
Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 89

Message Queue CKafka

Best Practices

Product Documentation

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 89

Copyright Notice

©2013-2022 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 89

Contents

Best Practices
Connecting Flink to CKafka
Connecting Schema Registry to CKafka
Connecting Spark Streaming to CKafka
Connecting Flume to CKafka
Connecting Kafka Connect to CKafka
Connecting Storm to CKafka
Connecting Logstash to CKafka
Connecting Filebeat to CKafka
Multi-AZ Deployment
Production and Consumption
Log Access

Connecting CLS to CKafka
Replacing Supportive Route (Old)
DataHub Best Practices

Connection to Kafka over HTTP
Unified Data Reporting
Simple Data Cleansing
Analysis of Change Logs Tracked by MongoDB Change Streams

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 89

Overview

Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and
bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at
in-memory speed and at any scale.

Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s
runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms
and data structures that are specifically designed for fixed sized data sets, yielding excellent performance.

Apache Flink requires real-time data from various sources (such as Apache Kafka or Kinesis) in order to execute
applications. Flink provides special Kafka Connectors for reading and writing data from/to Kafka topics, which offers

exactly-once processing semantics.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance’s basic information page, get the instance access address in the Access Mode module, which is

the bootstrap-server required by production and consumption.

Best Practices
Connecting Flink to CKafka
Last updated：2022-06-17 15:56:31

https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 89

Step 2. Create a topic

1. On the instance’s basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named test . This topic is used as an example

below to describe how to consume messages.

Step 3. Add Maven dependencies

Configure pom.xml as follows:

<!--?xml version="1.0" encoding="UTF-8"?-->

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:schemalocation="http://maven.apache.org/POM/4.0.0 h

ttp://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelversion>4.0.0</modelversion>

<groupid>org.example</groupid>

<artifactid>Test-CKafka</artifactid>

<version>1.0-SNAPSHOT</version>

<dependencies>

<dependency>

<groupid>org.apache.kafka</groupid>

<artifactid>kafka-clients</artifactid>

<version>0.10.2.2</version>

</dependency>

<dependency>

<groupid>org.slf4j</groupid>

<artifactid>slf4j-simple</artifactid>

<version>1.7.25</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupid>org.apache.flink</groupid>

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 89

Step 4. Consume CKafka messages

You can click the tabs below to view the two methods of message consumption and view consumption results in the

console or through printed logs.

Consume via VPC
Consume via public domain name

<artifactid>flink-java</artifactid>

<version>1.6.1</version>

</dependency>

<dependency>

<groupid>org.apache.flink</groupid>

<artifactid>flink-streaming-java_2.11</artifactid>

<version>1.6.1</version>

</dependency>

<dependency>

<groupid>org.apache.flink</groupid>

<artifactid>flink-connector-kafka_2.11</artifactid>

<version>1.7.0</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupid>org.apache.maven.plugins</groupid>

<artifactid>maven-compiler-plugin</artifactid>

<version>3.3</version>

<configuration>

<source>1.8

<target>1.8</target>

</configuration>

</plugin>

</plugins>

</build>

</project>

import org.apache.flink.api.common.serialization.SimpleStringSchema;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class CKafkaConsumerDemo {

public static void main(String args[]) throws Exception {

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 89

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironm

ent();

Properties properties = new Properties();

//Domain name address for public network access, i.e., public routing address, w

hich can be obtained in the access mode module of the instance details page.

properties.setProperty("bootstrap.servers", "IP:PORT");

//Consumer group ID.

properties.setProperty("group.id", "testConsumerGroup");

DataStream<string> stream = env

.addSource(new FlinkKafkaConsumer<>("topicName", new SimpleStringSchema(), prope

rties));

stream.print();

env.execute();

}

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 89

We can serialize/deserialize classes by using Avro APIs or the Twitter Bijection class library, but the disadvantage of
the two methods is that the Kafka record size will multiply as each record must be embedded with a schema.
However, the schema is required for reading the records.

CKafka makes it possible for data to share one schema by registering the content of the schema in Confluent Schema
Registry. Kafka producers and consumers can implement serialization/deserialization by identifying the schema
content in Confluent Schema Registry.

Prerequisites

You have downloaded JDK 8.

You have downloaded Confluent OSS 4.1.1.
You have created an instance as instructed in Creating Instance.

Directions

Step 1. Obtain the instance access address and enable automatic topic creation

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.

Connecting Schema Registry to CKafka
Last updated：2022-08-11 17:20:49

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://packages.confluent.io/archive/4.1/confluent-oss-4.1.1-2.11.tar.gz
https://intl.cloud.tencent.com.cn/document/product/597/39718
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 89

3. On the instance's basic information page, get the instance access address in the Access Mode module.

4. Enable automatic topic creation in the Auto-Create Topic module.

Note：
Automatic topic creation must be enabled as a topic named schemas will be automatically created when

OSS is started.

Step 2. Prepare Confluent configurations

1. Modify the server address and other information in the OSS configuration file.

The configuration information is as follows:

kafkastore.bootstrap.servers=PLAINTEXT://xxxx

kafkastore.topic=schemas

debug=true

<blockquote class="rno-document-tips rno-document-tips-explain"> <div class="rno-

document-tips-body"> <i class="rno-document-tip-icon"></i> <div class="rno-docume

nt-tip-title">Note</div> <div class="rno-document-tip-desc"><p><code>bootstrap.se

rvers</code>: Access network, which can be copied in the Network

column in the Access Mode module on the instance details page in

the CKafka console

.
 <img src="https://main.qcloudimg.com/raw/6b12eca18662d26a334d55b743c825ef.p

ng" alt=""></p></div> </div></blockquote>

2. Run the following command to start Schema Registry.

bin/schema-registry-start etc/schema-registry/schema-registry.properties

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 89

The execution result is as follows:

Step 3. Receive/Send messages

Below is the content of the schema file:

{

"type": "record",

"name": "User",

"fields": [

{"name": "id", "type": "int"},

{"name": "name", "type": "string"},

{"name": "age", "type": "int"}

]

}

1. Register the schema in the topic named test .

The script below is an example of registering a schema by calling an API with the curl command in the

environment deployed in Schema Registry.

curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \

--data '{"schema": "{\"type\": \"record\", \"name\": \"User\", \"fields\": [{\"na

me\": \"id\", \"type\": \"int\"}, {\"name\": \"name\", \"type\": \"string\"},

{\"name\": \"age\", \"type\": \"int\"}]}"}' \

http://127.0.0.1:8081/subjects/test/versions

2. The Kafka producer sends messages.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 89

package schemaTest;

import java.util.Properties;

import java.util.Random;

import org.apache.avro.Schema;

import org.apache.avro.generic.GenericData;

import org.apache.avro.generic.GenericRecord;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

public class SchemaProduce {

public static final String USER_SCHEMA = "{\"type\": \"record\", \"name\": \"U

ser\", " +

"\"fields\": [{\"name\": \"id\", \"type\": \"int\"}, " +

"{\"name\": \"name\", \"type\": \"string\"}, {\"name\": \"age\", \"type\": \"i

nt\"}]}";

public static void main(String[] args) throws Exception {

Properties props = new Properties();

// Add the access address of the CKafka instance

props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx");

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSeria

lizer");

// Use the Confluent `KafkaAvroSerializer`

props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSeriali

zer");

// Add the schema service address to obtain the schema

props.put("schema.registry.url", "http://127.0.0.1:8081");

Producer<string, genericrecord=""> producer = new KafkaProducer<>(props);

Schema.Parser parser = new Schema.Parser();

Schema schema = parser.parse(USER_SCHEMA);

Random rand = new Random();

int id = 0;

while(id < 100) {

id++;

String name = "name" + id;

int age = rand.nextInt(40) + 1;

GenericRecord user = new GenericData.Record(schema);

user.put("id", id);

user.put("name", name);

user.put("age", age);

ProducerRecord<string, genericrecord=""> record = new ProducerRecord<>("test",

user);

producer.send(record);

Thread.sleep(1000);

}

producer.close();

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 89

After running the script for a while, go to the CKafka console, select the Topic Management tab on the instance
details page, select the topic, and click More > Message Query to view the message just sent.

3. The Kafka consumer consumes messages.

}

}

package schemaTest;

import java.util.Collections;

import java.util.Properties;

import org.apache.avro.generic.GenericRecord;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

public class SchemaProduce {

public static void main(String[] args) throws Exception {

Properties props = new Properties();

props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx"); // Access address of the C

Kafka instance

props.put("group.id", "schema");

props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDes

erializer");

// Use the Confluent `KafkaAvroDeserializer`

props.put("value.deserializer", "io.confluent.kafka.serializers.KafkaAvroDeser

ializer");

// Add the schema service address to obtain the schema

props.put("schema.registry.url", "http://127.0.0.1:8081");

https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 89

On the Consumer Group tab page in the CKafka console, select the consumer group named schema , enter the

topic name, and click View Consumer Details to view the consumption details.

KafkaConsumer<string, genericrecord=""> consumer = new KafkaConsumer<>(props);

consumer.subscribe(Collections.singletonList("test"));

try {

while (true) {

ConsumerRecords<string, genericrecord=""> records = consumer.poll(10);

for (ConsumerRecord<string, genericrecord=""> record : records) {

GenericRecord user = record.value();

System.out.println("value = [user.id = " + user.get("id") + ", " + "user.name

= "

+ user.get("name") + ", " + "user.age = " + user.get("age") + "], "

+ "partition = " + record.partition() + ", " + "offset = " + record.offset());

}

}

} finally {

consumer.close();

}

}

}

https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 89

Start the consumer for consumption. Below is a screenshot of the consumption log:

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 89

As an extension of Spark Core, Spark Streaming is used for high-throughput and fault-tolerant processing of
continuous data. Currently supported external input sources include Kafka, Flume, HDFS/S3, Kinesis, Twitter, and
TCP socket.

Spark Streaming abstracts continuous data into a Discretized Stream (DStream), which consists of a series of
continuous resilient distributed datasets (RDDs). Each RDD contains data generated at a certain time interval.

Processing DStream with functions is actually processing these RDDs.

When Spark Streaming is used as data input for Kafka, the following stable and experimental Kafka versions are
supported:

Kafka Version spark-streaming-kafka-0.8 spark-streaming-kafka-0.10

Broker Version 0.8.2.1 or later 0.10.0 or later

API Maturity Deprecated Stable

Connecting Spark Streaming to CKafka
Last updated：2022-07-06 16:54:26

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 89

Kafka Version spark-streaming-kafka-0.8 spark-streaming-kafka-0.10

Language Support Scala, Java, and Python Scala and Java

Receiver DStream Yes No

Direct DStream Yes Yes

SSL / TLS Support No Yes

Offset Commit API No Yes

Dynamic Topic Subscription No Yes

Currently, CKafka is compatible with version above 0.9. The Kafka dependency of v0.10.2.1 is used in this practice
scenario.

