERNAL-IP with the CLB

IP address of the Service.

The returned results are as follows. In 10 access attempts, the v1 version responded only twice. The ratio between
the responses of v1 and those of v2 is consistent with the ratio between their replicas, that is, 1:4. This shows you
have implemented Grayscale Release by controlling the number of replicas of different service versions.

nginx-v2

nginx-v1

nginx-v2

nginx-v2

nginx-v2

nginx-v2

nginx-v1

nginx-v2

nginx-v2

nginx-v2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 262 of 577

This document introduces the use cases, usage, and practices of implementing Canary Release by using Nginx
Ingress.

Use Cases

The application scenarios where Canary Release is implemented through Nginx Ingress mainly depend on the

business traffic splitting policy. Currently, Nginx Ingress supports three types of traffic splitting policies, which are
based on Header, Cookie, and service weight, respectively. Based on these three types of policies, the following two
deployment scenarios can be implemented:

Scenario 1: providing some users with a new version for beta testing

Assume that Service A, which provides Layer-7 service to external users, has been running online; you want to
activate a newly developed version, Service A', for some users as a beta test, without replacing the existing Service A;

you want to let it run stably for some time before gradually and fully activating the new version and smoothly
deactivating the old version.
For this scenario, you can use Nginx Ingress to make deployments under traffic split policies based on Header or
Cookie. Business uses Header or Cookie to mark different types of users and configures Ingress to enable requests
with the specified Header or Cookie to be forwarded to the new version while other requests are still forwarded to the

Using Nginx Ingress to Implement Canary
Release
Last updated：2020-11-11 14:52:29

Note：

For clusters that implement Canary Release by using Nginx Ingress, Nginx Ingress should be deployed as the
Ingress Controller, and a unified traffic entry should be opened for external access. For more information, see
Deploying Nginx Ingress on TKE.

https://intl.cloud.tencent.com.cn/document/product/457/38072

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 263 of 577

old version. In this way, the new version is available to some users for beta testing. See the figure below:

Scenario 2: splitting a certain proportion of traffic to the new version

Assume that Service B, which provides Layer-7 service to external users, has been running online for some time; you
have rectified some issues in Service B and to activate a new version, Service B', for some users for beta testing,
without replacing the existing Service B; and you want to first split 10% of the traffic to the new version and let it run

stably for some time before gradually increasing the proportion of traffic to the new version to ultimately replace and

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 264 of 577

deactivate the old version smoothly. See the figure below:

Annotation Descriptions

You can implement Canary Release by specifying the annotation supported by Nginx Ingress for Ingress resources.
You need to create two Ingresses for the service: one is a regular Ingress, and the other, which carries the fixed
annotation of nginx.ingress.kubernetes.io/canary: "true" is called a Canary Ingress. The Canary

Ingress usually represents the new version of a service. By configuring this and the annotation of the traffic splitting
policy, you can implement Canary Release in multiple scenarios. The following section introduces relevant annotations
in detail:

 nginx.ingress.kubernetes.io/canary-by-header

Indicates that if the request header contains the specified header name and the value is always , the request will

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 265 of 577

be forwarded to the corresponding real server defined by the Ingress. If the value is never , it will not be

forwarded and can be used for rollback to the old version. In case of other values, this annotation will be ignored.

 nginx.ingress.kubernetes.io/canary-by-header-value

This annotation can be a supplement to canary-by-header . You can specify a custom value for the request

header, including but not limited to always or never . When the value of the request header matches the

specified custom value, the request will be forwarded to the corresponding real server defined by the Ingress. In
case of other values, this annotation will be ignored.

 nginx.ingress.kubernetes.io/canary-by-header-pattern

This annotation is similar to canary-by-header-value . The difference is that this annotation uses a regular

expression, instead of a fixed value, to match the value of the request header. If this annotation and canary-by-

header-value exist at the same time, this annotation will be ignored.

 nginx.ingress.kubernetes.io/canary-by-cookie

Similar to canary-by-header , this annotation is used for cookie and supports only always and never .

 nginx.ingress.kubernetes.io/canary-weight

Indicates the proportion of the traffic assigned to the Canary Ingress. The value range is [0-100]. For example, the
value 10 indicates that 10% of the traffic is assigned to the corresponding real server of the Canary Ingress.

Sample

Note：

The above rules will be assessed according to the priority sequence: canary-by-header > canary-
by-cookie > canary-weight .
When an Ingress is marked as the Canary Ingress, all non-Canary annotations, other than
 nginx.ingress.kubernetes.io/load-balance and
 nginx.ingress.kubernetes.io/upstream-hash-by , will be ignored.

Note：

The following sample uses a TKE cluster as an example. From this sample, you can quickly learn how to
implement Canary Release by using Nginx Ingress. Please note:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 266 of 577

Using YAML to create resources

This document introduces the following two methods for using YAML to deploy workloads and create Services:

Method 1: on the details page of the TKE or EKS cluster, click Use YAML to Create Resources in the upper right
corner and input the YAML sample file content in this document to the editing interface.

Method 2: save the sample YAML as a file and use kubectl to specify the YAML file to create resources, for
example, kubectl apply -f xx.yaml .

Deploying two versions of a service

1. Deploy the first version of Deployment in the cluster. Here nginx-v1 is used as an example. The YAML sample is as
follows:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-v1

spec:

replicas: 1

selector:

matchLabels:

app: nginx

version: v1

template:

metadata:

labels:

app: nginx

version: v1

spec:

containers:

- name: nginx

image: "openresty/openresty:centos"

ports:

- name: http

protocol: TCP

containerPort: 80

For a single service, only one Canary Ingress can be defined, so the real server can only support up to two
versions.

2. A domain name must be configured in the Ingress. Otherwise, the Ingress will not work.
3. Even if all traffic is switched to the Canary Ingress, the old version still needs to exist. Otherwise, an error will

be reported.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 267 of 577

volumeMounts:

- mountPath: /usr/local/openresty/nginx/conf/nginx.conf

name: config

subPath: nginx.conf

volumes:

- name: config

configMap:

name: nginx-v1

apiVersion: v1

kind: ConfigMap

metadata:

labels:

app: nginx

version: v1

name: nginx-v1

data:

nginx.conf: |-

worker_processes 1;

events {

accept_mutex on;

multi_accept on;

use epoll;

worker_connections 1024;

}

http {

ignore_invalid_headers off;

server {

listen 80;

location / {

access_by_lua '

local header_str = ngx.say("nginx-v1")

';

}

}

}

apiVersion: v1

kind: Service

metadata:

name: nginx-v1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 268 of 577

spec:

type: ClusterIP

ports:

- port: 80

protocol: TCP

name: http

selector:

app: nginx

version: v1

2. Deploy the second version of Deployment. Here nginx-v2 is used as an example. The YAML sample is as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-v2

spec:

replicas: 1

selector:

matchLabels:

app: nginx

version: v2

template:

metadata:

labels:

app: nginx

version: v2

spec:

containers:

- name: nginx

image: "openresty/openresty:centos"

ports:

- name: http

protocol: TCP

containerPort: 80

volumeMounts:

- mountPath: /usr/local/openresty/nginx/conf/nginx.conf

name: config

subPath: nginx.conf

volumes:

- name: config

configMap:

name: nginx-v2

apiVersion: v1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 269 of 577

kind: ConfigMap

metadata:

labels:

app: nginx

version: v2

name: nginx-v2

data:

nginx.conf: |-

worker_processes 1;

events {

accept_mutex on;

multi_accept on;

use epoll;

worker_connections 1024;

}

http {

ignore_invalid_headers off;

server {

listen 80;

location / {

access_by_lua '

local header_str = ngx.say("nginx-v2")

';

}

}

}

apiVersion: v1

kind: Service

metadata:

name: nginx-v2

spec:

type: ClusterIP

ports:

- port: 80

protocol: TCP

name: http

selector:

app: nginx

version: v2

You can log in to the TKE Console and go to the workload details page of the cluster to view the deployment
information, as shown in the figure below:

https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 270 of 577

3. Create an Ingress, open the service to external access, and point to the v1 service. The YAML sample is as follows:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

name: nginx

annotations:

kubernetes.io/ingress.class: nginx

spec:

rules:

- host: canary.example.com

http:

paths:

- backend:

serviceName: nginx-v1

servicePort: 80

path: /

4. Run the following commands to verify access.

curl -H "Host: canary.example.com" http://EXTERNAL-IP # EXTERNAL-IP should be rep

laced with the opened IP address of Nginx Ingress.

The returned result is as follows:

nginx-v1

Traffic splitting based on the header

Create a Canary Ingress, specify the real server of the v2 version, and add an annotation to enable requests with the
Region field in the header and the corresponding value of cd or sz to be forwarded to the current Canary Ingress. For

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 271 of 577

example, if you select users in Chengdu and Shenzhen for the beta test of the new version, the YAML sample is as
follows:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

annotations:

kubernetes.io/ingress.class: nginx

nginx.ingress.kubernetes.io/canary: "true"

nginx.ingress.kubernetes.io/canary-by-header: "Region"

nginx.ingress.kubernetes.io/canary-by-header-pattern: "cd|sz"

name: nginx-canary

spec:

rules:

- host: canary.example.com

http:

paths:

- backend:

serviceName: nginx-v2

servicePort: 80

path: /

Run the following commands to perform an access test.

$ curl -H "Host: canary.example.com" -H "Region: cd" http://EXTERNAL-IP # EXTERNA

L-IP should be replaced with the opened IP address of Nginx Ingress.

nginx-v2

$ curl -H "Host: canary.example.com" -H "Region: bj" http://EXTERNAL-IP

nginx-v1

$ curl -H "Host: canary.example.com" -H "Region: cd" http://EXTERNAL-IP

nginx-v2

$ curl -H "Host: canary.example.com" http://EXTERNAL-IP

nginx-v1

You can see that the v2 service responds only to requests in which the value of the header field Region is cd or sz.

Traffic splitting based on cookies

To use cookies, you cannot set a custom value. For example, if you want to select users in Chengdu for the beta test,
then only requests with the cookie of user_from_cd will be forwarded to the current Canary Ingress. The YAML

sample is as follows:

Note：

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 272 of 577

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

annotations:

kubernetes.io/ingress.class: nginx

nginx.ingress.kubernetes.io/canary: "true"

nginx.ingress.kubernetes.io/canary-by-cookie: "user_from_cd"

name: nginx-canary

spec:

rules:

- host: canary.example.com

http:

paths:

- backend:

serviceName: nginx-v2

servicePort: 80

path: /

Run the following commands to perform an access test.

$ curl -s -H "Host: canary.example.com" --cookie "user_from_cd=always" http://EXT

ERNAL-IP # EXTERNAL-IP should be replaced with the opened IP address of Nginx Ing

ress.

nginx-v2

$ curl -s -H "Host: canary.example.com" --cookie "user_from_bj=always" http://EXT

ERNAL-IP

nginx-v1

$ curl -s -H "Host: canary.example.com" http://EXTERNAL-IP

nginx-v1

You can view that the v2 service responds only to requests in which the value of the cookie user_from_cd is

 always .

Traffic splitting based on service weight

To use a Canary Ingress based on service weight, you only need to specify the proportion of traffic to be imported. For
example, to import 10% of traffic to the v2 version, the YAML sample is as follows:

If you have created a Canary Ingress through the above steps, please delete it and then refer to this step for
creation.

Note：

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 273 of 577

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

annotations:

kubernetes.io/ingress.class: nginx

nginx.ingress.kubernetes.io/canary: "true"

nginx.ingress.kubernetes.io/canary-weight: "10"

name: nginx-canary

spec:

rules:

- host: canary.example.com

http:

paths:

- backend:

serviceName: nginx-v2

servicePort: 80

path: /

Run the following commands to perform an access test.

$ for i in {1..10}; do curl -H "Host: canary.example.com" http://EXTERNAL-IP; don

e;

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v1

nginx-v2

nginx-v1

nginx-v1

nginx-v1

You can see that the chance of the v2 service responding is 10%, which corresponds to the 10% service weight
setting.

References

Official Documentation of Nginx Ingress Canary Annotations
Deploying Nginx Ingress on TKE

If you have created a Canary Ingress through the above steps, please delete it and then refer to this step to
create a new one.

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#canary
https://intl.cloud.tencent.com.cn/document/product/457/38072

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 274 of 577

Overview

This document introduces the log-related features of TKE, including log collection, storage, and query, and provides
suggestions based on actual application scenarios.

Note：

This document is only applicable to TKE clusters.
For more information on how to enable log collection for a TKE cluster and its basic usage, see Log
Collection.

Architecture

After log collection is enabled for a TKE cluster, tke-log-agent is deployed on each node as a DaemonSet. According
to the collection rules, tke-log-agent collects container logs from each node and reports them to CLS for storage,

Logs
Best Practice in TKE Log Collection
Last updated：2021-07-15 14:18:35

https://intl.cloud.tencent.com.cn/document/product/457/32419

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 275 of 577

indexing and analysis. See the figure below:

Use Cases of Collection Types

To use the TKE log collection feature, you need to determine the target data source for collection when creating log
collection rules. TKE supports collection of standard output, files in a container and files on a host. See below for more

details.

Collecting standard output

If you choose to collect from standard output, logs of containers in a pod are written to the standard output, and the log
content will be managed by the container runtime (Docker or Containerd). We recommend using standard out as it is
the simplest collection mode. Its advantages are as follows:

1. No extra volume mounting is needed.

2. You can view the log content by simply running kubectl logs .

3. No worries about log rotation. The container runtime will perform storage and automatic rotation of logs to prevent
situations where the disk capacity is exhausted because some pods write excessive logs.

4. You don’t need to worry about the log file path. You can use unified collection rules to cover a wide range of
workloads and reduce operation complexity.

The following figure shows a sample collection configuration. For more information on configuration, see Collecting
standard output logs of a container.

https://intl.cloud.tencent.com.cn/document/product/457/32419#.E9.85.8D.E7.BD.AE.E6.97.A5.E5.BF.97.E8.A7.84.E5.88.99

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 276 of 577

Collecting log files in container

Usually logs are written into log files. When containers are used, log files are written in containers. Please note:

If no volume is mounted in the log file path:
Log files will be written to the container writable layer and stored in the container data disk. Usually, the path is
 /var/lib/docker . We recommend that you mount a volume to this path, and the volume should not be used

for the system disk. After the container stops, the logs will be cleared.
If a volume is mounted in the log file path:

Log files will be stored in the backend storage of the corresponding volume type. Usually, emptydir is used. After
the container stops, the logs will be cleared. During runtime, log files will be stored in /var/lib/kubelet of

the host. This path usually does not have a mounted disk, so it will use the system disk. As unified storage is
available when using the log collection feature, you are not advised to mount other persistent storage to store log
files (such as CBS, COS, or CFS).

Most open-source log collectors require you to mount a volume to the pod log file path before collection, but TKE log
collection does not require mounting. To output logs to files in containers, you do not need to consider whether to
mount a volume. The following figure shows a sample collection configuration. For more information on configuration,

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 277 of 577

see Collecting File Logs in a Container.

Collecting files on the host

If businesses need to write logs into log files and you hope to retain the original log files as a backup after the container

stops to avoid complete log loss in the event of collection exceptions, you can mount a hostPath to the log file path.
This way, log files will be stored in the specified directory on the host and these log files will not be cleared after the
container stops.
As log files are not automatically cleared, the issue of repeated collection may occur if a pod is scheduled to another
container and then scheduled back to the original container causing log files to be written into the same path. In that

case, there are two collection scenarios:

Same file name:
For example, assume the fixed file path is /data/log/nginx/access.log . In this case, repeated collection

will not occur, because the collector will remember the time point of previously collected log files and collect only
increments.
Different file names:

Usually, the log frameworks used by businesses automatically perform log rotation periodically, generally on a daily
basis, and automatically rename old log files and add the timestamp suffix. If the collection rules use * as the

wildcard character to match log file names, repeated collection may occur. After the log framework renames log
files, the collector will mistakenly think it has found new log files, so it will collect the files again.

Note：

Usually, repeated collection will not occur. If the log framework automatically performs rotation, we
recommend that the wildcard character * not be used to match log files.

https://intl.cloud.tencent.com.cn/document/product/457/32419#.E9.85.8D.E7.BD.AE.E6.97.A5.E5.BF.97.E8.A7.84.E5.88.99

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 278 of 577

The following figure shows a sample collection configuration. For more information on configuration, see Collecting

file logs in specified node paths.

Log Output

TKE log collection is integrated with CLS on the cloud, and log data is reported to CLS. CLS manages logs based on
logsets and log topics. A logset is a project management unit of CLS and can include multiple log topics. Usually, the
logs of the same business are put in the same logset, and applications or services of the same type in the same
business use the same log topic.

In TKE, log collection rules have a one-to-one correspondence with log topics. When selecting the consumer during
the creation of TKE log collection rules, you need to specify the logset and log topic. Logsets are usually created in
advance, and you can choose to automatically create log topics. See the figure below:

After a log topic is automatically created, you can go to Logset Management, open the details page of the
corresponding logset, and rename the log topic to make it easier to find in future searches.

Configuring Log Format Parsing

When creating a log collection rule, you need to configure the log parsing format to facilitate future searches. Please
refer to the following sections to complete configuration based on the actual situation.

Selecting an extraction mode

https://intl.cloud.tencent.com.cn/document/product/457/32419#.E9.85.8D.E7.BD.AE.E6.97.A5.E5.BF.97.E8.A7.84.E5.88.99
https://console.intl.cloud.tencent.com.cn/cls/logset

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 279 of 577

TKE supports five extraction modes: single-line text, JSON, separator, multi-line text, and full RegEx, as shown in the
figure below:

JSON mode

Single-line text and multi-line text modes
Separator and full RegEx modes

You can only select JSON mode when logs are output in JSON format, in which case this mode is recommended. In
JSON format, the logs are already structured, allowing CLS to extract the JSON key as the field name and value as
the corresponding key value. This means you do not have to configure complex matching rules based on the business

log output format. A sample of such logs is as follows:

{"remote_ip":"10.135.46.111","time_local":"22/Jan/2019:19:19:34 +0800","body_sen

t":23,"responsetime":0.232,"upstreamtime":"0.232","upstreamhost":"unix:/tmp/php-c

gi.sock","http_host":"127.0.0.1","method":"POST","url":"/event/dispatch","reques

t":"POST /event/dispatch HTTP/1.1","xff":"-","referer":"http://127.0.0.1/my/cours

e/4","agent":"Mozilla/5.0 (Windows NT 10.0; WOW64; rv:64.0) Gecko/20100101 Firefo

x/64.0","response_code":"200"}

Configuring the content to be filtered out

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 280 of 577

You can choose to filter out useless log information to lower costs.

If you use the JSON, separator, or full RegEx extraction mode, the log content is structured, and you can specify
fields to perform regular expression matching for the log content to be retained, as shown in the figure below:

If you use the single-line text or multi-line text extraction mode, the log content is not structured, so you cannot
specify fields for filtering. Usually, you can use regular expressions to perform fuzzy matching on the full log content

to be retained, as shown in the figure below:

Note：
The content should be matched using a regular expression, instead of perfect match. For example, to retain
only the domain name a.test.com in a log, the expression for matching should be a\.test\.com ,

instead of a.test.com .

Customizing log timestamps

Each log should contain a timestamp used mainly for searching. This allows users to select a time period during
searches. By default, the log timestamp is determined by the collection time, but you can customize it by selecting a
certain field as the timestamp. This can allow for more precise searches. For example, assume that a service has

been running for some time before you create a collection rule. If you do not set a custom time format, the timestamps
of old logs will be set to the current time during collection, resulting in inaccurate timestamps.

As the single-line text and multi-line text extraction modes do not structure log content, no field can be specified as the
timestamp, which means these two modes do not support this feature. Other extraction modes support this feature.
You need to disable "Use collection time", select a field name as the timestamp, and configure the time format. For
example, assuming that the time field is used as the timestamp and the time value of a log is 2020-09-22

18:18:18 , you can set the time format as: %Y-%m-%d %H:%M:%S , as shown in the figure below:

Note：

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 281 of 577

The CLS timestamps currently support precision to the second. If the timestamp field of a business log is
precise to the millisecond, you cannot use custom timestamps and can only use the default timestamp
determined by the collection time.

For more information on the time format configuration, see Configuring the Time Format.

Log Query

After log collection rules are configured, the collector will automatically start collecting logs and report them to CLS.
You can query logs in Search Analysis on the CLS console. After an index is enabled, the Lucene syntax is
supported. There are three types of indexes, as follows:

Full-text index: used for fuzzy search. You do not need to specify a field. See the figure below:

Key value index: index for structured log content. You can specify log fields to search. See the figure below:

https://intl.cloud.tencent.com.cn/document/product/614/32942
https://console.intl.cloud.tencent.com.cn/cls

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 282 of 577

Metadata field index: when some extra fields, such as pod name and namespace, are automatically attached during
log reporting, this index allows you to specify these fields during search. See the figure below:

The following figure shows a query sample:

Publishing Logs to COS and Ckafka

CLS allows logs to be published to COS and the message queue CKafka. You can set it in the log topic, as shown in

the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 283 of 577

This is applicable to the following scenarios:

Scenarios where long-term archiving and storage of log data are required. The logset stores log data for seven

days by default. You can adjust the duration. The larger the data volume, the higher the cost. Usually, data is stored
for a few days. If you need to store logs for a longer period, you can publish log data to COS for low-cost storage.
Scenarios where further processing (such as offline calculation) of logs is required. You can publish log data to
COS or Ckafka to be consumed and processed by other programs.

References

TKE: Log Collection User Guide

CLS: Configuring the Time Format
CLS: Shipping to COS
CLS: Shipping to Ckafka

https://intl.cloud.tencent.com.cn/document/product/457/32419
https://intl.cloud.tencent.com.cn/document/product/614/32942
https://intl.cloud.tencent.com.cn/document/product/614/32940
https://intl.cloud.tencent.com.cn/document/product/614/30444

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 284 of 577

Overview

When the EKS log collection is enabled via environment variables, the log extraction defaults to the single-line
extraction mode. If the log data of the client occupies multiple lines (such as the Java program log), the line break
 \n cannot be used to mark the end of a log. To help the CLS to clearly distinguish each log, it is necessary to

configure a configmap with the first-line regular expression. When a log in a line matches the preset regular
expression, it is considered as the beginning of a log, and the next matching line will be the end mark of the log. This
document describes how to merge multi-line logs when you use environment variables to enable EKS log collection.

Directions

Raw log sample

2020-09-24 16:09:07 ERROR System.out(4844) java.lang.NullPointerException

at com.temp.ttscancel.MainActivity.onCreate(MainActivity.java:43)

at android.app.Activity.performCreate(Activity.java:5248)

at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1110) at

android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2162) at and

roid.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2257)

at android.app.ActivityThread.access$800(ActivityThread.java:139)

at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1210)

Creating Configmap

For the sample raw log file, the content of the parser.conf configuration file is:

apiVersion: v1

data:

parser.conf: |-

[PARSER]

Name parser_name

Format regex

Implementing Multi-line Log Merging for EKS
Log Collection
Last updated：2021-06-08 11:20:33

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 285 of 577

Regex ^(?<timestamp>[0-9]{2,4}\-[0-9]{1,2}\-[0-9]{1,2} [0-9]{1,2}\:[0-9]{1,2}\:[0

-9]{1,2}) (?<message>.*)

kind: ConfigMap

metadata:

name: cm

namespace: default

Among them, parser_name needs to be set in the annotation (spec.template.metadata.annotations) when the

workload is created. Run the following command to set:

eks.tke.cloud.tencent.com/parser-name: parser_name

For more information about parser.conf configuration file, see Regular Expression.

Mounting Configmap when creating a Pod

You need to perform the following operations when creating a Pod:

1. Mount the created Configmap as a Volume.
2. For how to enable log collection via environment variables, see Log Collection.

3. Specify two annotations.

eks.tke.cloud.tencent.com/parser-name: "parser_name"

eks.tke.cloud.tencent.com/volume-name-for-parser: "volume-name"

 eks.tke.cloud.tencent.com/parser-name refers to the name of the created Configmap.

 eks.tke.cloud.tencent.com/volume-name-for-parser refers to the name of the Volume mounted

in the Pod, which can be customized.

Pod yaml template

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

k8s-app: multiline

qcloud-app: multiline

name: multiline

namespace: default

spec:

replicas: 1

selector:

https://docs.fluentbit.io/manual/pipeline/parsers/regular-expression
https://intl.cloud.tencent.com.cn/document/product/457/37907

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 286 of 577

matchLabels:

k8s-app: multiline

qcloud-app: multiline

template:

metadata:

annotations:

eks.tke.cloud.tencent.com/parser-name: parser_name

eks.tke.cloud.tencent.com/volume-name-for-parser: volume-name

labels:

k8s-app: multiline

qcloud-app: multiline

spec:

containers:

- env:

- name: EKS_LOGS_OUTPUT_TYPE

value: cls

- name: EKS_LOGS_LOG_PATHS

value: stdout

- name: EKS_LOGS_TOPIC_ID

value: topic-id

- name: EKS_LOGS_LOGSET_NAME

value: eks

- name: EKS_LOGS_SECRET_ID

valueFrom:

secretKeyRef:

key: SecretId

name: cls

optional: false

- name: EKS_LOGS_SECRET_KEY

valueFrom:

secretKeyRef:

key: SecretKey

name: cls

optional: false

image: nginx

imagePullPolicy: Always

name: ng

resources:

limits:

cpu: 500m

memory: 1Gi

requests:

cpu: 250m

memory: 256Mi

volumeMounts:

- mountPath: /mnt

name: volume-name

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 287 of 577

imagePullSecrets:

- name: qcloudregistrykey

restartPolicy: Always

volumes:

- configMap:

defaultMode: 420

name: cm

name: volume-name

Structured log sample

2020-09-24 16:09:07 ERROR System.out(4844) java.lang.NullPointerException \at com

.temp.ttscancel.MainActivity.onCreate(MainActivity.java:43) \at android.app.Activ

ity.performCreate(Activity.java:5248) \at android.app.Instrumentation.callActivit

yOnCreate(Instrumentation.java:1110) \at android.app.ActivityThread.performLaunch

Activity(ActivityThread.java:2162) \at android.app.ActivityThread.handleLaunchAct

ivity(ActivityThread.java:2257) \at android.app.ActivityThread.access$800(Activit

yThread.java:139) \at android.app.ActivityThread$H.handleMessage(ActivityThread.j

ava:1210)

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 288 of 577

By integrating CLS, TKE provides a complete set of productized capabilities to collect and consume Nginx-ingress
logs. For more information, see Nginx-ingress Log Configuration. If the default log index doesn't meet your needs, you
can customize the index. This document describes how to update the log index of Nginx Ingress.

Prerequisites

1. Nginx Ingress is on v1.1.0 or later. Log in to the TKE console, select Cluster Details > Add-On Management,
and you can view the version of the Nginx Ingress add-on.

2. The Nginx Ingress instance is on v0.49.3 or later. Log in to the TKE console, select Cluster Details > Services

and Routes > NginxIngress, and click View YAML on the right of the target instance. In the YAML file, the
 ccr.ccs.tencentyun.com/paas/nginx-ingress-controller image must be on v0.49.3 or later.

You have enabled the log service of Nginx Ingress as instructed in Nginx-ingress Log Configuration.

Directions

Custom Nginx Ingress Log
Last updated：2022-10-12 16:05:09

https://intl.cloud.tencent.com.cn/document/product/457/38983
https://console.intl.cloud.tencent.com.cn/tke2
https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/457/38983#tke-nginx-ingress-.E9.87.87.E9.9B.86.E6.97.A5.E5.BF.97

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 289 of 577

Note：
To modify the log structure, you need to understand the log stream of Nginx Ingress, which consists of log
output, collection, indexing, and configuration. Here, if log output or collection is missing or incorrectly

configured, log modification will fail.

Step 1. Modify the log output format of the Nginx Ingress instance

The log configuration of the Nginx Ingress instance is in the master configuration ConfigMap instance name-

ingress-nginx-controller , where you need to modify the log-format-upstream key.

Sample

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 290 of 577

Add two consecutive strings $namespace and $service_name to the end of a log.

For more information on log fields of Nginx Ingress, see Log format.

Step 2. Modify the format for collecting and reporting cluster logs to Agent

The cluster log collection rules are in a resource object of the logconfigs.cls.cloud.tencent.com type.

Log in to the TKE console, select Cluster Details > Kubernetes resource manager, find the instance name-

ingress-nginx-controller resource object, and you can click Edit YAML to modify it.

You need to modify the following fields:

beginningRegex: The regular expression of the log start.
keys: Log fields.
logRegex: The regular expression of the log end.

The regular expressions match the Nginx log row format. We recommend you add the fields to the existing Nginx log

format, declare them at the end of keys , and add their regular expression parsing results to the end of

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/log-format/
https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 291 of 577

 beginningRegex and logRegex respectively.

Sample

Add the two keys in step 1 to the end of keys and add the regular expression strings to the end of

 beginningRegex and logRegex respectively:

(Optional) Step 3. Modify the log index format of CLS

To search for a field, you need to add the index of the new field in the corresponding log topic in the CLS console as
instructed in Configuring Index. Then, all collected logs can be searched for by the index.

https://intl.cloud.tencent.com.cn/document/product/614/39594

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 292 of 577

Restoring the Initial Settings

As log rule modification is complicated and involves regular expressions, any incorrect step can cause log collection
failure. If a log collection error occurs, we recommend you restore to the initial log collection capabilities by disabling
the log collection feature and enabling it again.

https://intl.cloud.tencent.com.cn/document/product/457/32419

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 293 of 577

Overview

The Prometheus community developed JMX Exporter for exporting JVM monitoring metrics so that Prometheus can
be used to collect monitoring data. After your Java business is containerized into Kubernetes, you can learn how to
use Prometheus and JMX Exporter to monitor Java applications by reading this document.

Introduction to JMX Exporter

Java Management Extensions (JMX) is an extended framework for Java management. Based on this framework, JMX
Exporter reads the runtime status of JVMs. JMX Exporter utilizes the JMX mechanism of Java to read JMX runtime
monitoring data and then converts the data to metrics that can be recognized by Prometheus. In this way, you can use
Prometheus to collect the monitoring data.

JMX Exporter provides two methods for opening JVM monitoring metrics: independent process launch and JVM

in-process launch:

1. Independent process launch
Parameters are specified during JVM launch to open the RMI API of JMX. JMX Exporter calls RMI to obtain JVM
runtime status data, converts the data to Prometheus metrics, and opens the port to allow collection by Prometheus.
2. JVM in-process launch
Parameters are specified during JVM launch to run the jar package of JMX Exporter as a javaagent. JVM runtime

status data is read in-process and then converted to Prometheus metrics, and the port is opened to allow collection by
Prometheus.

Monitoring
Using Prometheus to monitor Java
applications
Last updated：2020-11-23 18:25:51

Note：

We do not recommend the independent process launch method, because it requires complicated
configuration and involves an independent process. The monitoring of the process itself can incur new
problems. In this document, the JVM in-process launch method is used as an example, in which JMX
Exporter is used in the Kubernetes environment to open JVM monitoring metrics.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 294 of 577

Directions

Opening JVM monitoring metrics by using JMX Exporter

Packaging images

When using the JVM in-process launch method to launch JVM, you need to specify the jar package and configuration
files of JMX Exporter. The jar package is a binary file that is difficult to mount with configmap. We recommend that you
directly package the jar package and configuration file of JMX Exporter into a business container image. The process

is as follows:

1. Create a directory for producing images and place the JMX Exporter configuration file prometheus-jmx-

config.yaml into the directory.

ssl: false

lowercaseOutputName: false

lowercaseOutputLabelNames: false

2. Prepare a jar package file. To do this, go to the GitHub page of jmx_exporter to obtain the download address of the
latest jar package and run the following command to download the package to the created directory.

wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/

0.13.0/jmx_prometheus_javaagent-0.13.0.jar

3. Prepare a Dockerfile. This document uses Tomcat as an example.

FROM tomcat:jdk8-openjdk-slim

ADD prometheus-jmx-config.yaml /prometheus-jmx-config.yaml

ADD jmx_prometheus_javaagent-0.13.0.jar /jmx_prometheus_javaagent-0.13.0.jar

4. Run the following command to compile the image.

docker build . -t ccr.ccs.tencentyun.com/imroc/tomcat:jdk8

Note：

For more configuration items, refer to the official Prometheus document.

https://github.com/prometheus/jmx_exporter
https://prometheus.io/docs/introduction/overview/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 295 of 577

Now, you have completed image packaging. You can also use the docker multi-stage building feature and skip the
step of manually downloading the jar package. The following shows a sample Dockerfile:

FROM ubuntu:16.04 as jar

WORKDIR /

RUN apt-get update -y

RUN DEBIAN_FRONTEND=noninteractive apt-get install -y wget

RUN wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaag

ent/0.13.0/jmx_prometheus_javaagent-0.13.0.jar

FROM tomcat:jdk8-openjdk-slim

ADD prometheus-jmx-config.yaml /prometheus-jmx-config.yaml

COPY --from=jar /jmx_prometheus_javaagent-0.13.0.jar /jmx_prometheus_javaagent-

0.13.0.jar

Deploying Java applications

When an application is deployed in Kubernetes, you must modify JVM launch parameters in order to load JMX

Exporter during launch. During launch, JVM reads the JAVA_OPTS environmental variable as an extra launch

parameter. During deployment, you can add this environmental variable for the application. The following shows an
example:

apiVersion: apps/v1

kind: Deployment

metadata:

name: tomcat

spec:

replicas: 1

selector:

matchLabels:

app: tomcat

template:

metadata:

labels:

app: tomcat

spec:

containers:

- name: tomcat

image: ccr.ccs.tencentyun.com/imroc/tomcat:jdk8

env:

- name: JAVA_OPTS

value: "-javaagent:/jmx_prometheus_javaagent-0.13.0.jar=8088:/prometheus-jmx-conf

ig.yaml"

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 296 of 577

apiVersion: v1

kind: Service

metadata:

name: tomcat

labels:

app: tomcat

spec:

type: ClusterIP

ports:

- port: 8080

protocol: TCP

name: http

- port: 8088

protocol: TCP

name: jmx-metrics

selector:

app: tomcat

Launch parameter format: -javaagent:<jar>=<port>:<config>

In this example, port 8088 is used to open the monitoring metrics of JVM. You can use another port as needed.

Adding a Prometheus monitoring configuration

Configure Prometheus to enable monitoring data collection. The following shows an example:

- job_name: tomcat

scrape_interval: 5s

kubernetes_sd_configs:

- role: endpoints

namespaces:

names:

- default

relabel_configs:

- action: keep

source_labels:

- __meta_kubernetes_service_label_app

regex: tomcat

- action: keep

source_labels:

- __meta_kubernetes_endpoint_port_name

regex: jmx-metrics

If prometheus-operator has been installed, you can create a CRD object of ServiceMonitor to configure Prometheus.
The following shows an example:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 297 of 577

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

name: tomcat

namespace: default

labels:

app: tomcat

spec:

endpoints:

- port: jmx-metrics

interval: 5s

namespaceSelector:

matchNames:

- default

selector:

matchLabels:

app: tomcat

Adding a Grafana monitoring dashboard

Collected data can be displayed. If you are familiar with Prometheus and Grafana, you can design a dashboard based
on your specific metrics. Alternatively, you can use the dashboards provided by the community, such as the JVM
dashboard. This dashboard can be directly imported for use. The following figure shows the dashboard view:

https://grafana.com/grafana/dashboards/8563

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 298 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 299 of 577

References

JMX Exporter
JVM Monitoring Dashboard

https://github.com/prometheus/jmx_exporter
https://grafana.com/grafana/dashboards/8563

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 300 of 577

Overview

MySQL is a common relational database management system. As a branch of MySQL, MariaDB is compatible with
MySQL and is becoming increasingly popular. In a Kubernetes environment, you can use Prometheus to monitor
MySQL and MariaDB database using the open-source MySQL exporter. This document describes how to use

Prometheus to monitor MySQL and MariaDB.

Introduction to MySQL Exporter

The MySQL exporter reads database status data from MySQL or MariaDB, converts it to Prometheus metric format,
and opens it to the HTTP interface. In this case, Prometheus can collect and monitor these metrics.

Directions

Deploying the MySQL exporter

Using Prometheus to Monitor MySQL and
MariaDB
Last updated：2020-11-23 10:19:01

Note：

Before deploying the MySQL exporter, ensure that MySQL or MariaDB has been deployed in the cluster,
outside the cluster, or in the cloud service used.

https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/mysqld_exporter

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 301 of 577

Deploying MySQL

The following example shows how to deploy MySQL to a cluster from the Marketplace.

1. Log in to the TKE console and click Marketplace in the left sidebar.
2. On the Marketplace page, search for and click MySQL.

3. On the Application Details page, click Create Application.
4. On the Create Application page, enter the necessary information and click Create.
5. Run the following command to check whether MySQL runs properly:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

mysql-698b898bf7-4dc5k 1/1 Running 0 11s

6. Run the following command to obtain the root password:

$ kubectl get secret -o jsonpath={.data.mysql-root-password} mysql

6ZAj33yLBo

Deploying the MySQL exporter

After deploying MySQL, deploy the MySQL exporter as follows:

1. Run the following commands in sequence to create a MySQL exporter account and log in to MySQL:

$ kubectl exec -it mysql-698b898bf7-4dc5k bash

$ mysql -uroot -p6ZAj33yLBo

2. Run the following command to create an account. mysqld-exporter/123456 is used as an example.

CREATE USER 'mysqld-exporter' IDENTIFIED BY '123456' WITH MAX_USER_CONNECTIONS

3;

GRANT PROCESS, REPLICATION CLIENT, REPLICATION SLAVE, SELECT ON *.* TO 'mysqld-

exporter';

flush privileges;

3. Use the YAML file to deploy the MySQL exporter. An example is as follows:

Note：

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 302 of 577

apiVersion: apps/v1

kind: Deployment

metadata:

name: mysqld-exporter

spec:

replicas: 1

selector:

matchLabels:

app: mysqld-exporter

template:

metadata:

labels:

app: mysqld-exporter

spec:

containers:

- name: mysqld-exporter

image: prom/mysqld-exporter:v0.12.1

args:

- --collect.info_schema.tables

- --collect.info_schema.innodb_tablespaces

- --collect.info_schema.innodb_metrics

- --collect.global_status

- --collect.global_variables

- --collect.slave_status

- --collect.info_schema.processlist

- --collect.perf_schema.tablelocks

- --collect.perf_schema.eventsstatements

- --collect.perf_schema.eventsstatementssum

- --collect.perf_schema.eventswaits

- --collect.auto_increment.columns

- --collect.binlog_size

- --collect.perf_schema.tableiowaits

- --collect.perf_schema.indexiowaits

- --collect.info_schema.userstats

- --collect.info_schema.clientstats

- --collect.info_schema.tablestats

- --collect.info_schema.schemastats

- --collect.perf_schema.file_events

- --collect.perf_schema.file_instances

- --collect.perf_schema.replication_group_member_stats

- --collect.perf_schema.replication_applier_status_by_worker

- --collect.slave_hosts

Replace the account, password, and MySQL connection address in DATA_SOURCE_NAME with real
ones.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 303 of 577

- --collect.info_schema.innodb_cmp

- --collect.info_schema.innodb_cmpmem

- --collect.info_schema.query_response_time

- --collect.engine_tokudb_status

- --collect.engine_innodb_status

ports:

- containerPort: 9104

protocol: TCP

env:

- name: DATA_SOURCE_NAME

value: "mysqld-exporter:123456@(mysql.default.svc.cluster.local:3306)/"

--

apiVersion: v1

kind: Service

metadata:

name: mysqld-exporter

labels:

app: mysqld-exporter

spec:

type: ClusterIP

ports:

- port: 9104

protocol: TCP

name: http

selector:

app: mysqld-exporter

Configuring monitoring data collection

After deploying the MySQL exporter, configure monitoring data collection to ensure that data exposed by the MySQL
exporter can be collected.
The following example shows ServiceMonitor definition (The cluster must support ServiceMonitor definition to

configure collection rules):

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

name: mysqld-exporter

spec:

endpoints:

interval: 5s

targetPort: 9104

namespaceSelector:

matchNames:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 304 of 577

- default

selector:

matchLabels:

app: mysqld-exporter

The following example shows a native Prometheus configuration:

- job_name: mysqld-exporter

scrape_interval: 5s

kubernetes_sd_configs:

- role: endpoints

namespaces:

names:

- default

relabel_configs:

- action: keep

source_labels:

- __meta_kubernetes_service_label_app_kubernetes_io_name

regex: mysqld-exporter

- action: keep

source_labels:

- __meta_kubernetes_endpoint_port_name

regex: http

Adding a monitoring dashboard

Once data can be collected, add a monitoring dashboard for Grafana to display data.