In addition, Spark Streaming in EMR also supports direct connection to CKafka. For more information, see
Connecting Spark Streaming to CKafka.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.

3. On the instance's basic information page, get the instance access address in the Access Mode module, which is
the bootstrap-server required by production and consumption.

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.

https://intl.cloud.tencent.com.cn/document/product/1026/31134
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 89

2. On the topic management page, click Create to create a topic named test . This topic is used as an example

below to describe how to produce and consume messages.

Step 3. Prepare the CVM environment

CentOS 6.8

Package Version

sbt 0.13.16

Hadoop 2.7.3

Spark 2.1.0

Protobuf 2.5.0

SSH Installed on CentOS by default

Java 1.8

For specific installation steps, see [Configuring environment](#Configuring environment).

Step 4. Connect to CKafka

Producing Messages to CKafka
Consuming Messages from CKafka

The Kafka dependency of v0.10.2.1 is used here.

1. Add dependencies to build.sbt :

name := "Producer Example"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.kafka" % "kafka-clients" % "0.10.2.1"

2. Configure producer_example.scala :

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 89

For more information on how to use ProducerRecord , see ProducerRecord.

Configuring environment[](id:Configuring environment)

Installing sbt

1. Download the sbt package from sbt's official website.

2. After decompression, create an sbt_run.sh script with the following content in the sbt directory and add

executable permissions:

3. Run the following command:

The display of sbt version indicates a successful installation.

import java.util.Properties

import org.apache.kafka.clients.producer._

object ProducerExample extends App {

val props = new Properties()

props.put("bootstrap.servers", "172.16.16.12:9092") // Private IP and port in

the instance information

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSeria

lizer")

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSer

ializer")

val producer = new KafkaProducerString, String

val TOPIC="test" // Specify the topic to produce to

for(i<- 1 to 50){

val record = new ProducerRecord(TOPIC, "key", s"hello $i") // Produce a messag

e whose key is "key" and value is "hello i"

producer.send(record)

}

val record = new ProducerRecord(TOPIC, "key", "the end "+new java.util.Date)

producer.send(record)

producer.close() // Disconnect at the end

}

#!/bin/bash

SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermS

ize=256M"

java $SBT_OPTS -jar `dirname $0`/bin/sbt-launch.jar "$@"

chmod u+x ./sbt_run.sh

./sbt-run.sh sbt-version

https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/ProducerRecord.html
http://www.scala-sbt.org/download.html
https://intl.cloud.tencent.com.cn/pdf/document/597/props

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 89

Installing Protobuf

1. Download an appropriate version of Protobuf.
2. Decompress and enter the directory.

You should install gcc-g++ in advance, and the root permission may be required during installation.
3. Log in again and enter the following on the command line:

4. The display of Protobuf version indicates a successful installation.

Installing Hadoop

1. Download the required version at Hadoop's official website.
2. Add a Hadoop user.

3. Grant admin permissions.

4. Add the following in a new line under root ALL=(ALL) ALL :

 hadoop ALL=(ALL) ALL

Save and exit.

5. Use Hadoop for operations.

6. Configure SSH password-free login.

7. Install Java.

8. Configure ${JAVA_HOME} .

./configure

make && make install

protoc --version

useradd -m hadoop -s /bin/bash

visudo

su hadoop

cd ~/.ssh/ # If there is no such directory, run `ssh localhost` first

ssh-keygen -t rsa # There will be prompts. Simply press Enter

cat id_rsa.pub >> authorized_keys # Add authorization

chmod 600 ./authorized_keys # Modify file permission

sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel

vim /etc/profile

https://github.com/google/protobuf/releases
http://hadoop.apache.org/releases.html

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 89

Add the following at the end:

Modify the corresponding path based on the installation information.

9. Decompress Hadoop and enter the directory.

The display of version information indicates a successful installation.
0. Configure the pseudo-distributed mode (so that you can build different forms of clusters as needed).

Add the following at the end:

Modify the corresponding path based on the installation information.
1. Modify /etc/hadoop/core-site.xml .

2. Modify /etc/hadoop/hdfs-site.xml .

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.121-0.b13.el6_8.x86_64/

jre

export PATH=$PATH:$JAVA_HOME

./bin/hadoop version

vim /etc/profile

export HADOOP_HOME=/usr/local/hadoop

export PATH=$HADOOP_HOME/bin:$PATH

<configuration>

<property>

<name>hadoop.tmp.dir</name>

<value>file:/usr/local/hadoop/tmp</value>

<description>Abase for other temporary directories.</description>

</property>

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:9000</value>

</property>

</configuration>

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop/tmp/dfs/name</value>

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 89

3. Change JAVA_HOME in /etc/hadoop/hadoop-env.sh to the Java path.

4. Format the NameNode.

The display of `Exitting with status 0` indicates a success.
5. Start Hadoop.

`NameNode`, `DataNode`, and `SecondaryNameNode` processes will exist upon successful startup.

Installing Spark

Download the required version at Spark's official website.

As Hadoop has already been installed, select Pre-build with user-provided Apache Hadoop here.

Note：
This example also uses the hadoop user for operations.

1. Decompress and enter the directory.
2. Modify the configuration file.

Add the following in the first line:

Modify the path based on the Hadoop installation information.
3. Run the example.

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>file:/usr/local/hadoop/tmp/dfs/data</value>

</property>

</configuration>

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.121-0.b13.el6_8.x86_64/

jre

./bin/hdfs namenode -format

./sbin/start-dfs.sh

cp ./conf/spark-env.sh.template ./conf/spark-env.sh

vim ./conf/spark-env.sh

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

http://spark.apache.org/downloads.html

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 89

The display of an approximate value of `π` output by the program indicates a successful installation.

bin/run-example SparkPi

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 89

Apache Flume is a distributed, reliable, and highly available log collection system that supports a wide variety of data
sources such as HTTP, log file, JMS, and listening port. It can efficiently collect, aggregate, move, and store massive
amounts of log data to a specified storage system like Kafka, distributed file system, and Solr search server.

The structure of Flume is as follows:

Flume uses agents as the smallest independent unit of operation. An agent is a JVM composed of three main
components: source, sink, and channel.

Flume and Kafka

When you store data in a downstream storage module or a computing module such as HDFS or HBase, a lot of
complex factors need to be taken into account, such as the number of concurrent writes, system load, and network

Connecting Flume to CKafka
Last updated：2021-08-10 15:42:04

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 89

delay. As a flexible distributed system, Flume has various APIs and provides customizable pipelines.

In the production process, Kafka can act as a cache when the production and consumption are at different paces. It
has a partition structure and uses append to append data, which makes it have an excellent throughput. In

addition, it has a replication structure, which makes it highly fault-tolerant.

Therefore, Flume and Kafka together can satisfy most requirements in production environments.

Flume Connection to Open-Source Kafka

Preparations

Download Apache Flume (v1.6.0 or higher is compatible with Kafka).
Download Kafka (v0.9.x or higher is required as v0.8 is no longer supported).
Confirm that Kafka's source and sink components are already in Flume.

Connection method

Kafka can be used as source or sink to import or export messages.

Kafka Source
Kafka Sink

Configure Kafka as the message source, i.e., pulling data from Kafka into a specified sink as a consumer. The main
configuration items are as follows:

Configuration Item Description

channels Configured channel

type This must be org.apache.flume.source.kafka.KafkaSource

kafka.bootstrap.servers Kafka broker server address

kafka.consumer.group.id ID of the group as Kafka consumer

kafka.topics Kafka topic as data source

batchSize Size of each write into channel

batchDurationMillis Maximum time interval between writes

Sample:

http://flume.apache.org/download.html
https://kafka.apache.org/downloads

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 89

tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource

tier1.sources.source1.channels = channel1

tier1.sources.source1.batchSize = 5000

tier1.sources.source1.batchDurationMillis = 2000

tier1.sources.source1.kafka.bootstrap.servers = localhost:9092

tier1.sources.source1.kafka.topics = test1, test2

tier1.sources.source1.kafka.consumer.group.id = custom.g.id

For more information, please visit Apache Flume's official website.

Flume Connection to CKafka

Using CKafka as Sink
Using CKafka as Source

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of an instance to enter the instance basic information

page.
3. On the instance basic information page, get the instance access address in the Access Mode module.

Step 2. Create a topic

1. On the instance basic information page, select the Topic Management tab on the top.

https://flume.apache.org/FlumeUserGuide.html
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 89

2. On the topic management page, click Create to create a topic named flume_test .

Step 3. Configure Flume

1. Download the Apache Flume toolkit and decompress it.

2. Write the configuration file flume-kafka-sink.properties . Below is a simple demo (configured in the

 conf folder in the extracted directory). If there is no special requirement, simply replace your own instance IP

and topic in the configuration file. The source used in this example is tail -F flume-test , which represents

the information newly added in the file.

3. Run the following command to start Flume:

./bin/flume-ng agent -n agentckafka -c conf -f conf/flume-kafka-sink.properties

http://flume.apache.org/download.html

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 89

4. Write messages to the flume-test file. At this time, the messages will be written by Flume to CKafka.

5. Start the CKafka client for consumption.

./kafka-console-consumer.sh --bootstrap-server xx.xx.xx.xx:xxxx --topic flume_t

est --from-beginning --new-consumer

Note
Enter the access address of the CKafka instance just created as bootstrap-server and the name of

the topic just created as topic .

You can see that the messages have been consumed.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 89

Kafka Connect currently supports two execution modes: standalone and distributed.

Starting Connect in Standalone Mode

Start Connect in standalone mode by running the following commands:

bin/connect-standalone.sh config/connect-standalone.properties connector1.propert

ies [connector2.properties ...]

Accessing CKafka is basically the same as accessing the open-source Kafka, except that you need to change
bootstrap.servers to the IP assigned when the instance is applied for.

Starting Connect in Distributed Mode

Start Connect in distributed mode by running the following commands:

bin/connect-distributed.sh config/connect-distributed.properties

In this mode, Kafka Connect stores offsets, configs, and task status information in Kafka topics, which are configured
in the following fields in connect-distributed:

config.storage.topic

offset.storage.topic

status.storage.topic

These three topics need to be created manually to ensure that their attributes meet the requirements of Connect.

config.storage.topic should have only one partition, multiple replicas, and be in compact mode.
offset.storage.topic should have multiple partitions, multiple replicas, and be in compact mode.

status.storage.topic should have multiple partitions, multiple replicas, and be in compact mode.

Configure bootstrap.servers to the IP assigned when the instance is applied for.

Configure group.id to identify the Connect cluster, which should be differentiated from the consumer group.