If you only need to view the MySQL or MariaDB overview information, import the grafana.com dashboard, as

shown in the figure below.

https://grafana.com/grafana/dashboards/7362

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 305 of 577

If a dashboard with more features is required, import JSON files prefixed with MySQL_ in the percona open-

source dashboard.

https://github.com/percona/grafana-dashboards/tree/master/dashboards

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 306 of 577

Overview

Compatible with the APIs of Prometheus and Grafana and the CRD usage of mainstream prometheus-operator, TKE
Cloud Native Monitoring is more flexible and extensible. Combined with Prometheus open source tools, it can have
more advanced usages.

This document describes how to use auxiliary scripts and migration tools to quickly migrate the self-built Prometheus
to cloud native monitoring.

Prerequisites

You have installed Kubectl on the node of the self-built Prometheus cluster and configured Kubeconfig to ensure that
you can manage the cluster through Kubectl.

Directions

Migrating the Dynamic Collection Configuration

If the prometheus-operator is used in self-built Prometheus, CRD resources such as ServiceMonitor and PodMonitor

are usually used to dynamically add collection configurations. This method also applies to cloud native monitoring. If
you only need to migrate the prometheus-operator of the self-built Prometheus cluster to cloud native monitoring, and
without migrating the cluster, then there is no need to migrate the dynamic configuration. You only need to use the
cloud native monitoring to associate the self-built cluster, and then the ServiceMonitor and PodMonitor resources
created by the self-built Prometheus will automatically take effect in cloud native monitoring.

For cross-cluster migration, you can export the CRD resources of self-built Prometheus and selectively reapply them

in the associated cloud native monitoring cluster. The following describes how to export ServiceMonitor and
PodMonitor in batches in a self-built Prometheus cluster.

1. Create the script prom-backup.sh with the following contents:

Migrating Self-built Prometheus to Cloud
Native Monitoring
Last updated：2022-04-18 16:58:49

https://kubernetes.io/docs/tasks/tools/#kubectl

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 307 of 577

_ns_list=$(kubectl get ns | awk '{print $1}' | grep -v NAME)

count=0

declare -a types=("servicemonitors.monitoring.coreos.com" "podmonitors.monitori

ng.coreos.com")

for _ns in ${_ns_list}; do

loop for types

for _type in "${types[@]}"; do

echo "Backup type [namespace: ${_ns}, type: ${_type}]."

_item_list=$(kubectl -n ${_ns} get ${_type} | grep -v NAME | awk '{print $1}')

loop for items

for _item in ${_item_list}; do

_file_name=./${_ns}_${_type}_${_item}.yaml

echo "Backup kubernetes config yaml [namespace: ${_ns}, type: ${_type}, item:

${_item}] to file: ${_file_name}"

kubectl -n ${_ns} get ${_type} ${_item} -o yaml > ${_file_name}

count=$[count + 1]

echo "Backup No.${count} file done."

done;

done;

done;

2. Run the following command to run the prom-backup.sh script.

bash prom-backup.sh

3. The prom-backup.sh script will export each ServiceMonitor and PodMonitor resource into a separate YAML

file. You can run the ls command to view the output file list. The example is as follows:

$ ls

kube-system_servicemonitors.monitoring.coreos.com_kube-state-metrics.yaml

kube-system_servicemonitors.monitoring.coreos.com_node-exporter.yaml

monitoring_servicemonitors.monitoring.coreos.com_coredns.yaml

monitoring_servicemonitors.monitoring.coreos.com_grafana.yaml

monitoring_servicemonitors.monitoring.coreos.com_kube-apiserver.yaml

monitoring_servicemonitors.monitoring.coreos.com_kube-controller-manager.yaml

monitoring_servicemonitors.monitoring.coreos.com_kube-scheduler.yaml

monitoring_servicemonitors.monitoring.coreos.com_kube-state-metrics.yaml

monitoring_servicemonitors.monitoring.coreos.com_kubelet.yaml

monitoring_servicemonitors.monitoring.coreos.com_node-exporter.yaml

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 308 of 577

4. You can filter, modify and reapply the YAML file to the associated cloud native monitoring cluster (do not apply the
collection rules that already exist or have the same feature). The cloud native monitoring will automatically perceive
these dynamic collection rules and perform collection.

Note：
If you need to add ServiceMonitor or PodMonitor, you can add it visually on the TKE console, or you can
directly create it with YAML. The usage is fully compatible with the CRD of the Prometheus community.

Migrating the static collection configuration

If the self-built Prometheus system directly uses the Prometheus native configuration file, you can convert it into a
RawJob of cloud native monitoring with a few steps on the TKE console, making it compatible with the

 scrape_configs configuration item of the Prometheus native configuration file.

1. Log in to the TKE console.
2. Click Cloud Native Monitoring in the left sidebar to go to the Cloud Native Monitoring page.
3. Click the instance ID/name to configure to go to its basic information page.
4. Select Associate with Cluster tab, select the cluster to configure, and click Data Collection under the

Operation column.

5. Select RawJob > Add. Copy and paste the Job configuration from the native Prometheus configuration file into this

configuration window.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 309 of 577

6. You can paste all the Job arrays that need to import into the cloud native monitoring, and click Confirm. The Job

arrays will be automatically split into multiple RawJobs and named as the job_name field of each Job.

Migrating the global configuration

You can modify the Prometheus CRD resource of cloud native monitoring to modify the global configuration.

1. Run the following command to obtain the Prometheus information.

$ kubectl get ns

prom-fnc7bvu9 Active 13m

$ kubectl -n prom-fnc7bvu9 get prometheus

NAME VERSION REPLICAS AGE

tke-cls-hha93bp9 11m

$ kubectl -n prom-fnc7bvu9 edit prometheus tke-cls-hha93bp9

2. Run the following command to modify the Prometheus configuration.

$ kubectl -n prom-fnc7bvu9 edit prometheus tke-cls-hha93bp9

Modify the following parameters in the pop-up window:

scrapeInterval: the collection capture interval (default value is 15 seconds)
externalLabels: add the default label tag for all time series data.

Migrating the aggregation configuration

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 310 of 577

The format of each Prometheus aggregation configuration rule is the same no matter it is the original static
configuration Recording rules or the dynamic configuration PrometheusRule.

1. Log in to the TKE console.

2. Click Cloud Native Monitoring in the left sidebar to go to the Cloud Native Monitoring page.
3. Click the instance ID/name to configure to go to its basic information page.
4. Select Aggregation Rule > Create Aggregation Rule. In the Add Aggregation Rule window, paste each rule

into the groups array in the PrometheusRule format, as shown in the figure below:

Note：
If the self-built Prometheus uses the aggregation rules defined by PrometheusRule, it is recommended to
migrate them according to the above steps. If the PrometheusRule resource is created directly in the cluster

using YAML, it cannot be displayed in cloud native monitoring on the console currently.

Migrating the alarm configuration

This document provides the self-built Prometheus Alarm original configuration YAML file as an example to describe
how to convert it into a monitoring configuration similar to cloud native monitoring.

- alert: NodeNotReady

expr: kube_node_status_condition{condition="Ready",status="true"} == 0

for: 5m

labels:

severity: critical

annotations:

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/api.md#prometheusrule
https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 311 of 577

description: node {{ $labels.node }} is not available for a long time (cluster id

{{ $labels.cluster }})

1. Log in to the TKE console.
2. Click Cloud Native Monitoring in the left sidebar to go to the Cloud Native Monitoring page.
3. Click the instance ID/name to configure to go to its basic information page.
4. Select Alarm Configurations > Create Alarm Policy to configure the alarm policy.

Main parameters are described as follows:
PromQL: the core configuration of the alarm and is the PromQL expression used to indicate the alarm trigger
condition, which is equivalent to the “expr” field of the original configuration.
Labels: an extra label added for the alarm, which is equivalent to the labels field of the original configuration.
Alarm Content: the pushed alarm content. You can use a template or a template with variables. It is
recommended to add the cluster ID in the alarm content. You can use the variable {{ $labels.cluster

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 312 of 577

}} to represent the cluster ID.

Duration: indicates an alarm will be pushed when the alarm is not restored after the alarm condition is met for
how long. It is equivalent to the “for” field of the original configuration. The configuration in the following sample is

5 minutes.
Convergence Time: indicates an alarm will be pushed again when the alarm is not restored after the alarm
condition is met for how long, that is, the push interval between the same alarms. It is equivalent to the
repeat_interval configuration of AlertManager. The configuration in the following sample is 1 hour.

Note：

The above alarm configuration example shows that after the node status changes to NotReady, the alarm
will be pushed if it is not restored within 5 minutes. If it has not restored for a long time, the alarm will be
pushed again at an interval of 1 hour.

5. Configure the alarm channel. Currently, only Tencent Cloud and WebHook are available.
Tencent Cloud alarm channel
WebHook alarm channel

The alarm channels of Tencent Cloud support SMS, Email, WeChat and Mobile. You can select as needed.

Migrating the Grafana dashboard

The self-built Prometheus is usually configured with many custom Grafana monitoring dashboards. If you need to
migrate a large number of dashboards to other platforms, it is too inefficient to export and import one by one. You can
use the grafana-backup tool to export and import Grafana dashboards in batches. For details, please refer to the

following directions.

1. Run the following command to install grafana-backup, as shown below:

pip3 install grafana-backup

https://prometheus.io/docs/alerting/latest/configuration/#route
https://github.com/ysde/grafana-backup-tool

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 313 of 577

Note：
It is recommended to use Python3 to avoid the compatibility problems.

2. Create API Keys.

i. Enter the configuration page of self-buit Grafana and cloud native monitoring Grafana respectively. Select API
Keys > New API Key, as shown below:

ii. In Add API Key window, create an API KEY whose role is Admin, as shown below:

3. Back up the configuration file of the dashboard that you want to export.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 314 of 577

i. Run the following command to obtain the access address of the self-built Grafana, as shown below:

$ kubectl -n monitoring get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

grafana ClusterIP 172.21.254.127 <none> 3000/TCP 25h

Note：
Take the Grafana access address http://172.21.254.127:3000 in the cluster as an example.

ii. Run the following command to generate the grafana-backup configuration file (with Grafana address and

APIKey) as shown below:

export TOKEN=<TOKEN>

cat > ~/.grafana-backup.json <<EOF

{

"general": {

"debug": true,

"backup_dir": "_OUTPUT_"

},

"grafana": {

"url": "http://172.21.254.127:3000",

"token": "${TOKEN}"

}

}

EOF

Note：
You need to replace <TOKEN> with the APIKey of self-built Grafana, and replace the URL with the actual
environment address.

4. Run the following command to export all dashboards, as shown below:

grafana-backup save

The dashboard will be saved as a compressed file in the _OUTPUT_ directory. You can run the following

command to view the files in this directory, as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 315 of 577

$ tree _OUTPUT_

OUTPUT

└── 202012151049.tar.gz

0 directories, 1 file

5. Run the following command to restore the configuration file, as shown below:

export TOKEN=<TOKEN>

cat > ~/.grafana-backup.json <<EOF

{

"general": {

"debug": true,

"backup_dir": "_OUTPUT_"

},

"grafana": {

"url": "http://prom-xxxxxx-grafana.ccs.tencent-cloud.com",

"token": "${TOKEN}"

}

}

EOF

Note：
You need to replace <TOKEN> with the APIKey of cloud native monitoring Grafana, and replace the URL

with the access address of cloud native monitoring Grafana. (The internet access need to be enabled).

6. Run the following command to import the exported dashboards to the cloud native monitoring Grafana with one
click, as shown below:

grafana-backup restore _OUTPUT_/202012151049.tar.gz

7. In Grafana configuration dashboard, select Dashboard settings > Variables > New to create the cluster field. It is

recommended to add the filter field “cluster” for all dashboards. Cloud native monitoring supports multiple clusters.
It will add the label “cluster” to the data of each cluster, and use the cluster ID to distinguish different clusters, as

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 316 of 577

shown below:

Note：

Enter an arbitrary metric name that is involved in the current dashboard in label_values (The example is
node_uname_info).

8. Modify the query statements of PromQL in all dashboards and add the filter conditions
 cluster=~"$cluster" , as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 317 of 577

Integrating with the existing systems

Cloud native monitoring supports accessing self-built Grafana and AlertManager systems.

Accessing self-built Grafana
Accessing self-built AlertManager

Cloud native monitoring provides Prometheus API. If you need to use self-built Grafana to display monitoring, you can
add cloud native monitoring data as a Prometheus data source to self-built Grafana. You can find the Prometheus API

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 318 of 577

address in the basic information of cloud native monitoring instance on TKE console.

1. Log in to the TKE console.
2. Click Cloud Native Monitoring in the left sidebar to go to the Cloud Native Monitoring page.

3. Click the instance ID/name to go to its details page to obtain the Prometheus API address.

>?Ensure that the self-built Grafana and cloud native monitoring are in the same VPC or their networks have
connected.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 319 of 577

4. Add the Prometheus API address in Grafana as the Prometheus data source, as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 320 of 577

Introduction

Many TKE operations, such as Kubernetes update or kernel upgrade, you need to remove nodes from a cluster and
add them back. This article describes the process in detail, which can be divided into the following steps:

1. Evict the Pods running on the node.

2. Remove the node from the cluster, and add it back into the cluster. This node will reinstall the system.
3. Uncordon the node.

Considerations

If you need to do this for multiple nodes in a single cluster, it is recommended that you do so node by node. That is,
complete the removal and addition of a single node and verify that the service is running properly, and then remove
the next node and add it back, until you finish all nodes.

If you need to do this for multiple clusters under the same account, we recommend that the operation be executed
in batches. After the operation has been completed on each cluster, verify whether the cluster status is normal.

Directions

Step 1: evict Pods

Before performing the removal and re-addition of a node in a cluster, you must first drain the Pods on the node to
another node. The draining process involves deleting the Pods on the node one by one, and then creating them on
another node. For more information, refer to Principles of Draining.

Checking before draining

The draining process involves deleting and then recreating Pods, which may affect services in the cluster. Therefore, it

is recommended that you perform the following checks before draining Pods:

OPS
Removing and Re-adding Nodes from and to
Cluster
Last updated：2022-04-21 19:28:34

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 321 of 577

1. Check whether the remaining nodes in the cluster have sufficient resources to run the Pods on the node to be
drained.
You can check node resource allocation using the TKE Console. In the Cluster List page, select the cluster ID >

Node Management > and the node, and check the Assigned/Total Resources on the Node List page, as
shown in the following figure:

If the resources of the remaining nodes are insufficient, it is recommended that you add new nodes to the cluster to
prevent the drained Pod from being unable to run and, as a result, affecting the service.

2. Check whether active drainage protection, PodDisruptionBudget (PDB), is configured in the cluster.
Active drainage protection interrupts the execution of drainage operations. It is recommended that you first delete
the active drainage protection PDB.

3. Check whether all the Pods of a single service are on the node to be drained.
If all the Pods of a single service are located on the same node, draining the Pods will make the entire service
unavailable. Please determine whether the service needs all Pods to be located on the same node.

If not, it is recommended that you add anti-affinity scheduling.
If so, it is recommended that you perform the operation during periods of low or no traffic.

4. Check if the service uses a local disk (hostpath).
If the service uses the hostpath volume method, when the Pod is scheduled to another node, the data will be

lost which may affect the business. If the data is important, back it up before draining.

Note：
Currently, kubelet’s image pull policy is serial. If a large number of Pods is scheduled to the same node in a
short period of time, the Pod launch time may be longer.

Specific directions

Currently, there are two ways to complete drainage for TKE clusters:

Drain in TKE Console.

https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 322 of 577

Use the kubectl drain command.

Drain in TKE Console

1. On the Cluster List page, select the cluster ID of the node to be drained, and enter the Cluster Workload

Management page.
2. On the left sidebar, select Node Management > Node to go to the Node List page.
3. On the right of the row where the node is located, select More > Drain to drain the Pods running on the node, as

shown in the following figure:

Using kubectl drain to drain

1. To log in to the node, refer to Logging In to a Linux Instance in Standard Login Mode (Recommended).
2. Execute the following command to drain the Pods on this node.

kubectl drain node <node-name>

Step 2: remove the node

Note：
When the Pods running on a node are drained, this node is cordoned.

1. In the Node List page, click Remove on the right of the row where the node is located.
2. In the pop-up window, clear Terminate pay-as-you-go nodes and click OK to remove the node from the cluster.

This is shown in the following figure:

https://intl.cloud.tencent.com.cn/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 323 of 577

Note：

Write down the node ID. You need it for re-adding the node to the cluster.
If the node is pay-as-you-go, make sure not to select Terminate pay-as-you-go nodes. Terminated

nodes cannot be restored.

Step 3: add the node back to the cluster

1. In the Node List page, click Add Existing Node on the top of the page.
2. On the Select Nodes page, enter the recorded node ID and click .
3. In the search results list, select the desired node and click Next to go to the CVM Configuration page, as shown in

the following figure:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 324 of 577

4. In the CVM Configuration page, Mount Data disk and Container Directory are not selected by default. If you
need to store the container and the image file on the data disk, select Mount Data disk, as shown in the following
figure:

Note：
If *Mount data disk** is selected, a system disk with ext3, ext4 or xfs file system is mounted as is. Other file
systems or unformatted data disks are automatically formatted with ext4 and mounted. If you need to keep
the data disk and mount it, refer to Mounting Data Disks.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 325 of 577

5. Set the login password and security group according to your actual circumstances, click Complete, and wait for
the node to be added successfully.

Step 4: remove the cordon

Note：

After the node is added successfully, it is still cordoned.

1. In the Node List page, select More > Uncordon on the right of the row where the node is located.
2. In the pop-up window, click OK to remove the cordon.

Notes

Principles of draining

To streamline node maintenance operations, Kubernetes introduced the drain command. The use principles are

as follows:

For versions after Kubernetes 1.4, the drain operation is to first cordon the node and then delete all the Pods on

the node. If this Pod is managed by a controller such as Deployment, the controller will re-construct the Pod when it
detects that the number of Pod replicas has decreased, and will schedule them to other nodes that meet the
conditions. If this Pod is a bare Pod that is not managed by a controller, it will not be re-constructed after it is drained.

This process involves first deleting, and then re-creation, and is not a rolling update. Therefore, in the update process,
some requests for drained services may fail. If all the related Pods of the drained service are on the drained node, the

service may become completely unavailable.

To avoid this situation, Kubernetes versions 1.4 and later introduced PodDisruptionBudget (PDB). You only need to
select a business (a group of Pods) in the PDB policy file, to declare the minimum number of replicas that this
business can tolerate. Now when you execute the drain operation, the Pod is no longer deleted directly, but

instead whether it meets the PDB policy is checked through evict api . The Pods will only be deleted if the PDB

policy is satisfied, protecting business availability. Note that the impact of the drain operation on businesses can

only be controlled if PDB is correctly configured.

Data disk mounting

Note：
Through this step, you can mount the data disk without formatting it.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 326 of 577

1. In the CVM Configuration page, do not check Mount Data Disk.

2. Open Advanced Configurations. In Custom Data, enter the following node initialization script and select Enable
Cordon, as shown in the following figure:

systemctl stop kubelet

docker stop $(docker ps -a | awk '{ print $1}' | tail -n +2)

systemctl stop dockerd

echo '/dev/vdb /data ext4 noatime,acl,user_xattr 1 1' >> /etc/fstab

mount -a

sed -i 's#"graph": "/var/lib/docker",#"data-root": "/data/docker",#g' /etc/dock

er/daemon.json

systemctl start dockerd

systemctl start kubelet

3. Set the login password and security group according to your actual circumstances, click Complete, and wait for
the node to be added successfully.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 327 of 577

Overview

When adding nodes to a TKE cluster, you can perform batch operations, such as modification of kernel parameters,
by entering a script in Custom Data. However, if you need to perform batch operations on existing nodes, you can
use the Ansible open-source tool described in this document.

How It Works

Ansible is a popular open-source OPS tool that can be used to directly perform batch operations on devices over SSH
protocol, without the need to manually preinstall dependencies. The following figure shows how it works:

Directions

Preparing the Ansible control node

1. Select an instance as the Ansible control node, through which batch operations on existing TKE nodes can be

initiated. You can select any instance in the VPC where the cluster is located as the control node (including any
TKE node).

2. After selecting the control node, select the installation method:
For Ubuntu:

sudo apt update && sudo apt install software-properties-common -y && sudo apt

-add-repository --yes --update ppa:ansible/ansible && sudo apt install ansibl

e -y

For CentOS:

Using Ansible to Batch Operate TKE Nodes
Last updated：2020-11-11 10:55:16

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 328 of 577

sudo yum install ansible -y

Preparing the configuration file

Add private IPs of all target nodes to the host.ini file, with one IP address per line, as shown in the example

below:

10.0.3.33

10.0.2.4

To operate on all nodes, you can run the following commands to generate the host.ini file:

kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(@.type=="InternalI

P")].address}' | tr ' ' '\n' > hosts.ini

Preparing the batch execution script

Define the batch operations that you want to perform in a script and save it as a script file, as shown in the following
example:
A self-built image repository is created, and no certificate has been issued by an authority. It uses the certificate issued

by HTTP or HTTPS. By default, an error occurs when dockerd pulls images from this repository. You can perform
batch modification of the dockerd configuration on nodes to add the address of the self-built repository to
 insecure-registries in the dockerd configuration. This allows dockerd to ignore the certificate check. The

content of the modify-dockerd.sh script file is as follows:

yum install -y jq # centos

apt install -y jq # ubuntu

cat /etc/docker/daemon.json | jq '."insecure-registries" += ["myharbor.com"]' > /

tmp/daemon.json

cp /tmp/daemon.json /etc/docker/daemon.json

systemctl restart dockerd

Using Ansible to perform batch script execution

Usually, when TKE nodes are added, they all point to the same SSH login key or password. Perform the following
operations based on your actual situation:

Using a key

1. Prepare a key file, for example, tke.key .

2. Run the following command to authorize the key file.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 329 of 577

chmod 0600 tke.key

3. Perform batch script execution.
Sample for Ubuntu nodes:

ansible all -i hosts.ini --ssh-common-args="-o StrictHostKeyChecking=no -o Us

erKnownHostsFile=/dev/null" --user ubuntu --become --become-user=root --priva

te-key=tke.key -m script -a "modify-dockerd.sh"

Sample for other operating systems:

ansible all -i hosts.ini --ssh-common-args="-o StrictHostKeyChecking=no -o Us

erKnownHostsFile=/dev/null" --user root -m script -a "modify-dockerd.sh"

Using a password

1. Run the following command to pass a password into a PASS variable.

read -s PASS

2. Perform batch script execution.
For nodes on Ubuntu, the default SSH username is ubuntu . See the sample below:

ansible all -i hosts.ini --ssh-common-args="-o StrictHostKeyChecking=no -o Us

erKnownHostsFile=/dev/null" --user ubuntu --become --become-user=root -e "ans

ible_password=$PASS" -m script -a "modify-dockerd.sh"

For nodes on other operating systems, the default SSH username is root . See the sample below:

ansible all -i hosts.ini --ssh-common-args="-o StrictHostKeyChecking=no -o Us

erKnownHostsFile=/dev/null" --user root -e "ansible_password=$PASS" -m script

-a "modify-dockerd.sh"

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 330 of 577

Overview

Cluster resources may be deleted or modified in the case of misoperations, application bugs, or apiserver API calls
from malicious programs. You can use the cluster audit feature to keep logs of apiserver API calls. In this way, you
can search and analyze audit logs to find the causes of problems. This document describes how to use the cluster

audit feature for troubleshooting.

Note：
This document only applies to TKE clusters.

Prerequisites

You have enabled the cluster audit feature in the TKE console. For more information, see Enabling Cluster Audit.

Use Case

Obtaining the analysis result

1. Log in to the CLS console and select Search and Analysis in the left sidebar.

2. On the Search and Analysis page, select the logset and log topic to search, and a time scope.
3. Enter the analysis statement and click Search and Analysis to obtain the analysis result.

Example 1: querying the operator who cordoned a node

To query the operator who cordoned a node, run the following command:

objectRef.resource:nodes AND requestObject:unschedulable

On the Search and Analysis page, click Layouts. You can see the user.username , requestObject , and

 objectRef.name fields, which indicate the operator, request content, and node name, respectively. See the

figure below:

Using Cluster Audit for Troubleshooting
Last updated：2021-06-02 17:28:54

https://intl.cloud.tencent.com.cn/document/product/457/38338#.E5.BC.80.E5.90.AF.E9.9B.86.E7.BE.A4.E5.AE.A1.E8.AE.A1
https://console.intl.cloud.tencent.com.cn/cls/overview?

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 331 of 577

As shown in the figure, the sub-account 10001****958 cordoned the main.63u5qua9.0 node at 2020-

10-09 16:13:22 . For more information on the sub-account, choose Access Management > User List and click

the account ID.

Example 2: querying the operator who deleted a workload

To query the operator who deleted a workload, run the following command:

objectRef.resource:deployments AND objectRef.name:"nginx" AND verb:"delete"

You can obtain detailed information about the subaccount based on the search result.

Example 3: locating the causes of apiserver access limitation

https://console.intl.cloud.tencent.com.cn/cam

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 332 of 577

To prevent apiserver/etcd from being overloaded due to frequent apiserver access caused by malicious programs or
bugs, apiserver enables an access limit mechanism by default. If the access limit is reached, you can identify the
clients that have sent large numbers of requests through audit logs.

1. If you need to analyze clients that send requests based on userAgent, modify the log topic in the Key Index
window and collect statistics based on the userAgent field, as shown in the figure below.

2. Run the following command to collect QPS statistics from each client to the apiserver:

java

* | SELECT histogram(cast(__TIMESTAMP__astimestamp),interval1 minute) AS time, C

OUNT(1) AS qps,userAgent GROUP BY time,userAgent ORDER BY time

3. Switch to chart analysis and select line chart as the chart type. Select time as the X-axis, QPS as the Y-axis, and
userAgent for the aggregation column, as shown in the figure below.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 333 of 577

After obtaining the data, click the data to add it to the dashboard for display, as shown in the figure below.

The figure shows that the frequency of requests from the kube-state-metrics client to the apiserver is much higher
than that of other clients.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 334 of 577

According to the log, kube-state-metrics frequently sends requests to the apiserver due to RBAC permission
issues. As a result, the apiserver access limit is triggered. The log is as follows:

I1009 13:13:09.760767 1 request.go:538] Throttling request took 1.393921018s, r

equest: GET:https://172.16.252.1:443/api/v1/endpoints?limit=500&resourceVersion

=1029843735

E1009 13:13:09.766106 1 reflector.go:156] pkg/mod/k8s.io/client-go@v0.0.0-20191

109102209-3c0d1af94be5/tools/cache/reflector.go:108: Failed to list *v1.Endpoin

ts: endpoints is forbidden: User "system:serviceaccount:monitoring:kube-state-m

etrics" cannot list resource "endpoints" in API group "" at the cluster scope

To use other fields, such as user.username, to distinguish the clients to collect data on, you can modify the SQL
statement as required. An example SQL statement is as follows:

 | SELECT histogram(cast(TIMESTAMPastimestamp),interval1 minute) AS time,

COUNT(1) AS qps,user.username GROUP BY time,user.username ORDER BY time

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 335 of 577

The following figure shows the display result.

References

For more information on the TKE cluster audit feature and basic operations, see Cluster Audit.
Cluster audit data is stored in Cloud Log Service (CLS). To search and analyze the audit results in the CLS
console, see Syntax and Rules for the search syntax.

To analyze audit data, an SQL statement supported by CLS is required. For more information, see Overview.

https://intl.cloud.tencent.com.cn/document/product/457/38338
https://intl.cloud.tencent.com.cn/document/product/614/30439
https://intl.cloud.tencent.com.cn/document/product/614/37803

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 336 of 577

Overview

Ingress certificates created in the Tencent Kubernetes Engine (TKE) console will reference certificates hosted in the
SSL Certificate Service. If an Ingress is used for a long time, the Ingress certificate may expire, which will have a
major impact on online businesses. This document describes how to renew an Ingress certificate before it expires.

Directions

Querying the certificate expiration time

1. Log in to the SSL Certificate Service console and click Certificate Management in the left sidebar.
2. In the certificate list, click Expiry date to view certificates that are about to expire.

Adding a certificate

On the Certificate management page, you can renew an existing certificate to generate a new certificate. You can
Purchase certificate, Apply for free certificate, or Upload certificate to add a certificate.

Viewing Ingresses referencing old certificate

1. Log in to the SSL Certificate Service console and select Associate cloud resources next to a certificate to view

the load balancer that references this certificate.
2. Click the load balancer ID to redirect to the CLB details page. If the CLB is used for the TKE Ingress, tke-

clusterId and tke-lb-ingress-uuid will appear in the Tag section. tke-clusterId and tke-

lb-ingress-uuid indicate the cluster ID and Ingress UID, respectively.

3. On the Basic info page of the CLB, click the editing icon in the tag line to enter the Edit tags page.
4. Use Kubectl to query the Ingress of the cluster based on the cluster ID and filter out the Ingress resource whose

UID is tke-lb-ingress.uuid . The sample reference code is as follows:

$ kubectl get ingress --all-namespaces -o=custom-columns=NAMESPACE:.metadata.na

mespace,INGRESS:.metadata.name,UID:.metadata.uid | grep 1a******-****-****-a329

-eec697a28b35

api-prod gateway 1a******-****-****-a329-eec697a28b35

Renewing a TKE Ingress Certificate
Last updated：2022-05-31 11:53:12

https://console.intl.cloud.tencent.com.cn/ssl
https://console.intl.cloud.tencent.com.cn/ssl
https://console.intl.cloud.tencent.com.cn/ssl

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 337 of 577

According to the query result, api-prod/gateway in this cluster references the certificate. Therefore, this Ingress

needs to be updated.

Updating an Ingress

1. In the TKE console, find the Ingress that references the old certificate and click Update forwarding

configuration.

2. On the Update forwarding configuration page, create a secret for the new certificate.

On the Create key page, select the new certificate and click Create secret.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 338 of 577

Return to the Update forwarding configuration page, modify the TLS configuration of the Ingress, and add the
created certificate secret.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 339 of 577

Click Update forwarding configuration to renew the Ingress certificate.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 340 of 577

Overview

As HTTPS becomes increasingly popular, most websites have begun to upgrade from HTTP to HTTPS. To use
HTTPS, you need to apply for a certificate from an authority and pay a certain cost. The more certificates you apply
for, the higher the cost will be. cert-manager is a powerful certificate management tool for Kubernetes. You can use

cert-manager based on the ACME protocol and Let's Encrypt to issue free certificates and have certificates
automatically renewed. In this way, you can use certificates permanently for free.

Principles

How cert-manager works

After being deployed to a Kubernetes cluster, cert-manager queries custom CRD resources that it supports. You can
create CRD resources to instruct cert-manager to issue certificates and automatically renew certificates, as shown in
the figure below:

Using cert-manager to Issue Free Certificates
Last updated：2022-04-21 10:27:46

https://tools.ietf.org/html/rfc8555
https://letsencrypt.org/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 341 of 577

Issuer/ClusterIssuer: indicates the method used by cert-manager to issue certificates. This document mainly
describes the ACME method for issuing free certificates.

Note：

Issuer differs from ClusterIssuer in that Issuer can only be used to issue certificates under your own
namespace, whereas ClusterIssuer can be used to issue certificates under any namespace.

Certificate: is used to pass the domain name certificate information, the configuration required for issuing a
certificate, and Issuer/ClusterIssuer references to cert-manager.

Issuing a free certificate

Let’s Encrypt uses the ACME protocol to verify the ownership of a domain name. After successful verification, a free

certificate is automatically issued. The free certificate is valid for only 90 days, so verification needs to be performed
again to renew the certificate before the certificate expires. cert-manager supports automatic renewal of certificates,
which allows you to use certificates permanently for free. You can verify the ownership of a certificate by using two
methods: HTTP-01 and DNS-01. For more information on the verification process, see How It Works.

HTTP-01 verification
DNS-01 verification

HTTP-01 verification adds a temporary location for the HTTP service to which a domain name is directed. This
method is only applicable to issuing a certificate for services that use open ingress traffic and does not support
wildcard certificates.
For example, Let’s Encrypt sends an HTTP request to http://<your_domain>/.well-known/acme-

challenge/<token> . YOUR_DOMAIN indicates the domain name to be verified, and TOKEN indicates a file

placed by the ACME client. In this case, the ACME client is cert-manager. You can modify or create ingress rules to
add temporary verification paths and direct them to the service that provides TOKEN . Let’s Encrypt will then verify

whether TOKEN meets the expectation. If the verification succeeds, a certificate is issued.

Verification method comparison
The HTTP-01 methods features simple configuration and extensive applicability. Different DNS providers can use the

same configuration method. The disadvantages of this method are that it relies on ingress resources, is applicable
only to services that support open ingress traffic, and does not support wildcard certificates.
The advantages of DNS-01 are that it does not rely on ingress resources and supports wildcard domain names. Its
disadvantages are that different DNS providers have different configuration methods, and cert-manager Issuer does
not support too many different DNS providers. However, you can deploy the cert-manager-enabled webhook service
to extend Issuer in order to support more DNS providers, such as DNSPod and Alibaba DNS. For more information on

https://letsencrypt.org/how-it-works/
https://cert-manager.io/docs/concepts/webhook/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 342 of 577

supported providers, see the webhook list.
This document uses the recommended DNS-01 method, which offers comprehensive features with few restrictions.

Directions

Installing cert-manager

Usually, you can use YAML to install cert-manager in your cluster with one click. For more information, see this

document on the official website: Installing with regular manifests.
The official image used by cert-manager can be pulled from quay.io . Alternatively, you can run the following

command to use the image synchronized to the mainland China CCR for one-click installation:

Note：
This method requires that the cluster version is 1.16 or later.

kubectl apply --validate=false -f https://raw.githubusercontent.com/TencentCloudC

ontainerTeam/manifest/master/cert-manager/cert-manager.yaml

Configuring DNS

Log in to a DNS provider backend system, configure the DNS A record of the domain name, and direct it to the
opened IP address of the real server that needs the certificate. To do this, see the figure below, where Cloudflare is
used as an example.

Issuing a certificate by using the HTTP-01 verification method

HTTP-01 validation can be performed by using Ingress. Cert-manager will automatically modify the Ingress or add an
Ingress to expose the temporary HTTP path needed for validation. When HTTP-01 validation is configured for Issuer,

https://cert-manager.io/docs/configuration/acme/dns01/#webhook
https://cert-manager.io/docs/installation/kubernetes/#installing-with-regular-manifests

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 343 of 577

if the name of an Ingress is specified, the specified Ingress will be modified to expose the HTTP path needed for

validation. If class is specified, an Ingress will be added automatically. You can refer to the following Example.

Each ingress provided by TKE corresponds to a CLB. If you use an existing ingress provided by TKE to open services

while using the HTTP-01 verification method, you can only adopt the automatic ingress modification mode, but not the
automatic ingress addition mode. For automatically added ingresses, other CLBs will be automatically created,
causing the opened IP address inconsistent with the ingress of the real server. In this case, Let's Encrypt fails to find
the temporary path needed for verification in the service ingress, which results in verification failure and the failure to
issue a certificate. If you use a user-created ingress, for example, by deploying Nginx Ingress on TKE, and ingresses

in the same ingress class share the same CLB, the automatic ingress addition mode is supported.

Example

If you use an ingress provided by TKE to open a service, you cannot use cert-manager to issue and manage free
certificates. This is because certificates are referenced in Certificate Management and are not managed in
Kubernetes.
If you deploy Nginx Ingress on TKE and the ingress of the real server is prod/web , you can create an Issuer by

referring to the following sample code:

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

name: letsencrypt-http01

namespace: prod

spec:

acme:

server: https://acme-v02.api.letsencrypt.org/directory

privateKeySecretRef:

name: letsencrypt-http01-account-key

solvers:

- http01:

ingress:

name: web # Specifies the name of the ingress for automatic modification.

When you use an Issuer to issue a certificate, cert-manager will automatically create an ingress and automatically
modify prod/web of the ingress to open the temporary path needed for verification. See the following sample code

for automatic ingress addition:

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

name: letsencrypt-http01

namespace: prod

https://intl.cloud.tencent.com.cn/document/product/457/38072
https://console.intl.cloud.tencent.com.cn/ssl
https://intl.cloud.tencent.com.cn/document/product/457/38072

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 344 of 577

spec:

acme:

server: https://acme-v02.api.letsencrypt.org/directory

privateKeySecretRef:

name: letsencrypt-http01-account-key

solvers:

- http01:

ingress:

class: nginx # Specifies the ingress class of the automatically created ingress.

After successfully creating an Issuer, refer to the following sample code to create a certificate and reference the Issuer
to issue the certificate:

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

name: test-mydomain-com

namespace: prod

spec:

dnsNames:

- test.mydomain.com # Indicates the domain name for issuing a certificate.

issuerRef:

kind: Issuer

name: letsencrypt-http01 # References Issuer and indicates the HTTP-01 method is

used for verification.

secretName: test-mydomain-com-tls # The issued certificate will be saved in this

Secret.

Issuing a certificate by using the DNS-01 verification method

If you choose to use the DNS-01 verification method, you must select a DNS provider. cert-manager provides built-in
support for DNS providers. For the detailed list and usage, see Supported DNS01 providers. If you need to use a DNS

provider other than those on the list, refer to the following two schemes:

Scheme 1: Configuring a custom nameserver
Scheme 2: Using webhooks

On the backend system of the DNS provider, configure a custom nameserver and direct it to the address of a
nameserver that can manage other DNS providers’ domain names, such as Cloudflare. You can log in to the backend

of Cloudflare to view the specific address, as shown in the figure below:

https://cert-manager.io/docs/configuration/acme/dns01/#supported-dns01-providers

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 345 of 577

You can configure a custom nameserver for namecheap, as shown in the figure below:

Finally, when configuring the Issuer and specifying the DNS-01 verification method, add the Cloudflare information.

Obtaining and using certificates

After creating a certificate, you can run the kubectl command to check whether the certificate has been issued
successfully.

$ kubectl get certificate -n prod

NAME READY SECRET AGE

test-mydomain-com True test-mydomain-com-tls 1m

 READY = False : indicates that the certificate failed to be issued. You can run the describe command to

check the event and analyze the failure cause.

$ kubectl describe certificate test-mydomain-com -n prod

 READY = True : indicates that the certificate was issued successfully. In this case, the certificate will be stored

in the specified Secret, for example, default/test-mydomain-com-tls . You can run kubectl to view the

certificate, where tls.crt indicates the certificate, and tls.key indicates the key.

$ kubectl get secret test-mydomain-com-tls -n default

...

data:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 346 of 577

tls.crt: <cert>

tls.key: <private key>

You can mount the certificate to the app that needs it or directly reference the Secret in an ingress that you created.
The following shows a sample YAML file:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: test-ingress

annotations:

kubernetes.io/Ingress.class: nginx

spec:

rules:

- host: test.mydomain.com

http:

paths:

- path: /web

backend:

serviceName: web

servicePort: 80

tls:

hosts:

- test.mydomain.com

secretName: test-mydomain-com-tls

References

cert-manager official website
How It Works
API reference docs
Certificate

https://cert-manager.io/
https://letsencrypt.org/how-it-works/
https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.Issuer
https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.Certificate

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 347 of 577

Overview

If you use DNSPod to manage your domain names and want to automatically issue free certificates for domain names
in Kubernetes, you can use cert-manager to this end:

cert-manager supports many DNS providers but not DNSPod. However, it offers a webhook to support more

providers, and support for DNSPod is also implemented in the community. This document describes how to use cert-
manager and cert-manager-webhook-dnspod to automatically issue free certificates for domain names in DNSPod.

Basic Knowledge

We recommend you read Using cert-manager to Issue Free Certificates first.

Directions

1. Create a DNSPod key

Log in to the DNSPod console. In Key Management, create a key and copy the automatically generated ID and

 Token

2. Install cert-manager

Install cert-manager. For more information, please see Using cert-manager to Issue Free Certificates.