Connecting Kafka Connect to CKafka
Last updated：2019-09-24 16:42:00

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 89

Storm is a distributed real-time computing framework that can perform stream-based data processing and provide
universal distributed RPC calling so as to reduce the delay of event processing down to sub-seconds. It is suitable for
real-time data processing scenarios where low delay is required.

How Storm Works

There are two types of nodes in a Storm cluster: master node and worker node . The Nimbus process

runs on the master node for resource allocation and status monitoring, and the Supervisor process runs on

the worker node for listening on work tasks and starting the executor . The entire Storm cluster relies on

 ZooKeeper for common data storage, cluster status listening, task assignment, etc.

A data processing program submitted to Storm is called a topology . The minimum message unit it processes is

 tuple (an array of arbitrary objects). A topology consists of spout and bolt , where spout is the

source of tuple , while bolt can subscribe to any tuple issued by spout or bolt for processing.

Storm with CKafka

Storm can use CKafka as a spout to consume data for processing or as a bolt to store the processed data for

consumption by other components.

Connecting Storm to CKafka
Last updated：2022-07-06 16:54:27

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 89

Testing environment

CentOS 6.8

Package Version

Maven 3.5.0

Storm 2.1.0

SSH 5.3

Java 1.8

Prerequisites

Download and install JDK 8. For detailed directions, see Java SE Development Kit 8 Downloads.
Download and install Storm. For more information, see Apache Storm downloads.

You have created a CKafka instance.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance's basic information page, get the instance access address in the Access Mode module.

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://storm.apache.org/downloads.html
https://intl.cloud.tencent.com.cn/document/product/597/39718
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 89

2. On the topic management page, click Create to create a topic.

Step 3. Add Maven dependencies

Configure pom.xml as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:schemalocation="http://maven.apache.org/POM/4.0.0 h

ttp://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelversion>4.0.0</modelversion>

<groupid>storm</groupid>

<artifactid>storm</artifactid>

<version>0.0.1-SNAPSHOT</version>

<name>storm</name>

<properties>

<project.build.sourceencoding>UTF-8</project.build.sourceencoding>

</properties>

<dependencies>

<dependency>

<groupid>org.apache.storm</groupid>

<artifactid>storm-core</artifactid>

<version>2.1.0</version>

</dependency>

<dependency>

<groupid>org.apache.storm</groupid>

<artifactid>storm-kafka-client</artifactid>

<version>2.1.0</version>

</dependency>

<dependency>

<groupid>org.apache.kafka</groupid>

<artifactid>kafka_2.11</artifactid>

<version>0.10.2.1</version>

<exclusions>

<exclusion>

<groupid>org.slf4j</groupid>

<artifactid>slf4j-log4j12</artifactid>

</exclusion>

</exclusions>

</dependency>

<dependency>

<groupid>junit</groupid>

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 89

Step 4. Produce a message

Using spout/bolt

Topology code:

<artifactid>junit</artifactid>

<version>4.12</version>

<scope>test</scope>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<artifactid>maven-assembly-plugin</artifactid>

<configuration>

<descriptorrefs>

<descriptorref>jar-with-dependencies</descriptorref>

</descriptorrefs>

<archive>

<manifest>

<mainclass>ExclamationTopology</mainclass>

</manifest>

</archive>

</configuration>

<executions>

<execution>

<id>make-assembly</id>

<phase>package</phase>

<goals>

<goal>single</goal>

</goals>

</execution>

</executions>

</plugin>

<plugin>

<groupid>org.apache.maven.plugins</groupid>

<artifactid>maven-compiler-plugin</artifactid>

<configuration>

<source>1.8

<target>1.8</target>

</configuration>

</plugin>

</plugins>

</build>

</project>

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 89

//TopologyKafkaProducerSpout.java

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.bolt.KafkaBolt;

import org.apache.storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;

import org.apache.storm.kafka.bolt.selector.DefaultTopicSelector;

import org.apache.storm.topology.TopologyBuilder;

import org.apache.storm.utils.Utils;

import java.util.Properties;

public class TopologyKafkaProducerSpout {

// `ip:port` of the CKafka instance applied for

private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

// Specify the topic to which to write messages

private final static String TOPIC = "storm_test";

public static void main(String[] args) throws Exception {

// Set producer attributes

// For functions, visit https://kafka.apache.org/0100/javadoc/index.html?org/apa

che/kafka/clients/consumer/KafkaConsumer.html

// For attributes, visit http://kafka.apache.org/0102/documentation.html

Properties properties = new Properties();

properties.put("bootstrap.servers", BOOTSTRAP_SERVERS);

properties.put("acks", "1");

properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSe

rializer");

properties.put("value.serializer", "org.apache.kafka.common.serialization.String

Serializer");

// Create a bolt to be written to Kafka. `fields("key" "message")` is used as th

e key and message for the produced message by default, which can also be specifi

ed in `FieldNameBasedTupleToKafkaMapper()`

KafkaBolt kafkaBolt = new KafkaBolt()

.withProducerProperties(properties)

.withTopicSelector(new DefaultTopicSelector(TOPIC))

.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());

TopologyBuilder builder = new TopologyBuilder();

// A spout class that generates messages in sequence with the output field being

`sentence`

SerialSentenceSpout spout = new SerialSentenceSpout();

AddMessageKeyBolt bolt = new AddMessageKeyBolt();

builder.setSpout("kafka-spout", spout, 1);

// Add the fields required to produce messages to CKafka for the tuple

builder.setBolt("add-key", bolt, 1).shuffleGrouping("kafka-spout");

// Write to CKafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 89

Create a spout class that generates messages in sequence:

builder.setBolt("sendToKafka", kafkaBolt, 8).shuffleGrouping("add-key");

Config config = new Config();

if (args != null && args.length > 0) {

// Cluster mode, which is used to package a jar file and run it in Storm

config.setNumWorkers(1);

StormSubmitter.submitTopologyWithProgressBar(args[0], config, builder.createTopo

logy());

} else {

// Local mode

LocalCluster cluster = new LocalCluster();

cluster.submitTopology("test", config, builder.createTopology());

Utils.sleep(10000);

cluster.killTopology("test");

cluster.shutdown();

}

}

}

import org.apache.storm.spout.SpoutOutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseRichSpout;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Map;

import java.util.UUID;

public class SerialSentenceSpout extends BaseRichSpout {

private SpoutOutputCollector spoutOutputCollector;

@Override

public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector

spoutOutputCollector) {

this.spoutOutputCollector = spoutOutputCollector;

}

@Override

public void nextTuple() {

Utils.sleep(1000);

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 89

Add key and message fields to the tuple . If key is null, the produced messages will be evenly allocated

to each partition. If a key is specified, the messages will be hashed to specific partitions based on the key value:

Using trident

Use the trident class to generate a topology

// Produce a `UUID` string and send it to the next component

spoutOutputCollector.emit(new Values(UUID.randomUUID().toString()));

}

@Override

public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {

outputFieldsDeclarer.declare(new Fields("sentence"));

}

}

//AddMessageKeyBolt.java

import org.apache.storm.topology.BasicOutputCollector;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseBasicBolt;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

public class AddMessageKeyBolt extends BaseBasicBolt {

@Override

public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) {

// Take out the first field value

String messae = tuple.getString(0);

// System.out.println(messae);

// Send to the next component

basicOutputCollector.emit(new Values(null, messae));

}

@Override

public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {

// Create a schema to send to the next component

outputFieldsDeclarer.declare(new Fields("key", "message"));

}

}

//TopologyKafkaProducerTrident.java

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 89

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.trident.TridentKafkaStateFactory;

import org.apache.storm.kafka.trident.TridentKafkaStateUpdater;

import org.apache.storm.kafka.trident.mapper.FieldNameBasedTupleToKafkaMapper;

import org.apache.storm.kafka.trident.selector.DefaultTopicSelector;

import org.apache.storm.trident.TridentTopology;

import org.apache.storm.trident.operation.BaseFunction;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.tuple.TridentTuple;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Properties;

public class TopologyKafkaProducerTrident {

// `ip:port` of the CKafka instance applied for

private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

// Specify the topic to which to write messages

private final static String TOPIC = "storm_test";

public static void main(String[] args) throws Exception {

// Set producer attributes

// For functions, visit https://kafka.apache.org/0100/javadoc/index.html?org/apa

che/kafka/clients/consumer/KafkaConsumer.html

// For attributes, visit http://kafka.apache.org/0102/documentation.html

Properties properties = new Properties();

properties.put("bootstrap.servers", BOOTSTRAP_SERVERS);

properties.put("acks", "1");

properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSe

rializer");

properties.put("value.serializer", "org.apache.kafka.common.serialization.String

Serializer");

// Set the trident

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()

.withProducerProperties(properties)

.withKafkaTopicSelector(new DefaultTopicSelector(TOPIC))

// Set to use `fields("key", "value")` as the written message, which doesn't hav

e a default value as `FieldNameBasedTupleToKafkaMapper` does

.withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("key", "valu

e"));

TridentTopology builder = new TridentTopology();

// A spout that generates messages in batches with the output field being `sente

nce`

builder.newStream("kafka-spout", new TridentSerialSentenceSpout(5))

.each(new Fields("sentence"), new AddMessageKey(), new Fields("key", "value"))

.partitionPersist(stateFactory, new Fields("key", "value"), new TridentKafkaStat

eUpdater(), new Fields());

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 89

Create a spout class that generates messages in batches:

Config config = new Config();

if (args != null && args.length > 0) {

// Cluster mode, which is used to package a jar file and run it in Storm

config.setNumWorkers(1);

StormSubmitter.submitTopologyWithProgressBar(args[0], config, builder.build());

} else {

// Local mode

LocalCluster cluster = new LocalCluster();

cluster.submitTopology("test", config, builder.build());

Utils.sleep(10000);

cluster.killTopology("test");

cluster.shutdown();

}

}

private static class AddMessageKey extends BaseFunction {

@Override

public void execute(TridentTuple tridentTuple, TridentCollector tridentCollecto

r) {

// Take out the first field value

String messae = tridentTuple.getString(0);

//System.out.println(messae);

// Send to the next component

//tridentCollector.emit(new Values(Integer.toString(messae.hashCode()), messa

e));

tridentCollector.emit(new Values(null, messae));

}

}

}

//TridentSerialSentenceSpout.java

import org.apache.storm.Config;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.spout.IBatchSpout;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Map;

import java.util.UUID;

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 89

Step 5. Consume the message

public class TridentSerialSentenceSpout implements IBatchSpout {

private final int batchCount;

public TridentSerialSentenceSpout(int batchCount) {

this.batchCount = batchCount;

}

@Override

public void open(Map map, TopologyContext topologyContext) {

}

@Override

public void emitBatch(long l, TridentCollector tridentCollector) {

Utils.sleep(1000);

for(int i = 0; i < batchCount; i++){

tridentCollector.emit(new Values(UUID.randomUUID().toString()));