3. Install cert-manager-webhook-dnspod

Use HELM to install cert-manager-webhook-dnspod. You need to prepare the HELM configuration file.
Below is a sample dnspod-webhook-values.yaml :

Using cert-manager to Issue Free Certificate
for DNSPod Domain Name
Last updated：2021-12-03 16:13:23

groupName: example.your.domain # Enter a custom group name

secrets: # Paste the generated ID and token below

apiID: "<id>"

apiToken: "<token>"

https://docs.dnspod.cn/
https://cert-manager.io/docs/concepts/webhook/
https://github.com/qqshfox/cert-manager-webhook-dnspod
https://intl.cloud.tencent.com.cn/document/product/457/38713
https://console.dnspod.cn/account/token
https://intl.cloud.tencent.com.cn/document/product/457/38713

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 348 of 577

For the complete configuration, please see values.yaml.

Use HELM for installation:

4. Create a certificate

Use the following YAML file to create a Certificate object to issue a free certificate:

If the status becomes READY , the certificate is successfully issued:

If the issuance fails, you can run describe to view the cause:

clusterIssuer:

enabled: true # Automatically create a ClusterIssuer

email: your@email.com # Enter your email address

git clone --depth 1 https://github.com/qqshfox/cert-manager-webhook-dnspod.git

helm upgrade --install -n cert-manager -f dnspod-webhook-values.yaml cert-manage

r-webhook-dnspod ./cert-manager-webhook-dnspod/deploy/cert-manager-webhook-dnspo

d

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

name: example-com-crt

namespace: istio-system

spec:

secretName: example-com-crt-secret # The certificate is stored in this secret

issuerRef:

name: cert-manager-webhook-dnspod-cluster-issuer # The automatically generated C

lusterIssuer is used here

kind: ClusterIssuer

group: cert-manager.io

dnsNames: # Enter the list of domain names for which to issue certificates. Ensu

re that all the domain names are managed by DNSPod

- example.com

- test.example.com

$ kubectl -n istio-system get certificates.cert-manager.io

NAME READY SECRET AGE

example-com-crt True example-com-crt-secret 25d

kubectl -n istio-system describe certificates.cert-manager.io example-com-crt

https://github.com/qqshfox/cert-manager-webhook-dnspod/blob/master/deploy/cert-manager-webhook-dnspod/values.yaml

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 349 of 577

5. Use the certificate

After the certificate is successfully issued, it will be stored in the specified Secret as follows:

Use in Ingress
Use in Istio ingress gateway

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: test-ingress

annotations:

kubernetes.io/ingress.class: nginx

spec:

rules:

- host: test.example.com

http:

paths:

- path: /

backend:

serviceName: web

servicePort: 80

tls:

hosts:

- test.example.com

secretName: example-com-crt-secret # Reference the certificate secret

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 350 of 577

When a Kubernetes cluster is running, nodes may become unavailable due to component faults, kernel deadlocks,
insufficient resources, and other causes. By default, the kubelet monitors the status of node resources such as
PIDPressure, MemoryPressure, and DiskPressure. However, if nodes are already unavailable or the kubelet has

started draining the pods when reporting node statuses, the native Kubernetes node health monitoring mechanism
may not function properly. To detect node faults proactively, you need to add more specific metrics to describe node
health status and adopt corresponding recovery policies to achieve smart OPS, reduce development costs, and
migitate the burden on OPS personnel.

node-problem-detector

Node problem detector (NPD) is an open-source Kubernetes addon for node health detection. NPD enables users to

set regular expressions to detect node exceptions in system logs or files. Based on the OPS experiences, users can
set regular expressions that may generate exception logs and choose the report mode. NPD will parse the
configuration file. When a log can match the regular expression rules set by the user, the detected exception status
can be reported through NodeCondition, Event, or Prometheus Metric. Except for the log matching function, NPD also
allows users to write custom detection addons. Users can develop their own script or executable file and integrate it
into the NPD addon. In this way, NPD can execute the detection program periodically.

TKE NPDPlus Add-On

In TKE, NPD is enhanced and integrated as an add-on called NodeProblemDetectorPlus (NPDPlus). You can install
this add-on in existing clusters with one click. Alternatively, you can deploy NPDPlus when creating a cluster. TKE
extracts metrics that can detect node exceptions in certain ways and integrates these metrics into NPDPlus. For
example, NPDPlus can detect the systemd status of the kubelet and Docker in containers as well as the CVM file
descriptor and thread pressure.

TKE uses NPDPlus to detect node unavailability proactively, instead of reporting exceptions after nodes become
unhealthy. After users deploy NPDPlus in a TKE cluster and run the command kubectl describe node , they

can view some node conditions. For example, FDPressure indicates whether the number of file descriptors used on
the node has reached 80% of the threshold allowed by the CVM, and ThreadPressure indicates whether the number

Using the TKE NPDPlus Plug-In to Enhance
the Self-Healing Capability of Nodes
Last updated：2020-11-26 15:22:55

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 351 of 577

of threads on the node has reached 90% of the threshold allowed by the CVM. Users can monitor these conditions
and configure preventive policies to minimize potential exceptions. For more information, see Node Conditions.

Meanwhile, the current opinion of Kubernetes is that the NotReady mechanism of nodes relies on the parameter

settings of kube-controller-manager. Therefore, when a node network connection fails, Kubernetes can hardly detect
node exceptions in seconds. In some scenarios (such as livestreaming and online conferences), this is unacceptable.
NPDPlus inherits the distributed node health detection feature. It can detect node network status in seconds and
check whether nodes can communicate with other nodes without communicating with the Kubernetes master
component.

For more information on how to use the TKE NPDPlus add-on, see NodeProblemDetectorPlus Usage.

Node Self-Healing

The health status information of nodes is collected to proactively detect node exceptions before business pods
become unavailable. This way, OPS or development personnel can correct Docker, the kubelet, or nodes in a timely
manner. To reduce the workload of OPS personnel, NPDPlus provides self-healing capabilities based on collected
node status information. Cluster admins can configure self-healing capabilities, such as restarting Docker, restarting
the kubelet, or restarting CVM nodes, based on different node states. Meanwhile, to prevent node avalanche in

clusters, strict throttling must be performed before self-healing to prevent massive numbers of nodes from being
restarted. The specific policies are as follows:

Only one node in the cluster can perform a self-healing action at a time, and the interval between self-healing
actions must be no less than one minute.
When a new node is added to the cluster, the node will be given a 2-minute toleration period to prevent incorrect

self-healing from being triggered by the initial instability of the node addition.
If a node remains abnormal after a CVM restart is triggered, the node will not perform any additional self-healing
actions within 3 hours.

NPDPlus records all executed self-healing actions in Node Event, so that cluster admins can monitor the events that
occur on nodes, as shown in the figure below:

https://intl.cloud.tencent.com.cn/document/product/457/38784#node-conditions
https://intl.cloud.tencent.com.cn/document/product/457/38784#.E4.BD.BF.E7.94.A8.E6.96.B9.E6.B3.95

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 352 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 353 of 577

Overview

Kubectl is a command line tool provided by Kubernetes for performing operations on clusters. It uses Kubeconfig as a
configuration file (the default path is ~/.kube/config) to configure the information of multiple clusters, and

manage and operate multiple clusters.

To manage and operate the TKE or EKS cluster through Kubectl, you need to enable the APIServer's public or private
network access on the cluster basic information page to obtain Kubeconfig (cluster access credentials). If you need to
use Kubectl to manage multiple clusters, generally you need to extract the contents of each field in Kubeconfig and
merge them into the Kubeconfig file of the device where Kubectl locates. This method is complicated and may easily
cause an error.

Through kubecm tool, you can merge multiple cluster access credentials into kubeconfig more simply and efficiently.
This document describes how to use kubecm to efficiently manage the Kubeconfig of multiple clusters.

Prerequisites

You have created a TKE or EKS cluster.
You have installed kubectl command line tool on the device used for managing multiple clusters.

Directions

Installing kubecm

Install Kubecm on the device used for managing multiple clusters.

Obtaining cluster access credential

After creating a TKE or EKS cluster, you need to follow the instructions below to obtain access credentials for TKE or

EKS cluster.

Obtaining access credential for TKE cluster

1. Log in to the TKE console and click Cluster in the left sidebar.

Using kubecm to Manage Multiple Clusters
kubeconfig
Last updated：2021-05-11 14:16:42

https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/document/product/457/34048
https://kubernetes.io/docs/tasks/tools/#kubectl
https://kubecm.cloud/#/en-us/install
https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 354 of 577

2. Click the ID/name of the cluster that needs to obtain the access credential to go to the management page.
3. Click Basic Information on the left side.
4. On the Basic Information page, enable Internet Access and Private Network Access in Cluster APIServer

Information section.

5. Click Download on the right side of Kubeconfig to download Kubeconfig.

Obtaining access credential for EKS cluster

1. Log in to the TKE console and click Elastic Cluster in the left sidebar.

2. Click the ID/name of the cluster that needs to obtain the access credential to go to the management page.
3. Click Basic Information on the left side.
4. On the Basic Information page, enable Internet Access and Private Network Access in Cluster APIServer

Information section.

https://console.intl.cloud.tencent.com.cn/tke2/ecluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 355 of 577

5. Click Download on the right side of Kubeconfig to download Kubeconfig.

Using Kubecm to add access credential to Kubeconfig

This document takes the cluster access credential cls-l6whmzi3-config as an example. Run the following

command, use Kubecm to add the access credential to Kubeconfig (-n means you can specify the context name).

Examples are as follows:

kubecm add -f cls-l6whmzi3-config -n cd -c

Viewing cluster list

Run the command kubecm ls to view the cluster list in kubeconfig (The asterisk identifies the cluster is under

operation), as shown below:

$ kubecm ls

+------------+------------+-----------------------+--------------------+---------

--------------------------+-------------------+

| CURRENT | NAME | CLUSTER | USER | SERVER | Namespace |

+============+============+=======================+====================+=========

==========================+===================+

| * | cd | cluster-chh6kgf9d9 | user-chh6kgf9d9 | https://cls-l6whmzi3.ccs.tence

| default |

| | | | | nt-cloud.com | |

+------------+------------+-----------------------+--------------------+---------

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 356 of 577

--------------------------+-------------------+

| | bj | cluster-6qaua96n | user-6qaua96n | https://cls-6qaua96n.ccs.tence | kube

-system |

| | | | | nt-cloud.com | |

+------------+------------+-----------------------+--------------------+---------

--------------------------+-------------------+

Switching the cluster

Run the command kubecm switch to interactively switch to another cluster, as shown below:

Removing the cluster

Run the command kubecm delete to remove a cluster, as shown below:

$ kubecm delete bj

Context Delete:「bj」

「/Users/roc/.kube/config」 write successful!

+------------+---------+-----------------------+--------------------+------------

-----------------------+--------------+

| CURRENT | NAME | CLUSTER | USER | SERVER | Namespace |

+============+=========+=======================+====================+============

=======================+==============+

| | cd | cluster-chh6kgf9d9 | user-chh6kgf9d9 | https://cls-l6whmzi3.ccs.tence |

default |

| | | | | nt-cloud.com | |

+------------+---------+-----------------------+--------------------+------------

-----------------------+--------------+

References

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 357 of 577

Open-source kubecm
kubecm Official Documents

https://github.com/sunny0826/kubecm
https://kubecm.cloud/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 358 of 577

Use Cases

The cluster auditing and event storage features of TKE are configured with rich visual charts to display audit logs and
cluster events in multiple dimensions. Their operations are simple, and most common cluster Ops use cases are
covered, making it easy for you to find and locate problems, improve the Ops efficiency, and maximize the value of

audit and event data.
This document describes how to use audit and event dashboards to quickly locate cluster problems for several use
cases.

Prerequisites

You have logged into the TKE console and enabled cluster auditing and event storage.

Samples

Sample 1. Troubleshooting workload disappearance

1. Log in to the TKE console.

2. On the left sidebar, select Cluster Ops > Auditing Search.
3. Select the K8s Object Operation Overview tab and specify the operation type and resource object to be

checked in Filters.
4. Click Filter to start the query. The result is as shown below:

As shown above, the 10001****7138 account deleted the nginx application at 2020-11-

30T03:37:13 . For more information on the account, select CAM > User List.

Sample 2. Troubleshooting node cordoning

1. Log in to the TKE console.

Quick Troubleshooting Using TKE Audit and
Event Services
Last updated：2022-06-10 16:48:45

https://console.intl.cloud.tencent.com.cn/tke2/cluster?rid=1
https://intl.cloud.tencent.com.cn/document/product/457/38338
https://intl.cloud.tencent.com.cn/document/product/457/30686
https://console.intl.cloud.tencent.com.cn/tke2
https://console.intl.cloud.tencent.com.cn/cam
https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 359 of 577

2. On the left sidebar, select Cluster Ops > Auditing Search.
3. Select the Node Operation Overview tab and specify the name of the cordoned node in Filters.
4. Click Filter to start the query. The result is as shown below:

As shown above, the 10001****7138 account cordoned the 172.16.18.13 node at 2020-11-

30T06:22:18 .

Sample 3. Troubleshooting slow API server response

1. Log in to the TKE console.
2. On the left sidebar, select Cluster Ops > Auditing Search.
3. Select the Aggregated Search tab, which provides trend graphs of API server access requests in multiple

dimensions, such as user, operation type, and return status code, as shown below:

Operator distribution trend:

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 360 of 577

Operation type distribution trend:

Status code distribution trend:

As shown above, the tke-kube-state-metrics user has much more access requests than others. The

operation type distribution trend shows that most of the operations are LIST operations, and the status code
distribution trend shows that most of the status codes are 403. The business logs show that the tke-kube-

state-metrics add-on kept requesting API server retries due to the RBAC authentication issue, resulting in a

sharp increase in API server access requests. Below is a sample log:

E1130 06:19:37.368981 1 reflector.go:156] pkg/mod/k8s.io/client-go@v0.0.0-20191

109102209-3c0d1af94be5/tools/cache/reflector.go:108: Failed to list *v1.VolumeA

ttachment: volumeattachments.storage.k8s.io is forbidden: User "system:servicea

ccount:kube-system:tke-kube-state-metrics" cannot list resource "volumeattachme

nts" in API group "storage.k8s.io" at the cluster scope

Sample 4. Troubleshooting a node exception

1. Log in to the TKE console.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 361 of 577

2. On the left sidebar, select Cluster Ops > Event Search.
3. Select the Event Overview tab and enter the abnormal node IP in the Resource Object filter.
4. Click Filter to start the query.

5. Click the event to further view the trend of the abnormal event.

As shown above, starting from 2020-11-25 , the 172.16.18.13 node was abnormal due to insufficient disk

space, after which kubelet started to try evicting Pods on the node to repossess the disk space.

Sample 5. Locating a node scale-out trigger

The cluster auto-scaler (CA) add-on automatically increases or decreases the number of nodes in the cluster
according to the load condition when node pool elastic scaling is enabled. If a node in the cluster is automatically
scaled, you can backtrack the whole scaling process through event search.

1. Log in to the TKE console.

2. On the left sidebar, select Cluster Ops > Event Search.

3. Select the Global Search tab and enter the following search command in the search box:

event.source.component : "cluster-autoscaler"

4. Select event.reason , event.message , and event.involvedObject.name from the Hidden

Fields on the left for display. Click Search and Analysis and view the results.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 362 of 577

5. Sort the search results by Log Time in reverse order as shown below:

As shown above, the event shows that the node scale-out occurred at 2020-11-25 20:35:45 , which was

triggered by three Nginx Pods (nginx-5dbf784b68-tq8rd , nginx-5dbf784b68-fpvbx , and nginx-

5dbf784b68-v9jv5). As a result, three nodes were added, and further scale-out was not triggered as the

maximum number of nodes was reached in the node pool.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 363 of 577

TKE allows you to manage the general authorization of sub-accounts by using the authorization management
feature in the console and customize your authorization by using a custom YAML (Using RBAC Authorization).
Kubernetes RBAC authorization description and principle are as shown below:

Permission objects (Role or ClusterRole): Use apiGroups, resources, and verbs to define permissions,
including:

Role permission object: Used for a specific namespace.
ClusterRole permission object: It can be reused for authorization in multiple namespaces (RoleBinding) or the
entire cluster (ClusterRoleBinding).

Authorization object (Subjects): The subjects for granting permissions, including three types of subjects: User,
Group, and ServiceAccount.
Permission binding (RoleBinding or ClusterRoleBinding): It combines and binds the permission objects and
authorization objects, including:

RoleBinding: Used for a specific namespace.
ClusterRoleBinding: Used for the entire cluster.

Kubernetes RBAC authorization mainly provides the following four permission binding methods. This document
describes how to use them for user authorization management.

Method Description

Method 1. Bind permissions in a
namespace

RoleBinding references a Role object to grant Subjects resource
permissions in a namespace.

Method 2. Reuse permission
objects for binding in multiple
namespaces

Different RoleBinding objects in multiple namespaces can reference the
same ClusterRole object template to grant Subjects the same template
permissions.

Method 3. Bind permissions in
the entire cluster

ClusterRoleBinding references the ClusterRole template to grant Subjects
permissions for the entire cluster.

Method 4. Customize
permissions

You can customize permissions, for example, grant a user the permission
to log in to the TKE cluster in addition to the preset read-only permission.

Note：
In addition to the above methods, you can combine ClusterRole with other ClusterRoles by using
aggregationRule on Kubernetes RBAC v1.9 or later. For more information, see Aggregated ClusterRoles.

Customizing RBAC Authorization in TKE
Last updated：2022-06-10 19:32:53

https://kubernetes.io/zh/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/zh/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 364 of 577

Method 1. Bind permissions in a namespace

This method is mainly used to bind related permissions under a certain namespace for a certain user. It is suitable for
scenarios that require refined permissions. For example, developers, testers, and Ops personnel can only manipulate
resources in their respective namespaces. The following describes how to implement permission binding for a
namespace in TKE.

1. Use the following shell script to create a test namespace and a test user of ServiceAccount type, and set up cluster

access credential (token) authentication as shown below:

USERNAME='sa-acc' # Set the test account name

NAMESPACE='sa-test' # Set the test namespace name

CLUSTER_NAME='cluster_name_xxx' # Set the test cluster name

Create the test namespace

kubectl create namespace ${NAMESPACE}

Create the test ServiceAccount account

kubectl create sa ${USERNAME} -n ${NAMESPACE}

Obtain the Secret token resource name automatically created by the ServiceAcc

ount account

SECRET_TOKEN=$(kubectl get sa ${USERNAME} -n ${NAMESPACE} -o jsonpath='{.secret

s[0].name}')

Get the plaintext token of the Secrets

SA_TOKEN=$(kubectl get secret ${SECRET_TOKEN} -o jsonpath={.data.token} -n sa-t

est | base64 -d)

Set an access credential of token type using the obtained plaintext token inf

ormation

kubectl config set-credentials ${USERNAME} --token=${SA_TOKEN}

Set the context entries for accessing the cluster

kubectl config set-context ${USERNAME} --cluster=${CLUSTER_NAME} --namespace=

${NAMESPACE} --user=${USERNAME}

2. Run the kubectl config get-contexts command to view the generated contexts as shown below:

3. Create a Role permission object resource file sa-role.yaml as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 365 of 577

4. Create a RoleBinding object resource file sa-rb-test.yaml . The following permission binding indicates that

the sa-acc user of ServiceAccount type has sa-role-test (Role type) permissions in the sa-test

namespace, as shown below:

5. From the verification result as shown below, you can find that when the Context is sa-context , the default

namespace is sa-test , and it has the permissions configured in the sa-role-test (Role) object under

the sa-test namespace, but it has no permissions under the default namespace.

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

namespace: sa-test # Specify the namespace

name: sa-role-test

rules: # Set the permission rule

- apiGroups: ["", "extensions", "apps"]

resources: ["deployments", "replicasets", "pods"]

verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: sa-rb-test

namespace: sa-test

subjects:

- kind: ServiceAccount

name: sa-acc

namespace: sa-test # The namespace of the ServiceAccount

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

roleRef:

kind: Role

name: sa-role-test

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 366 of 577

Method 2. Reuse permission objects for binding in multiple
namespaces

This method is mainly used to grant the same permissions in multiple namespaces to a user. It is suitable for
scenarios where a permission template is used to bind permissions in multiple namespaces. For example, you might
want to bind the same resource operation permissions for DevOps personnel in multiple namespaces. The following

describes how to reuse cluster permissions in multiple namespaces in TKE.

1. Use the following shell script to create an user authenticated with X.509 self-signed certificate, approve the CSR
and the certificate as trustworthy, and set the cluster resource access credential Context as shown below:

USERNAME='role_user' # Set the username

NAMESPACE='default' # Set the test namespace name

CLUSTER_NAME='cluster_name_xxx' # Set the test cluster name

Use OpenSSL to generate a self-signed certificate key

openssl genrsa -out ${USERNAME}.key 2048

Use OpenSSL to generate a self-signed CSR file, where `CN` indicates the user

name and `O` indicates the group name

openssl req -new -key ${USERNAME}.key -out ${USERNAME}.csr -subj "/CN=${USERNAM

E}/O=${USERNAME}"

Create a Kubernetes CSR

cat <<EOF | kubectl apply -f -

apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequest

metadata:

name: ${USERNAME}

spec:

request: $(cat ${USERNAME}.csr | base64 | tr -d '\n')

usages:

- digital signature

- key encipherment

- client auth

EOF

Approve the certificate as trustworthy

kubectl certificate approve ${USERNAME}

Obtain the self-signed certificate CRT

kubectl get csr ${USERNAME} -o jsonpath={.status.certificate} | base64 --decode

> ${USERNAME}.crt

Set the cluster resource access credential (X.509 certificate)

kubectl config set-credentials ${USERNAME} --client-certificate=${USERNAME}.crt

--client-key=${USERNAME}.key

Set the Context cluster and default namespace

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 367 of 577

kubectl config set-context ${USERNAME} --cluster=${CLUSTER_NAME} --namespace=

${NAMESPACE} --user=${USERNAME}

2. Create a ClusterRole object resource file test-clusterrole.yaml as shown below:

3. Create a RoleBinding object resource file clusterrole-rb-test.yaml . The following permission binding

indicates that the role_user user with the self-signed certificate authentication has test-clusterrole

(ClusterRole type) permissions in the default namespace, as shown below:

4. From the verification result as shown below, you can find that when the Context is role_user , the default

namespace is default , and it has the permissions configured by the test-clusterrole permission

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: test-clusterrole

rules:

- apiGroups: [""]

resources: ["pods"]

verbs: ["get", "watch", "list", "create"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: clusterrole-rb-test

namespace: default

subjects:

- kind: User

name: role_user

namespace: default # The namespace of the user

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

roleRef:

kind: ClusterRole

name: test-clusterrole

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 368 of 577

object.

5. Create the second RoleBinding object resource file clusterrole-rb-test2.yaml . The following permission

binding indicates that the role_user user with the self-signed certificate authentication has test-

clusterrole (ClusterRole type) permissions in the default2 namespace.

6. From the verification result as shown below, you can find that in the default2 namespace, role_user also

has the permissions configured by test-clusterrole . At this point, you have implemented permission reuse

and binding in multiple namespaces.

Method 3. Bind permissions in the entire cluster

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: clusterrole-rb-test

namespace: default2

subjects:

- kind: User

name: role_user

namespace: default # The namespace of the user

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

roleRef:

kind: ClusterRole

name: test-clusterrole

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 369 of 577

This method is mainly used to bind permissions of all namespaces for a user. It is suitable for cluster-wide
authorization, such as log collection permission and admin permission. The following directions describe how to use
multiple namespaces in TKE to reuse cluster permission for authorization binding.

1. Create a ClusterRoleBinding object resource file clusterrole-crb-test3.yaml . The following permission

binding indicates that the role_user user with the certificate authentication has test-clusterrole

(ClusterRole type) permissions in the entire cluster.

2. From the verification result as shown below, you can find that after the YAML of permission binding is applied,
 role_user has the cluster-wide test-clusterrole permissions.

Method 4. Customize permissions

This section describes how to grant a user custom permissions as a cluster admin, including preset read-only

permission and additional permission to log in to the TKE cluster.

1. Authorize

First, grant read-only permission to a specified user as instructed in Using Preset Identity Authorization.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: clusterrole-crb-test

subjects:

- kind: User

name: role_user

namespace: default # The namespace of the user

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

roleRef:

kind: ClusterRole

name: test-clusterrole

apiGroup: "" # The default apiGroup is `rbac.authorization.k8s.io`.

https://intl.cloud.tencent.com.cn/document/product/457/37368

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 370 of 577

2. View user information in the RBAC

View the information of the user bound to the read-only ClusterRoleBinding, which is to be bounded to the new
ClusterRoleBinding. As shown below, you need to view the details in the ClusterRoleBinding object of the specified
user.

subjects:

- apiGroup: rbac.authorization.k8s.io

kind: User

name: 700000xxxxxx-1650879262 # The username of the specified user in RBAC. You n

eed to get this information of the specified user.

3. Create a ClusterRole

Create a ClusterRole through YAML for a read-only user with TKE login permission as shown below:

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRole

metadata:

name: "700000xxxxxx-ClusterRole-ro" # ClusterRole name

rules:

- apiGroups:

- ""

resources:

- pods

- pods/attach

- pods/exec # Pod login permission

- pods/portforward

- pods/proxy

verbs:

- create

- get

- list

- watch

4. Create a ClusterRoleBinding

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 371 of 577

Create the YAML file of the ClusterRoleBinding for the specified user as shown below:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: "700000xxxxxx-ClusterRoleBinding-ro"

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: "700000xxxxxx-ClusterRole-ro" # Use the ClusterRole name in step 3

subjects:

- apiGroup: rbac.authorization.k8s.io

kind: User

name: "700000xxxxxx-1650879262" # Use the user information in step 2

Summary

Combined with Tencent Cloud access permission management and Kubernetes RBAC authorization mode, the
authorization management feature in the TKE console becomes simple and convenient, which can meet the
permission management scenarios of most Tencent Cloud sub-accounts. The custom permission binding through
YAML is more flexible and suitable for complex and personalized user permission control. You can choose a

permission management method as needed.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 372 of 577

Use Cases

If Tencent Cloud accounts in your organization are de-registered due to employee resignation or transfer, you can use
TKE to quickly clear the accounts or have them automatically cleared. This document describes how to use the
TKE console to clear the RBAC resource objects of Tencent Cloud accounts that have been de-registered.

Principle

RBAC controls user access to clusters. For more information, see Overview.

Directions

Viewing de-registered Tencent Cloud accounts

You can view de-registered Tencent Cloud accounts in your cluster in the following steps:

1. Log in to the TKE console and select Cluster on the left sidebar.
2. On the cluster management page, select the target region.
3. In the cluster list, click a cluster ID to enter the cluster details page.

4. Select Authorization Management > ClusterRoleBinding or RoleBinding. Under the Account Username in
the list, a de-registered Tencent Cloud account will be red. Hover over it, and you'll be prompted to clear relevant
resource objects.

Clearing invalid accounts

You can quickly clear the RBAC resource objects of the de-registered Tencent Cloud accounts manually or
automatically in the following steps:

1. Log in to the TKE console and select Cluster on the left sidebar.

2. On the cluster management page, select the target region.
3. In the cluster list, click a cluster ID to enter the cluster details page.

Clearing De-registered Tencent Cloud
Account Resources
Last updated：2022-08-26 17:44:49

https://intl.cloud.tencent.com.cn/document/product/457/37366
https://console.intl.cloud.tencent.com.cn/tke2/cluster
https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 373 of 577

4. Select Authorization Management > ClusterRoleBinding or RoleBinding. On the ClusterRoleBinding or
RoleBinding page, click Clear invalid account in the top-right corner.

5. In the Clear De-registered Tencent Cloud Account pop-up window, click Clear now to clear those that haven't
been cleared.
You can also enable automatic clearing to have de-registered accounts cleared in an automatic and scheduled

manner.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 374 of 577

Overview

The cloud-native era has witnessed the popularity of the DevOps concept and its implementation thanks to the rise
and wide spread of container technologies. Continuous integration and continuous deployment based on container
DevOps can significantly speed up application creation and delivery, thereby enhancing enterprise competitiveness.

This document describes how to coordinate the TCR delivery pipeline feature, TKE, and CODING DevOps to offer
easy-to-use container DevOps capabilities and enable automatic triggering of image build and application deployment
after code push or automatic triggering of deployment after local image push.

Prerequisites

DevOps
Quick Implementation of Container DevOps in
TKE Using TCR Delivery Pipeline
Last updated：2022-06-10 16:48:46

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 375 of 577

You have purchased a TCR Enterprise Edition instance and created an image repository as instructed in Creating
an Enterprise Edition Instance and Basic Image Repository Operations.
You have created a TKE cluster and deployed the container application as instructed in Creating a Cluster.

You have activated the CODING DevOps service.

Note
Currently, you can use a TCR Enterprise Edition image to create a workload in the TKE console. In addition,
you can install TCR-dedicated add-ons for general TKE clusters to pull images from TCR Enterprise Edition
over the private network without a secret. For more information, see Using a Container Image in a TCR

Enterprise Instance to Create a Workload.

Directions

Use case 1. Automatic triggering of image build and application deployment after code push

You can configure the pipeline to automatically build the image and trigger automatic deployment to the container
platform after code changes.

Configuring delivery pipeline

1. Log in to the TCR console and select Delivery Pipeline on the left sidebar.
2. On the Delivery Pipeline page, click Create as shown below:

https://intl.cloud.tencent.com.cn/document/product/1051/35486
https://intl.cloud.tencent.com.cn/document/product/1051/35488
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/document/product/457/36838
https://console.intl.cloud.tencent.com.cn/tcr/pipeline

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 376 of 577

3. In Basic Info, configure the following parameters and click Next: Image Configuration as shown below:

Pipeline Name: Set the delivery pipeline name.

Pipeline Description: Add description information for the delivery pipeline, which can be modified later.

4. In Image Configuration, configure the following parameters and click Next: Application Deployment as shown
below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 377 of 577

Image Repository: Select the image repository associated with the delivery pipeline to automatically configure
and push the image build.
Image Version Filtering: Impose limitations on the version of images in the execution delivery pipeline to filter out

unnecessary ones for execution deployment.
Deploy any version: Any version of the image pushed to the image repository will be deployed.
Deploy specified version only: Specify the image tag and separate multiple versions with commas. Versions
not specified will not be deployed.
Deploy specified rule version only: You need to enter a regular expression.

Image Source: Supports images built on the platform and locally pushed. Here, the first kind is used as an
example.
Image built on the platform: Allows you to associate code repositories from different code hosting platforms
and automatically triggers the delivery pipeline when code changes for the automatic build, image push, and
application deployment.
Image pushed locally: When images are manually pushed, application deployment is triggered.

Code Source and Code Repository: Select the code repository used to build the image, and the pipeline will
pull the source code of the repository for compilation and build. Authorization is required during first use.
Currently, GitHub, public GitLab, private GitLab, Gitee, and TGit code hosting platforms are supported.
Trigger Rule: Rule for triggering automatic image build. Currently, four rules are supported:

Upon pushing to a specified branch: You need to specify a branch.

Upon pushing a new tag: The build is triggered when a tag is created and pushed.
Upon pushing to a branch: You don't need to specify a branch, as the build is triggered upon push to any
branch.
Upon matching branch or tag rules: You need to enter a regular expression, for example,
 ̂ refs/heads/master$, to match the master branch for triggering.

Dockerfile Path: The image build is based on a Dockerfile in the code repository, and you need to specify the
path to this file. If it is not specified, the file named Dockerfile in the root directory of the code repository is

used by default.
Build Directory: The working directory where the image build is executed, that is, the context. By default, it is
the root directory of the code repository.
Version Rule: Define the name of the image generated by the build, that is, the image tag. You can use custom

prefixes and add branch/tag , update time , and commit number environment variables. Here,

 update time is the system time to build the service by running the docker tag command.

5. In Application Deployment, configure the following parameters and click OK.

Platform: The delivery pipeline supports TKE, EKS, and TKE Edge. In this use case, TKE is used as an example.
Region: Region of the target cluster. Select the region of the created general TKE cluster.

Cluster: Target cluster. Select the created general TKE cluster.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 378 of 577

Deployment Method: Currently, only Update existing workloads is supported.
Namespace: Namespace of the deployed application.
Workload: The workload associated with the deployed application.

Pod Container: Pod container within the workload of the deployed application. It uses the image from the image
repository associated in the previous step.

6. After completing the above configuration, you can view the created pipeline on the Delivery Pipeline list page.

Updating container application

After completing the above configuration, the system can automatically trigger the image build, push, and application
update after the application code is updated.

1. Update the source code.
Update the source code and commit it to the remote code repository as shown below:

2. Execute the pipeline.
After the source code is pushed, the pipeline execution will be triggered if the image build trigger conditions in the
image configuration are met. You can click a pipeline to view its execution history and progress.

Checkout: Check out the code.

Docker Build: Build the image based on the image build configuration and tag the generated image with the
specified rule, for example, v-{tag}-{date}-{commit} .

Docker Push: The system automatically pushes the image to the associated image repository.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 379 of 577

Deploy to TKE: Use the latest pushed image to update the associated workload and the image with the same
name in the Pod.

3. Check the application update status.

4. Log in to the TKE console and select Cluster on the left sidebar.
5. Click the ID of the target cluster to enter the Workload page.
6. On the Deployment tab, click the Instance Name to enter the instance details page.
7. On the Update History tab, view the statuses of application updates. As shown below, v1 is the manually

deployed Nginx image, which was updated to v2, a new image that was automatically built after the pipeline

execution.

You can also access the application service to check whether the update is completed, specifically, over the public
network address exposed by the Service, as shown below:

Use case 2. Automatic triggering of deployment after local image push

In some use cases, if you don't need to have an image automatically built, you can still use TCR to have the locally
pushed image automatically deployed to a container platform via a trigger.

Configuring delivery pipeline

1. Log in to the TCR console and select Delivery Pipeline on the left sidebar.
2. On the Delivery Pipeline page, click Create as shown below:

https://console.intl.cloud.tencent.com.cn/tke2/cluster?rid=1
https://console.intl.cloud.tencent.com.cn/tcr/pipeline

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 380 of 577

3. In Basic Info, configure the following parameters and click Next: Image Configuration as shown below:

Pipeline Name: Set the delivery pipeline name.

Pipeline Description: Add description information for the delivery pipeline, which can be modified later.

4. In Image Configuration, configure the following parameters and click Next: Application Deployment as shown
below:

Image Repository: Select the image repository associated with the delivery pipeline to automatically configure
and push the image build for hosting application deployment.
Image Version Filtering: Impose limitations on the version of images in the execution delivery pipeline to filter out
unnecessary ones for execution deployment.

Deploy any version: Any version of the image pushed to the image repository will be deployed.
Deploy specified version only: Specify the image tag and separate multiple versions with commas. Versions
not specified will not be deployed.
Deploy specified rule version only: You need to enter a regular expression.
Image Source: Supports images built on the platform and locally pushed. Here, the second kind is used as an
example.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 381 of 577

Image built on the platform: Allows you to associate code repositories from different code hosting platforms
and automatically triggers the delivery pipeline when code changes for the automatic build, image push, and
application deployment.

Image pushed locally: When images are manually pushed, application deployment is triggered.

5. In Application Deployment, configure the following parameters and click OK.

Platform: The delivery pipeline supports TKE, EKS, and TKE Edge. In this use case, TKE is used as an example.
Region: Region of the target cluster. Select the region of the created general TKE cluster.
Cluster: Target cluster. Select the created general TKE cluster.

Deployment Method: Currently, only Update existing workloads is supported.
Namespace: Namespace of the deployed application.
Workload: The workload associated with the deployed application.
Pod Container: Pod container within the workload of the deployed application. It uses the image from the image
repository associated in the previous step.

Updating container application

After completing the above configuration, you can push the image locally by running commands to trigger automatic

deployment.

1. Push the image locally.
2. Log in to the TCR console and select Image Repository on the left sidebar.

On the Image Repository page, you can view the list of image repositories in the current instance. To switch the
instance, select the target instance from the Instance Name drop-down list at the top of the page.

3. Click Shortcuts on the right of the instance to view the shortcuts in the pop-up window.
4. Execute the pipeline.

After the image is pushed locally, the pipeline execution will be triggered if the image build trigger conditions in the
image configuration are met. As the image is ready, the pipeline only needs to perform automatic deployment.

5. Check the application update status.

6. Log in to the TKE console and select Cluster on the left sidebar.
7. Click the ID of the target cluster to enter the Workload page.
8. On the Deployment tab, click the Instance Name to enter the instance details page.
9. On the Update History tab, you can view the application update status.

You can also access the application service to check whether the update is completed, specifically, over the public

https://console.intl.cloud.tencent.com.cn/tcr
https://console.intl.cloud.tencent.com.cn/tke2/cluster?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 382 of 577

network address exposed by the Service, as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 383 of 577

Overview

DevOps, a combination of development and operations, is becoming more and more popular among enterprises. It
represents a culture that values the communication and collaboration between software developers (Dev) and IT Ops
technicians (Ops). DevOps aims to make the process of software building, testing, and release faster, more frequent,

and more reliable by automating the software delivery and architecture change processes. It can enable agile
development in the cloud-native era. This document describes TKE DevOps for cloud native, where a seamless
DevOps pipeline is established from the automatic image build triggered by code committing to the subsequent
automatic deployment and update of applications in TKE clusters.

TKE DevOps

Overview

TKE DevOps is an integration of Tencent Kubernetes Engine (TKE), Tencent Container Registry (TCR), and CODING

DevOps. It's a one-stop cloud-native service featuring automated code compilation, container image build, image
push, and application deployment for container use cases.

Business process

TKE DevOps is a lifecycle management scheme that automates everything from code update to application
deployment and update. Its business process is as shown below:

Quick Implementation of Container DevOps in
TKE Using CODING
Last updated：2022-06-14 17:35:08

https://intl.cloud.tencent.com.cn/document/product/457
https://intl.cloud.tencent.com.cn/document/product/1051/35480

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 384 of 577

Prerequisites

You have created a TKE test cluster as instructed in Quickly Creating a Standard Cluster.
You have activated the TCR service, created accessible TCR test instances, and generated test instance access
credentials. You need TCR Enterprise Standard Edition or Premium Edition to support cloud-native delivery

workflows. For more information, see Billing Overview. For more information on the available regions of TCR, see
Billing Overview.
You have activated the CODING DevOps service and built a well-established CODING DevOps team. If you are
using a sub-account, you must have quickly created a sub-account with the operation permissions for the instance
in the CODING DevOps console by using your root account, or have granted the sub-account such permissions as
instructed in Cloud Access Management.

Directions

TKE DevOps provides a powerful cloud-native DevOps service. This document describes how it automates the entire
process from source code update to business release.

Accessing TKE DevOps

Log in to the TKE console, click DevOps on the left sidebar, and click Use Now .

https://intl.cloud.tencent.com.cn/document/product/457/40029
https://intl.cloud.tencent.com.cn/document/product/1051/35480
https://intl.cloud.tencent.com.cn/document/product/1051/35483
https://intl.cloud.tencent.com.cn/document/product/1051/35483
https://console.intl.cloud.tencent.com.cn/coding/container-devops
https://intl.cloud.tencent.com.cn/document/product/598/32631
https://console.intl.cloud.tencent.com.cn/coding/container-devops

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 385 of 577

Configuring code hosting

Create a test project and test code repository on the CODING team homepage. For more information on CODING
code hosting, see Code Hosting.

Creating build plan

1. Log in to CODING DevOps and select Project on the left sidebar.

2. On the Project Management page, click the name of the created test project to enter its details page.
3. On the left sidebar, click Continuous Integration > Build Plan > Create Build Plan to enter the Select Build

Plan Template page.

Note：
A build plan is the basic unit of continuous integration and can be created quickly from a template. For more

information, see Continuous Integration Quick Start.

4. Select the Build image and push it to TCR Enterprise Edition template to quickly create a plan .
Select the code source to be checked out and configure TCR access credential environment variables according to
the build plan template. You can preview the generated Jenkinsfile on the right as shown below:

Note：
CODING DevOps and TCR instances are connected and images are pushed over the private network by

default, which requires no extra configuration.
For a build project generated by using the template, you can customize its details by selecting the target
project on the build plan details page and clicking Set on the project details page .

Basic Info allows you to select basic configuration items such as code source and node pool. For more information
on node pools, see Building Node.

Process Configuration allows you to configure the environment for running build tasks. For more information, see
Building Environment.
Trigger Rule allows you to configure trigger rules for a build plan that can be triggered in multiple ways. For more
information, see Trigger Rule.
Variables and Cache list environment variables and cache configuration items. For more information, see

Environment Variables and Cache Directories.
Notification allows notifications to be sent to specific CODING team members when a build plan is completed.

6. Click OK.

https://help.coding.net/docs/host/introduce.html
https://tencent-test.coding.net/user/projects
https://help.coding.net/docs/ci/start.html
https://help.coding.net/docs/ci/node/overview.html
https://help.coding.net/docs/ci/ways.html
https://help.coding.net/docs/devops/ci/trigger.html
https://help.coding.net/docs/ci/env.html
https://help.coding.net/docs/ci/cache.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 386 of 577

7. (Optional) Click Project Configuration > Developer Options > Webhook > Create Webhook to push event
notifications to WeCom and other instant messaging platforms as instructed in Webhook and Binding WeCom
Group Bot. For more information on CODING continuous integration, see Continuous Integration.

Creating continuous deployment

1. Log in to CODING DevOps and select Project on the left sidebar.
2. On the Project Management page, click the name of the created test project to enter its details page.
3. On the left sidebar, select Continuous Deployment > Kubernetes and click Configure Now.
4. On the Deployment Console page, select the cloud account to be configured. Then, you can proceed to

subsequent steps such as configuring applications and processes, associating projects and applications, and

starting deployment.

Configuring cloud account

Select a cloud account type as instructed in Cloud Account. Configure the cloud account for accessing resources in
the cloud. You can select a TKE or Kubernetes account. This document uses Kubernetes as an example to
describe how to configure a cloud account.

1. On the Kubernetes-Based Continuous Deployment page, click Configure Now.
2. On the Cloud Account Management page, click Bind Cloud Account on the right.

3. On the Bind Cloud Account page, select Kubernetes and other items as needed .
4. Click OK.

Configuring application and process

For more information on CODING applications and projects, see Applications and Projects and Process
Configuration. This document describes key configuration items to configure applications and processes.

1. When creating an application, select Kubernetes (TKE) Deployment as the deployment method.

2. When you create a deployment process in the new application, select the Kubernetes process template and then
select the template process as needed. Here, the Deploy Deployment and Service to Kubernetes cluster
process is used as an example.

3. When you configure the deployment process in Deployment Process, associate the TCR image artifact
generated in the previous continuous integration step under Enable Required Artifact.

4. On the Automatic Trigger page, bind the TCR image artifact. When a new version of an image is built
successfully, the deployment process will be triggered automatically. The configuration method is.

5. The Deployment and Service are configured in a similar way, that is, adding a cloud account with deployment
permission and entering a custom Manifest, that is, the deployment YAML template.
This document describes how to manually configure TKE to pull access credentials for a TCR private repository
image and customize the Deployment YAML. Below is a sample:

https://help.coding.net/docs/project/open/webhook.html
https://help.coding.net/docs/project/open/wechat-robot.html
https://help.coding.net/docs/ci/index.html
https://tencent-test.coding.net/user/projects
https://help.coding.net/docs/cd/cloudaccount.html
https://help.coding.net/docs/cd/app-project.html
https://help.coding.net/docs/cd/pipe/overview.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 387 of 577

Note：
In the sample, a simple Deployment YAML is used for the Kubernetes cluster, along with the default
 RollingUpdate policy. In practice, you can leverage Nginx-ingress, Istio, and other tools to configure

more advanced update policies, such as blue-green deployment, canary release, and A/B testing. For more
information, see Blue-Green Deployment, Nginx-ingress for Automated Grayscale Release, and Continuous

Deployment + TKE Mesh Grayscale Release Practice.

apiVersion: apps/v1

kind: Deployment

metadata:

name: devops-app

spec:

replicas: 2

selector:

matchLabels:

app: devops-app

template:

metadata:

labels:

app: devops-app

spec:

containers:

- image: xxx-test.tencentcloudcr.com/xxx-test/jokey-test # Sample image address

name: devops-app

ports:

- containerPort: 5000

imagePullSecrets: # Credential configuration for accessing the private reposito

ry

- name: tcr-secret # Access credential secret

Here, the image address field of spec.template.spec.containers.*.image is included in CODING's

conversion matching rules, which are described in Binding Artifact in Manifest.

Note：
TKE pulls a TCR private repository image in two ways:

In the available regions of TCR, you can configure secret-free pulling of TCR container images by TKE. For
more information on the available regions of TCR, see Billing Overview. For configuration directions, see
TKE Clusters Use the TCR Addon to Enable Secret-free Pulling of Container Images via Private Network.

https://help.coding.net/docs/best-practices/cd/blue-green.html
https://help.coding.net/docs/best-practices/cd/nginx-ingress.html
https://help.coding.net/docs/best-practices/cd/tke-mesh.html
https://help.coding.net/docs/cd/pipe/artifacts/in-kubernetes.html#%E5%9C%A8-manifest-%E4%B8%AD%E7%BB%91%E5%AE%9A%E5%88%B6%E5%93%81
https://intl.cloud.tencent.com.cn/document/product/1051/35483
https://intl.cloud.tencent.com.cn/document/product/1051/38386

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 388 of 577

Manually configure the TKE to pull access credentials of the TCR private repository image as instructed in
Sample TKE Configuration for Accessing Private Repository.

Below is a sample custom Service Manifest YAML:

apiVersion: v1

kind: Service

metadata:

labels:

app: devops-svc

name: devops-svc

spec:

ports:

- port: 5000

protocol: TCP

selector:

app: devops-app

6. (Optional) Configure custom event notifications for each deployment stage, so that you can be informed of the
deployment process. This document describes the WeCom notification mode. For more information on how to get

the Webhook URL of the WeCom bot, see Creating WeCom Group Bot.

Associating project and application

For more information on associating projects and applications, see Project and Application Association.

Starting deployment

For release by a posting order and its configuration, see Creating Posting Order. For more information on CODING
continuous deployment, see Continuous Deployment.

Testing and Verification

https://help.coding.net/docs/cd/question/private-repo.html#Kubernetes-%E4%BA%91%E8%B4%A6%E5%8F%B7%EF%BC%88TKE-%E9%9B%86%E7%BE%A4%EF%BC%89
https://help.coding.net/docs/project/open/wechat-robot.html#%E5%88%9B%E5%BB%BA%E4%BC%81%E4%B8%9A%E5%BE%AE%E4%BF%A1%E7%BE%A4%E6%9C%BA%E5%99%A8%E4%BA%BA
https://help.coding.net/docs/cd/app-project.html#%E5%BA%94%E7%94%A8%E4%B8%8E%E9%A1%B9%E7%9B%AE%E5%85%B3%E8%81%94
https://help.coding.net/docs/cd/app-project.html#%E6%96%B0%E5%BB%BA%E5%8F%91%E5%B8%83%E5%8D%95
https://help.coding.net/docs/cd/overview.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 389 of 577

In the project code file, add the v2 API code as shown below and commit the master branch:

The build plan in Continuous Integration uses the automatic execution upon code update event trigger

configuration. For more information on the trigger configuration, see Trigger Rule. When the modified code is
committed, the associated build plan will be automatically triggered.
If WeCom Webhook notifications are configured for continuous integration, WeCom will also receive the notifications.
When you generate a Docker image artifact in the build plan, the associated continuous deployment process will be
triggered to update the new image application to the TKE cluster.

If the deployment process is configured with WeCom notifications, WeCom will be notified upon the deployment task
completion.
At this point, you can see that the workload has been successfully updated in TKE as shown below:

The test and verification results show that the entire DevOps process from source code update to business release is
implemented in TKE.

https://help.coding.net/docs/devops/ci/trigger.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 390 of 577

Agile Development and DevOps

In the Internet industry, the concepts of agile development and DevOps are being adopted by more and more
enterprises. As a kind of collaborative culture, agile development and DevOps work to break down barriers and
increase the sense of common responsibility among members. At the same time, they also reduce handover work and

improve the speed of delivery to customers.
DevOps not only implements process tools (such as CI, CD, and containers) in enterprises, but also transforms the
process of development and team collaboration. CI/CD tools are particularly important for small- and medium-sized
enterprises (SMEs). By using mature tools and container technologies, enterprises can save costs and develop
capabilities for rapid iteration and rapid response to business changes.

The following figure shows the relationships between CI/CD and agile development and DevOps:

Overview

Full Implementation of Container DevOps in
TKE Using CODING
Last updated：2022-05-31 11:53:13

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 391 of 577

Based on native Kubernetes, Tencent Cloud TKE provides a container-based solution that solves environmental
issues in the processes of development, testing, and Ops and helps users to reduce costs and improve efficiency.
Implementing DevOps requires many tools and underlying services, and completing closed-loop linkage requires long-

term investment and the establishment of a complex toolchain system, which will consume a lot of time and resources
and can even affect R&D efficiency and delivery efficiency and delay business development. The combination of
CODING and cloud advantages provides a unified collaboration platform and R&D toolchain. When the workflow is
run on the CODING integrated R&D efficiency platform, the data will evolve into team knowledge accumulated in the
process of project implementation. Because the data becomes collective experience, it will facilitate the continuous

self-improvement of the team. CODING can also be used to implement full lifecycle management for software R&D
and save the trouble of complex infrastructure Ops hosting.
CODING can seamlessly interwork with TKE. This document describes how to implement CI/CD on CODING and
deploy services to TKE clusters.

Concepts

CI (Continuous Integration)

Continuous Integration is called CI for short. In the CI environment, developers frequently change and merge code,
and the system will automatically build an application and run different levels of automated testing to verify the

changes and ensure that the changes will not damage the application. The test items cover everything from classes
and functions to the different modules that constitute the whole application. If automated testing finds conflicts
between new code and existing code, CI can fix errors easily and quickly. See the figure below:

CD (Continuous Delivery and Continuous Deployment)

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 392 of 577

Note：
The difference between Continuous Delivery and Continuous Deployment: Continuous Delivery is a capability,
whereas Continuous Deployment is a method.

Continuous Delivery is called CD for short. After the CI process is completed, CD supports the following operations:

Automatic publication of verified code to the repository
Pre-production environment deployment
Delivery to the quality team or users

The following figure shows the detailed process:

Continuous Deployment is called CD for short. It is the last stage of CI/CD. Continuous Deployment automatically
deploys all changes, including Continuous Delivery, to the production environment. Generally, due to business
considerations, you can choose not to perform the deployment. If deployment is needed, Continuous Delivery must

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 393 of 577

be implemented first. The following figure shows the detailed process:

CI/CD tools

Currently, the following two types of CI/CD tools are provided:

On-Premise: These tools require users to establish a server to run the CI/CD tools.

Hosted tool-type SaaS service: Users do not need to establish a server. The advantages of hosted tools are as
follows:

Low maintenance costs: As the operation environment is hosted by services, there are no maintenance costs.
In contrast, on-premise tools require a great deal of time for server deployment and maintenance.
Clean operation environment: When using Python as the project programming language, you need to

continuously integrate different versions of Python (2.7, 3.6, and 3.7), whereas Hosted CI/CD can create a new
operation environment each time and allow you to make version adjustments at any time.
Pre-installed software and runtime environments: The continuous integration of a project requires the use
of different runtimes and toolchains. Hosted CI/CD Service has already been pre-installed with a lot of common
software and runtime environments, thus reducing the time it takes to establish an environment.

CODING

CODING is a tool for implementing the CI/CD process. CODING provides a complete set of R&D process
management systems (including the complete CI/CD process). The whole process from requirement submission to

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 394 of 577

product iteration, product design, code management, automated testing, continuous integration, build management,
and continuous deployment is completed in CODING. The use of CODING can achieve the standardization of
production line operations and automatic version recording, thus simplifying enterprise R&D management and

improving R&D efficiency.

CODING supports both hosted and on-premise CI/CD tools (supporting private deployment).
CODING supports Jenkins, code management (as well as GitHub and GitLab), agile development management,
and Kubernetes containerized deployment. It also seamlessly supports TKE.
SMEs can use hosted mode tools to achieve quick product delivery and implement fast business iteration.

Directions

Activating the DevOps service

Note：
The steps here are an example intended for a root account user who uses the DevOps service for the first time.
If you have activated the service, you can skip these steps and proceed to Creating a project and a code
repository.

1. Log in to the TKE console, and select DevOps in the left sidebar.
2. The "Container DevOps" page is displayed.

3. Select Activate service > Go to CAM to go to the "Role management" page.
4. Click Grant, and you will be redirected to the Activate service page.
5. Complete the team information and click OK to activate the DevOps service.

Creating a project and code repository

1. Log in to the TKE console, and select DevOps in the left sidebar.
2. The "Container DevOps" page is displayed.

3. Click Use now to enter the CODING DevOps page.
4. Select Project in the left sidebar to go to the project details page.
5. On the project details page, click +Create project in the upper right corner.
6. In the "Choose project template" step, click the "DevOps project" to go to the next page.
7. In the "Enter basic project information" step, enter the basic information of the project. Here, the project name

coding-test is used as an example.
8. Click Complete to create the project. After the project is created, the project overview page will be displayed.
9. On the overview page, click Code repository in the left sidebar to go to the details page of the code repository.

https://console.intl.cloud.tencent.com.cn/coding/container-devops
https://console.intl.cloud.tencent.com.cn/coding/container-devops

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 395 of 577

0. Click Create code repository and set the basic information of the repository. Here, a code repository named
coding-test is created as an example.

1. Click OK to create the code repository.

Creating an artifact repository

Software artifacts refer to binary files generated through source code compilation and packaging. Binary files in
different programming languages have different formats, and they usually can be directly run on a server.

Creation process

1. Log in to CODING DevOps and select Project in the left sidebar to enter the project management page.
2. On the "Project management" page, click the name of the project for which you want to create an artifact repository

to go to the project details page.

3. Select Artifact repository > Create repository in the left sidebar to enter the Create repository page.
4. On the "Create repository" page, set the key information as needed.
5. Click OK to complete the creation process. The repository details page will be automatically displayed.
6. Click Use access token to generate configuration to perform configuration after authentication.

Note：
After setting the access token, save it properly for future TKE image pulling.

Continuous integration

Note：
Before executing the building plan, you must run the following command to add the docker registry account of
CODING to the TKE cluster for image pulling authorization.

kubectl create secret docker-registry coding --docker-server=coding registry addr

ess --docker-username=user name --docker-password=password --docker-email=email a

ddress

1. Log in to CODING DevOps and select Project in the left sidebar to enter the project management page.

2. On the "Project management" page, click the name of the project for which you want to create an artifact repository
to go to the project details page.

3. In the left sidebar, select Continuous Integration > Building Plan. Click Create building plan to enter the
Select building plan template page.

https://tencent-test.coding.net/user/projects
https://tencent-test.coding.net/user/projects

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 396 of 577

4. Select a building plan template as needed, confirm the default settings of the template, and click OK.
This document takes the Golang+Gin+Docker template as an example to demonstrate a Go project.

Continuous deployment

1. Log in to CODING DevOps and select Project in the left sidebar to enter the project management page.

2. On the "Project management" page, click the name of the project for which you want to create an artifact repository
to go to the project details page.

3. In the left sidebar, select Continuous Deployment > Kubernetes and click Configure now.
4. On the Deployment console page, select the desired Tencent Cloud account type for configuration. Then, you

can proceed to subsequent steps such as configuring applications and processes, associating projects and

applications, and starting deployment.

References

This document briefly introduces how CODING implements basic CI/CD operations based on TKE. For more
information, refer to the documentation on the official website of CODING.

https://tencent-test.coding.net/user/projects
https://help.coding.net/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 397 of 577

Introduction

Jenkins helps users set up a continuous integration and continuous delivery environment. The Jenkins Master/Slave
pod architecture can solve the pain points of concurrence restriction in batch building for enterprises, implementing
continuous integration. This document describes how to use Jenkins in Tencent Cloud TKE to implement rapid and

sustainable business delivery and reduce resource and labor costs.

How It Works

The TKE-based Jenkins public network architecture is used as an example in this document. In this architecture, the
Jenkins Master is located outside the TKE cluster and the slave pod is located within the TKE cluster. The diagram of
the architecture is shown in the following figure:

Construction and Deployment of Jenkins
Public Network Framework Appications based
on TKE
Example
Last updated：2020-05-11 14:36:13

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 398 of 577

The Jenkins Master and TKE cluster are located in the same VPC network.
The Jenkins Master is outside the TKE cluster, and the slave pod is in a node of the TKE cluster.
The user submits code to GitLab, which triggers the Jenkins Master to call the slave pod to build, package, and

then publish the image into the TKE image repository. The TKE cluster pulls the image and triggers rolling update
for pod deployment.
Multi-slave-pod building can meet the need of concurrent batch building.

Operation Environment

This section describes the specific environment in this scenario.

TKE cluster

Role Kubernetes Version Operating System

TKE managed cluster 1.16.3 CentOS 7.6.0_x64

Jenkins configuration

Role Version

Jenkins Master 2.190.3

Jenkins Kubernetes plug-in 1.21.3

Nodes

Role Private IP Operating System CPU Memory Bandwidth

Jenkins Master 10.0.0.7 CentOS 7.6 64-bit 4 cores 8 GB 3 Mbps

Node 10.0.0.14 CentOS 7.6 64-bit 2 cores 4 GB 1 Mbps

Notes

Be sure that a Jenkins Master node is available under the same VPC as the TKE cluster, and that Git is installed for

the node.
Be sure that the GitLab code repository used in the steps already contains a Dockerfile file.
We recommend that you set the TKE cluster and Jenkins Master security group as being fully open to the private
network. For more information, see TKE Security Group Settings.

https://intl.cloud.tencent.com.cn/document/product/457/9084

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 399 of 577

Procedure

Complete the following steps to configure the TKE cluster and Jenkins. Then, use the slave pod to build, package, and
publish the image into the TKE image repository. Lastly, use the pulled image for pod deployment in the TKE console.

1. TKE Cluster and Jenkins Configuration

2. Slave Pod Building Configuration
3. Building Test

https://intl.cloud.tencent.com.cn/document/product/457/34867
https://intl.cloud.tencent.com.cn/document/product/457/34868
https://intl.cloud.tencent.com.cn/document/product/457/30637

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 400 of 577

TKE Cluster Configuration

This document describes how to customize RBAC authorization ServiceAccount in TKE and get the cluster access
address, token, and cluster CA certificate information required during Jenkins configuration.

Getting cluster credential

Note：

You need to enable private network access in the current cluster. For more information, see Basic Features.

1. Use the following Shell script to create a test namespace ci and a test user jenkins of ServiceAccount

type and get the cluster access credential (token) as shown below:

Create the test namespace `ci`

kubectl create namespace ci

Create the test ServiceAccount account

kubectl create sa jenkins -n ci

Get the secret token automatically created by the ServiceAccount account

kubectl get secret $(kubectl get sa jenkins -n ci -o jsonpath={.secrets[0].nam

e}) -n ci -o jsonpath={.data.token} | base64 --decode

2. Create a Role permission object resource file jenkins-role.yaml in the ci test namespace as follows:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

name: jenkins

rules:

apiGroups: [""]

resources: ["pods"]

Step 1: Configure the TKE cluster and Jenkins
Last updated：2022-03-24 10:03:45

https://intl.cloud.tencent.com.cn/document/product/457/39539
https://intl.cloud.tencent.com.cn/document/product/457/36833

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 401 of 577

verbs: ["create","delete","get","list","patch","update","watch"]

apiGroups: [""]

resources: ["pods/exec"]

verbs: ["create","delete","get","list","patch","update","watch"]

apiGroups: [""]

resources: ["pods/log"]

verbs: ["get","list","watch"]

 apiGroups: [""]

resources: ["secrets"]

verbs: ["get"]

3. Create a RoleBinding object resource file jenkins-rolebinding.yaml . The following permission binding

indicates that the jenkins user of ServiceAccount type has jenkins (Role type) permissions in the ci

namespace, as shown below:

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

name: jenkins

namespace: ci

roleRef:

apiGroup: rbac.authorization.k8s.io

kind: Role

name: jenkins

subjects:

- kind: ServiceAccount

name: jenkins

Getting cluster CA certificate

1. Log in to the node of the cluster as instructed in Logging In to Linux Instance Using Standard Login Method.

2. Run the following command to view the cluster CA certificate.

cat /etc/kubernetes/cluster-ca.crt

https://intl.cloud.tencent.com.cn/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 402 of 577

3. Record and save the returned certificate information, as shown in the following figure:

Authorizing docker.sock

Each node of the TKE cluster has a docker.sock file. The slave pod connects to this file when running docker

build . Before that, you need to log in to each node and run the following commands to authorize docker

build :

chmod 666 /var/run/docker.sock

ls -l /var/run/docker.sock

Configuring Jenkins

Adding a TKE private network access address

1. Log in to the Jenkins Master node as instructed in Logging in to Linux Instance Using Standard Login Method.
2. Run the following command to configure the access domain name.

sudo sed -i '$a 10.x.x.x cls-ixxxelli.ccs.tencent-cloud.com' /etc/hosts

Note：
This command can be obtained from Cluster APIServer on the basic information page of the cluster after

private network access is enabled in the cluster. For more information, see Getting cluster credential.

https://intl.cloud.tencent.com.cn/document/product/213/5436

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 403 of 577

3. Run the following command to query whether the configuration is successful.

cat /etc/hosts

If the result shown in the following figure appears, the configuration was successful.

Required plug-ins for Jenkins installation

1. Log in to the Jenkins backend and click Manage Jenkins on the left sidebar.
2. On the Manage Jenkins panel, click Manage Plugins.
3. On the Available tab, select Kubernetes, Git Parameter, and Extended Choice Parameter.

Locale：Chinese language plug-in. Installing this plug-in can make the Jenkins interface default to the Chinese
version.
Kubernetes: indicates the Kubernetes plug-in.
Git Parameter and Extended Choice Parameter: are used to pass parameters during package building.
Take the Kubernetes plug-in as an example, as shown in the following figure:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 404 of 577

4. After selecting the above plugins, click Install without restart and restart Jenkins.

Enabling the jnlp port

1. Log in to the Jenkins backend and click Manage Jenkins on the left sidebar.

2. On the Manage Jenkins panel, click Configure Global Security.
3. In TCP port for inbound agents, select Fixed and enter 50000.
4. Keep other configuration items as their defaults and click Save at the bottom of the page.

Adding TKE cluster token

1. Log in to the Jenkins backend and click Credentials > System on the left sidebar.
2. On the System panel, select Global credentials (unrestricted).

3. On the Global credentials (unrestricted) page, click Add Credentials on the left sidebar, and configure the
basic credential information as follows:

Kind: select Secret text.
Scope: use the default option Global (Jenkins, nodes, items, all child items, etc).
Secret: enter the token of ServiceAccount jenkins obtained in Getting cluster credential.

ID: leave it blank as default.

Description: complete the information about the credential, which is displayed as the credential name and
descriptive information. This document uses tke-token as an example.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 405 of 577

3. Click OK to add the credential, which is displayed in the credential list after being successfully added as shown
below:

!

Adding GitLab authentication

1. On the Global credentials (unrestricted) page, click Add Credentials on the left sidebar, and configure the
basic credential information as follows:

Kind: select Username with password.
Scope: use the default option Global (Jenkins, nodes, items, all child items, etc).
Username: indicates the GitLab username.

Password: indicates the GitLab login password.
ID: leave it blank as default.
Description: complete the information about the credential, which is displayed as the credential name and
descriptive information. This document uses gitlab-password as an example.

2. Click OK.

Configuring slave Pod template

1. Log in to the Jenkins backend and click Manage Jenkins on the left sidebar.

2. On the Manage Jenkins panel, click Configure System.
3. At the bottom of the Configure System panel, select Add a new cloud > Kubernetes in the Cloud section as

shown below:
4. Click Kubernetes Cloud details... to configure the following basic information for Kubernetes:

The following describes the main parameters. For other parameters, simply keep them as their defaults:

Name: a custom name. This document uses kubernetes as an example.

Kubernetes URL: the TKE cluster access address, see Obtaining the cluster credential.
Kubernetes server certificate key: to obtain the cluster CA certificate, see Obtaining the cluster CA
certificate.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 406 of 577

Credentials: select the tke-token credential created in the Adding TKE cluster token step and then click

Test Connection. If the connection succeeds, the "Connection successful" prompt will be displayed.
Jenkins URL: enter a Jenkins private network address, such as http://10.x.x.x:8080 .

5. Select Pod Templates > Add Pod Template > Pod Template details... and configure the basic information of
the pod template.
The following describes the main parameters. For other parameters, simply keep them as their defaults:

Name: enter a custom name. This document uses jnlp-agent as an example.

Labels: define the tag name. You can select a pod for building based on the tag. This document uses jnlp-

agent as an example.

Usage: select Use this node as much as possible.

6. In the Containers drop-down list, select Add Container > Container Template and configure the following
container information:

Name: enter a custom container name. This document uses jnlp-agent as an example.

Docker image: enter the image address jenkins/jnlp-slave:alpine .

*Working directory: keep it as its default. Record the working directory, which will be used for building and
packaging shell scripts.
Leave other options as their defaults.

7. In Volumes, complete the following steps to add a volume and configure the docker command for the slave Pod:
8. Select Add Volume > Host Path Volume. Enter /usr/bin/docker for both the host and mounting paths.

9. Select Add Volume > Host Path Volume. Enter /var/run/docker.sock for both the host and mounting

paths.
0. Click Save at the bottom of the page to complete configuring the slave Pod template.

Subsequent Operations

Go to Step 2: Slave pod building configuration to create a task and configure task parameters.

https://intl.cloud.tencent.com.cn/document/product/457/34868

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 407 of 577

This step describes how to build a slave pod in Jenkins by creating a task and configuring task parameters.

Creating a Task

1. Log in to the Jenkins backend and click New Task or Create a Task.
2. On the "Create a Task" page, configure the basic information of the task.

Enter a task name: enter a custom name. This document uses test as an example.

Type: select Build a freestyle software project.
3. Click OK to go to the task parameter configuration page.
4. Configure the basic information on the task parameter configuration page.

Description: enter custom task information. This document uses slave pod test as an example.

Parameterize the building process: check this option and choose Add Parameter > Git Parameter.

Configuring Task Parameters

1. On the "Git Parameter" panel, configure the following parameters.
The following describes the main parameters. For other parameters, simply keep them as their defaults:

Name: enter mbranch , which can be used to match and obtain a branch.

Parameter Type: select Branch or Tag.
2. Choose Add Parameters > Extended Choice Parameters. On the "Extended Choice Parameters" panel that

appears, configure the following parameters, as shown in the following figure:

Step 2:Slave pod build configuration
Last updated：2020-10-09 11:11:36

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 408 of 577

The following describes the main parameters. For other parameters, simply keep them as their defaults:
Name: enter name , which can be used to obtain the image name.

Basic Parameter Types: select this option.
Parameter Type: select Check Boxes.
Value: select this option and enter a custom image name. This value will be passed to the name variable.

This document uses nginx,php as an example.

3. Choose Add Parameters > Extended Choice Parameters. On the "Extended Choice Parameters" panel,

configure the following parameters, as shown in the following figure:

The following describes the main parameters. For other parameters, simply keep them as their defaults:
Name: enter version , which can be used to obtain the image tag variable.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 409 of 577

Basic Parameter Types: select this option.
Parameter Type: select Text Box to obtain the image value in text format and pass it to the version

variable.

4. Check Restrict the running node of the project. For the tag expression, enter the pod tag jnlp-agent set

in the Configuring the slave pod template step.

Configuring Source Code Management

In the "Source Code Management" area, select Git and configure the following information.

Repositories:
Repository URL: enter your GitLab address, such as https://gitlab.com/user-name/demo.git .

Credentials: select the authentication credential created in the Adding GitLab authentication step.
Branches to build:

Specified branch (any if it is empty): enter $mbranch , which is used to dynamically obtain the branch,

and its value corresponds to the value of mbranch defined in "Git Parameter".

Configuring the Shell Packaging Script

1. In the "Building" area, choose Add Building Step > Run Shell.

2. Copy and paste the following script content into the "Command" entry box. Then, click Save.

In this script, information such as the GitLab address, TKE image address, and username and password
of the image repository are for example only. In actual cases, replace them based on your needs.
Be sure to build the package based on the source code of Docker build. In addition, the working directory
 /home/Jenkins/agent must be consistent with the working directory of the container template in

"Container List".

echo "GitLab address: https://gitlab.com/[user]/[project-name]].git"

echo "Selected branch (image): "$mbranch", set branch (image) version: "$versio

n"

echo "TKE image address: hkccr.ccs.tencentyun.com/[namespace]/[ImageName]"

echo "1. Log in to the TKE image repository"

docker login --username=[username] -p [password] hkccr.ccs.tencentyun.com

echo "2. Build the package based on the source code of Docker build:"

cd /home/Jenkins/agent/workspace/[project-name] && docker build -t $name:$versi

https://intl.cloud.tencent.com.cn/document/product/457/34867#PodTemplates
https://intl.cloud.tencent.com.cn/document/product/457/34867#addGitlab
https://intl.cloud.tencent.com.cn/document/product/457/34867#ContainerTemplate

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 410 of 577

on

echo "3. Upload the Docker image to the TKE repository:"

docker tag $name:$version hkccr.ccs.tencentyun.com/[namespace]/[ImageName]:$nam

e-$version

docker push hkccr.ccs.tencentyun.com/[namespace]/[ImageName]:$name-$version

The script provides the following features:

Obtain the selected branch, image name, and image tag.
Publish the docker image combined and built with the code in the TKE image repository.

Subsequent Operations

You have now successfully built the slave pod. Next, go to Building Tests to publish and verify images.

https://intl.cloud.tencent.com.cn/document/product/457/34869

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 411 of 577

This step describes how to publish one or more images in the TKE image repository, and how to use an image to
create a Deployment in the TKE console.

Building configuration

1. Log in to the Jenkins backend and click the task "test" created in the Slave pod building configuration step from the

task list, as shown in the following figure:
2. Click Build with Parameters in the left sidebar to open the "Project test" panel and configure the following

parameters:

mbranch: select the branch required for building. This document uses origin/nginx as an example.

name: select the name of the image to be built based on your actual needs. This document uses nginx as

an example.
version: enter a custom image tag. This document uses v1 as an example.

3. Click Start Building.
After the building is successfully completed, go to the TKE console and choose Image Repository > My Images
to view the built image.

Publishing in the Console

1. Log in to the TKE console and click Clusters in the left sidebar.

2. Select the target cluster ID and go to the cluster management page of the Deployment to be created.
3. Click Create to go to the "Create a workload" page. See Creating a Deployment for the configuration of key

parameters.
In "Containers in the pod", choose Select Image > My Images. Then, select the image that was successfully
uploaded during the preceding building process.

4. Click Save to finish creating the Deployment.
On the Pod Management page, the nginx pod is running normally if the deployment was successful.

Related Operations: Batch Building Configuration

1. Log in to the Jenkins backend and click System Management in the left sidebar. Click System Configuration
on the "Manage Jenkins" panel that appears.

2. On the "System Configuration" page, customize the "number of executors". This document uses 10 as an example.

Build test
Last updated：2020-10-10 09:47:36

https://intl.cloud.tencent.com.cn/document/product/457/34868
https://console.intl.cloud.tencent.com.cn/tke2/registry/user
https://console.intl.cloud.tencent.com.cn/tke2/cluster
https://intl.cloud.tencent.com.cn/document/product/457/30662

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 412 of 577

The number of executors is 10, indicating that 10 jobs can be executed at the same time.

3. For other configuration items, ensure that they are consistent with those in the Configuring the slave pod template
step.

4. Create 10 tests by referring to the Slave pod building configuration step, as shown in the following figure.
5. Configure building for multiple tasks by referring to the Building Configuration step.
6. After the building is completed successfully, you can log in to the node and query the job pod by running the

following command.

kubectl get pod

If the result similar to the following is returned, the call was successful.

https://intl.cloud.tencent.com.cn/document/product/457/34867#PodTemplates
https://intl.cloud.tencent.com.cn/document/product/457/34868

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 413 of 577

Overview

In a Kubernetes cluster, some CI/CD workflow may need to use Docker to provide image packaging services. This
can be implemented by the Docker of the host. Mount Docker's UNIX Socket (/var/run/docker.sock) as the

hostPath to the CI/CD service Pod, and then call the Docker of the host through the UNIX Socket to build image in the

container. This method is simple and can save more resources than running a Docker host inside of another Docker
host (Docker in Docker). However, this method may encounter the following problems:

It cannot be performed in a cluster whose Runtime is containerd.
If it is not controlled, it may overwrite the existing image on the node.
When you need to modify the Docker Daemon configuration file, it may affect other services.

It is not safe in the multi-tenancy scenario. After the privileged Pod obtains the UNIX Socket of Docker, the
container in the Pod can not only call the host's Docker to build the image, delete the existing image or container, or
even operate other containers through docker exec interface.

For the first problem above, Kubernetes has officially announced that Docker will be disused after version 1.22. These
users may switch their service to containerd. For some clusters that require a containerd, and still use Docker to build
the image without changing the CI/CD service process, you can add the DinD container to the original Pod as a

sidecar or use DaemonSet to deploy the Docker service dedicated to building the image on the node.
This document describes the following two ways to use Docker to build images on the CI/CD workflow:

Using DinD as the Sidecar of Pod
Using DaemOnset to deploy Docker on each Containerd node

Directions

Using DinD as the Sidecar of Pod

For the implementation principle of DinD (Docker in Docker), see DinD Official Document. The following example

shows that adding a Sidecar to clean-ci container, and combined with emptyDir, making the clean-ci container can
access the DinD container through UNIX sockets.

Using Docker as an image building service in
a containerd cluster
Last updated：2021-01-11 10:20:30

https://hub.docker.com/_/docker

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 414 of 577

apiVersion: v1

kind: Pod

metadata:

name: clean-ci

spec:

containers:

- name: dind

image: 'docker:stable-dind'

command:

- dockerd

- --host=unix:///var/run/docker.sock

- --host=tcp://0.0.0.0:8000

securityContext:

privileged: true

volumeMounts:

- mountPath: /var/run

name: cache-dir

- name: clean-ci

image: 'docker:stable'

command: ["/bin/sh"]

args: ["-c", "docker info >/dev/null 2>&1; while [$? -ne 0] ; do sleep 3; docke

r info >/dev/null 2>&1; done; docker pull library/busybox:latest; docker save -o

busybox-latest.tar library/busybox:latest; docker rmi library/busybox:latest; whi

le true; do sleep 86400; done"]

volumeMounts:

- mountPath: /var/run

name: cache-dir

volumes:

- name: cache-dir

emptyDir: {}

Using DaemOnset to deploy Docker on each containerd node

This method is simple. You just need to directly forward the DaemonSet in the containerd cluster (mounting hostPath).
In order not to affect the /var/run path on the node, you can specify other paths.

1. Use the following YAML to deploy DaemonSet, as shown below:

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: docker-ci

spec:

selector:

matchLabels:

app: docker-ci

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 415 of 577

template:

metadata:

labels:

app: docker-ci

spec:

containers:

- name: docker-ci

image: 'docker:stable-dind'

command:

- dockerd

- --host=unix:///var/run/docker.sock

- --host=tcp://0.0.0.0:8000

securityContext:

privileged: true

volumeMounts:

- mountPath: /var/run

name: host

volumes:

- name: host

hostPath:

path: /var/run

2. Share the same hostPath between the service Pod and DaemonSet, as shown below:

apiVersion: v1

kind: Pod

metadata:

name: clean-ci

spec:

containers:

- name: clean-ci

image: 'docker:stable'

command: ["/bin/sh"]

args: ["-c", "docker info >/dev/null 2>&1; while [$? -ne 0] ; do sleep 3; doc

ker info >/dev/null 2>&1; done; docker pull library/busybox:latest; docker save

-o busybox-latest.tar library/busybox:latest; docker rmi library/busybox:lates

t; while true; do sleep 86400; done"]

volumeMounts:

- mountPath: /var/run

name: host

volumes:

- name: host

hostPath:

path: /var/run

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 416 of 577

Overview

Many DevOps requirements need to be implemented with Jenkins. This document describes how to deploy Jenkins in
TKE.

Prerequisites

You have created a TKE cluster.

Directions

Installing Jenkins

1. Log in to the TKE console and click Marketplace on the left sidebar.
2. On the Marketplace page, search for Jenkins and enter the Jenkins application page.

3. Click Create Application and configure values.yaml in Parameters as needed.

Deploying Jenkins on TKE
Last updated：2022-06-10 16:48:46

https://intl.cloud.tencent.com.cn/document/product/457/30637
https://console.intl.cloud.tencent.com.cn/tke2/market

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 417 of 577

4. Click Create.

Exposing Jenkins UI

By default, you can't access the Jenkins UI outside the cluster. To access it, you can use an Ingress. TKE provides
CLB type Ingress and Nginx type Ingress for your choice.

Logging in to Jenkins

On the Jenkins UI, enter the initial username and password to log in to the Jenkins backend. The username is
 admin , and the password can be obtained by running the following command.

kubectl -n devops get secret jenkins -o jsonpath='{.data.jenkins-admin-password}'

| base64 -d

Note：
When running the above command, replace the text with the actual namespace.

https://intl.cloud.tencent.com.cn/document/product/457/37013
https://intl.cloud.tencent.com.cn/document/product/457/38980

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 418 of 577

Creating user

We recommend you manage Jenkins as a general user. Before creating a general user, you need to configure an
authentication and authorization policy.

1. Log in to the Jenkins backend and click Dashboard > Manage Jenkins > Security > Configure Global
Security to enter the authentication and authorization policy page as shown below:

Security Realm: Select Jenkins' own user database.
Authorization: Select Logged-in users can do anything.

2. Click Dashboard > Manage Jenkins > Security > Manage Users > Create User and create a user as
prompted as shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 419 of 577

Username: Enter the username.

Password: Enter the password.
Confirm password: Confirm the password.
Full name: Enter the full username.

3. Click Create User.

Installing plugin

Log in to the Jenkins backend and click Dashboard > Manage Jenkins > System Configuration > Manage

Plugins to enter the plugin management page.

You can install the following commonly used plugins:

kubernetes
pipeline

git
gitlab
github

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 420 of 577

Tencent Kubernetes Engine (TKE) provides elastic scalability at cluster and service levels. It can monitor the metrics
of a container including CPU, memory, and bandwidth and perform auto scaling. At the same time, clusters can be
auto scaled if a container does not have sufficient resources or has more resources than necessary. Please see the

figure below:

Cluster Auto Scaling Features

TKE allows users to enable auto scaling for clusters, helping users manage their computing resources efficiently.
Users can set scaling policies based on their needs. Cluster auto scaling has the following features:

Cluster auto scaling can dynamically and automatically create and release Cloud Virtual Machines (CVMs) in real

time based on the project load situation to help users cope with project situation with the optimal number of
instances. No human intervention is needed throughout the whole process, freeing users from manual deployment.
Cluster auto scaling can help users handle project situation with the optimal amount of node resources. When there
are more needs, it seamlessly and automatically adds CVMs to container clusters. When there are fewer needs, it
automatically removes unnecessary CVMs to increase device ultilization and reduce the costs of deployment and
instances.

Cluster Auto Scaling Feature Description

Auto Scaling
Cluster Auto Scaling Practices
Last updated：2019-09-25 15:42:29

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 421 of 577

Basic Features of Kubernetes Cluster Auto Scaling

Supports setting multiple scaling groups.
Supports setting scale-in and scale-out policies. For more information, see Cluster Autoscaler.

Advanced TKE Scaling Group Features

Supports using custom models while creating the scaling groups (recommended).

Supports using a node in a cluster as a template while creating a scaling group.
Supports adding spot instances to scaling groups (recommended).
Supports automatically matching an appropriate scaling group when a model is sold out.
Supports configuring scaling groups across availability zones.

Cluster Auto Scaling Restrictions

The number of nodes that can be added by cluster auto scaling is limited by the VPC, container network, TKE

cluster node quota, and the quota of CVMs that can be purchased.
Whether nodes can be scaled out depends on whether the model you want to use is still available. If the model is
sold out, nodes cannot be scaled out. It is recommended to configure multiple scaling groups.
You need to configure the request value of the container under the workload. With the request value,

whether the resources in the cluster are sufficient can be assessed in order to decide whether to trigger automatic
scale-out.

It is not recommended to enable monitoring metric-based auto scaling of nodes.
Deleting a scaling group will also terminate the CVM instances in it. Please be cautious when doing so.

Configuring Cluster Scaling Groups

Configuring multiple scaling groups (recommended)
When there are multiple scaling groups in a cluster, the auto scaling component will select a scaling group for
scale-out according to the scaling algorithm you select. The component will only select one scaling group each

time. If it fails to scale out the target scaling group for reasons such as CVM model sold-out, the scaling group will
be put to sleep for a period of time. At the same time, the second matching scaling group will be selected for scale-
out.