}

}

@Override

public void ack(long l) {

}

@Override

public void close() {

}

@Override

public Map<string, object=""> getComponentConfiguration() {

Config conf = new Config();

conf.setMaxTaskParallelism(1);

return conf;

}

@Override

public Fields getOutputFields() {

return new Fields("sentence");

}

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 89

Using spout/bolt

//TopologyKafkaConsumerSpout.java

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.spout.*;

import org.apache.storm.task.OutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.TopologyBuilder;

import org.apache.storm.topology.base.BaseRichBolt;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.HashMap;

import java.util.Map;

import static org.apache.storm.kafka.spout.FirstPollOffsetStrategy.LATEST;

public class TopologyKafkaConsumerSpout {

// `ip:port` of the CKafka instance applied for

private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

// Specify the topic to which to write messages

private final static String TOPIC = "storm_test";

public static void main(String[] args) throws Exception {

// Set a retry policy

KafkaSpoutRetryService kafkaSpoutRetryService = new KafkaSpoutRetryExponentialBa

ckoff(

KafkaSpoutRetryExponentialBackoff.TimeInterval.microSeconds(500),

KafkaSpoutRetryExponentialBackoff.TimeInterval.milliSeconds(2),

Integer.MAX_VALUE,

KafkaSpoutRetryExponentialBackoff.TimeInterval.seconds(10)

);

ByTopicRecordTranslator<string, string=""> trans = new ByTopicRecordTranslator<>

(

(r) -> new Values(r.topic(), r.partition(), r.offset(), r.key(), r.value()),

new Fields("topic", "partition", "offset", "key", "value"));

// Set consumer parameters

// For functions, visit http://storm.apache.org/releases/1.1.0/javadocs/org/apac

he/storm/kafka/spout/KafkaSpoutConfig.Builder.html

// For parameters, visit http://kafka.apache.org/0102/documentation.html

KafkaSpoutConfig spoutConfig = KafkaSpoutConfig.builder(BOOTSTRAP_SERVERS, TOPI

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 89

C)

.setProp(new HashMap<string, object="">(){{

put(ConsumerConfig.GROUP_ID_CONFIG, "test-group1"); // Set the group

put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "50000"); // Set the session timeo

ut period

put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "60000"); // Set the request timeo

ut period

}})

.setOffsetCommitPeriodMs(10_000) // Set the automatic confirmation period

.setFirstPollOffsetStrategy(LATEST) // Set to pull the latest message

.setRetry(kafkaSpoutRetryService)

.setRecordTranslator(trans)

.build();

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("kafka-spout", new KafkaSpout(spoutConfig), 1);

builder.setBolt("bolt", new BaseRichBolt(){

private OutputCollector outputCollector;

@Override

public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {

}

@Override

public void prepare(Map map, TopologyContext topologyContext, OutputCollector ou

tputCollector) {

this.outputCollector = outputCollector;

}

@Override

public void execute(Tuple tuple) {

System.out.println(tuple.getStringByField("value"));

outputCollector.ack(tuple);

}

}, 1).shuffleGrouping("kafka-spout");

Config config = new Config();

config.setMaxSpoutPending(20);

if (args != null && args.length > 0) {

config.setNumWorkers(3);

StormSubmitter.submitTopologyWithProgressBar(args[0], config, builder.createTopo

logy());

}

else {

LocalCluster cluster = new LocalCluster();

cluster.submitTopology("test", config, builder.createTopology());

Utils.sleep(20000);

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 89

Using trident

cluster.killTopology("test");

cluster.shutdown();

}

}

}

//TopologyKafkaConsumerTrident.java

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.generated.StormTopology;

import org.apache.storm.kafka.spout.ByTopicRecordTranslator;

import org.apache.storm.kafka.spout.trident.KafkaTridentSpoutConfig;

import org.apache.storm.kafka.spout.trident.KafkaTridentSpoutOpaque;

import org.apache.storm.trident.Stream;

import org.apache.storm.trident.TridentTopology;

import org.apache.storm.trident.operation.BaseFunction;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.tuple.TridentTuple;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.HashMap;

import static org.apache.storm.kafka.spout.FirstPollOffsetStrategy.LATEST;

public class TopologyKafkaConsumerTrident {

// `ip:port` of the CKafka instance applied for

private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

// Specify the topic to which to write messages

private final static String TOPIC = "storm_test";

public static void main(String[] args) throws Exception {

ByTopicRecordTranslator<string, string=""> trans = new ByTopicRecordTranslator<>

(

(r) -> new Values(r.topic(), r.partition(), r.offset(), r.key(), r.value()),

new Fields("topic", "partition", "offset", "key", "value"));

// Set consumer parameters

// For functions, visit http://storm.apache.org/releases/1.1.0/javadocs/org/apac

he/storm/kafka/spout/KafkaSpoutConfig.Builder.html

// For parameters, visit http://kafka.apache.org/0102/documentation.html

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 89

KafkaTridentSpoutConfig spoutConfig = KafkaTridentSpoutConfig.builder(BOOTSTRAP_

SERVERS, TOPIC)

.setProp(new HashMap<string, object="">(){{

put(ConsumerConfig.GROUP_ID_CONFIG, "test-group1"); // Set the group

put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); // Set automatic confirma

tion

put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "50000"); // Set the session timeo

ut period

put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "60000"); // Set the request timeo

ut period

}})

.setFirstPollOffsetStrategy(LATEST) // Set to pull the latest message

.setRecordTranslator(trans)

.build();

TridentTopology builder = new TridentTopology();

// Stream spoutStream = builder.newStream("spout", new KafkaTridentSpoutTransact

ional(spoutConfig)); // Transaction type

Stream spoutStream = builder.newStream("spout", new KafkaTridentSpoutOpaque(spou

tConfig));

spoutStream.each(spoutStream.getOutputFields(), new BaseFunction(){

@Override

public void execute(TridentTuple tridentTuple, TridentCollector tridentCollecto

r) {

System.out.println(tridentTuple.getStringByField("value"));

tridentCollector.emit(new Values(tridentTuple.getStringByField("value")));

}

}, new Fields("message"));

Config conf = new Config();

conf.setMaxSpoutPending(20);conf.setNumWorkers(1);

if (args != null && args.length > 0) {

conf.setNumWorkers(3);

StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.build());

}

else {

StormTopology stormTopology = builder.build();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology("test", conf, stormTopology);

Utils.sleep(10000);

cluster.killTopology("test");

cluster.shutdown();stormTopology.clear();

}

}

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 89

Step 6. Submit Storm

After being compiled with mvn package , Storm can be submitted to the local cluster for debugging or submitted to

the production cluster for running.

storm jar your_jar_name.jar topology_name

storm jar your_jar_name.jar topology_name tast_name

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 89

Logstash is an open-source log processing tool that can be used to collect data from multiple sources, filters it, and
then stores it for other uses.

Logstash is highly flexible and has powerful syntax analysis capabilities. With a variety of plugins, it supports multiple

types of inputs and outputs. In addition, as a horizontally scalable data pipeline, it has powerful log collection and
retrieval features that work with Elasticsearch and Kibana.

How Logstash Works

The Logstash data processing pipeline can be divided into three stages: inputs → filters → outputs.

1. Inputs: Collect data from multiple sources like file, syslog, redis, and beats.
2. Filters: Modify and filter the collected data. Filters are intermediate processing components in the Logstash data

pipeline. They can modify events based on specific conditions. Some commonly used filters are grok, mutate, drop,
and clone.

3. Outputs: Transfer the processed data to other destinations. An event can be transferred to multiple outputs, and the
event ends when the transfer is completed. Elasticsearch is the most commonly-used output.

In addition, Logstash supports encoding and decoding data, so you can specify data formats on the input and output
ends.

Connecting Logstash to CKafka
Last updated：2022-08-11 17:23:38

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 89

Strengths of Connecting Logstash to Kafka

Data can be asynchronously processed to prevent traffic spikes.
Components are decoupled, so when an exception occurs in Elasticsearch, the upstream work will not be affected.

Note：
Logstash consumes resources when processing data. If you deploy Logstash on a production server, the
performance of the server may be affected.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 89

Directions

Preparations

Download and install Logstash as instructed in Installing Logstash.
Download and install JDK 8 as instructed in Java SE Development Kit 8u341.

Create a CKafka instance as instructed in Creating Instance.

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.

https://www.elastic.co/guide/en/logstash/7.6/installing-logstash.html?spm=a2c4g.11186623.2.10.7d625287CKP6MX
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://intl.cloud.tencent.com.cn/document/product/597/39718
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 89

3. On the instance's basic information page, get the instance access address in the Access Mode module.

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named logstash_test .

Step 3. Connect to CKafka

Note：
You can click the following tabs to view the detailed directions for using CKafka as inputs or outputs .

Connecting as inputs
Connecting as outputs

1. Run bin/logstash-plugin list to check whether logstash-input-kafka is included in the

supported plugins.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 89

2. Write the configuration file input.conf in the .bin/ directory.

In the following example, Kafka is used as the data source, and the standard output is taken as the data
destination.

input {

kafka {

bootstrap_servers => "xx.xx.xx.xx:xxxx" // CKafka instance access address

group_id => "logstash_group" // CKafka group ID

topics => ["logstash_test"] // CKafka topic name

consumer_threads => 3 // Number of consumer threads, which is generally the sam

e as the number of CKafka partitions

auto_offset_reset => "earliest"

}

}

output {

stdout{codec=>rubydebug}

}

3. Run the following command to start Logstash and consume messages.

./logstash -f input.conf

The returned result is as follows:

You can see that the data in the topic above has been consumed now.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 89

Beats platform hosts various single-purpose data shippers that can be used as lightweight agents after installation to
send collected data from hundreds or thousands of machines to the target.

Beats offers a wide variety of shippers, and you can download the one which best suits your needs. This document
uses Filebeat, a lightweight log shipper, as an example to describe how to connect Filebeat to CKafka and handle
common problems that may occur after the connection.

Prerequisites

You have downloaded and installed Filebeat. For more information, see Installing Logstash.
You have downloaded and installed JDK 8. For more information, see Java Downloads.

You have created a CKafka instance. For more information, see Creating Instance.

Directions

Connecting Filebeat to CKafka
Last updated：2022-11-29 11:38:57

https://www.elastic.co/beats
https://www.elastic.co/guide/en/logstash/7.6/installing-logstash.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://intl.cloud.tencent.com.cn/document/product/597/39718

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 89

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance's basic information page, get the instance access address in the Access Mode module.

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named test .

Step 3. Prepare the configuration file

Enter the installation directory of Filebeat and create the configuration monitoring file filebeat.yml .