Random: select a random scaling group for scale-out.
Most-Pods: select the scaling group that can schedule the most Pods based on the pending Pods and the

models you select for the scaling groups.
Least-waste: select the scaling group that can ensure the fewest remaining resources after Pod scheduling
based on the pending Pods and the models you select for the scaling groups.

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 422 of 577

It is recommended to configure multiple scaling groups with different models in the cluster, so as to prevent the
scaling failures caused by model sold-out. At the same time, you can use a combination of spot instances and
normal instances to reduce costs.

Configuring a single scaling group
If you only want to use one specific model for cluster scale-out, we recommend that you configure the scaling group
to multiple subnets and availability zones.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 423 of 577

Operation Scenarios

If a TKE cluster is configured with a node pool and enables Auto Scaling, automatic node scale-out (automatically
purchasing of devices and adding them to the cluster) can be triggered when node resources are insufficient. This
scale-out process takes some time and may be too slow to ensure normal business operations in some scenarios with

sudden traffic increases. tke-autoscaling-placeholder can be used to implement scale-out on TKE in

seconds, which is suitable for scenarios with sudden traffic increases. This document introduces how to use tke-

autoscaling-placeholder to implement Auto Scaling in seconds.

How It Works

 tke-autoscaling-placeholder utilizes low-priority pods to preemptively occupy resources (pause containers

with request, consuming only a small amount of resources), reserving some resources as a buffer for high-priority

businesses prone to sudden traffic spikes. When pod scale-out is needed, high-priority pods will quickly occupy the
resources of low-priority pods for scheduling. In this case, the low-priority pods of tke-autoscaling-

placeholder will change to the Pending status. If you have configured a node pool and enabled Auto Scaling,

node scale-out will be triggered. As some resources are used as a buffer, even if the node scale-out process is slow,
some pods can still be quickly scaled out and scheduled, achieving scaling in seconds. You can adjust the amount of
resources reserved as the buffer by adjusting request in tke-autoscaling-placeholder or the number of

replicas based on your needs.

Use limits

To use the tke-autoscaling-placeholder app, the cluster version must be later than 1.18.

Directions

Installing tke-autoscaling-placeholder

Using tke-autoscaling-placeholder to
Implement Auto Scaling in Seconds
Last updated：2021-08-12 15:20:26

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 424 of 577

1. Log in to the TKE console.
2. In the left sidebar, click App Market to go to the "App Market" management page.
3. In the search box of the "App Market" page, enter tke-autoscaling-placeholder to search for the app, as

shown in the figure below:

4. On the "App Details Page", click Create an App in the "Basic Information" module.
5. In the "Create an App" window that pops up, configure and create an app based on your needs, as shown in the

figure below:

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 425 of 577

Configuration instructions:

Name: enter the app name. It can contain up to 63 characters, including lowercase letters, numbers, and
hyphens ("-"). It must begin with a lowercase letter and end with a number or lowercase letter.
Region: select the region for deployment.
Cluster Type: select Standard Cluster.
Cluster: select the ID of the cluster for deployment.

Namespace: select the namespace for deployment.
Parameters: among the configuration parameters, the most important ones are replicaCount and

 resources.request , which indicate the number of replicas of tke-autoscaling-placeholder

and the amount of resources occupied by each replica, respectively. They collectively determine the size of
buffer resources. You can set them based on the estimated amount of extra resources needed for sudden traffic

increases.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 426 of 577

For complete parameter configuration descriptions for tke-autoscaling-placeholder , see the

following table:

Parameter Name Description Default Value

replicaCount Number of placeholder replicas 10

image placeholder image address
 ccr.ccs.tencentyun.com

/library/pause:latest

resources.requests.cpu Amount of CPU resources occupied
by a single placeholder replica

300m

resources.requests.memory Size of memory occupied by a single
placeholder replica

600Mi

lowPriorityClass.create Whether to create a low PriorityClass
(to be imported by placeholder)

true

lowPriorityClass.name Name of the low PriorityClass low-priority

nodeSelector
Specifies the node with a specific label
to which placeholder will be
scheduled.

{}

tolerations Specifies the taint to be tolerated by
placeholder.

[]

affinity Specifies the affinity configuration of
placeholder.

{}

6. Click Create to deploy the tke-autoscaling-placeholder app.

7. Run the following commands to check whether the pod for resource preemptive occupation starts successfully.
Below is a sample:

$ kubectl get pod -n default

tke-autoscaling-placeholder-b58fd9d5d-2p6ww 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-55jw7 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-6rq9r 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-7c95t 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-bfg8r 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-cfqt6 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-gmfmr 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-grwlh 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-ph7vl 1/1 Running 0 8s

tke-autoscaling-placeholder-b58fd9d5d-xmrmv 1/1 Running 0 8s

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 427 of 577

Deploying a high-priority pod

By default, the priority of tke-autoscaling-placeholder is low. You can specify a high PriorityClass for its

business pod to facilitate preemptive resource occupation and implement quick scale-out. If you have not yet created
a PriorityClass, you can refer to the following sample to create one:

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

name: high-priority

value: 1000000

globalDefault: false

description: "high priority class"

In the business Pod, set priorityClassName to a high PriorityClass. Below is a sample:

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx

spec:

replicas: 8

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

priorityClassName: high-priority # Specify a high PriorityClass here.

containers:

- name: nginx

image: nginx

resources:

requests:

cpu: 400m

MEM: 800Mi

When cluster node resources are insufficient, the scaled-out high-priority business pod can occupy the resources of

low-priority pods of tke-autoscaling-placeholder and schedule the resources. At this time, the status of the

 tke-autoscaling-placeholder pods changes to Pending. Below is a sample:

$ kubectl get pod -n default

NAME READY STATUS RESTARTS AGE

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 428 of 577

nginx-bf79bbc8b-5kxcw 1/1 Running 0 23s

nginx-bf79bbc8b-5xhbx 1/1 Running 0 23s

nginx-bf79bbc8b-bmzff 1/1 Running 0 23s

nginx-bf79bbc8b-l2vht 1/1 Running 0 23s

nginx-bf79bbc8b-q84jq 1/1 Running 0 23s

nginx-bf79bbc8b-tq2sx 1/1 Running 0 23s

nginx-bf79bbc8b-tqgxg 1/1 Running 0 23s

nginx-bf79bbc8b-wz5w5 1/1 Running 0 23s

tke-autoscaling-placeholder-b58fd9d5d-255r8 0/1 Pending 0 23s

tke-autoscaling-placeholder-b58fd9d5d-4vt8r 0/1 Pending 0 23s

tke-autoscaling-placeholder-b58fd9d5d-55jw7 1/1 Running 0 94m

tke-autoscaling-placeholder-b58fd9d5d-7c95t 1/1 Running 0 94m

tke-autoscaling-placeholder-b58fd9d5d-ph7vl 1/1 Running 0 94m

tke-autoscaling-placeholder-b58fd9d5d-qjrsx 0/1 Pending 0 23s

tke-autoscaling-placeholder-b58fd9d5d-t5qdm 0/1 Pending 0 23s

tke-autoscaling-placeholder-b58fd9d5d-tgvmw 0/1 Pending 0 23s

tke-autoscaling-placeholder-b58fd9d5d-xmrmv 1/1 Running 0 94m

tke-autoscaling-placeholder-b58fd9d5d-zxtwp 0/1 Pending 0 23s

If you have configured Auto Scaling for the node pool, node scale-out will be triggered. As the buffer resources have

been allocated to the business pod, your business can be scaled out quickly. Therefore, despite the slow node speed,
the normal running of your business is not affected.

Summary

This document introduces the tke-autoscaling-placeholder tool for implementing scaling in seconds. It

takes advantage of pod priorities and the preemptive occupation feature to pre-deploy some low-priority "empty pods"
to occupy resources, which become buffer resources. Then, in the event of a traffic spike that results in insufficient
cluster resources, the resources of these low-priority "empty pods" can be occupied while triggering node scale-out at

the same time. In this way, scaling can be implemented in seconds even in the case of resource shortages, and
normal business operation will not be affected.

References

Pod Priority and Preemption
Creating a Node Pool

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://intl.cloud.tencent.com.cn/document/product/457/35901

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 429 of 577

Operation Scenarios

The metrics-server can realize the Resource Metrics API (metrics.k8s.io) of Kubernetes. Through this API, you can
query some monitoring metrics of Pods and Nodes. The monitoring metrics of Pods are used in HPA, VPA, and
 kubectl top pods commands, whereas the Node metrics are currently used only in kubectl top nodes

commands. TKE itself realizes the Resource Metrics API, pointed towards the hpa-metrics-server, and currently TKE
also provides monitoring metrics for Pods.

After installing the metrics-server to the cluster, you can run kubectl top nodes to obtain the monitoring

overview of nodes to replace the realization of the Resource Metrics API. HPA created on the TKE console does not
use Resource Metrics and only uses Custom Metrics. Therefore, installing the metrics-server does not affect HPA

created on the TKE console. This document describes how to install the metrics-server on TKE.

Directions

Downloading the YAML deployment file

Run the following commands to download the latest deployment file components.yaml of the metrics-server.

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/c

omponents.yaml

Modifying the metrics-server launch parameter

The metrics-server requests the kubelet API of each node to obtain monitoring data. The API is exposed via HTTPS,

but as TKE node kubelet uses a self-signed certificate, if the metrics-server directly requests the kubelet API, an error
of certification verification failure will occur. Therefore, you need to add the --kubelet-insecure-tls launch

parameter in the components.yaml file.
Moreover, as the official image repository of the metrics-server is stored in k8s.gcr.io , users in China may not

be able to directly pull images from the repository. You need to manually synchronize images to CCR or use the

synchronized image ccr.ccs.tencentyun.com/mirrors/metrics-server:v0.4.0 .

Below is a sample of modification of the components.yaml file:

Installing metrics-server on TKE
Last updated：2021-08-17 15:32:42

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 430 of 577

containers:

- args:

- --cert-dir=/tmp

- --secure-port=4443 # Please replace with 4443

- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname

- --kubelet-use-node-status-port

- --kubelet-insecure-tls # Add this launch parameter

image: ccr.ccs.tencentyun.com/mirrors/metrics-server:v0.4.0 # For cluster in the

Chinese mainland, please replace with this image address

ports:

- containerPort: 4443 # Please replace with 4443

name: https

protocol: TCP

Deploying the metrics-server

After modifying components.yaml, run the following commands to implement one-click deployment to the cluster via
kubectl:

kubectl apply -f components.yaml

Note：
Through the above step, you can install and deploy the metrics-server. Alternatively, you can run the following
commands for one-click installation of the metrics-server, but this method cannot ensure synchronization with
the latest version.

kubectl apply -f https://raw.githubusercontent.com/TencentCloudContainerTeam/mani

fest/master/metrics-server/components.yaml

Checking the running status

1. Run the following commands to check whether the metrics-server starts normally. Below is a sample:

$ kubectl get pod -n kube-system | grep metrics-server

metrics-server-f976cb7d-8hssz 1/1 Running 0 1m

2. Run the following commands to check the configuration file. Below is a sample:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 431 of 577

$ kubectl get --raw /apis/metrics.k8s.io/v1beta1 | jq

{

"kind": "APIResourceList",

"apiVersion": "v1",

"groupVersion": "metrics.k8s.io/v1beta1",

"resources": [

{

"name": "nodes",

"singularName": "",

"namespaced": false,

"kind": "NodeMetrics",

"verbs": [

"get",

"list"

]

},

{

"name": "pods",

"singularName": "",

"namespaced": true,

"kind": "PodMetrics",

"verbs": [

"get",

"list"

]

}

]

}

3. Run the following commands to check the node usage performance. Below is a sample:

$ kubectl top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

test1 1382m 35% 2943Mi 44%

test2 397m 10% 3316Mi 49%

test3 81m 8% 464Mi 77%

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 432 of 577

Overview

Based on Custom Metrics API, TKE supports many metrics for auto scaling, including CPU, memory, disk, network
and GPU related metrics, which can cover most HPA scenarios. For detailed metrics, see HPA Metrics.
For complex scenarios such as auto scaling based on the number of the service single-replica QPS, you can install

prometheus-adapter to implement auto scaling. Kubernetes provides Custom Metrics API and External Metrics API for
HPA to perform auto scaling based on metrics, allowing users to customize auto scaling as needed.
Prometheus-adapter supports the above two APIs. In the actual environment, the Custom Metrics API can meet most
scenarios. This document describes how to use custom metrics for auto scaling through the Custom Metrics API.

Prerequisites

You have created a TKE cluster of v1.12 or later version. For more information, see Creating a Cluster.

You have deployed the PROM instance and collected the corresponding custom metrics.
You have installed Helm.

Directions

Opening the monitoring metric

This document takes the Golang service application as an example, which opens the
 httpserver_requests_total metric and records HTTP requests. This metric can be used to calculate the

QPS value of the service application, as shown below:

package main

import (

"github.com/prometheus/client_golang/prometheus"

"github.com/prometheus/client_golang/prometheus/promhttp"

"net/http"

"strconv"

)

var (

HTTPRequests = prometheus.NewCounterVec(

prometheus.CounterOpts{

Using Custom Metrics for Auto Scaling in TKE
Last updated：2022-08-26 10:50:17

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://intl.cloud.tencent.com.cn/document/product/457/34025
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://helm.sh/docs/intro/install/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 433 of 577

Name: "httpserver_requests_total",

Help: "Number of the http requests received since the server started",

},

[]string{"status"},

)

)

func init() {

prometheus.MustRegister(HTTPRequests)

}

func main() {

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

path := r.URL.Path

code := 200

switch path {

case "/test":

w.WriteHeader(200)

w.Write([]byte("OK"))

case "/metrics":

promhttp.Handler().ServeHTTP(w, r)

default:

w.WriteHeader(404)

w.Write([]byte("Not Found"))

}

HTTPRequests.WithLabelValues(strconv.Itoa(code)).Inc()

})

http.ListenAndServe(":80", nil)

}

Deploying the service application

By using Deployment, you can containerize and deploy the service application to the TKE cluster, as shown below:

apiVersion: apps/v1

kind: Deployment

metadata:

name: httpserver

namespace: httpserver

spec:

replicas: 1

selector:

matchLabels:

app: httpserver

template:

metadata:

labels:

app: httpserver

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 434 of 577

spec:

containers:

- name: httpserver

image: registry.imroc.cc/test/httpserver:custom-metrics

imagePullPolicy: Always

apiVersion: v1

kind: Service

metadata:

name: httpserver

namespace: httpserver

labels:

app: httpserver

annotations:

prometheus.io/scrape: "true"

prometheus.io/path: "/metrics"

prometheus.io/port: "http"

spec:

type: ClusterIP

ports:

- port: 80

protocol: TCP

name: http

selector:

app: httpserver

Collecting service monitoring metrics through PROM instance

You can configure PROM instance to collect the monitoring metrics opened by service through PROM Instance

Collection Rules or ServiceMonitor.

Method 1: Configuring PROM instance collection rules

Add the following collection rules to the configuration file of PROM instance collection rule, as shown below:

- job_name: httpserver

scrape_interval: 5s

kubernetes_sd_configs:

- role: endpoints

namespaces:

names:

- httpserver

relabel_configs:

- action: keep

source_labels:

- __meta_kubernetes_service_label_app

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 435 of 577

regex: httpserver

- action: keep

source_labels:

- __meta_kubernetes_endpoint_port_name

regex: http

Method 2: Configuring ServiceMonitor

If prometheus-operator has been installed, you can create a CRD object of the ServiceMonitor to configure PROM

instance, as shown below:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

name: httpserver

spec:

endpoints:

- port: http

interval: 5s

namespaceSelector:

matchNames:

- httpserver

selector:

matchLabels:

app: httpserver

Installing prometheus-adapter

1. Use Helm to install prometheus-adapter. Please confirm and configure custom metrics before installation.
According to the example in Opening the monitoring metric above, the httpserver_requests_total metric

is used in the service to record HTTP requests, so you can calculate the QPS of each service Pod through the

following PromQL, as shown below:

sum(rate(http_requests_total[2m])) by (pod)

2. Convert it to the configuration of prometheus-adapter. Create values.yaml with the following content:

rules:

default: false

custom:

- seriesQuery: 'httpserver_requests_total'

resources:

https://artifacthub.io/packages/helm/prometheus-community/prometheus-adapter

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 436 of 577

template: <<.Resource>>

name:

matches: "httpserver_requests_total"

as: "httpserver_requests_qps" # QPS metric calculated by PromQL

metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[1m])) by (<<.GroupBy>>)

prometheus:

url: http://prometheus.monitoring.svc.cluster.local # Replace PROM instance API

address (Do not need a port)

port: 9090

3. Run the following Helm command to install prometheus-adapter, as shown below:

Note：
Before installation, you need to delete the TKE's registered Custom Metrics API using the following
command:
 kubectl delete apiservice v1beta1.custom.metrics.k8s.io

helm repo add prometheus-community https://prometheus-community.github.io/helm-

charts

helm repo update

Helm 3

helm install prometheus-adapter prometheus-community/prometheus-adapter -f valu

es.yaml

Helm 2

helm install --name prometheus-adapter prometheus-community/prometheus-adapte

r -f values.yaml

Verifying installation result

If the installation is correct, you can run the following command to view the configured QPS related metrics returned
by the Custom Metrics API, as shown below:

$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1

{

"kind": "APIResourceList",

"apiVersion": "v1",

"groupVersion": "custom.metrics.k8s.io/v1beta1",

"resources": [

{

"name": "jobs.batch/httpserver_requests_qps",

"singularName": "",

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 437 of 577

"namespaced": true,

"kind": "MetricValueList",

"verbs": [

"get"

]

},

{

"name": "pods/httpserver_requests_qps",

"singularName": "",

"namespaced": true,

"kind": "MetricValueList",

"verbs": [

"get"

]

},

{

"name": "namespaces/httpserver_requests_qps",

"singularName": "",

"namespaced": false,

"kind": "MetricValueList",

"verbs": [

"get"

]

}

]

}

Run the following command to view the QPS value of the Pod, as shown below:

Note：
In the following example, the value is 500m, which means the value of QPS is 0.5 request/second.

$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/namespaces/httpserver/pod

s/*/httpserver_requests_qps

{

"kind": "MetricValueList",

"apiVersion": "custom.metrics.k8s.io/v1beta1",

"metadata": {

"selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/httpserver/pods/%2A/h

ttpserver_requests_qps"

},

"items": [

{

"describedObject": {

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 438 of 577

"kind": "Pod",

"namespace": "httpserver",

"name": "httpserver-6f94475d45-7rln9",

"apiVersion": "/v1"

},

"metricName": "httpserver_requests_qps",

"timestamp": "2020-11-17T09:14:36Z",

"value": "500m",

"selector": null

}

]

}

Testing HPA

If the scaling out is triggered when the average QPS of each service Pod reaches 50 requests/second, and the
minimum and maximum number of replicas are 1 and 1000 respectively, the configuration example will be as follows:

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: httpserver

namespace: httpserver

spec:

minReplicas: 1

maxReplicas: 1000

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: httpserver

metrics:

- type: Pods

pods:

metric:

name: httpserver_requests_qps

target:

averageValue: 50

type: AverageValue

Run the following command to test the service and observe whether the scaling out is triggered, as shown below:

$ kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

httpserver Deployment/httpserver 83933m/50 1 1000 2 18h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 439 of 577

httpserver-6f94475d45-47d5w 1/1 Running 0 3m41s

httpserver-6f94475d45-7rln9 1/1 Running 0 37h

httpserver-6f94475d45-6c5xm 0/1 ContainerCreating 0 1s

httpserver-6f94475d45-wl78d 0/1 ContainerCreating 0 1s

If the scaling out is triggered normally, it means that HPA has implemented auto scaling based on service custom
metrics.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 440 of 577

Overview

Horizontal Pod Autoscaler (HPA) for Kubernetes pods can automatically adjust the number of pod replicas based on
CPU usage, memory usage, and other custom metrics to match the overall level of workload services to the user-
defined target value. This document introduces the HPA feature of TKE and describes how to use this feature to

achieve automatic scaling of pods.

Use Cases

The HPA feature provides TKE with flexible self-adaptation capabilities, allowing it to quickly increase the number of
pod replicas within the user-defined scope to cope with a sudden increase in service loads and then scale in when
service loads decrease to save computing resources for other services. The entire process is automatic and requires
no manual intervention. It’s suitable for service scenarios with large service fluctuations, a large number of services,

and frequent scaling, such as e-commerce services, online education, and financial services.

Principle Overview

The HPA feature is implemented by Kubernetes API resources and the controller. Resources use metrics to determine
the behavior of the controller, whereas the controller periodically adjusts the number of replicas of service pods based
on pod resource usage. This matches the level of workloads to the user-defined target value. The following figure
shows the scaling process:

Utilizing HPA to Auto Scale Businesses on
TKE
Last updated：2020-12-14 09:57:14

Note：

The automatic horizontal scaling for pods does not apply to objects that cannot be scaled, such as DaemonSet
resources.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 441 of 577

Key content:

HPA Controller: the control component that controls the HPA scaling logic.

Metrics Aggregator: normally, the controller obtains metric values from a series of aggregation APIs

(metrics.k8s.io , custom.metrics.k8s.io , and external.metrics.k8s.io). The

 metrics.k8s.io API is usually provided by the Metrics server. The community edition can provide the basic

CPU and memory metric types. Compared with the community edition, the custom Metrics Server collection used
by TKE supports a wider range of HPA metric trigger types, providing relevant metrics such as CPU, memory, disk,
network, and GPU metrics. For more information, see TKE Auto-scaling Metrics.

HPA Algorithm for Calculating the Target Number of Replicas: for the TKE HPA scaling algorithm, see How
It Works. For more detailed algorithm information, see Algorithm Details.

Prerequisites

You have registered a Tencent Cloud account.

Note：

The controller can also obtain metrics from Heapster. However, starting from Kubernetes 1.11, the controller
can no longer obtain metrics from Heapster.

https://intl.cloud.tencent.com.cn/document/product/457/34025
https://intl.cloud.tencent.com.cn/document/product/457/32424
https://kubernetes.io/zh/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details
https://intl.cloud.tencent.com.cn/register

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 442 of 577

You have logged in to the TKE console.
You have created a TKE cluster. For more information about how to create a TKE cluster, see Creating a Cluster.

Directions

Deploying test workloads

Here, we use a Deployment-type workload as an example. Create an odd number of replicas, with the service type set

to the "test" workload of the web service. For more information about how to create a Deployment-type workload on
the TKE console, see Deployment Management.
The following figure shows the creation result in this example:

Configuring HPA

On the TKE console, bind the test workload with an HPA configuration. For more information about how to bind an
HPA configuration, see HPA Directions. As an example, this document describes the configuration of a policy under

which scale-out is triggered when the network egress bandwidth reaches 0.15 Mbps (150 Kbps), as shown in the

https://console.intl.cloud.tencent.com.cn/tke2
https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/document/product/457/30662
https://intl.cloud.tencent.com.cn/document/product/457/32424

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 443 of 577

figure below:

Feature verification

Simulating the scale-out process

Run the following command to launch a temporary pod in the cluster to test the configured HPA feature (simulated
client):

kubectl run -it --image alpine hpa-test --restart=Never --rm /bin/sh

Run the following command in the temporary pod to simulate a situation where large numbers of requests accessing
the "hpa-test" service in a short period cause the egress traffic bandwidth to increase:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 444 of 577

hpa-test.default.svc.cluster.local is the domain name of the service in the clu

ster. To stop the script, press Ctrl+C.

while true; do wget -q -O - hpa-test.default.svc.cluster.local; done

After running the request simulation command in the test pod, observe the monitored number of pods of the workload.
You will see that the number of replicas for the workload increase to 3 at 18:46, which indicates that an HPA scale-out
event was been triggered, as shown in the figure below:

Then, through the monitoring of the network egress bandwidth of the workload, you can see that, at 16:21, the network
egress bandwidth increased to about 424 Kbps, exceeding the target value of the network egress bandwidth set by
HPA. This further indicates that the HPA Scaling Algorithm has been triggered to add a replica to meet the set target

value. Therefore, the number of replicas of the workload has changed to 3, as shown in the figure below:

Note：

The HPA Scaling Algorithm does not just rely on formula calculation to control the scaling logic but takes
multiple dimensions into consideration to decide whether scale-out or scale-in is needed. Therefore, the actual
implementation may differ slightly from expectations. For more information, see Algorithm Details.

https://intl.cloud.tencent.com.cn/document/product/457/32424
https://intl.cloud.tencent.com.cn/document/product/457/32424
https://kubernetes.io/zh/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 445 of 577

Simulating the scale-in process

When simulating the scale-in process, manually stop executing the request simulation command at about 18:49.
Through monitoring, you can observe that the network egress bandwidth decreases to the level before scale-out. At
this time, according to the HPA logic, the conditions for workload scale-in are met, as shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 446 of 577

However, according to the monitoring of the number of workload pods shown in the figure below, the workload did not
trigger HPA scale-in until 18:55. This is because, after HPA is triggered, there is a default 5-minute toleration time
algorithm to prevent frequent scaling operations caused by metric fluctuations within a short period of time. For more
information, see Cooling/Delay Support. As shown in the figure below, 5 minutes after the command was stopped, the

number of workload replicas was decreased back to the initial setting of 1 replica according to the HPA Scaling
Algorithm.

https://kubernetes.io/zh/docs/tasks/run-application/horizontal-pod-autoscale/#%E5%86%B7%E5%8D%B4-%E5%BB%B6%E8%BF%9F%E6%94%AF%E6%8C%81
https://intl.cloud.tencent.com.cn/document/product/457/32424

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 447 of 577

When an HPA scaling event occurs in TKE, the event will be displayed in the event list of the corresponding HPA
instance. Note that the time on the event notification list includes "First Occurrence Time" and "Last Occurrence
Time". "First Occurrence Time" indicates the first time when the same event occurred, while "Last Occurrence Time"
indicates the latest time when the same event occurred. Therefore, as you can see in the event list shown in the figure
below, the "Last Occurrence Time" field displays 18:46:01 for the scale-out event in this example and 18:54:40 for the

scale-in event. The points in time displayed here match those in the workload monitoring.

In addition, the workload event list also records the events of adding/deleting replicas by workloads when HPA occurs.

As shown in the figure below, the points in time of workload scale-out and scale-in match those displayed in the HPA
event list. The point in time when the number of replicas increased is 18:46:01, and the point in time when the number

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 448 of 577

of replicas decreased is 18:54:40.

Summary

This example demonstrates the HPA feature of TKE and shows how to use the TKE custom metric type network
egress bandwidth as the metric for triggering workload HPA scaling.

When the actual metric value of the workload exceeds the target metric value configured by HPA, HPA calculates
the proper number of replicas according to its scale-out algorithm and implements scale-out. This ensures that the
metric levels of the workload meet expectations and that the workload can run in a healthy and stable manner.
When the actual metric value of the workload is far lower than the target metric value configured by HPA, HPA
waits until the toleration time expires and then calculates the proper number of replicas to implement scale-in and

release idle resources. This improves resource utilization. Moreover, throughout the process, relevant events are
recorded in the HPA and workload event lists so that the whole workload scaling process is traceable.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 449 of 577

Overview

Kubernetes Vertical Pod Autoscaler (VPA) can automatically adjust the reserved CPU and memory of Pod, improve
cluster resource utilization and release CPU and memory for other Pods. This document describes how to use the
VPA community edition in TKE to implement the scaling up and scaling down of Pods.

Use Cases

The auto-scaling feature of VPA makes the TKE very flexible and adaptive. When the business load increases
sharply, VPA can quickly increase the Request of the container within the user's setting range. When the business
load decreases, VPA can appropriately reduce the Request based on the actual needs to save computing resources.
The entire process is automated without manual intervention. It is suitable for scenarios that require rapid expansion
and stateful application expansion. In addition, VPA can be used to recommend a more reasonable Request to user,

and improve the resource utilization of the container while ensuring that the container has sufficient available
resources.

VPA Strengths

Compared with Horizontal Pod Autoscaler (HPA), VPA has the following advantages:

VPA does not need to adjust the replicas of Pod for expansion, and the expansion speed is faster.
VPA can achieve the expansion of the stateful applications, while HPA is not suitable for the scaling out of the
stateful applications.

If the Request is set too large, the cluster resource utilization is still very low when HPA is used to scale in the Pods
to a Pod. In this case, you can use VPA to scale down to improve the cluster resource utilization.

VPA Limits

Note：

Using VPA to Realize Pod Scaling up and
Scaling down in TKE
Last updated：2021-06-09 17:46:36

https://github.com/kubernetes/autoscaler/tree/vpa-release-0.8/vertical-pod-autoscaler
https://intl.cloud.tencent.com.cn/document/product/457/32424

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 450 of 577

VPA community edition is in testing. Use this feature with caution. We recommend setting "updateMode" to
"Off" to ensure that VPA will not automatically change the value of Request. You can still view the
recommended value of request bound to the load in the VPA object.

You can use the VPA to update the resource configurations of the running Pods. This feature is in testing. The
configuration updates will lead to Pod restart and rebuilding, and the Pods may be scheduled to other nodes.
The VPA does not evict the Pods that are not run under a controller. For these Pods, the Auto mode is

equivalent to the Initial mode.

You cannot run VPA simultaneously with the HPA that uses the CPU and memory as metrics. If the HPA uses other

metrics except CPU and memory, you can run the VPA with the HPA at the same time. For details, see Using
Custom Metrics for Auto Scaling in TKE.
The VPA uses an Admission Webhook as its admission controller. If there are other Admission Webhooks in the
cluster, you need to ensure that they do not conflict with the Admission Webhooks of the VPA. The execution
sequence of admission controllers is defined in the configuration parameters of the API Server.
The VPA can react to most Out of Memory (OOM) events.

The VPA performance has not been tested in large-scale clusters.
The recommended value of Pod resource Request set by the VPA may exceed the upper limit of the available
resources (such as node resources, idle resources, and resource quotas). In this case, the Pod may go to Pending
and cannot be scheduled. This can be partly addressed by using the VPA together with the Cluster Autoscaler.
Multiple VPA resources matching the same pod have undefined behavior.

For more limitations on VPA, see VPA Known limitations.

Prerequisites

You have created a TKE cluster.
The cluster has been connected via the command line tool Kubectl. For how to connect to a cluster, see Connecting
to a Cluster.

Directions

Deploying VPA

1. Log in to the CVM in the cluster.

2. You can connect to a TKE cluster from a local client using the command line tool kubectl.
3. Run the following command to clone the kubernetes/autoscaler from GitHub Repository.

https://intl.cloud.tencent.com.cn/document/product/457/38941
https://intl.cloud.tencent.com.cn/document/product/457/35900
https://github.com/kubernetes/autoscaler/tree/vpa-release-0.8/vertical-pod-autoscaler#known-limitations
https://intl.cloud.tencent.com.cn/document/product/457/30639
https://github.com/kubernetes/autoscaler

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 451 of 577

sh

git clone https://github.com/kubernetes/autoscaler.git

4. Run the following command to switch to the vertical-pod-autoscaler directory.

cd autoscaler/vertical-pod-autoscaler/

5. (Optional) If you have already deployed another version of VPA, run the following command to remove it. Otherwise

an exception may occur.

./hack/vpa-down.sh

6. Run the following command to deploy VPA related components to your cluster.

./hack/vpa-up.sh

7. Run the following command to verify whether the VPA component is successfully created.

kubectl get deploy -n kube-system | grep vpa

After successfully creating the VPA component, you can check the three Deployments in the kube-system
namespace, namely vpa-admission-controller, vpa-recommender, and vpa-updater, as shown below:

Sample 1: using VPA to obtain the recommended value of Request

Note：

We do not recommend using VPA to automatically update Request in a production environment.

You can use VPA to view the recommended value of Request and manually trigger the update as needed.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 452 of 577

In this sample, you will create a VPA object with updateMode set to Off and create a Deployment with two

Pods, and each Pod has a container. After the Pod is created, VPA will analyze the CPU and memory requirements of
the container and record the recommended value of Request in the status field. VPA will not automatically update

the resource requests of the running containers.

Run the following command in kubectl to generate a VPA object named tke-vpa , pointing to a Deployment named

 tke-deployment :

shell

cat <<EOF | kubectl apply -f -

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

name: tke-vpa

spec:

targetRef:

apiVersion: "apps/v1"

kind: Deployment

name: tke-deployment

updatePolicy:

updateMode: "Off"

EOF

Run the following command to generate a Deployment object named tke-deployment :

shell

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

name: tke-deployment

spec:

replicas: 2

selector:

matchLabels:

app: tke-deployment

template:

metadata:

labels:

app: tke-deployment

spec:

containers:

- name: tke-container

image: nginx

EOF

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 453 of 577

The generated Deployment object is show as follows:

Note：
The tke-deployment created above does not set the Request of CPU or memory, and the Qos of the Pod

is set to BestEffort. In this case, Pod is easy to be evicted. We recommend that you set the Request and Limit

when creating the Deployment of the application. If you create a workload via the TKE console, the default
Request and Limit of each container will be automatically set.

Run the following command to view the recommended Requests of CPU and memory by VPA:

shell

kubectl get vpa tke-vpa -o yaml

The execution results are as follows:

yaml

...

recommendation:

containerRecommendations:

- containerName: tke-container

lowerBound:

cpu: 25m

memory: 262144k

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 454 of 577

target:# Recommended value

cpu: 25m

memory: 262144k

uncappedTarget:

cpu: 25m

memory: 262144k

upperBound:

cpu: 1771m

memory: 1851500k

The CPU and memory corresponding to target are the recommended Requests. You can remove the previous

Deployment and create a new Deployment with the recommended Request.

Field Description

lowerBound The minimum value recommended. The use of a Request smaller than this value may
have a major impact on performance or availability.

target Recommended value. The VPA calculates the most appropriate Request.

uncappedTarget

The latest recommended value. It is only based on the actual resource usage and does not
consider the recommended value range of the container set in
 .spec.resourcePolicy.containerPolicies . The uncappedTarget may differ
from the recommended lowerBound and upperBound . This field is only used to
indicate the status and will not affect the actual resource allocation.

upperBound The maximum value recommended. The use of a Request larger than this value may
cause a resource waste.

Sample 2: Disabling a specific container

If there are multiple containers in the Pod, for example, one is an application container and the other is a secondary
container. You can choose to stop recommending Request for the secondary container to save the cluster resources.

In this sample, you will create a VPA with a specific container disabled, and create a Deployment with a Pod, and the

Pod contains two containers. After the Pod is created, VPA only creates and calculates the recommended value for
one container, and stops recommending Request for the other container.

Run the following command in the kubectl to generate a VPA object named tke-opt-vpa , pointing to a

Deployment named tke-opt-deployment :

shell

cat <<EOF | kubectl apply -f -

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 455 of 577

name: tke-opt-vpa

spec:

targetRef:

apiVersion: "apps/v1"

kind: Deployment

name: tke-opt-deployment

updatePolicy:

updateMode: "Off"

resourcePolicy:

containerPolicies:

- containerName: tke-opt-sidecar

mode: "Off"

EOF

Note：
In the .spec.resourcePolicy.containerPolicies of the VPA, the mode of tke-opt-

sidecar is set to "Off", and VPA will not calculate and recommend a new Request for tke-opt-

sidecar .

Run the following command to generate a Deployment object named tke-deployment :

sh

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

name: tke-opt-deployment

spec:

replicas: 1

selector:

matchLabels:

app: tke-opt-deployment

template:

metadata:

labels:

app: tke-opt-deployment

spec:

containers:

- name: tke-opt-container

image: nginx

- name: tke-opt-sidecar

image: busybox

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 456 of 577

command: ["sh","-c","while true; do echo TKE VPA; sleep 60; done"]

EOF

The generated Deployment object is show as follows:

Run the following command to view the recommended Requests of CPU and memory by VPA:

shell

kubectl get vpa tke-opt-vpa -o yaml

The execution results are as follows:

yaml

...

recommendation:

containerRecommendations:

- containerName: tke-opt-container

lowerBound:

cpu: 25m

memory: 262144k

target:

cpu: 25m

memory: 262144k

uncappedTarget:

cpu: 25m

memory: 262144k

upperBound:

cpu: 1595m

memory: 1667500k

In the execution result, there is only the recommended value of tke-opt-container , and no recommended

value of tke-opt-sidecar .

Sample 3: updating the Request automatically

Note：
Automatic updating the resources of the running Pods is an experimental feature of VPA. We recommend that
you do not use this feature in a production environment.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 457 of 577

In this sample, you will create a VPA that can automatically adjust the CPU and memory Requests, and create a
Deployment with two Pods. Each Pod will set the Request and Limit of the resource.

Run the following command in the kubectl to generate a VPA object named tke-auto-vpa , pointing to a

Deployment named tke-auto-deployment :

yaml

cat <<EOF | kubectl apply -f -

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

name: tke-auto-vpa

spec:

targetRef:

apiVersion: "apps/v1"

kind: Deployment

name: tke-auto-deployment

updatePolicy:

updateMode: "Auto"

EOF

Note：
The updateMode field of this VPA is set to Auto , which means that the VPA can update the CPU and

memory Requests during the life cycle of the Pod. VPA can remove the Pod, adjust the CPU and memory
Requests, and then rebuild a Pod.

Run the following command to generate a Deployment object named tke-auto-deployment :

shell

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

name: tke-auto-deployment

spec:

replicas: 2

selector:

matchLabels:

app: tke-auto-deployment

template:

metadata:

labels:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 458 of 577

app: tke-auto-deployment

spec:

containers:

- name: tke-container

image: nginx

resources:

requests:

cpu: 100m

memory: 100Mi

limits:

cpu: 200m

memory: 200Mi

EOF

Note：
When the Deployment is created in the above operation, the Request and Limit of the resource have been set.
In this case, VPA will not only recommend the Request, but also automatically recommend the Limit based on
the initial ratio of Request and Limit. For example, the initial ratio of CPU’s Request and Limit in YAML is

100m:200m, namely 1:2, then the value of Limit recommended by VPA is twice the value of Request
recommended in the VPA object.

The generated Deployment object is show as follows:

Run the following command to obtain the detailed information of the running Pod:

sh

kubectl get pod pod-name -o yaml

The execution result is shown below. VPA modified the original Request and Limits to the recommended value of VPA,
and maintained the initial ratio of Request and Limits. At the same time, an annotation that recorded the updates is
generated:

yaml

apiVersion: v1

kind: Pod

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 459 of 577

metadata:

annotations:

...

vpaObservedContainers: tke-container

vpaUpdates: Pod resources updated by tke-auto-vpa: container 0: memory request, c

pu request

...

spec:

containers:

...

resources:

limits:# The new Request and Limits will maintain the initial ratio

cpu: 50m

memory: 500Mi

requests:

cpu: 25m

memory: 262144k

...

Run the following command to obtain the detailed information of the relevant VPA:

sh

kubectl get vpa tke-auto-vpa -o yaml

The execution results are as follows:

yaml

...

recommendation:

containerRecommendations:

- containerName: tke-container

Lower Bound:

Cpu: 25m

Memory: 262144k

Target:

Cpu: 25m

Memory: 262144k

Uncapped Target:

Cpu: 25m

Memory: 262144k

Upper Bound:

Cpu: 101m

Memory: 262144k

 target means that the container will run in the best state when the Requests of CPU and memory are 25m and

262144k respectively.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 460 of 577

VPA uses the recommended values of lowerBound and upperBound to decide whether to evict a Pod and

replace it with a new Pod. If the Pod’s Request is smaller than the lower limit or larger than the upper limit, VPA will
remove the Pod and replace it with a Pod with a recommended value.

Troubleshooting

1. An error occurs when running the vpa-up.sh script.

Errors

shell

ERROR: Failed to create CA certificate for self-signing. If the error is "unknown

option -addext", update your openssl version or deploy VPA from the vpa-release-0

.8 branch.

Solutions

1. If you have not run the command through the CVM in the cluster, we recommend that you download the Autoscaler
project in the CVM and deploy VPA. If you need to connect the cluster to your CVM, see Connecting to a Cluster.

2. If the errors still exist, please check whether the following problems exist:
Check whether the openssl version of the cluster CVM is later than v1.1.1.

Whether the vpa-release-0.8 branch of the Autoscaler project is used.

2. The VPA-related load could not be started up.

Errors

If the VPA-related load fails to start up, and the following message is generated:

Message 1: indicates that the Pods in the load fail to run.
Message 2: indicates the address of the image.