#======= For versions after Filebeat 7.x, change `filebeat.prospectors` to `file

beat.inputs` =======

filebeat.prospectors:

- input_type: log

This is the path to the monitoring file.

paths:

- /var/log/messages

#======= Outputs =========

https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 89

Step 4. Send a message in Filebeat

1. Run the following command to start the client:

sudo ./filebeat -e -c filebeat.yml

2. Add data to the monitoring file (for example: testlog).

echo ckafka1 >> testlog

echo ckafka2 >> testlog

echo ckafka3 >> testlog

3. Start the consumer to consume the corresponding topic and get the following data.

{"@timestamp":"2017-09-29T10:01:27.936Z","beat":{"hostname":"10.193.9.26","nam

e":"10.193.9.26","version":"5.6.2"},"input_type":"log","message":"ckafka1","off

set":500,"source":"/data/ryanyyang/hcmq/beats/filebeat-5.6.2-linux-x86_64/testl

og","type":"log"}

{"@timestamp":"2017-09-29T10:01:30.936Z","beat":{"hostname":"10.193.9.26","nam

e":"10.193.9.26","version":"5.6.2"},"input_type":"log","message":"ckafka2","off

set":508,"source":"/data/ryanyyang/hcmq/beats/filebeat-5.6.2-linux-x86_64/testl

og","type":"log"}

#------------------ kafka -------------------------------------

output.kafka:

version:0.10.2 // Set the value to the open-source version of the CKafka instanc

e.

Set to the access address of the CKafka instance

hosts: ["xx.xx.xx.xx:xxxx"]

Set the name of the target topic

topic: 'test'

partition.round_robin:

reachable_only: false

required_acks: 1

compression: none

max_message_bytes: 1000000

The following parameters need to be configured for SASL. If SASL is not requir

ed, skip them.

username: "yourinstance#yourusername" // `username` should consist of the instan

ce ID and username

password: "yourpassword"

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 89

{"@timestamp":"2017-09-29T10:01:33.937Z","beat":{"hostname":"10.193.9.26","nam

e":"10.193.9.26","version":"5.6.2"},"input_type":"log","message":"ckafka3","off

set":516,"source":"/data/ryanyyang/hcmq/beats/filebeat-5.6.2-linux-x86_64/testl

og","type":"log"}

SASL/PLAINTEXT mode

If you want to configure SASL/PLAINTEXT, you need to set the username and password under the Kafka
configuration.

FAQs

The Filebeat log file (default path: /var/log/filebeat/filebeat) contains a large number of INFO logs as

follows:

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/544 starting up

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/544 state chang

e to [open] on wp-news-filebeat/4

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/4 selected broker 544

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/478 state chang

e to [closing] because EOF

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 Closed connection to broker bit

ar1d12:9092

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/5 state change to [retrying-3]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/4 state change to [flushing-3]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/5 abandoning broker 478

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/2 state change to [retrying-2]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

t/2 abandoning broker 541

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-news-filebea

The following parameters need to be configured for SASL. If SASL is not requir

ed, skip them.

username: "yourinstance#yourusername" // `username` should consist of the instan

ce ID and username

password: "yourpassword"

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 89

t/3 state change to [retrying-2]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/broker/478 shut down

This problem may be related to the Filebeat version. Products in the Elastic family are updated frequently, and major
version incompatibility problems often occur.

For example, v6.5.x supports Kafka v0.9, v0.10, v1.1.0, and v2.0.0 by default, while v5.6.x supports Kafka v0.8.2.0 by
default.

Check the version configuration in the configuration file:

Notes and Precautions

When data is sent to CKafka, compression.codec cannot be set.

Gzip compression is not supported by default. To use it, submit a ticket.

As Gzip compression causes high CPU consumption, if it is used, all messages will become InValid .

The program cannot run properly when the LZ4 compression method is used. Possible causes include:

The message format is incorrect. The default message version of CKafka is v0.10.2. You need to use the message
format v1.

Setting method for SDK varies by Kafka client. You can query the setting method in the open-source community
(e.g., C/C++ Client Descriptions) to set the version of the message format.

output.kafka:

version:0.10.2 // Set the value to the open-source version of the CKafka instanc

e.

https://console.intl.cloud.tencent.com.cn/workorder/category
https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#compression

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 89

Multi-AZ Deployment of CKafka

CKafka Pro Edition supports multi-AZ deployment. When you purchase a CKafka instance in a region that has three or
more AZs, you can select up to three of them for multi-AZ deployment. Partition replicas of this instance will be forcibly
distributed across the nodes in the three AZs, which enables your instance to provide services uninterruptedly when

one AZ becomes unavailable.

Note：
Only the Pro Edition supports multi-AZ deployment.

How multi-AZ deployment of CKafka works

The multi-AZ deployment feature of CKafka involves three layers: network, data, and control.

Network layer

CKafka exposes a VIP to the client. After the client is connected to the VIP, it will get the metadata information (which

is generally addresses mapped one to one at different ports on the same VIP) of the topic partitions .

This VIP can fail over to another AZ at any time. When an AZ becomes unavailable, the VIP will automatically shift to
another AZ in the same region, thus achieving multi-AZ disaster recovery.

Data layer

The data layer of CKafka is deployed in the same distributed way as Kafka; in other words, multiple data replicas are
distributed on different broker nodes which are deployed in different AZs. When a partition is processed, there will be a
leader-follower relationship between such nodes. When the leader goes offline due to an exception, the cluster

controller will elect a new partition leader to handle the requests for the partition.

For the client, after an AZ becomes unavailable due to an exception, if the leader of a topic partition is located on a
broker node in the AZ, the originally established link will time out or be closed. After an exception occurs on the leader
node of the partition, the controller will elect a new leader node to provide services, and if the controller node is also
abnormal, the remaining nodes will run for a new controller node. The leader switch can be completed within seconds

(proportional to the number of nodes in the cluster and the size of the metadata). The client will periodically refresh the
metadata of the topic partitions and link the new leader node for production and consumption.

Multi-AZ Deployment
Last updated：2022-07-06 16:54:27

https://intl.cloud.tencent.com.cn/document/product/597/40313

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 89

Control layer

The control layer of CKafka applies the same technical scheme as Kafka. It relies on ZooKeeper to manage service
discovery and cluster controller election for broker nodes. The ZK nodes in the ZooKeeper cluster of a CKafka
instance that supports multi-AZ deployment are deployed in three AZs (or data centers). In this way, even if

the ZK nodes in any AZ fail and disconnect, the entire ZooKeeper cluster can still provide services.

Pros and Cons of Multi-AZ Deployment

Pros

Multi-AZ deployment can significantly improve the disaster recovery capability of the cluster. When a single AZ
experiences force majeure events such as network instability and restart after power outage, the client can resume
message production and consumption after waiting a short while to reconnect.

Cons

In multi-AZ deployment mode, as partition replicas are distributed in multiple AZs, message replication across AZs
experiences an additional network latency compared with message replication in one single AZ, which directly affects

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 89

the client write time for production (the client ACK parameter is greater than 1 or equal to -1 or all). Currently, the

network latency across AZs in major regions such as Guangzhou, Shanghai, and Beijing typically ranges between 10
ms and 40 ms.

Multi-AZ Deployment Scenarios

Unavailability of one single AZ

After a single AZ becomes unavailable, as explained above, the client will disconnect, reconnect, and then provide
services normally after reconnection.

As multi-AZ deployment is currently not supported for the management of API services, after a single AZ becomes
unavailable, you may not be able to create topics, configure ACL policies, or view monitoring data in the console, but
this will not affect the production and consumption of existing businesses.

Network isolation between two AZs

If network isolation occurs between two AZs (that is, they cannot communicate), a cluster "split-brain" event may
occur; in other words, the nodes in both AZs provide services, but data written in one of the AZs will be treated as dirty
data after the cluster is recovered.

Suppose network isolation occurs between the cluster controller node and a ZK node in the ZooKeeper cluster and
other nodes, other nodes will run for a new controller (which can be successfully elected since most nodes in the
ZooKeeper cluster communicate normally over the network), but the isolated controller still regards itself as the

controller node. In this case, a "split-brain" event occurs in the cluster.

At this time, the client writes need to be considered on a case by case basis. For example, when the client's ACK is

set to -1 or all and the number of replicas is two, if the cluster contains three nodes, they will be distributed in

a 2:1 ratio after the split-brain event occurs. In this case, an error will be reported when the original leader writes to the
partitions in the AZ with one node, while writes in the other AZ will succeed. However, if the number of replicas is three

and ACK = -1 or ACK = all is configured, writes on neither AZ will succeed. Therefore, you need to take

further actions based on the specific parameter configuration.

After the cluster network is back to normal, the client can resume production and consumption without performing any
operations. As the server will normalize the data again, the data on one of the split nodes will be truncated directly,
which, however, will not result in data loss in case of multi-replica multi-AZ data storage.

Directions

Selecting multiple AZs for instance

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 89

1. Log in to the CKafka console.
2. Click Instance List on the left sidebar and click Create to enter the purchase page.
3. On the instance purchase page, set the configuration information for purchase based on your actual needs.

Billing Mode: Monthly subscription
Specs Type: Select the Standard or Pro edition based on your business needs.
Kafka Version: Select a Kafka version based on your business needs. For more information, see Suggestions for
CKafka Edition Selection.
Region: Select a region close to the resource for client deployment.

AZ: Select an AZ based on your actual needs.
Standard Edition: This edition does not support multi-AZ deployment.
Pro Edition: If the current region supports multi-AZ deployment, you can select up to three AZs for
deployment. For more information on multi-AZ deployment, see Multi-AZ Deployment.

Product Specification: Select a model based on the peak bandwidth and disk capacity.
Message Retention Period: Select a value between 24 and 2,160 hours.

When the disk capacity is insufficient (that is, the disk utilization reaches 90%), old messages will be deleted in
advance to ensure the service availability.
VPC: If you need to access other VPCs, you can modify the routing access rules as instructed in Adding Routing
Policy.
Tag: It is optional. For more information, see Tag Overview.

Instance Name: When purchasing multiple instances, you can use the features of automatically incrementing the
instance suffix number and specifying a pattern string. For detailed directions, see Naming with Consecutive
Numeric Suffixes or Designated Pattern String.

4. Click Buy Now to complete the instance creation process.

https://console.intl.cloud.tencent.com.cn/ckafka
https://intl.cloud.tencent.com.cn/document/product/597/40964
https://intl.cloud.tencent.com.cn/document/product/597/40243
https://intl.cloud.tencent.com.cn/document/product/597/32555
https://intl.cloud.tencent.com.cn/document/product/597/41600
https://intl.cloud.tencent.com.cn/document/product/597/41581

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 89

This document describes the best practices of message production and consumption in CKafka to help you reduce
errors in message consumption.

Message Production

Recommendations for topic use

Configuration requirements: It is recommended to use 3 replicas and in-sync replication. The minimum number of

in-sync replicas should be 2, and the number of in-sync replicas cannot be equal to the number of topic replicas;
otherwise, the failure of 1 replica will lead to the inability to produce messages.
Creation method: You can choose whether to enable Auto-Create Topic in CKafka. After it is enabled, a topic with
3 partitions and 2 replicas will be automatically created when a topic that has not been created is produced or
consumed in.

Retry upon failure

In a distributed environment, due to network or other issues, messages may occasionally fail to be sent. This is
probably because the message actually has been sent successfully but the ACK mechanism failed, or because the
message indeed has not been sent successfully.

You can set the following retry parameters based on your business needs:

Parameter Description

 retries

Number of retries, which is 3 by default. You can consider setting it to
 Integer.MAX_VALUE (valid and maximum) for applications that have zero
tolerance for data loss.

 retry.backoff.ms Retry interval. We recommend you set it to 1000 .

By doing so, you will be able to deal with the issue where the broker's leader partition can't respond to producer
requests immediately.

Async sending

The sending API is async. If you want to receive the result of sending, you can call
 metadataFuture.get(timeout, TimeUnit.MILLISECONDS) .

Production and Consumption
Last updated：2022-03-28 17:47:17

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 89

One producer corresponding to one app

A producer is thread-safe and can send messages to any topics. Generally, we recommend that one application
correspond to one producer.

Acks

Kafka's ACK mechanism refers to the producer's mechanism for acknowledgment of message sending. It is set to

 Acks in Kafka 0.10.x or request.required.acks on version 0.8.x. The setting of Acks will directly affect

the throughput of the Kafka cluster and the reliability of messages.

The Acks parameter is described as follows:

Parameter Description

 acks=0
No response from the server is required. In this case, the performance is high, but the risk of
data loss is great.

 acks=1

A response will be returned after the primary server node writes successfully. In this case, the
performance is moderate, and the risk of data loss is also moderate. A failure of the primary
node may cause data loss.

 acks=all

A response will be returned only after the primary server node writes successfully and the
nodes in ISR sync successfully. The performance is poor, but the risk of data loss is small.
Only a failure of both the primary and secondary nodes will cause data loss.

We recommend you select acks=1 generally and select acks=all for important services.

Batch

A CKafka topic generally has multiple partitions. Before the producer client sends a message to the server, it needs to

determine the topic and the partition to which the message should be sent. When sending multiple messages to the
same partition, the producer client will package the messages into a batch and then send the batch to the server.
Additional overheads will be incurred when the batch is processed. In general, a small batch will cause the producer
client to generate a large number of requests, which will cause the messages to queue up on the client and the server,
lead to an increase in the corresponding device's CPU utilization, and thus increase the delays in message sending
and consumption. A suitable batch size can reduce the number of requests sent to the server by the client during

message sending, thereby improving the throughput and reducing the delay in message sending.

The batch parameters are described as follows:

Parameter Description

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 89

Parameter Description

 batch.size

Size of cached messages sent to each partition (which is the sum of bytes of the
messages rather than the number of messages). Once the set value is reached, a
network request will be triggered, and the producer client will send the messages to the
server in batch.

 linger.ms

Maximum amount of time each message is cached. After this time elapses, the
producer client will ignore the limit of the batch.size and immediately send the
messages to the server.

 buffer.memory

After the total size of all cached messages exceeds this value, the messages will be
sent to the server immediately, and the limits of batch.size and linger.ms
will be ignored. The default value of buffer.memory is 32 MB, which can ensure
sufficient performance for a single producer.

Note
If you start multiple producers in the same JVM, it is likely that each producer will use 32 MB of cache space. In
this case, OOM errors may occur, and you need to consider the value of buffer.memory in order to avoid

OOM errors.

You can adjust the values of the parameters based on your actual business needs.

Key and value

Each message in CKafka has two fields: key (message identifier) and value (message content).

For ease of tracking, set a unique key for each message, which allows you to track a message and print its sending
and consumption logs to learn about its production and consumption conditions.

If you want to send a large number of messages, we recommend you use the sticky partitioning strategy instead of
setting keys.

Sticky partitioning

Only messages sent to the same partition will be placed in the same batch, so one factor that determines how a batch
will be formed is the partitioning strategy set by the Kafka producer. The Kafka producer allows you to choose a
partition that suits your business by setting the partitioner implementation class. If a key is specified for a message, the
default strategy of the Kafka producer is to hash the message key and then select a partition based on the result of

hashing to ensure that messages with the same key are sent to the same partition.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 89

If no key is specified for a message, the default strategy of Kafka below v2.4 is to use all partitions in the topic in loops
and send the message to each partition in a round robin manner. However, this default strategy has a poor batch
performance and may produce a large number of small batches, which increases actual delays. As it was inefficient in

partitioning messages without a key, Kafka 2.4 introduced the sticky partitioning strategy.

The sticky partitioning strategy mainly addresses the problem of small batches caused by the distribution of messages
without a key into different partitions. The main practice is to randomly select another partition and use it as much as
possible for subsequent messages after the batch is completed for a partition. With this strategy, messages will be
sent to the same partition in the short run, but from the perspective of the entire execution, messages will be evenly

sent to different partitions, which helps avoid skewed partitions while reducing delays and improving the overall
service performance.

If you use a Kafka producer client on v2.4 or later, the default partitioning strategy is sticky partitioning. If you use an
older producer client, you can implement a partitioning strategy on your own based on how the sticky partitioning
strategy works and then make it take effect through the partitioner.class parameter.

For more information on how to implement the sticky partitioning strategy, see the following implementation of Java

code. The code is implemented by switching from one partition to another at certain time intervals.

public class MyStickyPartitioner implements Partitioner {

// Record the time of the last partition switch.

private long lastPartitionChangeTimeMillis = 0L;

// Record the current partition.

private int currentPartition = -1;

// Partition switch time interval, which can be selected based on your business n

eeds.

private long partitionChangeTimeGap = 100L;

public void configure(Map<String, ?> configs) {}

/**

* Compute the partition for the given record.

*

* @param topic The topic name

* @param key The key to partition on (or null if no key)

* @param keyBytes serialized key to partition on (or null if no key)

* @param value The value to partition on or null

* @param valueBytes serialized value to partition on or null

* @param cluster The current cluster metadata

*/

public int partition(String topic, Object key, byte[] keyBytes, Object value, byt

e[] valueBytes, Cluster cluster) {

// Get the information of all partitions.

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);

int numPartitions = partitions.size();

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 89

if (keyBytes == null) {

List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(top

ic);

int availablePartitionSize = availablePartitions.size();

// Determine the current available partitions.

if (availablePartitionSize > 0) {

handlePartitionChange(availablePartitionSize);

return availablePartitions.get(currentPartition).partition();

} else {

handlePartitionChange(numPartitions);

return currentPartition;

}

} else {

// For messages with a key, a partition will be selected based on the hash value

of the key.

return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;

}

}

private void handlePartitionChange(int partitionNum) {

long currentTimeMillis = System.currentTimeMillis();

// After the partition switch time interval elapses, the next partition will be s

witched to; otherwise, the original partition will still be used.

if (currentTimeMillis - lastPartitionChangeTimeMillis >= partitionChangeTimeGap

|| currentPartition < 0 || currentPartition >= partitionNum) {

lastPartitionChangeTimeMillis = currentTimeMillis;

currentPartition = Utils.toPositive(ThreadLocalRandom.current().nextInt()) % part

itionNum;

}

}

public void close() {}

}

Order in partition

Within a single partition, messages are stored in the order in which they are sent. Each topic is divided into a number
of partitions. If messages are distributed to different partitions, the cross-partition message order cannot be ensured.

If you want messages to be consumed in the sending order, you can specify keys for such messages on the producer.
If such messages are sent with the same key, CKafka will select a partition for their storage based on the hash of the
key. As a partition can be listened on and consumed by only one consumer, messages will be consumed in the
sending order.

Message Consumption

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 89

Basic message consumption process

1. Poll the data.
2. Execute the consumption logic.
3. Poll the data again.

Load balancing

Each consumer group can contain multiple consumers with the same group.id value. In this way, consumers in

the same consumer group consume the same subscribed topic.

For example, if consumer group A subscribes to topic A and enables three consumer instances C1, C2, and C3, then
each message sent to topic A will be eventually delivered to only one of the three instances. By default, CKafka will
evenly distribute messages to the consumer instances to achieve consumption load balancing.

Load balancing within CKafka works by allocating the partitions of the subscribed topic evenly to all consumers.
Therefore, the number of consumers should not be greater than the number of partitions; otherwise, there will be
consumer instances with no partitions. Except for the first start, load balancing will be triggered every time consumer
instances are restarted, added, or removed.

Subscription relationship

We recommend that all consumer instances in the same consumer group subscribe to the same topic so as to
facilitate troubleshooting.

A consumer group subscribes to multiple topics.

A consumer group can subscribe to multiple topics, and the messages in such topics will be consumed evenly by
the consumers in the consumer group. For example, if consumer group A subscribes to topics A, B, and C, then
messages in the three topics will be consumed evenly by the consumers in consumer group A.

Below is the sample code to make a consumer group subscribe to multiple topics:

String topicStr = kafkaProperties.getProperty("topic");

String[] topics = topicStr.split(",");

for (String topic: topics) {

subscribedTopics.add(topic.trim());

}

consumer.subscribe(subscribedTopics);

A topic is subscribed to by multiple consumer groups.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 89

A topic can be subscribed to by multiple consumer groups, and the consumers in such consumer groups
independently consume all messages in the topic. For example, if both consumer groups A and B subscribe to topic
A, each message sent to topic A will be delivered to both the consumer instances in consumer group A and the

consumer instances in consumer group B, and the two processes are independent of each other.

One consumer group corresponding to one application

We recommend that one consumer group correspond to one application. In other words, different applications
correspond to different code snippets. If you need to write different code snippets in the same application, you should
prepare different copies of kafka.properties , such as kafka1.properties and

 kafka2.properties .

Consumer offset

Each topic has multiple partitions, and each partition counts the total number of current messages, which is called
 MaxOffset .

CKafka consumers consume messages in partitions in sequence and record the number of consumed messages,
which is called ConsumerOffset .

Number of remaining messages (aka the "number of retained messages") = MaxOffset - ConsumerOffset.

Offset commit

There are two parameters related to CKafka consumers:

enable.auto.commit: The default value is true .

auto.commit.interval.ms: The default value is 1000, i.e., 1s.

As a result of the combination of the two parameters, before the client polls the data, it will always check the time of
the last committed offset first, and if the time defined by the auto.commit.interval.ms parameter has

elapsed, the client will start an offset commit.