Solutions

The VPA-related load could not be started up because the image located in GCR could not be downloaded. You can

try the following steps to solve the problem:

1. Download the image.
Visit the "k8s.gcr.io/" image repository and download the images of vpa-admission-controller, vpa-recommender,

https://intl.cloud.tencent.com.cn/document/product/457/30639

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 461 of 577

and vpa-updater.
2. Replace the image tags and push the images.

Replace the image tags of vpa-admission-controller, vpa-recommender, and vpa-updater and push them to your

image repository. For how to push and upload the image, please see TCR Personal Edition.
3. Change the image address in YAML.

In the YAML file, update the image addresses of vpa-admission-controller, vpa-recommender, and vpa-updater to
the new addresses you set.

https://intl.cloud.tencent.com.cn/document/product/1051/38866

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 462 of 577

Support for Scaling Speed Adjustment by HPA v2beta2 and Later

Sensitivity adjustment for HPA scale-out is not supported by versions earlier than K8s 1.18.

The --horizontal-pod-autoscaler-downscale-stabilization-window parameter of kube-

controller-manager controls the scale-in time window, which is five minutes by default, that is, a scale-in can

be performed at least five minutes after the workload reduction.
The fixed algorithm of the HPA controller and the constant factor of hardware encoding control the scale-out speed,
which cannot be customized.

In this design logic, users cannot customize the speed of HPA scaling. However, different business scenarios may
have different requirements for scaling sensitivity:

1. For key businesses with traffic surges, a scale-out needs to be fast (if needed), and a scale-in needs to be slow (to
avoid another traffic peak).

2. Applications processing key data should be scaled out as soon as possible when the data volume surges, so as to
speed up data processing. When the data volume decreases, they should be scaled in as soon as possible to
reduce costs. Unnecessary and frequent scaling operations are acceptable when the data volume jitters
momentarily.

3. Businesses processing general data/network traffic can be scaled in a general way to reduce jitters.

HPA is updated on K8s 1.18, where scaling sensitivity control is added to v2beta2, but the version number of v2beta2
remains unchanged.

Principles and Misunderstandings

During HPA scaling, the fixed algorithm is first used to calculate the desired number of replicas:

Desired number of replicas = ceil[current number of replicas * (current metric / desired metric)]

Here, if "current metric / desired metric" is close to 1 (which is within the default tolerance of 0.1, that is, the ratio
ranges between 0.9 and 1.1), no scaling is performed; otherwise, jitters may cause frequent scaling.

Adjusting HPA Scaling Sensitivity Based on
Different Business Scenarios
Last updated：2022-12-08 18:03:06

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 463 of 577

Note：
Tolerance is determined by the --horizontal-pod-autoscaler-tolerance parameter of kube-

controller-manager . It defaults to 0.1, that is, 10%.

Scaling speed adjustment described in this document doesn't mean adjusting the algorithm for calculating the desired
number of replicas. It doesn't increase/decrease the scaling ratio or quantity, but only controls the scaling speed. The
implementation should deliver the following effect: controlling the maximum custom ratio/number of Pods that can be
added/released in a custom time period allowed by HPA.

How to Use

In this update, the behavior field is added to HPA Spec, which contains the scaleUp and scaleDown

fields for scaling control. For more information, see HPAScalingRules v2beta2 autoscaling.

Sample code

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: web

spec:

minReplicas: 1

maxReplicas: 1000

metrics:

- pods:

metric:

name: k8s_pod_rate_cpu_core_used_limit

target:

averageValue: "80"

type: AverageValue

type: Pods

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: web

behavior: # This is the key point.

scaleDown:

stabilizationWindowSeconds: 300 # When a scale-in is needed, observe for five min

utes first. If it is still needed, perform the scale-in.

policies:

- type: Percent

value: 100 # Allow for releasing all

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/#hpascalingrules-v2beta2-autoscaling

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 464 of 577

periodSeconds: 15

scaleUp:

stabilizationWindowSeconds: 0 # Perform a scale-out when needed

policies:

- type: Percent

value: 100

periodSeconds: 15 # Up to one time the current number of Pods can be added every

15 seconds.

- type: Pods

value: 4

periodSeconds: 15 # Up to four Pods can be added every 15 seconds.

selectPolicy: Max # Use the larger value of the two calculated based on the above

two scale-out policies

Notes

The above behavior configuration is default, which means it will be added by default if not specified.

You can configure one or more policies for scaleUp and scaleDown . selectPolicy determines which

policy to use for scaling.
 selectPolicy is Max by default, that is, different calculation results are evaluated and the largest number

of Pods is selected for scaling.
 stabilizationWindowSeconds is the stable window period, that is, scaling is performed only when the

metric is below or above the threshold for the stable window period. This is to avoid frequent scaling caused by
jitters. For a scale-out, the stable window defaults to 0, indicating to perform the scale-out immediately; for a scale-
in, it defaults to five minutes.

 policies defines the scaling policy. type can be Pods or Percent , indicating the maximum number

or ratio of replicas that can be added every periodSeconds .

Scenarios and Samples

Fast scale-out

If you need to quickly scale out your application, you can use the following HPA configuration:

behavior:

scaleUp:

policies:

- type: Percent

value: 900

periodSeconds: 15 # Up to nine times the current number of replicas can be added

every 15 seconds.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 465 of 577

The above configuration indicates that nine times the current number of replicas are added immediately, that is, a
scale-out to ten times the current number of Pods, within the maxReplicas limit though.

Suppose there is only one Pod, the traffic surges, and the metric constantly exceeds nine times the threshold, a scale-

out will be performed quickly, during which the number of Pods will change as follows:

1 -> 10 -> 100 -> 1000

If no scale-in policy is configured, a scale-in will be performed after the global default time window (which is five
minutes by default).

Fast scale-out and slow scale-in

When the traffic peak is over and the concurrent volume drops significantly, if the default scale-in policy is used, the

number of Pods will drop a few minutes later. If another traffic peak comes unexpectedly after the scale-in, the scale-
out will be fast but still take some time. If the traffic surges to a really high level, the backend may fail to keep up,
causing some requests to fail. In this case, you can add a scale-in policy for HPA by configuring behavior as

follows:

behavior:

scaleUp:

policies:

- type: Percent

value: 900

periodSeconds: 15 # Up to nine times the current number of replicas can be added

every 15 seconds.

scaleDown:

policies:

- type: Pods

value: 1

periodSeconds: 600 # Only one Pod can be released every ten minutes.

In the above sample, the scaleDown configuration is added, specifying that only one Pod can be released every

ten minutes. This greatly slows down the scale-in, during which the number of Pods will change as follows:

1000 -> ... (10 minutes later) -> 999

In this way, key businesses will be able to handle traffic surges, and the requests won't fail.

Slow scale-out

If you want to make scale-outs slow and stable for general applications, add the following behavior configuration

to HPA:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 466 of 577

behavior:

scaleUp:

policies:

- type: Pods

value: 1

periodSeconds: 300 # Only one Pod can be added every five minutes.

Suppose there is only one Pod and the metric constantly exceeds the threshold, the number of Pods will change as
follows during the scale-out:

1 -> 2 -> 3 -> 4

Disabling automatic scale-in

If you want to prevent key applications from an automatic scale-in after a scale-out and need to determine the scale-in

conditions by manual intervention or a self-developed controller, you can use the following behavior configuration

to disable automatic scale-in:

behavior:

scaleDown:

selectPolicy: Disabled

Extending the time window for scale-in

By default, the time window for scale-in is five minutes. If you need to extend the time window to avoid exceptions
caused by traffic peaks, you can specify the time window for scale-in by configuring behavior as follows:

behavior:

scaleDown:

stabilizationWindowSeconds: 600 # Perform a scale-in ten minutes later

policies:

- type: Pods

value: 5

periodSeconds: 600 # Up to five Pods can be released every ten minutes.

In the above sample, when the load drops, a scale-in will be performed 600 seconds (ten minutes) later, and up to five

Pods can be released every ten minutes.

Extending the time window for scale-out

Some applications often undergo frequent scale-outs due to data spikes, and the added Pods may be a waste of
resources. In data processing pipelines, the desired number of replicas depends on the number of events in the

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 467 of 577

queue. When a large number of events are heaped in the queue, a fast but not too sensitive scale-out is desired, as
the heap may last only a short time and disappear even if no scale-out is performed.

The default scale-out algorithm executes a scale-out after a short period of time. You can add a time window to avoid

resource waste after a scale-out caused by spikes. Below is the sample behavior configuration:

behavior:

scaleUp:

stabilizationWindowSeconds: 300 # A scale-out is performed after a 5-minute time

window.

policies:

- type: Pods

value: 20

periodSeconds: 60 # Up to 20 Pods can be added every minute.

In the above sample, a scale-out is performed after a 5-minute time window. If the metric falls below the threshold
during this window, no scale-out is performed. If the metric constantly exceeds the threshold, a scale-out is performed,

and up to 20 Pods can be added every minute.

FAQs

Why is YAML on v1 or v2beta1 obtained after a HPA is created by using v2beta2?

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 468 of 577

This is because HPA has many API versions:

kubectl api-versions | grep autoscaling

autoscaling/v1

autoscaling/v2beta1

autoscaling/v2beta2

The version number is irrelevant to the version for creation (which is automatically converted).

If kubectl is used, during API discovery, various types of resources and version information returned by the API server
will be cached. Some resources are available in multiple versions; if the version to get is not specified, the default

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 469 of 577

version will be used, which is v1 for HPA. If the operation is performed on some platform UIs, the result will depend on
the platform implementation method. In the TKE console, the default version is v2beta1:

How do I use the v2beta2 version to get or edit?

Just specify the complete resource name containing the version information:

kubectl get horizontalpodautoscaler.v2beta2.autoscaling php-apache -o yaml

kubectl edit horizontalpodautoscaler.v2beta2.autoscaling php-apache

Why is a scale-out slow when it is configured to be fast?

Add the following configuration:

behavior:

scaleUp:

policies:

- type: Percent

value: 900

periodSeconds: 10

It indicates that up to nine times the current number of Pods can be added every ten seconds. In actual tests, it

happens that the scale-out is slow when the threshold is greatly exceeded.

Generally, it's due to the calculation period and metric latency:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 470 of 577

There is a period for calculating the desired number of replicas, which defaults to 15 seconds (determined by the
 --horizontal-pod-autoscaler-sync-period parameter of kube-controller-manager).

During each calculation, the corresponding metric API is used to get the current monitoring metric value, which is

usually not returned in real time. For the TKE service, monitoring data is reported once every minute. For self-built
Prometheus and Prometheus Adapter, monitoring data is updated according to the monitoring data scrape interval,
and the --metrics-relist-interval parameter in Prometheus Adapter determines the monitoring metric

refresh period (which can be queried in Prometheus); the sum of the two is the longest period for a monitoring data
update.

Generally, extreme HPA sensitivity is not necessary, and a certain latency is acceptable. In highly sensitive scenarios,
you can use Prometheus to shorten the monitoring metric scrape interval and --metrics-relist-interval of

the Prometheus Adapter.

Summary

This document describes how to use new HPA features to control the scaling speed so as to meet the requirements in
different scenarios. It also provides some common scenarios and configuration samples that can be used as needed.

References

Horizontal Pod Autoscaling

Configurable scale up/down velocity for HPA

https://kubernetes.io/zh-cn/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/enhancements/tree/master/keps/sig-autoscaling/853-configurable-hpa-scale-velocity

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 471 of 577

Operation Scenarios

If you need to create a snapshot of the PVC data disk to backup data, or to restore the backup snapshot data to a new
PVC, you can use the CBS-CSI add-on. This document describes how to use the CBS-CSI add-on to implement data
backup and restoration of PVC.

Prerequisites

You have created a TKE cluster or created a Kubernetes cluster in Tencent Cloud CVM. The cluster version is
v1.18 or later.
You have installed CBS-CSI add-on.
You have granted related permissions of CBS snapshot for TKE_QCSRole on the Access Management page of

the console. For details, see CBS-CSI.

Operation Directions

Restoring PVC

Creating a VolumeSnapshotClass

1. Use the following YAML to create a VolumeSnapshotClass object, as shown below:

apiVersion: snapshot.storage.k8s.io/v1beta1

kind: VolumeSnapshotClass

metadata:

name: cbs-snapclass

driver: com.tencent.cloud.csi.cbs

deletionPolicy: Delete

Storage
Backing up and Restoring PVC via CBS-CSI
Add-on
Last updated：2022-04-21 12:09:40

https://intl.cloud.tencent.com.cn/document/product/457/30637
https://github.com/TencentCloud/kubernetes-csi-tencentcloud/blob/master/docs/README_CBS.md
https://console.intl.cloud.tencent.com.cn/cam/role
https://intl.cloud.tencent.com.cn/document/product/457/39136

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 472 of 577

2. Run the following command to check whether the VolumeSnapshotClass has been created successfully, as shown
below:

$ kubectl get volumesnapshotclass

NAME DRIVER DELETIONPOLICY AGE

cbs-snapclass com.tencent.cloud.csi.cbs Delete 17m

Create a PVC snapshot object VolumeSnapshot

1. This document takes new-snapshot-demo as the snapshot name to create a VolumeSnapshot. Use the

following YAML to create a VolumeSnapshot object, as shown below:

apiVersion: snapshot.storage.k8s.io/v1beta1

kind: VolumeSnapshot

metadata:

name: new-snapshot-demo

spec:

volumeSnapshotClassName: cbs-snapclass # Use the VolumeSnapshotClass created in

the above steps

source:

persistentVolumeClaimName: ssd-pvc # Replace it with the PVC name that needs to

be backed up

2. Run the following command to check whether the Volumesnapshot and Volumesnapshotcontent objects have been
created successfully. If READYTOUSE is true, the creation is successful, as shown below:

$ kubectl get volumesnapshot

NAME READYTOUSE SOURCEPVC SOURCESNAPSHOTCONTENT RESTORESIZE SNAPSHOTCLASS SNAPS

HOTCONTENT CREATIONTIME AGE

new-snapshot-demo true ssd-pvc 20Gi cbs-snapclass snapcontent-170b2161-f158-4c9

e-a090-a38fdfd84a3e 2m36s 2m50s

$ kubectl get volumesnapshotcontent

NAME READYTOUSE RESTORESIZE DELETIONPOLICY DRIVER VOLUMESNAPSHOTCLASS VOLUMESNA

PSHOT AGE

snapcontent-170b2161-f158-4c9e-a090-a38fdfd84a3e true 21474836480 Delete com.te

ncent.cloud.csi.cbs cbs-snapclass new-snapshot-demo 3m3s

3. Run the following command to obtain the snapshot ID of the Volumesnapshotcontent object. The field is
 status.snapshotHandle (here takes snap-rsk8v75j as an example). You can log in to the TKE console

.com/tke2) and use the snapshot ID to check whether the snapshot exists, as shown below:

https://console.cloud.tencent/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 473 of 577

$ kubectl get volumesnapshotcontent -o yaml snapcontent-170b2161-f158-4c9e-a090

-a38fdfd84a3e

...

status:

creationTime: 1607331318000000000

readyToUse: true

restoreSize: 21474836480

snapshotHandle: snap-rsk8v75j

Restoring data from the snapshot to a new PVC

1. This document takes the VolumeSnapshot object new-snapshot-demo created in the above step as an

example. Use the following YAML to restore data from the snapshot to a new PVC, as shown below:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: restore-test

spec:

storageClassName: ssd-csi # Customize the storage class as needed

dataSource:

name: new-snapshot-demo # Use the VolumeSnapshot created in the above step

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

accessModes:

- ReadWriteOnce # CBS is block storage, which only supports single machine read

and write

resources:

requests:

storage: 50Gi # The recommended storage capacity is the same as the capacity of

the restored PVC

2. Run the following command. You can check that the PVC has been created and bound to the PV, and you can find
the corresponding diskid (here takes disk-ju0hw7no as an example) in the PV, as shown below:

$ kubectl get pvc restore-test

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

restore-test Bound pvc-940edf09-d622-4126-992b-0a209f048c7d 60Gi RWO ssd-topolo

gy 6m8s

$ kubectl get pv pvc-940edf09-d622-4126-992b-0a209f048c7d -o yaml

...

spec:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 474 of 577

...

volumeHandle: disk-ju0hw7no

...

Note：
If StorageClass uses topology awareness (schedule the Pod first and then create the PV), that is, to specify
 volumeBindingMode: WaitForFirstConsumer , you need to deploy the Pod (to mount the PVC) to

trigger the creation of the PV (create a new CBS from the snapshot and bind it to the PV).

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 475 of 577

Overview

You can mount a CFS Turbo storage for a TKE cluster by installing a kubernetes-csi-tencentloud add-on.

This add-on is used to mount the Tencent Cloud CFS Turbo file system to a workload based on a private protocol.
Currently, only static configuration is supported. For more information about CFS storage types, see Storage Types

and Performance.

Prerequisites

You have created a TKE cluster or created a Kubernetes cluster on Tencent Cloud, and the cluster version is 1.14 or
later.

Directions

Creating a file system

Create a CFS Turbo file system. For details, see Creating File Systems and Mount Targets.

Note：

After the file system is created, you need to associate the cluster network (vpc-xx) with the CCN instance of the
file system. You can check it in the information about the file system mount target.

Deploying a RBAC policy

If you want to mount a CFS Turbo volume, you need to run the kubectl apply -f csi-node-rbac.yaml

command to deploy a RBAC policy in the cluster. The following csi-node-rbac.yaml code is for your reference:

Static Mounting of CFS-Turbo File System
Static Mounting of CFS-Turbo for TKE
Clusters
Last updated：2022-06-22 11:32:32

https://intl.cloud.tencent.com.cn/document/product/582/33745
https://intl.cloud.tencent.com.cn/document/product/582/9132
https://intl.cloud.tencent.com.cn/document/product/1003/30064

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 476 of 577

apiVersion: v1

kind: ServiceAccount

metadata:

name: cfsturbo-csi-node-sa

namespace: kube-system

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: cfsturbo-csi-node-role

rules:

- apiGroups: [""]

resources: ["persistentvolumes", "endpoints", "configmaps"]

verbs: ["get", "list", "watch", "create", "delete", "update"]

- apiGroups: [""]

resources: ["persistentvolumeclaims", "nodes"]

verbs: ["get", "list", "watch", "update"]

- apiGroups: [""]

resources: ["events"]

verbs: ["get", "list", "watch", "create", "update", "patch"]

- apiGroups: [""]

resources: ["secrets", "namespaces"]

verbs: ["get", "list"]

- apiGroups: [""]

resources: ["nodes", "pods"]

verbs: ["get", "list", "watch", "update"]

- apiGroups: ["storage.k8s.io"]

resources: ["volumeattachments", "volumeattachments"]

verbs: ["get", "list", "watch", "update", "patch"]

- apiGroups: ["storage.k8s.io"]

resources: ["storageclasses"]

verbs: ["get", "list", "watch"]

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

name: cfsturbo-csi-node-rolebinding

subjects:

- kind: ServiceAccount

name: cfsturbo-csi-node-sa

namespace: kube-system

roleRef:

kind: ClusterRole

name: cfsturbo-csi-node-role

apiGroup: rbac.authorization.k8s.io

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 477 of 577

Deploying a Node Plugin

1. Run the kubectl apply -f csidriver.yaml command. The following csidriver.yaml code is for your

reference:

apiVersion: storage.k8s.io/v1beta1

kind: CSIDriver

metadata:

name: com.tencent.cloud.csi.cfsturbo

spec:

attachRequired: false

podInfoOnMount: false

2. Run the kubectl apply -f csi-node.yaml commad. The following csi-node.yaml code is for your

reference:

This YAML file contains driver-registrar & csi driver nodeplugin API objects

that are necessary to run CSI nodeplugin for cfsturbo

kind: DaemonSet

apiVersion: apps/v1

metadata:

name: cfsturbo-csi-node

namespace: kube-system

spec:

selector:

matchLabels:

app: cfsturbo-csi-node

template:

metadata:

labels:

app: cfsturbo-csi-node

spec:

serviceAccount: cfsturbo-csi-node-sa

hostNetwork: true

containers:

- name: driver-registrar

image: ccr.ccs.tencentyun.com/tkeimages/csi-node-driver-registrar:v1.2.0

lifecycle:

preStop:

exec:

command: ["/bin/sh", "-c", "rm -rf /registration/com.tencent.cloud.csi.cfsturbo

/registration/com.tencent.cloud.csi.cfsturbo-reg.sock"]

args:

- "--v=5"

- "--csi-address=/plugin/csi.sock"

- "--kubelet-registration-path=/var/lib/kubelet/plugins/com.tencent.cloud.csi.c

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 478 of 577

fsturbo/csi.sock"

env:

- name: KUBE_NODE_NAME

valueFrom:

fieldRef:

fieldPath: spec.nodeName

volumeMounts:

- name: plugin-dir

mountPath: /plugin

- name: registration-dir

mountPath: /registration

- name: cfsturbo

securityContext:

privileged: true

capabilities:

add: ["SYS_ADMIN"]

allowPrivilegeEscalation: true

image: ccr.ccs.tencentyun.com/tkeimages/csi-tencentcloud-cfsturbo:v1.2.2

args :

- "--nodeID=$(NODE_ID)"

- "--endpoint=$(CSI_ENDPOINT)"

env:

- name: NODE_ID

valueFrom:

fieldRef:

fieldPath: spec.nodeName

- name: CSI_ENDPOINT

value: unix://plugin/csi.sock

imagePullPolicy: "IfNotPresent"

volumeMounts:

- name: plugin-dir

mountPath: /plugin

- name: pods-mount-dir

mountPath: /var/lib/kubelet/pods

mountPropagation: "Bidirectional"

- name: global-mount-dir

mountPath: /etc/cfsturbo/global

mountPropagation: "Bidirectional"

volumes:

- name: plugin-dir

hostPath:

path: /var/lib/kubelet/plugins/com.tencent.cloud.csi.cfsturbo

type: DirectoryOrCreate

- name: pods-mount-dir

hostPath:

path: /var/lib/kubelet/pods

type: Directory

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 479 of 577

- name: registration-dir

hostPath:

path: /var/lib/kubelet/plugins_registry

type: Directory

- name: global-mount-dir

hostPath:

path: /etc/cfsturbo/global

type: DirectoryOrCreate

Using a CFS Turbo volume

1. Create a CFS Turbo file system. For more information, see Creating a File System.

2. Use the following template to create a PV of CFS Turbo type.

apiVersion: v1

kind: PersistentVolume

metadata:

name: pv-cfsturbo

spec:

accessModes:

- ReadWriteMany

capacity:

storage: 10Gi

csi:

driver: com.tencent.cloud.csi.cfsturbo

volumeHandle in PV must be unique, use pv name is better

volumeHandle: pv-cfsturbo

volumeAttributes:

cfs turbo server ip

host: 10.0.0.116

cfs turbo fsid (not cfs id)

fsid: xxxxxxxx

cfs turbo rootdir

rootdir: /cfs

cfs turbo subPath

path: /

proto: lustre

storageClassName: ""

Parameter description:

metadata.name: The name of the created PV.
spec.csi.volumeHandle: It must be consistent with the PV name.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 480 of 577

spec.csi.volumeAttributes.host: The IP address of the file system. You can check it in the information about file
system mount target.
spec.csi.volumeAttributes.fsid: The fsid of the file system (not the file system ID). You can check it in the file

system mount target information. It is the string after "tcp0:/" and before "/cfs" in the mounting command, as shown
in the following figure.
spec.csi.volumeAttributes.rootdir: The root directory of the file system. “/cfs” is entered if it is left empty (the
general mounting performance is enhanced if mounting to “/cfs”). If you want to specify a root directory for
mounting, you must ensure that the root directory exists in the file system.

spec.csi.volumeAttributes.path: The subdirectory of the file system. “/” is entered if it is left empty. If you want to
specify a subdirectory for mounting, you must ensure that the subdirectory exists in rootdir of the file system. The
directory accessed by the container is the rootdir+path directory of the file system (defaults to “/cfs/” directory).
spec.csi.volumeAttributes.proto: The default protocol for mounting the file system.

Note：

You need to install a Client in the cluster node according to the version of operating system kernel before
using lustre protocol to mount a CFS Turbo volume. For details, see Using CFS Turbo on Linux

Clients.

3. Use the following template to create a PVC that binds a PV.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: pvc-cfsturbo

spec:

storageClassName: ""

volumeName: pv-cfsturbo

accessModes:

- ReadWriteMany

resources:

requests:

storage: 10Gi

https://intl.cloud.tencent.com.cn/document/product/582/40298

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 481 of 577

Parameter description:

metadata.name: The name of the created PVC.
spec.volumeName: This need to be consistent with the name of PV created in the previous step.

4. Use the following template to create a Pod that mounts a PVC.

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- image: ccr.ccs.tencentyun.com/qcloud/nginx:1.9

imagePullPolicy: Always

name: nginx

ports:

- containerPort: 80

protocol: TCP

volumeMounts:

- mountPath: /var/www

name: data

volumes:

- name: data

persistentVolumeClaim:

claimName: pvc-cfsturbo

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 482 of 577

Overview

You can mount a CFS Turbo storage for an EKS cluster. The add-on is used to mount a Tencent Cloud CFS Turbo file
system to a workload based on a proprietary protocol. Currently, only static configuration is supported. For more
information about CFS storage types, see Storage Types and Performance.

Prerequisites

You have created an EKS cluster of v1.14 or later version.

Directions

Creating a file system

Create a CFS Turbo file system. For details, see Creating File Systems and Mount Targets.

Note：
After the file system is created, you need to associate the cluster network (vpc-xx) with the CCN instance of the
file system. You can check it in the information about the file system mount target.

Deploying a Node Plugin

Step 1. Create a csidriver.yaml file

Here is an example of a csidriver.yaml file:

apiVersion: storage.k8s.io/v1beta1

kind: CSIDriver

metadata:

name: com.tencent.cloud.csi.cfsturbo

spec:

Static Mounting of CFS-Turbo for EKS
Clusters
Last updated：2022-05-09 11:40:29

https://intl.cloud.tencent.com.cn/document/product/582/33745
https://intl.cloud.tencent.com.cn/document/product/582/9132
https://intl.cloud.tencent.com.cn/document/product/1003/30064

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 483 of 577

attachRequired: false

podInfoOnMount: false

Step 2. Create a CSI driver

Run the following command to create a CSI driver:

kubectl apply -f csidriver.yaml

Creating a CFS Turbo volume

Step 1. Create a CFS Turbo type PV based on the following template

apiVersion: v1

kind: PersistentVolume

metadata:

name: pv-cfsturbo

spec:

accessModes:

- ReadWriteMany

capacity:

storage: 10Gi

csi:

driver: com.tencent.cloud.csi.cfsturbo

volumeHandle: pv-cfsturbo

volumeAttributes:

host: *.*.*.*

fsid: ********

cfs turbo subPath

path: /

storageClassName: ""

Parameter description:

metadata.name: The name of the created PV.
spec.csi.volumeHandle: It must be consistent with the PV name.
spec.csi.volumeAttributes.host: The IP address of the file system. You can check it in the file system mount
target information.
spec.csi.volumeAttributes.fsid: The fsid of the file system (not the file system ID). You can check it in the file

system mount target information. It is the string between "tcp0:/" and "/cfs" in the mount command, as shown in the
following figure.
spec.csi.volumeAttributes.path: The subdirectory of the file system. “/” is entered if it is left empty (to improve
the mounting performance, “/” is located under “/cfs directory”). If you want to specify a subdirectory for mounting,
you must ensure that the subdirectory exists in “/cfs” in the file system. The workload cannot access the parent

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 484 of 577

directory of the subdirectory after mounting. For example, for “path: /test”, you must ensure that the “/cfs/test”
exists in the file system.

Step 2. Create a PVC that is bound to the PV based on the following template

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: pvc-cfsturbo

spec:

storageClassName: ""

volumeName: pv-cfsturbo

accessModes:

- ReadWriteMany

resources:

requests:

storage: 10Gi

Parameter description:

metadata.name: The name of the created PVC.

spec.volumeName: It must be consistent with the name of the PV created in Step 1.

Using a CFS Turbo volume

Create a Pod that mounts the PVC based on the following template.

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- image: ccr.ccs.tencentyun.com/qcloud/nginx:1.9

imagePullPolicy: Always

name: nginx

ports:

- containerPort: 80

protocol: TCP

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 485 of 577

volumeMounts:

- mountPath: /var/www

name: data

volumes:

- name: data

persistentVolumeClaim:

claimName: pvc-cfsturbo

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 486 of 577

Operation Scenario

Currently, the container images of most open-source apps (such as Kubernetes and TensorFlow) are hosted on image
hosting platforms outside of the Chinese mainland (such as DockerHub and quay.io). As a result, pulling images

in the Chinese mainland may be slow or even fail due to network issues. A common solution is to manually pull images

to local storage and then push them to a self-built image repository for manual synchronization. This process is very
complicated and does not cover all repositories or the latest image versions.
Tencent Container Registry (TCR) Enterprise Edition provides an acceleration service for mainstream image hosting
platforms outside of the Chinese mainland to effectively resolve difficulties in image pulling, thereby facilitating the
deployment of open-source apps. This document introduces how TKE clusters use the TCR acceleration service to

accelerate image pulling outside of the Chinese mainland.

Limits

Currently, the acceleration service is available only to TKE and TCR users.
The acceleration service currently can be accessed only from Tencent Cloud VPCs. Access from the Internet is not
yet allowed. The relevant domain name can be accessed but cannot actually provide the acceleration feature.

Directions

For TKE clusters, acceleration has been configured for the public images of the DockerHub platform by default. If you
need acceleration for image repositories on other platforms, such as quay.io , you need to modify the

configuration. The configuration method for clusters with a Docker runtime environment is different from that for
clusters with a Containerd runtime environment.

Configuration for Docker clusters
Configuration for Containerd clusters

Containerization
Accelerated Pull of Images Outside the
Chinese Mainland
Last updated：2022-04-20 19:01:30

https://intl.cloud.tencent.com.cn/document/product/1051
https://intl.cloud.tencent.com.cn/document/product/215

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 487 of 577

For nodes with a Docker runtime environment, because Docker itself does not support acceleration configuration
except for docker.io , when you use container images other than docker.io from outside the Chinese

mainland, you need to run the following command to change the image address domain name from quay.io to

 quay.tencentcloudcr.com . See the example below:

docker pull quay.tencentcloudcr.com/k8scsi/csi-resizer:v0.5.0

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 488 of 577

Overview

This document describes how to build and manage business images in layers and provides best practices for
managing container images of all types using TCR.

Advantages of container image layering

Resources are shared to improve the utilization.

Image management is standardized to facilitate DevOps implementation.
TCR's Ops-free image acceleration easily makes large-scale image distribution faster by 5-10 times.
TCR Enterprise has been accessed to Tencent CloudAudit. You can check the logs of read and write operations of
instances, namespaces, and image repositories in "Event History".

Prerequisites

Before using a private image managed in TCR for application deployment, you need to complete the following

preparations:

You have created a TCR Enterprise instance in the TCR console. If you haven't done so, create one first. For more
information, see Creating an Enterprise Edition Instance.
If you are using a sub-account, you must have granted the sub-account operation permissions for the
corresponding instance. For more information, see Example of Authorization Solution of TCR Enterprise.

Note: This also applies to the existing TCR instances. You only need to modify th

e image repository address.

1. F3S Docker Files Overview

The project consists of the following parts:

$ tree -L 3 ./f3s-docker-files

./f3s-docker-files

├── README.md ------ README file

Image Layering Best Practices
Last updated：2022-05-23 16:56:35

https://console.intl.cloud.tencent.com.cn/tcr
https://console.intl.cloud.tencent.com.cn/tcr
https://intl.cloud.tencent.com.cn/document/product/1051/35486
https://intl.cloud.tencent.com.cn/document/product/1051/37248

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 489 of 577

├── DockerBuildImages.sh ------ Image build script

├── 0.base ------ 0. Build various types of system images at the base layer

│ ├── alpine ------ Build the alpine system image at the base layer

│ │ └── Dockerfile

│ └── centos-7.8 ------ Build the CentOS 7.8 system image at the base layer

│ ├── Dockerfile

│ └── centos-7.8.2003-x86_64-docker.tar.xz

├─ 1.ops ------ 1. Build various types of images at the Ops layer

│ └── Dockerfile-alpine ------ Build the alpine image at the Ops layer

├── 2.lang ------ 2. Build various types of images at the language layer

│ └── Dockerfile-alpine-kona ------ alpine-kona image at the language layer

└── 3.app ------ 3. Build various types of images at the application layer

├── jmeter

│ ├── Dockerfile-jmeter-base ------ Build the jmeter-base image

│ ├── Dockerfile-jmeter-grafana-reporter ------ Build the jmeter-grafana-reporter

image

│ ├── Dockerfile-jmeter-master ------ Build the jmeter-master image

│ └── Dockerfile-jmeter-slave ------ Build the jmeter-slave image

├── nginx

│ ├── Dockerfile-alpine-nginx ------ Build the alpine-nginx image

│ ├── default.conf

│ └── nginx.conf

└── skywalking

└── Dockerfile-alpine-kona-skywalking ------ Build the alpine-kona-skywalking ima

ge

alpine/Dockerfile: Build with the official Alpine 3.13 Docker image to support common Ops tools.

centos-7.8/Dockerfile: Build with the official CentOS 7.8 Docker image to support common Ops tools.
Dockerfile-alpine-kona: Build with the Dockerfile-alpine and TencentKona 8.0.5 binary package. The Kona is
partially trimmed to control the image size.
Dockerfile-jmeter-base: Build based on the official JMeter 5.4.1 binary package.
Dockerfile-jmeter-grafana-reporter: Build based on Grafana-Reporter to generate JMeter PDF reports from

Grafana dashboards.
Dockerfile-jmeter-master: Build based on Jmeter-base to implement distributed master stress test with JMeter.
Dockerfile-jmeter-slave: Build based on Jmeter-base to implement distributed slave stress test with JMeter.
Dockerfile-alpine-nginx: Build with Dockerfile-alpine to add NGINX configuration initialization and logging
specifications.
Dockerfile-alpine-kona-skywalking: Build with the official Dockerfile-alpine-kona and SkyWalking 8.5 binary

package.

2. Project Resource Description

https://hub.docker.com/_/alpine
https://github.com/CentOS/sig-cloud-instance-images/blob/CentOS-7.8.2003-x86_64/docker/Dockerfile
https://github.com/Tencent/TencentKona-8/releases
https://jmeter.apache.org/
https://github.com/IzakMarais/reporter
https://skywalking.apache.org/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 490 of 577

2.0 Dockerfile-alpine

============ALPINE DOCKER FILE============

build

FROM alpine:3.13

ENV FROM alpine:3.13

The Alpine image does not contain `tzdata`, so you cannot set the time zone dir

ectly via the environment variable `TZ`. To this end, you need to install `tzdata

`:

ENV TZ=Asia/Shanghai

RUN echo 'http://mirrors.tencent.com/alpine/v3.13/main/' > /etc/apk/repositories

\

&& echo 'http://mirrors.tencent.com/alpine/v3.13/community/' >> /etc/apk/reposito

ries \

&& apk --no-cache add apache2-utils \

bind-tools \

bridge-utils \

busybox-extras \

curl \

ebtables \

ethtool \

fio \

fping \

iperf3 \

iproute2 \

iptables \

iputils \

ipvsadm \

jq \

lftp \

lsof \

mtr \

netcat-openbsd \

net-tools \

nmap \

procps \

psmisc \

rsync \

smartmontools \

strace \

sysstat \

tcpdump \

tree \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 491 of 577

tzdata \

unzip \

util-linux \

wget \

zip \

&& echo "${TZ}" > /etc/timezone \

&& ln -sf /usr/share/zoneinfo/${TZ} /etc/localtime \

&& rm -rf /var/cache/apk/*

ENV BUILD f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:v3.13

docker build -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:v3.13 .

============Build, tag and push the base image============

cd $pwd/0.base/alpine

docker build -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:v3.13 -f Docker

file .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:v3.13

2.1 Dcokerfile-CentOS-7.8

============Centos-7.8 DOCKER FILE============

build

CentOS 7.8 official Dockerfile: https://github.com/CentOS/sig-cloud-instance-im

ages/blob/CentOS-7.8.2003-x86_64/docker/Dockerfile

CentOS 7.8 official package: wget https://raw.githubusercontent.com/CentOS/sig-

cloud-instance-images/CentOS-7.8.2003-x86_64/docker/centos-7.8.2003-x86_64-docke

r.tar.xz

FROM scratch

ADD centos-7.8.2003-x86_64-docker.tar.xz /

LABEL name="CentOS Base Image" \

vendor="CentOS" \

license="GPLv2" \

build-date="20200504"

Add some widgets and change the time zone

RUN set -ex \

&& yum install -y wget \

&& rm -rf /etc/yum.repos.d/CentOS-* \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 492 of 577

Add the `Tencent yum` source

&& wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.cloud.tencent.com/rep

o/centos7_base.repo \

&& yum fs filter documentation \

&& yum install -y atop \

bind-utils \

curl \

dstat \

ebtables \

ethtool \

fping \

htop \

iftop \

iproute \

jq \

less \

lsof \

mtr \

nc \

net-tools \

nmap-ncat \

perf \

psmisc \

strace \

sysstat \

tcpdump \

telnet \

tree \

unzip \

wget \

which \

zip \

ca-certificates \

&& rm -rf /etc/localtime \

&& ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \

Install dumb-init

&& wget -O /usr/local/bin/dumb-init https://github.com/Yelp/dumb-init/releases/do

wnload/v1.2.5/dumb-init_1.2.5_x86_64 \

&& chmod +x /usr/local/bin/dumb-init \

Install gosu grab gosu for easy step-down from root

https://github.com/tianon/gosu/releases

&& wget -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/

1.13/gosu-amd64" \

&& chmod +x /usr/local/bin/gosu \

&& gosu nobody true \

Install the Chinese language package to solve the VI garbled text issue

&& yum -y install kde-l10n-Chinese glibc-common \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 493 of 577

&& localedef -c -f UTF-8 -i zh_CN zh_CN.utf8 \

&& export LC_ALL=zh_CN.utf8 \

&& yum clean all \

&& rm -rf /tmp/* \

&& rm -rf /var/lib/yum/* \

&& rm -rf /var/cache/yum

Solve the LESS garbled text issue

ENV LESSCHARSET utf-8

Set language environment variables

ENV LANG=en_US.UTF-8

If this line is not added, `stdin: true` and `tty: true` in Kubernetes will not

take effect

CMD ["/bin/bash"]

ENV BUILD f3s-docker-file.tencentcloudcr.com/f3s-tcr/centos:v7.8

docker build -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/centos:v7.8 .