Therefore, if enable.auto.commit is set to true , it is always necessary to ensure that the data polled last

time has been consumed before data polling; otherwise, the offset may be skipped.

If you want to control offset commits by yourself, set enable.auto.commit to false and call the

 commit(offsets) function.

Offset reset

The ConsumerOffset will be reset under the following two circumstances:

The server has no committed offsets (for example, when the client is started for the first time).

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 89

A message is pulled from an invalid offset (for example, the MaxOffset in a partition is 10, but the client pulls a

message from offset 11).

For a Java client, you can configure a resetting policy by using auto.offset.reset . There are three policies:

latest: Consumption will start from the maximum offset.
earliest: Consumption will start from the minimum offset.
none: Resetting will not be performed.

Note：

We recommend you set the resetting policy to latest instead of earliest so as to avoid starting

consumption from the beginning when the offset is invalid, as that may cause a lot of repetitions.
If you manage the offset by yourself, you can set the policy to none .

Message pull

In the consumption process, the client pulls messages from the server. When the client pulls large messages, you
should control the pulling speed and pay attention to the following parameters:

max.poll.records: Set it to 1 if a single message exceeds 1 MB in size.
max.partition.fetch.bytes: Set it to a value slightly greater than the size of a single message.

fetch.max.bytes: Set it to a value slightly greater than the size of a single message.

When messages are consumed over the public network, a disconnection may often occur due to the bandwidth limit of
the public network. In this case, you should control the pulling speed and pay attention to the following parameters:

fetch.max.bytes: We recommend you set it to half of the public network bandwidth (note that the unit of this
parameter is bytes, while the unit of the public network bandwidth is bits).

max.partition.fetch.bytes: We recommend you set it to one third or one fourth of fetch.max.bytes .

Duplicate messages and consumption idempotency

CKafka consumption uses the at-least-once semantics, that is, a message is delivered at least once, which
guarantees that messages will never be lost. However, messages may be delivered more than once. Network issues
and client restarts may cause a few duplicate messages. If the application consumer is sensitive to duplicate
messages (such as orders and transactions), idempotency should be implemented for the messages.

Taking a database application as an example, the common practice is as follows:

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 89

When sending a message, pass in the key as the unique ID.
When consuming a message, determine whether the key has already been consumed; if so, ignore it; otherwise,
consume it once.

Of course, if the application itself is not sensitive to a small number of duplicate messages, idempotency is not
necessary.

Consumption failures

In CKafka, messages are consumed from partitions one by one in sequence. If the consumer fails to execute the
consumption logic after getting a message, for example, when dirty data is stored on the application server, the
message will fail to be processed, and human intervention will be required. There are two methods for dealing with this

situation:

The consumer will keep trying to execute the consumption logic upon failure. This method may cause the consumer
thread to be jammed by the current message and lead to message heap.
As CKafka is not designed to process failed messages, in practice, it will typically print failed messages or store
them in a service (such as a dedicated topic created for storing failed messages), so that you can regularly check
failed messages, analyze the causes of failures, and process accordingly.

Consumption delays

In the consumption process, the client pulls messages from the server. In general, if the client can consume messages
timely, there will be no significant delays. If a high delay is detected, you should first check whether messages heap up
and speed up consumption accordingly.

Consumption heap

The common causes of message heap include the following:

Consumption is slower than production. In this case, you should speed up consumption.

Consumption is jammed.

After getting a message, a consumer will execute the consumption logic and generally make some remote calls. If it
waits for the results at the same time, the consumption process may be jammed.

It should be ensured as much as possible that the consumer will not jam the consumption threads. If it needs to wait
for the call results, we recommend you set a wait timeout period, so that the consumer will be treated as a failure after

the timeout period elapses.

Speeding up consumption

Increase the number of consumer instances.

You can either increase the number of consumer instances directly in the process (you need to ensure that each

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 89

instance corresponds to one thread) or deploy multiple consumer instance processes.

Note
After the number of instances exceeds the number of partitions, you can't add more instances; otherwise,

there will be idle consumer instances.

Increase the number of consumer threads.
i. Define a thread pool.
ii. Poll the data.
iii. Commit the data into the thread pool for concurrent processing.

iv. Poll the data again after a successful concurrent processing result is returned.

Socket buffers

The default value of the receive.buffer.bytes parameter in Kafka 0.10.x is 64 KB, but the default value of the

 socket.receive.buffer.bytes parameter in Kafka 0.8.x is 100 KB.

Both the default values are too small for high-throughput environments, especially when the bandwidth-delay product
of the network between the broker and the consumer is greater than that of the local area network (LAN).

For networks with a delay of 1 ms or more and a high bandwidth (such as 10 Gbps or higher), we recommend you set

the socket buffer size to 8 or 16 MB.

Even if you don't have enough memory, you should consider setting this parameter to at least 1 MB. You can also set
it to -1, so that the underlying operating system will adjust the buffer size based on the actual network conditions.

However, for consumers that need to start "hot" partitions, automatic adjustment may not be that fast.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 89

Overview

You can ship log topic data to CKafka for real-time stream computing and storage. If you haven't purchased a CKafka
instance, you can consider using the Consumption over Kafka feature of CLS.

Prerequisites

You have activated the CKafka service.

Make sure that the current account has the permission to enable shipping to CKafka. If your account is a sub-
account, it needs to be authorized by the root account first. For more information, see Examples of Custom Access
Policies.

Directions

1. Create a CKafka instance in the same region as the log topic. For more information, see Creating Instance.
2. Configure the following parameters to create a topic in the same region as the log topic. For more information, see

Creating Topic.

Preset ACL Policy: Disable this option.
Show advanced configuration:

CleanUp.policy: Select delete; otherwise, shipping will fail.
max.message.bytes: Set this value to 8 MB or above. Otherwise, when the size of a single message in CLS
exceeds the specified limit, the message cannot be written to the CKafka topic, and shipping will fail.

3. Go to the CLS console and enter the shipping task management page or log topic management page as needed.

On the left sidebar, click Shipping Task Management and select a region, logset, and log topic.
On the left sidebar, click Log Topic and select a log topic to be shipped to CKafka to enter the log topic
management page.

Log Access
Connecting CLS to CKafka
Last updated：2022-11-01 16:23:38

https://intl.cloud.tencent.com.cn/document/product/614/42752
https://intl.cloud.tencent.com.cn/document/product/614/45004
https://intl.cloud.tencent.com.cn/document/product/597/39718
https://intl.cloud.tencent.com.cn/document/product/597/47584
https://console.intl.cloud.tencent.com.cn/cls

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 89

4. Click the Ship to CKafka tab to enter the configuration page.
5. Click Edit on the right to enable shipping to CKafka. Then, select the target CKafka instance and topic as well as

the log field to be shipped.

6. Click OK to start shipping to CKafka. If the task status is Enabled, the feature is enabled successfully.

Note：
To cleanse the log data before shipping to CKafka, see Log Filtering and Distribution.

FAQs

What should I do if the log data cannot be shipped to CKafka?

If ACL authentication is enabled in CKafka, the log data cannot be shipped. In this case, you need to disable the ACL
of the topic.

What should I do if the system prompts that I have no permissions to read/write the CKafka topic?

If you directly use an API to ship data to CKafka, you may not have the read/write permissions of the CKafka topic. If
you ship data in the console, the system will guide you through the authorization process, but if you directly call an API
for shipping, you need to authorize manually. For more information, see Viewing and Configuring Shipping
Permissions.

https://intl.cloud.tencent.com.cn/document/product/614/46135
https://intl.cloud.tencent.com.cn/document/product/614/46142

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 89

Background

To enjoy more stable and reliable services, we recommend you switch to the new supportive route.

Impact

Because it is necessary to update the bootstrap-server addresses of producers and consumers and restart the
service, the switch will cause a momentary interruption in business production and consumption.

Directions

1. Create a supportive route.
2. Switch the CKafka bootstrap-server addresses of all producers and consumers to the newly created supportive

route. The switch order does not matter as long as they are all switched.
3. Restart producers and consumers based on the business conditions. The restart order does not matter.
4. Observe whether the business is stable for at least 3 hours (recommended).

5. Delete the old supportive route.

Rollback

If an exception occurs during business verification, you need to roll back to the old supportive route in the following
steps provided that it has not been deleted.

1. Change back to the old supportive route address on all producers and consumers.
2. Restart all producer and consumer services.
3. Verify the business.

Replacing Supportive Route (Old)
Last updated：2022-11-29 11:36:24

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 89

Overview

Apache Kafka, like any client-server application, offers access to its functionality through a well-defined set of APIs.
These APIs are exposed via the Kafka wire protocol, a Kafka-specific binary protocol over TCP. The best way to
interact with the Apache Kafka APIs is to make use of a client library that works with the Kafka wire protocol. The

Apache Kafka project only officially supports a client library for Java, but in addition to that, Confluent officially
supports client libraries for C/C++, C#, Go, and Python.

Unfortunately, some programming languages lack officially supported, production-grade client libraries for Kafka.
However, HTTP is a widely available, universally supported protocol. For data access, DataHub exposes message
sending APIs over the HTTP protocol to simplify client configurations.

This document describes message sending in the HTTP-based data access feature of DataHub and provides
suggestions for real world cases.

Architecture

After the HTTP data access layer is enabled, an HTTP client in the public network can directly send messages to a
CKafka instance through TencentCloud API as shown below:

DataHub Best Practices
Connection to Kafka over HTTP
Last updated：2022-05-20 11:34:10

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 89

Prerequisites

You have created the target CKafka instance and topic.

Directions

Creating data access task

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 89

For detailed directions, see Reporting over HTTP.

Sending message via SDK

1. Import the data reporting SDK through Maven or Gradle into the Java project. Below is the pom.xml file for

project configuration:

2. Click Task Details in Data Access and copy the access point information to the SDK for data writes.
3. Enter the access point information. In the sample code, generateMsgFromUserAccess is used to assemble

all messages to be sent.