============Build, tag and push the base image============

cd $pwd/0.base/centos-7.8

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/centos:v7.8

-f Dockerfile .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/centos:v7.8

To test run: docker run --name test -it --rm f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/centos:v7.8 uname -a

docker export <container-id> | docker import f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/centos:v7.8

quick interative termnal: docker run -it --entrypoint=sh f3s-docker-file.tencen

tcloudcr.com/f3s-tcr/centos:v7.8 sh

2.2 Dcokerfile-Ops

============Ops DOCKER FILE============

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:v3.13

MAINTAINER westzhao

ENV LANG=C.UTF-8

Download the Ops tool

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 494 of 577

RUN apk --no-progress --purge --no-cache add --upgrade wget \

curl \

mysql-client \

busybox \

busybox-extras \

bash \

bash-doc \

bash-completion \

tzdata \

vim \

unzip && \

Download the glibc to support JDK and solve the Chinese character issue && \

wget -q -O /etc/apk/keys/sgerrand.rsa.pub https://alpine-pkgs.sgerrand.com/sgerra

nd.rsa.pub && \

wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.33-r0/glibc

-2.33-r0.apk && \

wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.33-r0/glibc

-bin-2.33-r0.apk && \

wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.33-r0/glibc

-i18n-2.33-r0.apk && \

apk add glibc-2.33-r0.apk glibc-bin-2.33-r0.apk glibc-i18n-2.33-r0.apk && \

rm glibc-2.33-r0.apk glibc-bin-2.33-r0.apk glibc-i18n-2.33-r0.apk && \

/usr/glibc-compat/bin/localedef -i en_US -f UTF-8 C.UTF-8 && \

echo "export LANG=$LANG" > /etc/profile.d/locale.sh && \

Change the time zone

mkdir -p /share/zoneinfo/Asia/ && \

mkdir -p /etc/zoneinfo/Asia/ && \

cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \

cp /usr/share/zoneinfo/Asia/Shanghai /share/zoneinfo/Asia/Shanghai && \

cp /usr/share/zoneinfo/Asia/Shanghai /etc/zoneinfo/Asia/Shanghai && \

echo "Asia/Shanghai" > /etc/timezone && \

apk del tzdata && \

Delete the APK cache && \

rm -rf /var/cache/apk/*

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:late

st -f ./1.ops/Dockerfile-alpine .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:latest

To test run: docker run --name test -it --rm f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine:latest sh $(java -version)

docker export <container-id> | docker import f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine:latest

quick interative termnal: docker run -it --entrypoint=sh f3s-docker-file.tencen

tcloudcr.com/f3s-tcr/alpine:latest sh

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 495 of 577

2.3 Dockerfile-alpine-kona

============Alpine Kona DOCKER FILE============

build

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine:latest

MAINTAINER westzhao

ENV LANG=C.UTF-8

Download the Kona installation package via wget && \

RUN cd /opt && \

wget https://github.com/Tencent/TencentKona-8/releases/download/8.0.5-GA/TencentK

ona8.0.5.b12_jdk_linux-x86_64_8u282.tar.gz && \

tar -xvf TencentKona8.0.5.b12_jdk_linux-x86_64_8u282.tar.gz && \

rm TencentKona8.0.5.b12_jdk_linux-x86_64_8u282.tar.gz && \

ln -nfs /opt/TencentKona-8.0.5-282 /opt/jdk && \

Trim the unused resources of the JDK && \

rm /opt/jdk/release && \

rm /opt/jdk/THIRD_PARTY_README && \

rm /opt/jdk/LICENSE && \

rm /opt/jdk/ASSEMBLY_EXCEPTION && \

rm -rf /opt/jdk/sample/ && \

rm -rf /opt/jdk/demo/ && \

rm -rf /opt/jdk/src.zip && \

rm -rf /opt/jdk/man/ && \

rm -rf /opt/jdk/lib/missioncontrol && \

rm -rf /opt/jdk/lib/visualvm && \

rm -rf /opt/jdk/lib/ant-javafx.jar && \

rm -rf /opt/jdk/lib/javafx-mx.jar && \

rm -rf /opt/jdk/lib/jconsole.jar && \

rm -rf /opt/jdk/jre/lib/amd64/libawt_xawt.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjavafx_font_freetype.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjavafx_font_pango.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjavafx_font.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjavafx_font_t2k.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjavafx_iio.so && \

rm -rf /opt/jdk/jre/lib/amd64/libjfxwebkit.so && \

rm -rf /opt/jdk/jre/lib/desktop && \

rm -rf /opt/jdk/jre/lib/ext/jfxrt.jar && \

rm -rf /opt/jdk/jre/lib/fonts && \

rm -rf /opt/jdk/jre/lib/locale/de && \

rm -rf /opt/jdk/jre/lib/locale/fr && \

rm -rf /opt/jdk/jre/lib/locale/it && \

rm -rf /opt/jdk/jre/lib/locale/ja && \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 496 of 577

rm -rf /opt/jdk/jre/lib/locale/ko && \

rm -rf /opt/jdk/jre/lib/locale/ko.UTF-8 && \

rm -rf /opt/jdk/jre/lib/locale/pt_BR && \

rm -rf /opt/jdk/jre/lib/locale/sv && \

rm -rf /opt/jdk/jre/lib/locale/zh_HK.BIG5HK && \

rm -rf /opt/jdk/jre/lib/locale/zh_TW && \

rm -rf /opt/jdk/jre/lib/locale/zh_TW.BIG5 && \

rm -rf /opt/jdk/jre/lib/oblique-fonts && \

rm -rf /opt/jdk/jre/lib/deploy.jar && \

rm -rf /opt/jdk/jre/lib/locale/

JAVA_HOME

ENV JAVA_HOME=/opt/jdk

ENV CLASSPATH=.:$JAVA_HOME/lib/

ENV PATH=$JAVA_HOME/bin:$PATH

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kon

a:latest -f ./2.lang/Dockerfile-alpine-kona .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona:latest

To test run: docker run --name test -it --rm f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine-kona:latest sh $(java -version)

docker export <container-id> | docker import f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine-kona:latest

quick interative termnal: docker run -it --entrypoint=sh f3s-docker-file.tencen

tcloudcr.com/f3s-tcr/alpine-kona:latest sh

2.4 Dockerfile-alpine-kona-skywalking

============Alpine Kona SkyWalking DOCKER FILE============

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona:latest

MAINTAINER westzhao

ENV LANG=C.UTF-8

Download the Ops tool

RUN mkdir /3.app && \

wget -q -O /3.app/apache-skywalking-apm-8.5.0.tar.gz https://archive.apache.org/d

ist/skywalking/8.5.0/apache-skywalking-apm-8.5.0.tar.gz && \

tar zxf /3.app/apache-skywalking-apm-8.5.0.tar.gz -C /3.app && \

mv /3.app/apache-skywalking-apm-bin/agent /3.app/skywalking && \

rm -rf /3.app/apache-skywalking-apm-8.5.0.tar.gz && \

rm -rf /3.app/apache-skywalking-apm-bin/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 497 of 577

JAVA_HOME

ENV JAVA_HOME=/opt/jdk

ENV CLASSPATH=.:$JAVA_HOME/lib/

ENV PATH=$JAVA_HOME/bin:$PATH

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona

-skywalking:latest -f ./3.app/skywalking/Dockerfile-alpine-kona-skywalking .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona-skywalking:lat

est

To test run: docker run --name test -it --rm f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine-kona-skywalking:latest sh $(java -version)

docker export <container-id> | docker import f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine-kona-skywalking:latest

quick interative termnal: docker run -it --entrypoint=sh f3s-docker-file.tencen

tcloudcr.com/f3s-tcr/alpine-kona-skywalking:latest sh

2.5 Dockerfile-jmeter-base

============JMETER BASE DOCKER FILE============

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona:latest

MAINTAINER westzhao

ARG JMETER_VERSION=5.4.1

Download JMeter

RUN mkdir /jmeter && \

cd /jmeter && \

wget https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-$JMETER_VERSIO

N.tgz && \

tar -xzf apache-jmeter-$JMETER_VERSION.tgz && \

rm apache-jmeter-$JMETER_VERSION.tgz && \

Download JMeterPlugins-Standard && \

cd /jmeter/apache-jmeter-$JMETER_VERSION/ && \

wget -q -O /tmp/JMeterPlugins-Standard-1.4.0.zip https://jmeter-plugins.org/downl

oads/file/JMeterPlugins-Standard-1.4.0.zip && \

unzip -n /tmp/JMeterPlugins-Standard-1.4.0.zip && \

rm /tmp/JMeterPlugins-Standard-1.4.0.zip && \

Download pepper-box && \

wget -q -O /jmeter/apache-jmeter-$JMETER_VERSION/lib/ext/pepper-box-1.0.jar http

s://github.com/raladev/load/blob/master/JARs/pepper-box-1.0.jar?raw=true && \

Download bzm-parallel && \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 498 of 577

cd /jmeter/apache-jmeter-$JMETER_VERSION/ && \

wget -q -O /tmp/bzm-parallel-0.7.zip https://jmeter-plugins.org/files/packages/bz

m-parallel-0.7.zip && \

unzip -n /tmp/bzm-parallel-0.7.zip && \

rm /tmp/bzm-parallel-0.7.zip

ENV JMETER_HOME /jmeter/apache-jmeter-$JMETER_VERSION/

ENV PATH $JMETER_HOME/bin:$PATH

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-bas

e:latest -f ./3.app/jmeter/Dockerfile-jmeter-base .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-base:latest

2.6 Dockerfile-jmeter-master

============JMETER-MASTER DOCKER FILE============

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-base:latest

MAINTAINER westzhao

EXPOSE 60000

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-mast

er:latest -f ./3.app/jmeter/Dockerfile-jmeter-master .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-master:latest

2.7 Dockerfile-jmeter-slave

================JMETER-SLAVES DOCKER FILE=====================

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-base:latest

MAINTAINER westzhao

EXPOSE 1099 50000

ENTRYPOINT $JMETER_HOME/bin/jmeter-server \

-Dserver.rmi.localport=50000 \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 499 of 577

-Dserver_port=1099 \

-Jserver.rmi.ssl.disable=true

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-slav

e:latest -f ./3.app/jmeter/Dockerfile-jmeter-slave .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-slave:latest

2.8 Dockerfile-jmeter-grafana-reporter

================JMETER-GRAFANA-REPORTER DOCKER FILE=====================

build

Multi-stage builds

FROM golang:1.14.7-alpine3.12 AS build

MAINTAINER westzhao

Download the Ops and compilation tools

WORKDIR /go/src/${owner:-github.com/8710925}/reporter

ADD . .

RUN go install -v github.com/8710925/reporter/cmd/grafana-reporter

RUN apk --no-progress --purge --no-cache add --upgrade git && \

Compile grafana-reporter

git clone https://${owner:-github.com/8710925}/reporter . \

&& go install -v github.com/8710925/reporter/cmd/grafana-reporter

create grafana reporter image

FROM alpine:3.12

COPY --from=build /go/src/${owner:-github.com/8710925}/reporter/util/texlive.prof

ile /

COPY --from=build /go/src/${owner:-github.com/8710925}/reporter/util/SIMKAI.ttf /

usr/share/fonts/west/

RUN apk --no-progress --purge --no-cache add --upgrade wget \

curl \

fontconfig \

unzip \

tzdata \

perl-switch && \

wget -qO- \

"https://github.com/yihui/tinytex/raw/master/tools/install-unx.sh" | \

sh -s - --admin --no-path \

&& mv ~/.TinyTeX /opt/TinyTeX \

&& /opt/TinyTeX/bin/*/tlmgr path add \

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 500 of 577

&& tlmgr path add \

&& chown -R root:adm /opt/TinyTeX \

&& chmod -R g+w /opt/TinyTeX \

&& chmod -R g+wx /opt/TinyTeX/bin \

&& tlmgr update --self --repository http://mirrors.tuna.tsinghua.edu.cn/CTAN/syst

ems/texlive/tlnet \

&& tlmgr install epstopdf-pkg ctex everyshi everysel euenc \

Change the time zone

&& cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \

&& echo "Asia/Shanghai" > /etc/timezone \

&& apk del tzdata \

Cleanup

&& fmtutil-sys --all \

&& texhash \

&& mktexlsr \

&& apk del --purge -qq \

&& rm -rf /var/lib/apt/lists/*

COPY --from=build /go/bin/grafana-reporter /usr/local/bin

ENTRYPOINT ["/usr/local/bin/grafana-reporter","-ip","jmeter-grafana:3000"]

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-graf

ana-reporter:latest -f ./3.app/jmeter/Dockerfile-jmeter-grafana-reporter .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/jmeter-grafana-reporter:la

test

2.9 Dockerfile-alpine-nginx

================Alpine Nginx DOCKER FILE=====================

build

FROM f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-kona:latest

MAINTAINER westzhao

ENV LANG=C.UTF-8

Download the Ops tool

RUN apk --no-progress --purge --no-cache add --upgrade nginx && \

Delete the APK cache && \

rm -rf /var/cache/apk/*

COPY ./3.app/nginx/default.conf /etc/nginx/http.d/default.conf

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 501 of 577

COPY ./3.app/nginx/nginx.conf /etc/nginx/nginx.conf

EXPOSE 80 443

CMD ["/usr/sbin/nginx", "-g", "daemon off;", "-c", "/etc/nginx/nginx.conf"]

============Build, tag and push the base image============

docker build --no-cache -t f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-ngin

x:latest -f ./3.app/nginx/Dockerfile-alpine-nginx .

docker push f3s-docker-file.tencentcloudcr.com/f3s-tcr/alpine-nginx:latest

To test run: docker run --name test -it --rm -p 8888:80 f3s-docker-file.tencent

cloudcr.com/f3s-tcr/alpine-nginx:latest nginx -v

docker export <container-id> | docker import f3s-docker-file.tencentcloudcr.co

m/f3s-tcr/alpine-nginx:latest

quick interative termnal: docker run -it --entrypoint=sh f3s-docker-file.tencen

tcloudcr.com/f3s-tcr/alpine-nginx:latest sh

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 502 of 577

Overview

This document describes how to host a Dubbo application to TKE.

Strengths of hosting Dubbo applications to TKE

Improve the resource utilization.
Kubernetes is a natural fit for microservice architectures.

Improve the Ops efficiency and facilitate DevOps implementation.
Highly scalable Kubernetes makes it easy to dynamically scale applications.
TKE provides Kubernetes master management to ease Kubernetes cluster Ops and management.
TKE is integrated with other cloud-native products of Tencent Cloud to help you better use Tencent Cloud products.

Best Practices

The following describes how to host a Dubbo application to TKE by using the Q Cloud Book Mall (QCBM) project as

an example.

QCBM overview

QCBM is an online bookstore demo project developed by using the microservice architecture and the Dubbo 2.7.8
framework. It is deployed and hosted on CODING. For more information, see here. QCBM contains the following
microservices:

Microservice Description

QCBM-Front Frontend project developed through React, built and deployed based on the Nginx 1.19.8
Docker image.

QCBM-
Gateway

API gateway that accepts HTTP requests from the frontend and converts them into Dubbo
requests at the backend.

User-Service Dubbo-based microservice, providing user registration, login, and authentication features.

Microservice
Hosting Dubbo to TKE
Last updated：2022-06-10 16:48:46

https://github.com/TencentCloud/container-demo/tree/main/dubbo-on-tke
https://hub.docker.com/_/nginx

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 503 of 577

Microservice Description

Favorites-
Service

Dubbo-based microservice, providing book favorites.

Order-
Service

Dubbo-based microservice, providing order generation and query features.

Store-Service Dubbo-based microservice, providing the book information storage feature.

QCBM architecture and add-ons

In the following best practice, applications deployed in CVM are containerized and hosted to TKE. In this use case,
one VPC is used and divided into two subnets:

Subnet-Basic: Deployed with stateful basic services, including Dubbo's service registry Nacos, MySQL, and
Redis.
Subnet-K8S: Deployed with QCBM application services, all of which are containerized and run in TKE.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 504 of 577

The VPC is divided as shown below:

The network planning for the QCBM instance is as shown below:

Network
Planning

Description

Region/AZ Nanjing/Nanjing Zone 1

VPC CIDR: 10.0.0.0/16

Subnet-
Basic

Nanjing Zone 1, CIDR block: 10.0.1.0/24

Subnet-
K8S

Nanjing Zone 1, CIDR block: 10.0.2.0/24

Nacos
cluster

Nacos cluster built with three 1-core 2 GB MEM Standard SA2 CVM instances, with IP
addresses of 10.0.1.9, 10.0.1.14, and 10.0.1.15

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 505 of 577

The add-ons used in the QCBM instance are as shown below:

Add-on Version Source Remarks

k8s 1.8.4 Tencent Cloud TKE management mode

MySQL 5.7 Tencent Cloud TencentDB for MySQL with two nodes

Redis 5.0 Tencent Cloud TencentDB for Redis Standard Edition

CLS N/A Tencent Cloud Log service

TSW N/A Tencent Cloud Accessed with SkyWalking 8.4.0 Agent, which can be
downloaded here

Java 1.8 Open-source
community

Docker image of Java 8 JRE

Nacos 2.0.0 Open-source
community

Download here

Dubbo 2.7.8 Open-source
community

GitHub address

Overview

TCR

Tencent Cloud Tencent Container Registry (TCR) are available in Personal Edition and Enterprise Edition as
differentiated below:

https://archive.apache.org/dist/skywalking/8.4.0/apache-skywalking-apm-es7-8.4.0.tar.gz
https://github.com/alibaba/nacos/releases/download/2.0.0-bugfix/nacos-server-2.0.0.tar.gz
https://github.com/apache/dubbo
https://intl.cloud.tencent.com.cn/products/tcr

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 506 of 577

QCBM is a Dubbo containerized demo project, so TCR Personal Edition is perfectly suited to its needs. However, for
enterprise users, TCR Enterprise Edition is recommended. To use an image repository, see Basic Image Repository
Operations.

TSW

Tencent Service Watcher (TSW) provides cloud-native service observability solutions that can trace upstream and
downstream dependencies in distributed architectures, draw topologies, and provide multidimensional call

https://intl.cloud.tencent.com.cn/document/product/1051/35484
https://intl.cloud.tencent.com.cn/document/product/1051/35488
https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 507 of 577

observation by service, API, instance, and middleware. It is further described as shown below:

TSW is architecturally divided into four modules:

Show All

Data collection (client)

展开&收起
You can use an open-source probe or SDK to collect data. If you are migrating to the cloud, you can change the
reporting address and authentication information only and keep most of the configurations on the client.

Data processing (server)

展开&收起
Data is reported to the server via the Pulsar message queue, converted by the adapter into an OpenTracing-

compatible format, and assigned to real-time and offline computing as needed.

Real-time computing provides real-time monitoring, statistical data display, and fast response to the connected
alarming platform.
Offline computing aggregates the statistical data in large amounts over long periods of time and leverages big data
analytics to provide business value.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 508 of 577

Storage

展开&收起
The storage layer can adapt to use cases with different data types, writing at the server layer, and query and reading
requests at the data usage layer.

Data usage

展开&收起
The data usage layer provides underlying support for console operations, data display, and alarming.

The architecture is as shown below:

Directions

Building basic service cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 509 of 577

In the TencentDB for MySQL console, create an instance and use qcbm-ddl.sql to initialize it. For more information,
see Creating MySQL Instance.
In the TencentDB for Redis console, create an instance and initialize it. For more information, see Creating

TencentDB for Redis Instance.
In the CLB console, create a private network CLB instance for Subnet-K8S (the ID of this CLB instance will

be used later). For more information, see Creating CLB Instances.
Apply for the TSW beta test. TSW is currently in beta test and supports both Java and Go.
Deploy the Nacos cluster:

i. In the CVM console, purchase three 1-core 2 GB MEM Standard SA2 CVM instances. For more information, see
Creating Instances via CVM Purchase Page.

ii. Log in to the instance and run the following command to install Java.

yum install java-1.8.0-openjdk.x86_64

Run the following command. If Java version information is output, Java is successfully installed.

java - version

iii. Deploy the Nacos cluster as instructed in Cluster deployment instructions.

Building Docker image

Writing Dockerfile

The following uses user-service as an example to describe how to write a Dockerfile. The project directory

structure of user-service is displayed, Dockerfile is in the root directory of the project, and user-service-

1.0.0.zip is the packaged file that needs to be added to the image.

➜ user-service tree

├── Dockerfile

├── assembly

│

├── bin

│

├── pom.xml

├── src

│

├── target

│

│ └── user-service-1.0.0.zip

└── user-service.iml

The Dockerfile of user-service is as shown below:

https://console.intl.cloud.tencent.com.cn/cdb
https://tencent-cloud-native.coding.net/public/qcbm-k8s/qcbm-k8s/git/files/master/qcbm-ddl.sql
https://intl.cloud.tencent.com.cn/document/product/236/37785
https://console.intl.cloud.tencent.com.cn/redis
https://intl.cloud.tencent.com.cn/document/product/239/37712
https://console.intl.cloud.tencent.com.cn/clb
https://intl.cloud.tencent.com.cn/document/product/214/6149
https://console.intl.cloud.tencent.com.cn/cvm
https://intl.cloud.tencent.com.cn/document/product/213/4855
https://nacos.io/zh-cn/docs/cluster-mode-quick-start.html

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 510 of 577

FROM java:8-jre

ARG APP_NAME=user-service

ARG APP_VERSION=1.0.0

ARG FULL_APP_NAME=${APP_NAME}-${APP_VERSION}

The working directory of the container is `/app`.

WORKDIR /app

Add the locally packaged application to the image.

COPY ./target/${FULL_APP_NAME}.zip .

Create the `logs` directory. Decompress and delete the original files and direc

tory after the decompression.

RUN mkdir logs \

&& unzip ${FULL_APP_NAME}.zip \

&& mv ${FULL_APP_NAME}/** . \

&& rm -rf ${FULL_APP_NAME}*

Start script and parameters of `user-service`

ENTRYPOINT ["/app/bin/user-service.sh"] CMD ["start", "-t"]

Dubbo port number

EXPOSE 20880

Note：

Java applications in the production environment have a lot of configuration parameters, making the start
script complex. It's a heavy workload to write all the content of the start script to the Dockerfile, which is far
less flexible than shell scripts and can't implement fast troubleshooting. We recommend you not enable the
start script.
In general, nohup is used at the end of the start script to start the Java application, but the deamon process
that comes along will cause the container to exit directly after execution. Therefore, you need to change

 nohup java ${OPTIONS} -jar user-service.jar > ${LOG_PATH} 2>&1 & to java

${OPTIONS} -jar user-service.jar > ${LOG_PATH} 2>&1 .

As each Run command in the Dockerfile will generate an image layer, we recommend you combine these
commands into one.

Building image

TCR provides both automatic and manual methods to build an image. For more information, see Image Building

Overview. To demonstrate the build process, the manual method is used.

The image name needs to be in line with the convention of
 ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag] :

https://intl.cloud.tencent.com.cn/document/product/1051/39846

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 511 of 577

Here, namespace can be the project name to facilitate image management and use. In this document, QCBM

represents all the images under the QCBM project.
 ImageName can contain the subpath , generally used for multi-project use cases of enterprise users. In

addition, if a local image is already built, you can run the docker tag command to rename the image in line

with the naming convention.

1. Run the following command to build an image as shown below:

Recommended build method, which eliminates the need for secondary tagging ope

rations

sudo docker build -t ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

Build a local `user-service` image. The last `.` indicates that the Dockerfil

e is stored in the current directory (`user-service`).

➜ user-service docker build -t ccr.ccs.tencentyun.com/qcbm/user-service:1.0.0

.

Rename existing images in line with the naming convention

sudo docker tag [ImageId] ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image

tag]

2. After the build is complete, you can run the following command to view all the images in your local repository.

docker images

A sample is as shown below:

Uploading image to TCR

Creating namespace

The QCBM project uses TCR Personal Edition (TCR Enterprise Edition is recommended for enterprise users).

1. Log in to the TKE console.
2. Click TCR > Personal > Namespace to enter the Namespace page.

https://console.intl.cloud.tencent.com.cn/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 512 of 577

3. Click Create and create the qcbm namespace in the pop-up window. All the images of the QCBM project are

stored under this namespace as shown below:

Uploading image

Log in to TCR and upload an image.

1. Run the following command to log in to TCR.

docker login --username=[Tencent Cloud account ID] ccr.ccs.tencentyun.com

You can get your Tencent Cloud account ID on the Account Info page.

If you forget your TCR login password, you can reset it in My Images of TCR Personal Edition.

If you are prompted that you have no permission to run the command, add sudo before the command

and run it as shown below. In this case, you need to enter two passwords, the server admin password
required for sudo and the TCR login password.

sudo docker login --username=[Tencent Cloud account ID] ccr.ccs.tencenty

un.com

https://console.intl.cloud.tencent.com.cn/developer
https://console.intl.cloud.tencent.com.cn/tke2/registry/user

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 513 of 577

As shown below:

2. Run the following command to push the locally generated image to TCR.

docker push ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

As shown below:

3. In My Images, you can view all the uploaded images. The following figure shows the five QCBM images uploaded

to TCR.

https://console.intl.cloud.tencent.com.cn/tke2/registry/user/self?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 514 of 577

The default image type is Private . If you want to let others use the image, you can set it to Public

in Image Info as shown below:

Deploying service in TKE

Creating K8s cluster of QCBM

1. Before the deployment, you need to create a K8s cluster as instructed in Quickly Creating a Standard Cluster.

Note：

When a cluster is created, we recommend you enable Placement Group on the Select Model page. It
helps distribute CVM instances across different hosts to increase the system reliability.

2. After the cluster is created, you can view its information on the cluster management page in the TKE console. Here,
the new cluster is named qcbm-k8s-demo as shown below:

https://intl.cloud.tencent.com.cn/document/product/457/40029
https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 515 of 577

3. Click the Cluster Name to enter the Basic Info page to view the cluster configuration information as shown below:

4. (Optional) If you want to use K8s management tools such as kubectl and Lens, you need to follow two steps:
i. Enable public network access.
ii. Store the API authentication token in the local config file under user home/.kube (choose another if

the config file has content) to ensure that the default cluster can be accessed each time. If you choose not

to store the token in the config file under .kube , see the Instructions on Connecting to Kubernetes

Cluster via kubectl under Cluster API Server Info in the console as shown below:

Creating namespace

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 516 of 577

A namespace is a logical environment in a Kubernetes cluster that allows you to divide teams or projects. You can
create a namespace in the following three methods, and method 1 is recommended.

Method 1. Use the command line

Method 2. Use the console
Method 3. Use YAML

Run the following command to create a namespace:

kubectl create namespace qcbm

Using ConfigMap to store configuration information

ConfigMap allows you to decouple the configuration from the running image, making the application more portable.

The QCBM backend service needs to get the Nacos, MySQL, and Redis host and port information from the
environment variables and store them by using ConfigMap.
You can use ConfigMap to store configuration information in the following two methods:

Method 1. Use YAML
Method 2. Use the console

The following is the ConfigMap YAML for QCBM, where values of pure digits require double quotation marks,
for example, MYSQL_PORT in the sample YAML below:

Using Secret to store sensitive information

Create a ConfigMap.

apiVersion: v1

kind: ConfigMap

metadata:

name: qcbm-env

namespace: qcbm

data:

NACOS_HOST: 10.0.1.9

MYSQL_HOST: 10.0.1.13

REDIS_HOST: 10.0.1.16

NACOS_PORT: "8848"

MYSQL_PORT: "3306"

REDIS_PORT: "6379"

SW_AGENT_COLLECTOR_BACKEND_SERVICES: xxx # TSW access address as described below

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 517 of 577

A Secret can be used to store sensitive information such as passwords, tokens, and keys to reduce exposure risks.
QCBM uses it to store account and password information.
You can use a Secret to store sensitive information in the following two methods:

Method 1. Use YAML
Method 2. Use the console

The following is the YAML for creating a Secret in QCBM, where the value of the Secret needs to be a Base64-

encoded string.

Deploying Deployment

A Deployment declares the Pod template and controls the Pod running policy, which is suitable for deploying stateless
applications. Both front and Dubbo services of QCBM are stateless applications and can use the Deployment.

YAML parameters for the user-service Deployment are as shown below:

Parameter Description

replicas Indicates the number of Pods to be created.

image Image address

imagePullSecrets The key to pull an image, which can be obtained from Cluster > Configuration
Management > Secret. It is not required for public images.

Create a Secret.

apiVersion: v1

kind: Secret

metadata:

name: qcbm-keys

namespace: qcbm

labels:

qcloud-app: qcbm-keys

data:

xxx is the Base64-encoded string, which can be generated by using the echo -n

raw string | base64 shell command.

MYSQL_ACCOUNT: xxx

MYSQL_PASSWORD: xxx

REDIS_PASSWORD: xxx

SW_AGENT_AUTHENTICATION: xxx # TSW access token as described below

type: Opaque

https://console.intl.cloud.tencent.com.cn/tke2/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 518 of 577

Parameter Description

env

Defines Pod environment variables and values.
The key-value defined in the ConfigMap can be referenced by using

 configMapKeyRef .
The key-value defined in the Secret can be referenced by using

 secretKeyRef .

ports Specifies the port number of the container. It is 20880 for Dubbo applications.

A complete sample YAML file for the user-service Deployment is as follows:

user-service Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

name: user-service

namespace: qcbm

labels:

app: user-service

version: v1

spec:

replicas: 1

selector:

matchLabels:

app: user-service

version: v1

template:

metadata:

labels:

app: user-service

version: v1

spec:

containers:

- name: user-service

image: ccr.ccs.tencentyun.com/qcbm/user-service:1.1.4

env:

- name: NACOS_HOST # IP address of the Dubbo service registry Nacos

valueFrom:

configMapKeyRef:

key: NACOS_HOST

name: qcbm-env

optional: false

- name: MYSQL_HOST # MySQL address

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 519 of 577

valueFrom:

configMapKeyRef:

key: MYSQL_HOST

name: qcbm-env

optional: false

- name: REDIS_HOST # Redis IP address

valueFrom:

configMapKeyRef:

key: REDIS_HOST

name: qcbm-env

optional: false

- name: MYSQL_ACCOUNT # MySQL account

valueFrom:

secretKeyRef:

key: MYSQL_ACCOUNT

name: qcbm-keys

optional: false

- name: MYSQL_PASSWORD # MySQL password

valueFrom:

secretKeyRef:

key: MYSQL_PASSWORD

name: qcbm-keys

optional: false

- name: REDIS_PASSWORD # Redis password

valueFrom:

secretKeyRef:

key: REDIS_PASSWORD

name: qcbm-keys

optional: false

- name: SW_AGENT_COLLECTOR_BACKEND_SERVICES # SkyWalking backend service address

valueFrom:

configMapKeyRef:

key: SW_AGENT_COLLECTOR_BACKEND_SERVICES

name: qcbm-env

optional: false

- name: SW_AGENT_AUTHENTICATION # Authentication token for SkyWalking Agent to c

onnect to the backend service

valueFrom:

secretKeyRef:

key: SW_AGENT_AUTHENTICATION

name: qcbm-keys

optional: false

ports:

- containerPort: 20880 # Dubbo port name

protocol: TCP

imagePullSecrets: # The key to pull the image. It is not required as the images

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 520 of 577

Deploying Service

You can specify the Service type with Kubernetes ServiceType , which defaults to ClusterIP . Valid values

of ServiceType include the following:

LoadBalancer: Provides public network, VPC, and private network access.
NodePort: : Accesses services through the CVM IP and host port.
ClusterIP: Accesses services through the service name and port.

For a production system, the gateway needs to be accessible within the VPC or private network, and the front needs
to provide access to the private and public networks. Therefore, you need to set ServiceType to

 LoadBalancer for the QCBM gateway and front.

TKE enriches the LoadBalancer mode by configuring the Service through annotations.

If you use the service.kubernetes.io/qcloud-loadbalancer-internal-subnetid annotations, a

private network CLB instance will be created when the Service is deployed. In general, we recommend you create the

CLB instance in advance and use the service.kubernetes.io/loadbalance-id annotations in the

deployment YAML to improve the efficiency.

The deployment YAML for the qcbm-front Service is as follows:

of all QCBM services are public.

- name: qcloudregistrykey

Deploy the `qcbm-front` Service.

apiVersion: v1

kind: Service

metadata:

name: qcbm-front

namespace: qcbm

annotations:

ID of the CLB instance of `Subnet-K8S`

service.kubernetes.io/loadbalance-id: lb-66pq34pk

spec:

externalTrafficPolicy: Cluster

ports:

- name: http

port: 80

targetPort: 80

protocol: TCP

selector: # Map the backend `qcbm-gateway` to the Service.

app: qcbm-front

version: v1

type: LoadBalancer

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 521 of 577

Deploying Ingress

An Ingress is a collection of rules that allow external access to the cluster Service, thereby eliminating the need to
expose the Service. For QCBM projects, you need to create an Ingress for qcbm-front , which corresponds to the

following YAML:

Viewing deployment result

So far, you have completed the deployment of QCBM in TKE and can view the deployment result in the following
steps:

1. Log in to the TKE console and click the Cluster ID/Name to enter the cluster details page.
2. Click Services and Routes > Ingress to enter the Ingress page, where you can see the created Ingress. You

can access the QCBM page through the Ingress VIP.

Integrating CLS

Enabling container log collection

The container log collection feature is disabled by default and needs to be enabled as instructed below:

1. Log in to the TKE console and click Cluster Ops > Feature Management on the left sidebar.

Deploy the `qcbm-front` Ingress.

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: front

namespace: qcbm

annotations:

ingress.cloud.tencent.com/direct-access: "false"

kubernetes.io/ingress.class: qcloud

kubernetes.io/ingress.extensiveParameters: '{"AddressIPVersion":"IPV4"}'

kubernetes.io/ingress.http-rules: '[{"host":"qcbm.com","path":"/","backend":{"se

rviceName":"qcbm-front","servicePort":"80"}}]'

spec:

rules:

- host: qcbm.com

http:

paths:

- path: /

backend: # Associate with backend services.

serviceName: qcbm-front

servicePort: 80

https://console.intl.cloud.tencent.com.cn/tke2/
https://console.intl.cloud.tencent.com.cn/tke2/ops/list?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 522 of 577

2. At the top of the Feature Management page, select the region. On the right of the target cluster, click Set.

3. On the Configure Features page, click Edit for log collection and select Enable Log Collection as shown
below:

4. Click OK.

Creating log topic and logset

QCBM is deployed in Nanjing region, so you need to select Nanjing region when creating logsets:

1. Log in to the CLS console and select Nanjing region on the Log Topic page.

https://console.intl.cloud.tencent.com.cn/cls/topic

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 523 of 577

2. Click Create Log Topic and enter the relevant information in the pop-up window as prompted as shown below:

Log Topic Name: Enter qcbm .

Logset Operation: Select Create Logset.
Logset Name: Enter qcbm-logs .

3. Click OK.

Note：
As QCBM has multiple backend microservices, you can create a log topic for each microservice to facilitate
log categorization.

A log topic is created for each QCBM service.
You need the log topic ID when creating log rules for containers.

Configuring log collection rule

You can configure container log collection rules in the console or with CRD.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 524 of 577

Method 1. Use the console
Method 2. Use CRD

Log rules specify the location of a log in a container:

1. Log in to the TKE console and click Cluster Ops > Log Rules on the left sidebar.
2. On the Log Rules page, click Create to create a rule.

Log Source: Specify the location of a log in a container. All the QCBM logs are output to the /app/logs

directory, so you can use the container file path to specify the workload and log location.
Consumer: Select the previously created logset and topic.

3. Click Next to enter the Log Parsing Method. Here, single-line text is used for QCBM. For more information on the
log formats supported by CLS, see Full Text in a Single Line.

Viewing log

1. Log in to the CLS console and enter the Search and Analysis page.
2. On the Search and Analysis page, Create Index for the logs first and then click Search and Analysis to view

the logs.

https://console.intl.cloud.tencent.com.cn/tke2/
https://intl.cloud.tencent.com.cn/document/product/614/32287
https://console.intl.cloud.tencent.com.cn/cls/search

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 525 of 577

Note：
You can't find logs if no indexes are created.

Integrating TSW

TSW is currently in beta test and can be deployed in Guangzhou and Shanghai. Here, Shanghai is used as an
example (QCBM is deployed in Nanjing).

Accessing TSW - getting access point information

1. Log in to the TSW console and click Service Observation > Service List on the left sidebar.
2. Click Access Service and select Java and the SkyWalking data collection method. The access method provides

the Access Point and Token information.

Accessing TSW - application and container configuration

Enter the Access Point and Token of the TSW obtained in the previous step in

 collector.backend_service and agent.authentication respectively in the agent.config of

SkyWalking. agent.service_name is the service name, and agent.namespace can be used to group

https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 526 of 577

microservices under the same domain. user-service configuration is as shown below:

You can also configure SkyWalking Agent by using environment variables. QCBM uses the ConfigMap and Secret to
configure environment variables:

Use the ConfigMap to configure SW_AGENT_COLLECTOR_BACKEND_SERVICES .

Use the Secret to configure SW_AGENT_AUTHENTICATION .

As shown below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 527 of 577

At this point, you have completed TSW access. After starting the container service, you can view the call chain,
service topology, and SQL analysis in the TSW console.

Using TSW

Viewing call exception through service API or call chain

1. Log in to the TSW console and click Service Observation > API Observation on the left sidebar.

2. On the API Observation page, you can view the call status of all APIs under a service, including the number of
requests, success rate, error rate, response time, and other metrics.

3. In the above figure, two qcbm-gateway APIs (/api/favorites/query/{userId} for querying user

favorites and /api/order/{userId} for querying user orders) encountered call exceptions. Click the

 /api/favorites/query/{userId} API to view all the call records, locate the abnormal call chain, and click

it to view the cause.
The analysis shows that favorites-service encountered a call exception due to time-out .

Using TSW to analyze add-on (such as SQL and caching) call

1. Log in to the TSW console and click Add-on Call Observation > SQL Call on the left sidebar.
2. On the SQL Call page, you can view the call details of SQL, NoSQL, MQ, and other add-ons. For example, you

can quickly locate frequent SQL requests and slow queries in your application with the number and durations of
SQL requests.

Viewing service topology

1. Log in to the TSW console and click Chain Tracing > Distributed Dependency Topology on the left sidebar.
2. On the Distributed Dependency Topology page, you can view the completed service dependencies as well as

information such as the number of calls and average latency.

https://console.intl.cloud.tencent.com.cn/apm
https://console.intl.cloud.tencent.com.cn/apm
https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 528 of 577

Overview

This document describes how to host a Spring Cloud application to TKE.

Hosting Spring Cloud applications to TKE has the following advantages:

Improve the resource utilization.

Kubernetes is a natural fit for microservice architectures.
Improve the Ops efficiency and facilitate DevOps implementation.
Highly scalable Kubernetes makes it easy to dynamically scale applications.
TKE provides Kubernetes master management to ease Kubernetes cluster Ops and management.
TKE is integrated with other cloud-native products of Tencent Cloud to help you better use Tencent Cloud products.

Best Practices

PiggyMetrics overview

This document describes how to host a Spring Cloud application to TKE by forking the open-source PiggyMetrics on
GitHub and adapting it to Tencent Cloud products.

Note：
The modified PiggyMetrics deployment project is hosted on GitHub. After creating the basic service cluster,
you can download the deployment project and deploy it in TKE.

Hosting SpringCloud to TKE
Last updated：2022-11-04 16:14:00

https://github.com/sqshq/piggymetrics
https://github.com/TencentCloud/container-demo/tree/main/springcloud-on-tke

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 529 of 577

The PiggyMetrics homepage is as shown below:

PiggyMetrics is a microservice-architecture application for personal finances developed by using the Spring Cloud
framework.

PiggyMetrics consists of the following microservices:

Microservice Description

API gateway

It's a Spring Cloud Zuul-based gateway and the aggregated portal for calling backend APIs,
providing reverse routing and load balancing (Eureka + Ribbon) as well as rate limiting
(Hystrix). Client single-page applications and the Zuul gateway are deployed together to
simplify deployment.

Service
registration
and discovery

A Spring Cloud Eureka registry. Business services are registered through Eureka when they
are enabled, and service discovery is performed through Eureka when services are called.

Authorization
and
authentication
service

An authorization and authentication center based on Spring Security OAuth2. The client gets
the access token through the Auth Service during logins, and so does service call. Each
resource server verifies the token through the Auth Service.

Configuration
service

A configuration center based on Spring Cloud Config to centrally manage configuration files for
all Spring services.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 530 of 577

Microservice Description

Soft loading
and rate
limiting

Ribbon and Hystrix based on Spring Cloud. Zuul calls backend services through Ribbon for
soft loading and Hystrix for rate limiting.

Metrics and
dashboard

Hystrix Dashboard based on Spring Cloud Turbine, aggregating all the PiggyMetrics streams
generated by Hystrix and displaying them on the Hystrix Dashboard.

PiggyMetrics deployment architecture and add-ons

In the following best practice, applications deployed in CVM are containerized and hosted to TKE. In this use case,
one VPC is used and divided into two subnets:

Subnet-Basic is deployed with stateful basic services, including Dubbo's service registry Nacos, MySQL, and
Redis.
Subnet-K8S is deployed with PiggyMetrics application services, all of which are containerized and run in TKE.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 531 of 577

The VPC is divided as shown below:

The network planning for the PiggyMetrics instance is as shown below:

Network
Planning

Description

Region/AZ Nanjing/Nanjing Zone 1

VPC CIDR: 10.0.0.0/16

Subnet-
Basic

Nanjing Zone 1, CIDR block: 10.0.1.0/24

Subnet-
K8S

Nanjing Zone 1, CIDR block: 10.0.2.0/24

Nacos
cluster

Nacos cluster built with three 1-core 2 GB MEM Standard SA2 CVM instances with IP addresses
of 10.0.1.9, 10.0.1.14, and 10.0.1.15

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 532 of 577

The add-ons used in the PiggyMetrics instance are as shown below:

Add-on Version Source Remarks

K8S 1.8.4 Tencent Cloud TKE management mode

MongoDB 4.0 Tencent Cloud TencentDB for MongoDB WiredTiger engine

CLS N/A Tencent Cloud Log service

TSW N/A Tencent Cloud Accessed with SkyWalking 8.4.0 Agent, which can
be downloaded here

Java 1.8 Open-source
community

Docker image of Java 8 JRE

Spring
Cloud

Finchley.RELEASE Open-source
community

Spring Cloud website

Overview

TCR

Tencent Cloud Tencent Container Registry (TCR) are available in Personal Edition and Enterprise Edition as
differentiated below:

TCR Personal Edition is only deployed in Guangzhou, while TCR Enterprise Edition is deployed in every region.
TCR Personal Edition doesn't offer SLA guarantee.

https://archive.apache.org/dist/skywalking/8.4.0/apache-skywalking-apm-8.4.0.tar.gz
https://spring.io/projects/spring-cloud
https://intl.cloud.tencent.com.cn/products/tcr

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 533 of 577

PiggyMetrics is a Dubbo containerized demo project, so TCR Personal Edition perfectly meets its needs. However, for
enterprise users, TCR Enterprise Edition is recommended. To use an image repository, see Basic Image Repository
Operations.

TSW

Tencent Service Watcher (TSW) provides cloud-native service observability solutions that can trace upstream and
downstream dependencies in distributed architectures, draw topologies, and provide multidimensional call

https://console.intl.cloud.tencent.com.cn/tcr
https://intl.cloud.tencent.com.cn/document/product/1051/35488

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 534 of 577

observation by service, API, instance, and middleware.

TSW is architecturally divided into four modules:

Show All

Data collection (client)

展开&收起
You can use an open-source probe or SDK to collect data. If you are migrating to the cloud, you can change the
reporting address and authentication information only and keep most of the configurations on the client.

Data processing (server)

展开&收起
Data is reported to the server via the Pulsar message queue, converted by the adapter into an OpenTracing-

compatible format, and assigned to real-time and offline computing as needed.

Real-time computing provides real-time monitoring, statistical data display, and fast response to the connected
alarming platform.
Offline computing aggregates the statistical data in large amounts over long periods of time and leverages big data
analytics to provide business value.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 535 of 577

Storage

展开&收起
The storage layer can adapt to use cases with different data types, writing at the server layer, and query and reading
requests at the data usage layer.

Data usage

展开&收起
The data usage layer provides underlying support for console operations, data display, and alarming.

The architecture is as shown below:

Directions

Creating basic service cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 536 of 577

In the TencentDB for MongoDB console, create an instance and run the following command to initialize it:

A guest user of the piggymetrics library is created in the MongoDB initialization script mongo-init.js

by default, which can be modified as needed.

In the CLB console, create a private network CLB instance for Subnet-K8S (the ID of this CLB instance will be

used later).

TSW is currently in beta test and supports both Java and Go.

Building Docker image

Writing Dockerfile

The following uses account-service as an example to describe how to write a Dockerfile. The project directory

structure of account-service is displayed, Dockerfile is in the root directory of the project, and account-

service.jar is the packaged file that needs to be added to the image.

➜ account-service tree

├── Dockerfile

├── skywalking

│ ├── account.config

│ └── skywalking-agent.zip

├── pom.xml

├── src

│

├── target

│

Download the MongoDB client, decompress it, and enter the `bin` directory.

wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.6.18.tgz

tar -zxvf mongodb-linux-x86_64-3.6.18.tgz

cd mongodb-linux-x86_64-3.6.18/bin

Run the following command to initialize MongoDB, where `mongouser` is the ad

min account created when the MongoDB instance is created.

./mongo -u mongouser -p --authenticationDatabase "admin" [mongodb IP]/piggymet

rics mongo-init.js

https://console.intl.cloud.tencent.com.cn/mongodb
https://console.intl.cloud.tencent.com.cn/clb

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 537 of 577

│ └── account-service.jar

└── account-service.iml

Note：
Here, SkyWalking Agent is used as the TSW access client that reports call chain information to the TSW
backend. For more information on how to download SkyWalking Agent, see PiggyMetrics deployment
architecture and add-ons.

The Dockerfile of account-service is as shown below:

FROM java:8-jre

Working directory in the container

/appWORKDIR /app

Add the locally packaged application to the image.

ADD ./target/account-service.jar

Copy SkyWalking Agent to the image.

COPY ./skywalking/skywalking-agent.zip

Decompress SkyWalking Agent and delete the original compressed file.

RUN unzip skywalking-agent.zip && rm -f skywalking-agent.zip

Add the SkyWalking configuration file.

COPY ./skywalking/account.config ./skywalking-agent/config/agent.config

Start the application.

CMD ["java", "-Xmx256m", "-javaagent:/app/skywalking-agent/skywalking-agent.jar"

, "-jar", "/app/account-service.jar"]

Port description of the application

EXPOSE 6000

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 538 of 577

Note：
As each Run command in the Dockerfile will generate an image layer, we recommend you combine these
commands into one.

Image build

TCR provides both automatic and manual methods to build an image. To demonstrate the build process, the manual
method is used.

The image name needs to be in line with the convention of
 ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag] :

Here, namespace can be the project name to facilitate image management and use. In this document,

 piggymetrics represents all the images under the PiggyMetrics project.

 ImageName can contain the subpath , generally used for multi-project use cases of enterprise users. In

addition, if a local image is already built, you can run the docker tag command to rename the image in line

with the naming convention.

1. Run the following command to build an image as shown below:

2. After the build is complete, you can run the following command to view all the images in your local repository.

docker images | grep piggymetrics

Recommended build method, which eliminates the need for secondary tagging op

erations

sudo docker build -t ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image ta

g]

Build a local `account-service` image. The last `.` indicates that the Docke

rfile is stored in the current directory (`account-service`).

➜ account-service docker build -t ccr.ccs.tencentyun.com/piggymetrics/account-

service:1.0.0 .

Rename existing images in line with the naming convention

sudo docker tag [ImageId] ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[imag

e tag]

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 539 of 577

A sample is as shown below:

Uploading image to TCR

Creating namespace

The PiggyMetrics project uses TCR Personal Edition (TCR Enterprise Edition is recommended for enterprise users).

1. Log in to the TKE console.
2. Click TCR > Personal > Namespace to enter the Namespace page.
3. Click Create and create the piggymetrics namespace in the pop-up window. All the images of the

PiggyMetrics project are stored under this namespace as shown below:

Uploading image

Log in to TCR and upload an image.

1. Run the following command to log in to TCR.

docker login --username=[Tencent Cloud account ID] ccr.ccs.tencentyun.com

You can get your Tencent Cloud account ID on the Account Info page.

https://console.intl.cloud.tencent.com.cn/tke2
https://console.intl.cloud.tencent.com.cn/developer

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 540 of 577

If you forget your TCR login password, you can reset it in My Images of TCR Personal Edition.

If you are prompted that you have no permission to run the command, add sudo before the command

and run it as shown below. In this case, you need to enter two passwords, the server admin password
required for sudo and the TCR login password.

sudo docker login --username=[Tencent Cloud account ID] ccr.ccs.tencenty

un.com

As shown below:

2. Run the following command to push the locally generated image to TCR.

docker push ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

https://console.intl.cloud.tencent.com.cn/tke2/registry/user

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 541 of 577

As shown below:

3. In My Images, you can view all the uploaded images.

The default image type is Private . If you want to let others use the image, you can set it to Public

in Image Info as shown below:

Deploying service in TKE

Creating K8s cluster PiggyMetrics

1. Before the deployment, you need to create a K8s cluster as instructed in Quickly Creating a Standard Cluster.

Note：

When a cluster is created, we recommend you enable Placement Group on the Select Model page. It
helps distribute CVM instances across different hosts to increase the system reliability.

2. After the cluster is created, you can view its information on the Cluster Management page in the TKE console.
Here, the new cluster is named piggyMetrics .

https://console.intl.cloud.tencent.com.cn/tke2/registry/user/self?rid=1
https://intl.cloud.tencent.com.cn/document/product/457/40029
https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 542 of 577

3. Click the PiggyMetrics-k8s-demo cluster to enter the Basic Info page to view the cluster configuration

information.
4. (Optional) If you want to use K8s management tools such as kubectl and Lens, you need to follow two steps:

i. Enable public network access.
ii. Store the API authentication token in the local config file under user home/.kube (choose another if

the config file has content) to ensure that the default cluster can be accessed each time. If you choose not

to store the token in the config file under .kube , see the Instructions on Connecting to Kubernetes

Cluster via kubectl under Cluster API Server Info in the console as shown below:

Creating namespace

A namespace is a logical environment in a Kubernetes cluster, allowing you to divide teams or projects. You can
create a namespace in the following three methods, and method 1 is recommended.

Method 1. Use the command line
Method 2. Use the console
Method 3. Use YAML

Run the following command to create a namespace:

Using ConfigMap to store configuration information

kubectl create namespace piggymetrics

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 543 of 577

ConfigMap allows you to decouple the configuration from the running image, making the application more portable.
The PiggyMetrics backend service needs to get the MongoDB host and port information from the environment
variables and store them by using the ConfigMap.

You can use ConfigMap to store configuration information in the following two methods:

Method 1. Use YAML
Method 2. Use the console

The following is the ConfigMap YAML for PiggyMetrics, where values of pure digits require double quotation
marks.

Using Secret to store sensitive information

A Secret can be used to store sensitive information such as passwords, tokens, and keys to reduce exposure risks.
PiggyMetrics uses it to store account and password information.
You can use a Secret to store sensitive information in the following two methods:

Method 1. Use YAML

Method 2. Use the console

The following is the YAML for creating a Secret in PiggyMetrics, where the value of the Secret needs to be a

Base64-encoded string.

Create a ConfigMap.

apiVersion: v1

kind: ConfigMap

metadata:

name: piggymetrics-env

namespace: piggymetrics

data:

MongoDB IP address

MONGODB_HOST: 10.0.1.13

TSW access address as described below

SW_AGENT_COLLECTOR_BACKEND_SERVICES: ap-shanghai.tencentservicewatcher.com:11800

Create a Secret.

apiVersion: v1

kind: Secret

metadata:

name: piggymetrics-keys

namespace: piggymetrics

labels:

qcloud-app: piggymetrics-keys

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 544 of 577

Deploying stateful service with StatefulSet

A StatefulSet is used to manage stateful applications. A Pod created accordingly has a persistent identifier in line with
the specifications, which will be retained after the Pod is migrated, terminated, or restarted. When using persistent
storage, you can map storage volumes to identifiers.
The basic add-ons and services under the PiggyMetrics project such as configuration services, registry, and

RabbitMQ have their own data stored and are therefore suitable for deployment through StatefulSet.

Below is a sample deployment YAML for config-server :

data:

Replace XXX below with the actual value.

MONGODB_USER: XXX

MONGODB_PASSWORD: XXX

SW_AGENT_AUTHENTICATION: XXX

type: Opaque

kind: Service

apiVersion: v1

metadata:

name: config-server

namespace: piggymetrics

spec:

clusterIP: None

ports:

- name: http

port: 8888

targetPort: 8888

protocol: TCP

selector:

app: config

version: v1

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: config

namespace: piggymetrics

labels:

app: config

version: v1

spec:

serviceName: "config-server"

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 545 of 577

Deploying Deployment

A Deployment declares the Pod template and controls the Pod running policy, which is suitable for deploying stateless

applications. PiggyMetrics backend services such as Account are stateless and can use the Deployment.

YAML parameters for the account-service Deployment are as follows:

Parameter Description

replicas Indicates the number of Pods to be created.

image Image address

imagePullSecrets The key to pull an image, which can be obtained from Cluster > Configuration
Management > Secret. It is not required for public images.

env

Defines Pod environment variables and values.
The key-value defined in the ConfigMap can be referenced by using

 configMapKeyRef .
The key-value defined in the Secret can be referenced by using

 secretKeyRef .

ports Specifies the port number of the container. It is 6000 for account-service .

Below is a complete sample YAML file for the account-service Deployment:

replicas: 1

selector:

matchLabels:

app: config

version: v1

template:

metadata:

labels:

app: config

version: v1

spec:

terminationGracePeriodSeconds: 10

containers:

- name: config

image: ccr.ccs.tencentyun.com/piggymetrics/config-server:2.0.03

ports:

- containerPort: 8888

protocol: TCP

https://console.intl.cloud.tencent.com.cn/tke2/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 546 of 577

account-service Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

name: account-service

namespace: piggymetrics

labels:

app: account-service

version: v1

spec:

replicas: 1

selector:

matchLabels:

app: account-service

version: v1

template:

metadata:

labels:

app: account-service

version: v1

spec:

containers:

- name: account-service

image: ccr.ccs.tencentyun.com/piggymetrics/account-service:1.0.1

env:

MongoDB IP address

- name: MONGODB_HOST

valueFrom:

configMapKeyRef:

key: MONGODB_HOST

name: piggymetrics-env

optional: false

MongoDB username

- name: MONGODB_USER

valueFrom:

secretKeyRef:

key: MONGODB_USER

name: piggymetrics-keys

optional: false

MongoDB password

- name: MONGODB_PASSWORD

valueFrom:

secretKeyRef:

key: MONGODB_PASSWORD

name: piggymetrics-keys

optional: false

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 547 of 577

Deploying Service

You can specify the Service type with Kubernetes ServiceType , which defaults to ClusterIP . Valid values

of ServiceType include the following:

LoadBalancer: Provides public network, VPC, and private network access.

NodePort: : Accesses services through the CVM IP and host port.
ClusterIP: Accesses services through the service name and port.

The frontend pages and the gateway of PiggyMetrics are packaged together and need to provide services, so
 ServiceType is set to LoadBalancer . TKE enriches the LoadBalancer mode by configuring the Service

through annotations.

If you use the service.kubernetes.io/qcloud-loadbalancer-internal-subnetid annotations, a

private network CLB instance will be created when the Service is deployed. In general, we recommend you create the
CLB instance in advance and use the service.kubernetes.io/loadbalance-id annotations in the

deployment YAML to improve the efficiency.

Below is the deployment YAML for gateway service :

TSW access point

- name: SW_AGENT_COLLECTOR_BACKEND_SERVICES

valueFrom:

configMapKeyRef:

key: SW_AGENT_COLLECTOR_BACKEND_SERVICES

name: piggymetrics-env

optional: false

TSW access token

- name: SW_AGENT_AUTHENTICATION

valueFrom:

secretKeyRef:

key: SW_AGENT_AUTHENTICATION

name: piggymetrics-keys

optional: false

ports:

Container port

- containerPort: 6000

protocol: TCP

imagePullSecrets: # Token to pull the image

- name: qcloudregistrykey

Deploy `gateway service`.

apiVersion: v1

kind: Service

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 548 of 577

Viewing deployment result

At this point, you have completed the deployment of PiggyMetrics in TKE and can view the deployment result in the
following steps:

1. Log in to the TKE console and click the Cluster ID/Name to enter the cluster details page.

2. Click Services and Routes > Service to enter the Service page, where you can see the created Service. You
can access the PiggyMetrics page through the gateway service VIP.

Integrating CLS

Enabling container log collection

The container log collection feature is disabled by default and needs to be enabled as instructed below:

1. Log in to the TKE console and click Cluster Ops > Feature Management on the left sidebar.
2. At the top of the Feature Management page, select the region. On the right of the target cluster, click Set.

3. On the Configure Features page, click Edit for log collection, enable log collection, and confirm this operation as
shown below:

metadata:

name: gateway

namespace: piggymetrics

annotations:

Replace it with the ID of the CLB instance of `Subnet-K8S`.

service.kubernetes.io/loadbalance-id: lb-hfyt76co

spec:

externalTrafficPolicy: Cluster

ports:

- name: http

port: 80

targetPort: 4000

protocol: TCP

selector: # Map the backend `gateway` to the Service.

app: gateway

version: v1

type: LoadBalancer

https://console.intl.cloud.tencent.com.cn/tke2/
https://console.intl.cloud.tencent.com.cn/tke2/ops/list?rid=1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 549 of 577

Creating log topic and logset

CLS is region-specific. To reduce the network latency, we recommend you select a region closest to your business
when creating log resources, which are mainly logsets and log topics. A logset represents a project, a log topic

represents a class of services, and a single logset can contain multiple log topics.

PiggyMetrics is deployed in Nanjing region, so you need to select Nanjing region on the Log Topic page when
creating logsets:

1. Log in to the CLS console and select Nanjing region on the Log Topic page.

https://console.intl.cloud.tencent.com.cn/cls/logset

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 550 of 577

2. Click Create Log Topic and enter the relevant information in the pop-up window as prompted as shown below:

Log Topic Name: Enter piggymetrics .

Logset Operation: Select Create Logset.
Logset Name: Enter piggymetrics-logs .

3. Click OK.

Note：
As PiggyMetrics has multiple backend microservices, you can create a log topic for each microservice to

facilitate log categorization.

A log topic is created for each PiggyMetrics service.
You need the log topic ID when creating log rules for containers.

Configuring log collection rule

You can configure container log collection rules in the console or with CRD.

Method 1. Use the console
Method 2. Use CRD

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 551 of 577

Log rules specify the location of a log in a container:

1. Log in to the TKE console and click Cluster Ops > Log Rules on the left sidebar.
2. On the Log Rules page, click Create to create a rule.

Log Source: Specify the location of a log in a container. PiggyMetrics uses the default Spring Cloud
configuration where all logs are printed to the standard output. Therefore, you can use the standard container
output and specify a Pod Label.
Consumer: Select the previously created logset and topic.

3. Click Next to enter the Log Parsing Method. Here, single-line text is used for PiggyMetrics. For more information

on the log formats supported by CLS, see Full Text in a Single Line.

Viewing log

1. Log in to the CLS console and enter the Search and Analysis page.
2. On the Search and Analysis page, Create Index for the logs first and then click Search and Analysis to view

the logs.

https://console.intl.cloud.tencent.com.cn/tke2/
https://intl.cloud.tencent.com.cn/document/product/614/32287
https://console.intl.cloud.tencent.com.cn/cls/search

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 552 of 577

Note：
You can't find logs if no indexes are created.

Integrating TSW

TSW is currently in beta test and can be deployed in Guangzhou and Shanghai. Here, deployment in Shanghai is
used as an example (PiggyMetrics is deployed in Nanjing).

Accessing TSW - getting access point information

1. Log in to the TSW console and click Service Observation > Service List on the left sidebar.
2. Click Access Service and select Java and the SkyWalking data collection method. The access method provides

the Access Point and Token information.

Accessing TSW - application and container configuration

Enter the Access Point and Token of the TSW obtained in the previous step in

 collector.backend_service and agent.authentication respectively in the agent.config of

SkyWalking. agent.service_name is the service name, and agent.namespace can be used to group

https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 553 of 577

microservices under the same domain. account-service configuration is as shown below:

You can also configure SkyWalking Agent by using environment variables. PiggyMetrics uses the ConfigMap and
Secret to configure environment variables:

Use the ConfigMap to configure SW_AGENT_COLLECTOR_BACKEND_SERVICES .

Use the Secret to configure SW_AGENT_AUTHENTICATION .

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 554 of 577

As shown below:

At this point, you have completed TSW access. After starting the container service, you can view the call chain,
service topology, and SQL analysis in the TSW console.

Using TSW

Viewing call exception through service API or call chain

1. Log in to the TSW console and click Service Observation > API Observation on the left sidebar.
2. On the API Observation page, you can view the call status of all APIs under a service, including the number of

requests, success rate, error rate, response time, and other metrics.

The figure shows that the gateway and account-service responded too slowly and all statistic-

service requests failed in the past hour.

3. Click the service name statistics-service to enter the information page. Click API Observation, and you

can see that the API {PUT}/{accountName} throws a NestedServletException exception, which

makes the API unavailable.
4. Click the Trace ID to view the call chain details.

https://console.intl.cloud.tencent.com.cn/apm
https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 555 of 577

Viewing service topology

1. Log in to the TSW console and click Chain Tracing > Distributed Dependency Topology on the left sidebar.
2. On the Distributed Dependency Topology page, you can view the completed service dependencies as well as

information such as the number of calls and average latency.

https://console.intl.cloud.tencent.com.cn/apm

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 556 of 577

Overview

As the middle layer of IaaS and PaaS, the billing of Kubernetes currently relies on the resource billing of IaaS. A
Kubernetes cluster is billed by the purchased node CVMs. However, users use the Pods. In actual scenarios, users
are often faced with questions such as how does a Pod bear the cost, how to evaluate the cost of the cluster, how to

make cost predictions and optimization suggestions. For the above problems, we recommend users to use Kubecost.

Kubecost is a cost analysis tool that can provide insights, analysis, recommendations and suggestions on cluster
costs. As your financial analyst for optimizing cluster costs, Kubecost can provide you with a comprehensive cost
analysis report. This document describes the Kubecost use cases, optimization suggestions, detailed features, and
how to install and use it.

Use Cases

Evaluating the consumption cost of each resource

The cost expenditure is the cost of calculating Pod resource request (Request) or usage (Usage). The cost of Pod is
calculated based on the IaaS billing method of the node where the Pod is located.

Currently, the node billing modes of cloud vendors are generally monthly subscription (Month), pay-as-you-go
(Hour) and spot instance. When you use Kubecost to calculate the cost of Pod, even containers with the same
requests have different costs on different types of nodes.

In the above three billing modes, user purchases an entire instance. The billing is based on the instance, not for a

single resource. By using Kubecost, you can refer to the model to analyze the apportioned cost of each resource type
and each resource.

For example, a cloud vendor provides a node (virtual machine or physical machine) with 1 CPU core (C), 1 GB
memory (Mem), and a price of 20 CNY/month.

By using Kubecost, you need to add the basic price of each resource specified by the cloud vendor, such as the CPU

and Mem prices, or configure the corresponding ratio based on the business needs, for example, the price ratio of 1
Core:1 GB is 3:1, CPU/Mem=3:1. You can know the billing allocated to each resource (CPU/GPU/Mem/PV/Network).

Cost Management
Using Kubecost for TKE Cost Management
Last updated：2021-08-18 11:01:01

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 557 of 577

The calculation formula is as follows:
sum (normalized_resource_price[i] × resource_quantity[i]) = node_price

Therefore, the price of the entire node is 20 CNY/month, and the apportioned cost is 15 CNY/month for CPU and 5

CNY/month for Mem.

Evaluating cost efficiency

You can evaluate the cost efficiency via cost weighted average. Because the cost weight of each resource is different
(cost weight means that different types of resources are sold at different prices. For example, the price of computing
resources such as CPU and GPU is relatively high, while the price of Mem is relatively low, and the price of disk is
even lower), the contribution of different resources to the cost is also different for the same resource utilization

efficiency.

For example, if the disk utilization is 100%, since the disk is relatively cheap, the contribution to the final cost control is
low. However, for the CPU resources, even if the resource utilization rate is 30%, since the price of CPU resources is
relatively expensive, it may play a key role in the cost. Therefore, it is necessary to use weighted average to evaluate
the cost efficiency, for example:

Mem efficiency: MemEfficiency = MemUsage/MemRequest

CPU efficiency: CPUEfficiency = cpuUsage / cpuRequest
Mem cost efficiency: MemCostEff = a.MemEfficiency() × a.MemTotalCost()
CPU cost efficiency: cpuCostEff = a.CPUEfficiency() × a.CPUTotalCost()
Total cost efficiency: totalEff = (MemCostEff + cpuCostEff) / (a.CPUTotalCost() + a.MemTotalCost())

Optimization suggestions

When judging which services need to be optimized and how to optimize the cost structure, you can first look for the

TOP 10 resource wastes. For example, the Usage of resources is very different from the Request. You can obtain the
recommended Request based on the application monitoring profile, and finally calculate each resource costs that can
be saved.

Evaluating the marginal cost

For the node auto scaling, you can measure the final cost if the CPU and Mem of each node in the cluster increase by
1 core and 1 GB, and whether there will be a scale effect (the scale effect means that when the number of resources

increases, the cost does not explode, but the bin packing problem is solved).

If you have the above requirements and problems, you can use Kubecost to analyze your cluster cost trends.

Prerequisites

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 558 of 577

You have created a TKE cluster. For how to create a cluster, see Creating a Cluster.
You have used the command line tool Kubectl to connect to the cluster. For how to connect to a cluster, see
Connecting to a Cluster.

Features

Kubecost mainly provides cost analysis, including label dimension analysis such as Service, Application, Pod, and
Workload.
Resource allocation and usage
It provides a cluster health check feature, which is similar to cluster inspection and health check.

Overview

The corresponding description for each part is as follows:

https://intl.cloud.tencent.com.cn/document/product/457/30637
https://intl.cloud.tencent.com.cn/document/product/457/30639

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 559 of 577

1. The estimated monthly savings and the number of optimization suggestions for cost savings
2. Monthly cost and cost efficiency:

Monthly cost: the predicted value based on resource consumption over the past 7 days.

Cost efficiency: the cost efficiency based on last 2 days.
Calculation formula: (utilization rate of each resource * the sum of each resource’s price) / total prices

3. Monthly cluster costs. The bill dimensions include “Total cost”, “Compute”, “Memory”, and “Storage”.
4. Resource efficiency:

Based on currently provisioned resources and last 7 days usage

The resources are divided into three dimensions: Compute, Memory, and Storage.
Cost consists of four dimensions: idle, system, apps, and others.

5. Controller Allocation: calculate the cost of each Controller in the last two days based on the classification of
Controllers.

6. Service Allocation: calculate the cost of each Service in the last two days based on the classification of Services.
7. Namespace Allocation: calculate the cost and cost efficiency of each namespace in the last two days based on

the classification of namespace.
Calculation formula: utilization of each resource utilization * the sum of each resource’s price / total prices

8. Infrastructure health: the cluster infrastructure status score, which is similar to the cluster inspection, and there
are some optimization suggestions, for example:

Worker nodes are deployed across AZs.

Master has multiple replicas.
Detect the Pod whose CPU is throttled.

Cost allocation

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 560 of 577

The corresponding description for each part is as follows:

1. Displayed metrics:
Cumulative costs: the actual or historical expenditures over the selected time window.
Rate metrics: the hourly, daily, or monthly cost, which is based on samples in the selected time window, and
used to estimate costs.

2. Aggregation:

Cost Allocation allows you to view the allocation expenditure all native Kubernetes concepts, such as NS, Label,
and Service. It also supports the cost allocation for the organizational concepts such as team, Product/project,
Department, or environment.

3. Time window:
The specified time window used to measure costs. By default, the queried results of 1 day, 2 days, 7 days, and 30

days are cached.
4. Filter:

Filter resources by NS, clusterId, label, and Pod Prefix to accurately query the key points of cost expenditure.
5. Allocate idle costs:

“Allocate idle costs” will allocate idle resources and idle cluster costs to tenants in proportion, which is applicable to

the resources that are configured but not fully used or requested by the tenant. For example, if your cluster is only
25% utilized, measured by the maximum usage of resources and Requests, “Allocate idle costs” will proportionally
increase the cost of each pod/NS/Deployment to 4 times.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 561 of 577

6. Selecting charts:
You can switch to the bar chart to view the total measured cost of the selected window, or switch to the sequence
diagram to view the cost changes over time.

7. Additional features:
Export the cost data into CSV files or view the help documentations.

Assets

The Kubecost Assets view shows the fine-grained cost allocation of a Kubernetes cluster based on a single resource
in the cluster (for example, the cost allocated by nodes, disks, and other resources).

Savings

It shows the monthly estimated savings and the number of optimization suggestions for cost savings, namely the first
entry in the “Overview” page.

Here takes Request Sizing Recommendations as an example, as shown in the second figure below. The following
three levels of recommendation values are provided, and the recommended values are also related to the given time
window:

*Development: *the aim is 80% resource utilization at 85th-percentile resource usage over the given window.
*Production: *the aim is 65% resource utilization at 98th-percentile resource usage over the given window.
*High-availability: *the aim is 50% resource utilization at 99.9th-percentile resource usage over the given window.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 562 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 563 of 577

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 564 of 577

Health

The score of the cluster infrastructure status. If there are suggested repairs, it will be marked with a red exclamation
point ❗, as shown in the figure below:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 565 of 577

Reports

Reports are mainly used to save the observation data. The observation granularity is the same as that in Cost
Allocation. It supports data storage with one-click after data aggregation/observation in a certain way, as shown

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 566 of 577

below:

Directions

Installing Helm

Log in to a node and run the following command to install Helm.

curl https:``//raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 | ba

sh

Downloading Kubecost Helm

Run the following command to download the Kubecost Helm:

wget https:``//qitian-1251707795.cos.ap-beijing.myqcloud.com/cost-analyzer-1.81.

0.tgz

Installing Kubecost

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 567 of 577

1. Run the following command to install Kubecost:

kubectl create ns kubecost``helm install cost-analyzer cost-analyzer-``1.81``.`

`0``.tgz -n kubecost

2. Run the following command to check whether the Pods are running properly, as shown below:

kubectl get pods -n kubecost -o wide

The execution result is as shown below:

Updating service access method

1. Log in to the TKE console.
2. Click the corresponding cluster ID/name to go to the “Cluster Management” page.

3. Select Services and Routes > Service to go to the “Service” page.
4. Select the Service that you want to update the access method, and click Update access method to go to the

“Update access method” page.

5. The access method of service cost-analyzer-cost-analyzer is load balancer. After the service access method is
updated, you can obtain a public IPv4 address for public network access.

Access address: 'http://[service public network IP address]:9090'
Initial user name and password: admin and admin

Uninstalling

Run the following command to uninstall Kubecost:

helm uninstall cost-analyzer -n kubecost

https://console.intl.cloud.tencent.com.cn/tke2/cluster

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 568 of 577

Background

Public clouds are leased instead of purchased services with complete technical support and assurance, greatly
contributing to business stability, scalability, and convenience. But more work needs to be done to reduce costs and
improve efficiency, for example, adapting to application development, architecture design, management and Ops, and

reasonable use in the cloud. Resource utilization is improved after IDC cloud migration, but not that much; the average
utilization of containerized resources is only 13%, indicating a long and uphill way towards improvement.

This article details:

1. The reason for low CPU and memory utilization in Kubernetes clusters
2. TKE productized methods for easily improving resource utilization

Resource Waste Scenarios

To figure out why utilization is low, let's look at a few cases of resource use:

Scenarios 1: Over 50% of reserved resources are wasted

The Request field in Kubernetes manages the CPU and memory reservation mechanism, which reserves certain

resources in one container from being used by another. For more information, see Resource Management for Pods
and Containers. If Request is set to a small value, resources may fail to accommodate the business, especially

when the load becomes high. Therefore, users tend to set Request to a very high value to ensure the service

reliability. However, the business load is not that high most of the time. Taking CPU as an example, the following figure

shows the relationship between the resource reservation (request) and actual usage (cpu_usage) of a container in a
real-world business scenario:

Tools for Resource Utilization Improvement
Last updated：2022-12-08 17:25:19

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 569 of 577

As you can see, resource reservation is way more than the actual usage, and the excessive part cannot be used by
other loads. Obviously, setting Request to a very high value leads to great waste. In response, you need to set a

proper value and limit infinite business requests as needed, so that resources will not be occupied overly by certain

businesses. You can refer to ResourceQuota and LimitRange discussed later. In addition, TKE will launch a

smart request recommendation product to help you narrow the gap between Request and Usage , effectively

improving resource utilization while guaranteeing business stability.

Scenario 2: Business resource utilization sees an obvious change pattern, and resource waste is serious
during off-peak hours, which usually last longer than peak hours

Most businesses see an obvious change pattern in resource utilization. For example, a bus system usually has a high
load during the day and a low load at night, and a game often starts to experience a traffic surge on Friday night, which
drops on Sunday night.

As you can see, the same business requests different amounts of resources during different time periods. If

 Request is set to a fixed value, utilization will be low when the load is low. The solution is to dynamically adjust the

number of replicas to sustain different loads. For more information, see HPA, HPC, and CA discussed later.

Scenario 3: Resource utilization differs greatly by business type

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 570 of 577

Online businesses usually have a high load during the day and require a low latency, so they must be scheduled and
run first. In contrast, offline businesses generally have low requirements for the operating time period and latency and
can run during off-peak hours of online business loads. In addition, some businesses are computing-intensive and

consume a lot of CPU resources, while others are memory-intensive and consume a lot of memory resources.

As shown above, online/offline hybrid deployment helps dynamically schedule offline and online businesses in different
time periods to improve resource utilization. For computing-intensive and memory-intensive businesses, affinity
scheduling can be used to find the right node. For detailed directions, see online/offline hybrid deployment and affinity

scheduling discussed later.

Improving Resource Utilization in Kubernetes

TKE has productized a series of tools based on a large number of actual businesses, helping you easily and effectively
improve resource utilization. There are two ways: 1. manual resource allocation and limitation based on Kubernetes

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 571 of 577

native capabilities; 2. automatic solution based on business characteristics.

1. Resource allocation and limitation

Imagine that you are a cluster admin and your cluster is shared by four business departments. You need to allow for
on-demand use while ensuring stability. In order to improve the overall utilization, you need to limit the maximum
amount of resources available for each business and prevent excessive usage by setting default values.

Ideally, Request and Limit values are set as needed. Here, Request is resource occupation, indicating

the minimum amount of resources available for a container; Limit is resource limit, indicating the maximum

amount of resources available for a container. This contributes to healthier container running and higher resource

utilization, despite the fact that Request and Limit are often left unspecified. In the case of cluster sharing by

teams/projects, Request and Limit tend to be set to high values to ensure stability. When you create a load in

the TKE console, the following default values will be set for all containers, which are based on actual business
analysis and estimation and may deviate from real-world requirements.

Resource Request Limit

CPU (core) 0.25 0.5

Memory (MiB) 256 1,024

To fine-tune resource allocation and management, you can set namespace-level ResourceQuota and

 LimitRange in TKE.

`ResourceQuota` for resource allocation

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 572 of 577

`LimitRange` for resource limitation

If your cluster has four businesses, you can use the namespace and ResourceQuota to isolate them and limit

resources.

 ResourceQuota is used to set a quota on resources in a namespace, which is an isolated partition in a

Kubernetes cluster. A cluster usually contains multiple namespaces to house different businesses. You can set
different ResourceQuota values for different namespaces to limit the cluster resource usage by a namespace,

thus implementing preallocation and limitation. ResourceQuota applies to the following. For more information,

see Resource Quotas.

1. Computing resources: Sum of Request and Limit values of CPU and memory for all containers.

2. Storage resources: Sum of storage requests of all PVCs.
3. Number of objects: Total number of resource objects such as PVC, Service, ConfigMap, and Deployment.

 ResourceQuota use cases

Assign different namespaces to different projects/teams/businesses and set the ResourceQuota for each

namespace for allocation.
Set an upper limit on the amount of resources available for a namespace to improve cluster stability and prevent

excessive preemption and consumption of resources by a single namespace.

 ResourceQuota in TKE

TKE has productized ResourceQuota . You can directly use it in the console to limit the resource usage of a

namespace. For detailed directions, see Namespace.

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://intl.cloud.tencent.com.cn/document/product/457/30660

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 573 of 577

2. Automatic improvement of resource utilization

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 574 of 577

 ResourceQuota and LimitRange for resource allocation and limitation respectively rely on experience and

manual operations, mainly addressing unreasonable resource requests and allocation. This section describes how to
improve resource utilization through automated dynamic adjustments from the perspectives of elastic scaling,

scheduling, and online/offline hybrid deployment.

2.1 Elastic scaling

HPA for elastic scaling by metric
HPC for scheduled scaling
CA for automatic adjustment of the number of nodes

In scenario 2 of resource waste, if your business goes through peak and off-peak hours, a fixed Request value is

bound to cause resource waste during off-peak hours. In this case, you can consider automatically increasing and
decreasing the number of replicas of the business load during peak and off-peak hours respectively to enhance the
overall utilization.

Horizontal Pod Autoscaler (HPA) can automatically increase and decrease the number of Pod replicas in Deployment
and StatefulSet based on metrics such as CPU and memory utilization to stabilize workloads and achieve truly on-
demand usage.

HPA use cases

1. Traffic bursts: If traffic surges suddenly, the number of Pods is automatically increased promptly at overload.
2. Automatic scale-in: If traffic becomes light, the number of Pods is automatically decreased to avoid waste at

underload.

HPA in TKE

TKE supports many metrics for elastic scaling based on the custom metrics API, covering CPU, memory, disk,
network, and GPU in most HPA scenarios. For more information on the list, see HPA Metrics. In complex scenarios

such as automatic scaling based on the QPS per replica, the prometheus-adapter can be installed. For detailed
directions, see Using Custom Metrics for Auto Scaling in TKE.

https://intl.cloud.tencent.com.cn/document/product/457/34025
https://intl.cloud.tencent.com.cn/document/product/457/38941

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 575 of 577

2.2 Scheduling

The Kubernetes scheduling mechanism is a native resource allocation mechanism which is efficient and graceful. Its
core feature is to find the right node for each Pod. In TKE scenarios, the scheduling mechanism contributes to the
transition from application-layer to resource-layer elastic scaling. A reasonable scheduling policy can be configured

based on business characteristics by properly leveraging Kubernetes scheduling capabilities to effectively enhance
resource utilization in clusters.

Node affinity
Dynamic Scheduler

If one of your CPU-intensive businesses is scheduled to a memory-intensive node through the Kubernetes scheduler

by accident, all the CPU of the node will be taken up, but its memory will be barely used, resulting in serious waste. In
this case, you can label such node as CPU-intensive and label a business load during creation to indicate that it needs
to run on a CPU-intensive node. The Kubernetes scheduler will then schedule the load to a CPU-intensive node. This
way of finding the right node helps effectively improve resource utilization.

When creating Pods, you can set node affinity to specify nodes to which Pods will be scheduled (these nodes are
specified with Kubernetes labels).

Node affinity use cases

Node affinity is ideal for scenarios where workloads with different resource requirements run simultaneously in a
cluster. For example, CVM nodes can be CPU-intensive or memory-intensive. If certain businesses require much
higher CPU usage than memory usage, using general CVM instances will inevitably cause a huge waste of memory. In
this case, you can add a batch of CPU-intensive CVM instances to the cluster and schedule CPU-intensive Pods to
them, so as to improve the overall utilization. Similarly, you can manage heterogeneous nodes (such as GPU

instances) in the cluster, specify the amount of GPU resources needed in the workloads, and have the scheduling
mechanism find the right nodes to run these workloads.

Node affinity in TKE

TKE provides an identical method to use node affinity as native Kubernetes. You can use this feature in the console or
by configuring a YAML file. For detailed directions, see Proper Resource Allocation.

2.3 Online/Offline hybrid business deployment

If you have both online web businesses and offline computing businesses, you can use TKE's online/offline hybrid

deployment technology to dynamically schedule and run businesses to improve resource utilization.

In the traditional architecture, big data and online businesses are independent and deployed in different resource
clusters. Generally, big data businesses are for offline computing and experience peak hours during nights, during
which online businesses are barely loaded. Leveraging complete isolation capabilities of containers (involving CPU,
memory, disk I/O, and network I/O) and strong orchestration and scheduling capabilities of Kubernetes, cloud-native

https://intl.cloud.tencent.com.cn/document/product/457/37010

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 576 of 577

technologies implement the hybrid deployment of online and offline businesses to fully utilize resources during idle
hours of online businesses.

Use cases of online/offline hybrid deployment

In the Hadoop architecture, offline and online jobs are in different clusters. Online and streaming jobs experience

obvious load fluctuations, which means a lot of resources will be idle during off-peak hours, leading to great waste and
higher costs. In clusters with online/offline hybrid deployment, offline tasks are dynamically scheduled to online clusters
during off-peak hours, significantly improving resource utilization. Currently, Hadoop YARN can only statically allocate
resources based on the static resource status reported by NodeManager , making it unable to well support hybrid

deployment.

Online/Offline hybrid deployment in TKE

Online businesses experience obvious and regular load fluctuations, with a low resource utilization at night. In this
case, the big data management platform delivers resource creation requests to Kubernetes clusters to increase the
computing power of the big data application.

How to Balance Resource Utilization and Stability

Besides costs, system stability is another metric that weighs heavily in enterprise Ops. It's challenging to balance the
two. On the one hand, the higher the resource utilization, the better for cost reduction; on the other hand, a too high
resource utilization may cause overload and thereby OOM errors or CPU jitters.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 577 of 577

To help enterprises get rid of the dilemma, TKE provides the DeScheduler to keep the cluster load under control. It is
responsible for protecting nodes with risky loads and gracefully draining businesses from them. The relationship
between the DeScheduler and the Dynamic Scheduler is as shown below:

DeScheduler in TKE

You can install and use the DeScheduler in an extended add-on. For detailed directions, see DeScheduler.

https://intl.cloud.tencent.com.cn/document/product/457/39146