4. Below is a sample returned value for message sending at the HTTP access layer:

<dependency>

<groupid>com.tencentcloudapi</groupid>

<artifactid>tencentcloud-sdk-java</artifactid>

<version>3.1.430</version>

</dependency>

List<batchcontent> batchContentList = generateMsgFromUserAccess(userId);

// Here, `ap-xxx` is the region abbreviation of the corresponding TencentCloud

API

CkafkaClient client = new CkafkaClient(

new Credential("yourSecretId", "yourSecretKey"), "ap-xxx");

SendMessageRequest messageRequest = new SendMessageRequest();

// Access point ID of the data access task

messageRequest.setDataHubId("datahub-lzxxxxx6");

messageRequest.setMessage(batchContentList.toArray(BatchContent[]::new));

try {

SendMessageResponse sendMessageResponse = client.SendMessage(messageRequest);

String[] messageId = sendMessageResponse.getMessageId();

for (String s : messageId) {

LOGGER.info(s)

}

} catch (TencentCloudSDKException e) {

LOGGER.error(e.getMessage());

}

{

"Response": {

"MessageId": [

"datahub-lxxxxxx6:topicDev:4:2:1648185961342:1648185961398"

],

"RequestId": "3fq3na5r-xxxx-xxxx-xxxx-b2fiv0se7ded"

}

}

https://intl.cloud.tencent.com.cn/document/product/597/46807
https://console.intl.cloud.tencent.com.cn/ckafka/datahub-access

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 89

5. Here, MessageId consists of a series of metadata fields returned after the message is sent to the CKafka instance,
as detailed below:

Querying message

You can query messages sent at the HTTP access layer in the CKafka console. For detailed directions, see Querying
Message. In this example, messages at offset 2 in partition 4 in the topicDev topic are queried as shown below:

Pausing task

If you find that the data access task affects the normal business, you can pause the task.

1. On the Data Access page, click Pause in the Operation column of the target task to pause the task.
2. If the prompt in the top-right corner in the following figure is displayed, the task was paused successfully.

3. At this time, if you send a message at the HTTP access layer, you will receive the following response:

"[datahubId]:[topic name]:[topic partition number]:[topic offset]:[time when t

he HTTP access layer received the message]:[time when the message was sent to

Kafka]"

{

"Response": {

"Error": {

"Code": "FailedOperation",

"Message": "task status suspended [datahub-lxxxxxx6]"

},

"RequestId": "5f737a5b-xxxx-xxxx-xxxxx-b2fb703e7ded"

https://intl.cloud.tencent.com.cn/document/product/597/39719
https://intl.cloud.tencent.com.cn/document/product/597/39719
https://console.intl.cloud.tencent.com.cn/ckafka/datahub-access

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 89

}

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 89

Overview

DataHub is a data access and processing platform in Tencent Cloud, which provides data access, processing, and
distribution features at one stop. Data is vital in internet businesses, and data access and reporting serve as the
bridge between data generation, computing, storage, and analysis throughout the entire linkage. Therefore, simple yet

efficient data access is critical. A business usually has data to be reported to the backend for storage, analysis,
computing, and search, such as business metrics, process information, and monitoring data. The general processing
linkage is as shown below:

You can set up a classic data reporting architecture generally in the following steps:

1. Build/Purchase a storage engine to store reported data.

2. Develop and deploy a server to receive data, define APIs, and run the service.
3. Define information such as API protocol and authentication on the client and server.
4. Write code based on the protocol information for the client to report data.

In the above four steps, the development and deployment workload for the server is the highest, as you need to
consider code logic development as well as the scalability and stability of the server and downstream storage. In

addition, when the data volume gets high, problems on the server will become more obvious, and the server needs to
be maintained with a lot of manpower and resources. As tasks involved in this regard are generally universal, DataHub

Unified Data Reporting
Last updated：2022-05-20 11:40:21

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 89

aims to meet the requirements in such scenario by offering a stable, elastic, high-reliability, and high-throughput data
access service.

How It Works

DataHub provides SDKs for various programming languages, including Java, Python, Go, PHP, Node.js, C++, and

.NET, to help the client better report data. Data can be reported to a storage engine such as CKafka in three simple
steps (more Tencent Cloud message queue services like TDMQ for RocketMQ, Pulsar, RabbitMQ, and CMQ will be
supported in the future).

1. Create an access point in the DataHub console.
2. Report the data via the SDK.

3. Query the data.

Directions

1. Create an access point in the DataHub console as instructed in Reporting over HTTP.
2. Report the data via the SDK as instructed in Data Reporting SDK.
3. Query the data. After the data is reported to DataHub, you can query the message content in real time as instructed

in Querying Message.

Data Empowerment

After you complete data access easily and quickly through DataHub, how to make the data generate value becomes

the most important thing. To address this, DataHub provides two core features:

Data processing

DataHub offers a simple data ETL engine, which can cleanse most types of data in order to simply format and process
data for subsequent use.

Data distribution

After data processing is completed, DataHub can also meet the data distribution needs in various scenarios:

Real-time search: When you need to search for data, you can export real-time data streams to a search service

such as Elasticsearch and CLS.
OLAP analysis: When you need to analyze data, you can export real-time data streams to an engine such as
ClickHouse and TDW.

https://intl.cloud.tencent.com.cn/document/product/597/46807
https://intl.cloud.tencent.com.cn/document/product/597/46808
https://intl.cloud.tencent.com.cn/document/product/597/39719

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 89

Persistent storage: When you need to persistently store data, you can export real-time data streams to a persistent
storage engine such as HDFS and COS.
Stream computing: When you need to process data with custom code, you can use Flink, Spark, and code in

different programming languages over the standard Kafka protocol for data processing.

After the data has gone through the four stages of reporting, access, processing, and distribution, the general data
reporting and analysis needs can be easily and quickly satisfied, creating data value at ultra low costs.

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 89

Overview

When using the data access and distribution services in DataHub, you may encounter the following issues:

You need to parse certain fields in messages to get the relevant information.
You need to process a field in messages multiple times in an iterative manner.

You need to convert messages to unstructured raw messages before you can use them.
You need to process messages in a multi-level nested format.

Based on the long-term experience of technical experts in the CKafka team, the brand new data processing
component v2.0 is launched. It has the following new features while remaining fully compatible with v1.0:

Diverse plugins: Data processing supports various preconfigured processing plugins to help you quickly generate

data in desired consumption formats.
Chain processing: Data processing supports chain message processing; that is, the previous processing result can
be used as the input parameters in the current processing. This greatly facilitates processing complex data
structures.
Visual preview: Data processing supports real-time structured JSON preview to help you quickly locate and
troubleshoot problems.

Type conversion: Data processing can convert data between different types to make data format check easier.

How It Works

The overall data processing flow is as shown below, with each component structure detailed as follows:

Simple Data Cleansing
Last updated：2022-05-20 11:42:57

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 89

In the data processing component cluster, multiple workers form a consumer group to batch read messages from
the source topic and process each message in sequence.
In each message, the nested structure of message fields is expanded according to the processing chain sequence

configured in the console, and operations such as replacement, extraction, data conversion, and time formatting
are performed.
The current processing chain reads the result of the previous processing chain, preforms chain processing, and
ships the processing result to the next chain.
The result of the last processing chain is shipped to the configured target topic. At this time, the data processing of

a message is completed.

Prerequisites

The CKafka service has been activated.
The message format is JSON or string. Currently, other encoding protocols are not supported.

Actual Application

Processing string-type log

Below is a log in the default Nginx format (aka combined format), from which you can parse information such as

requester, packet, and request status for further analysis.

As the combined format of Nginx uses spaces and - to separate data, design the parsing process in the

following steps:

1. First, use the " separator to initially parse the data. At this time, data processing automatically converts the log

to the JSON structure.

66.249.65.159 - - [06/Nov/2014:19:10:38 +0600] "GET /news/53f8d72920ba2744fe873e

bc.html HTTP/1.1" 404 177 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac O

S X) AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8

536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

{

"0": "66.249.65.159 - - [06/Nov/2014:19:10:38 +0600] ",

"1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

"2": " 404 177 ",

"5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26

(KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25 (compatible; Go

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 89

2. As shown in the above JSON structure, there are still concatenated coupled data records in the fields of keys 0

and 2 as affected by - and spaces. Therefore, split the fields of the two keys with the space and -

separators. The JSON result after splitting is as follows:

3. As the time format is enclosed by square brackets “[]”, use a separator again to extract the time information. The
JSON structure after extraction is as follows:

4. At this point, all fields have been split appropriately. Name the keys of the corresponding mapped fields based

on the field attribute. The eventual modification result is as follows:

oglebot/2.1; +http://www.google.com/bot.html)"

}

{

"1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

"5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26

(KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25 (compatible; Go

oglebot/2.1; +http://www.google.com/bot.html)",

"0.0": "66.249.65.159 ",

"0.2": " [06/Nov/2014:19:10:38 +0600] ",

"2.1": "404",

"2.2": "177"

}

{

"1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

"5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26

(KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25 (compatible; Go

oglebot/2.1; +http://www.google.com/bot.html)",

"0.0": "66.249.65.159 ",

"0.2": "06/Nov/2014:19:10:38 +0600",

"2.1": "404",

"2.2": "177"

}

{

"request": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

"http_user_agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X) Appl

eWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e Safari/8536.25

(compatible; Googlebot/2.1; +http://www.google.com/bot.html)",

"remote_addr": "66.249.65.159 ",

"dateTime": "06/Nov/2014:19:10:38 +0600",

"status": "404",

"body_bytes_sent ": "177"

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 89

Processing nested log

Below is a sample TKE collection format. The TKE collector will place the metadata into the kubernetes field in

the JSON structure and place the collected log into the log field. The overall structure is as follows:

When collected logs are shipped to Elasticsearch, as the nested JSON format is supported, you don't need to make
major changes on the data. However, when logs are shipped to a database, you need to convert the data to an

identifiable single-level JSON format. In this case, design the parsing process in the following steps:

1. Use the JSONPATH statement to process the $.kubernetes JSON structure at the first nested level and

select JSON as the parsing mode. This converts the nested JSON structure to a single-level JSON structure.

The tested result is as follows:

{

"@timestamp": 1648803500.63659,

"@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-9997aea90ded/

c_tke-es-687995d557-n29jr_default_nginx-add90ccf49626ef42d5615a636aae74d63809960

43cf6f6560d8131f21a4d8ba/jgw_INFO_2022-02-10_15_4.log",

"log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO com.qclou

d.jgw.gateway.server.topic.TopicService",

"kubernetes": {

"pod_name": "tke-es-687995d557-n29jr",

"namespace_name": "default",

"pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

"labels": {

"k8s-app": "tke-es",

"pod-template-hash": "687995d557",

"qcloud-app": "tke-es"

},

"annotations": {

"qcloud-redeploy-timestamp": "1648016531476",

"tke.cloud.tencent.com/networks-status": "[{\n \"name\": \"tke-bridge\",\n \"int

erface\": \"eth0\",\n \"ips\": [\n \"172.16.0.31\"\n],\n \"mac\": \"ae:61:12:4

a:c2:ba\",\n \"default\": true,\n \"dns\": {}\n}]"

},

"host": "10.0.96.47",

"container_name": "nginx",

"docker_id": "add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba",

"container_hash": "nginx@sha256:e1211ac17b29b585ed1aee166a17fad63d344bc973bc6384

9d74c6452d549b3e",

"container_image": "nginx"

}

}

{

"@timestamp": 1.64880350063659E9,

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 89

2. Process the $.kubernetes.annotations and $.kubernetes.labels nested structures at the second

level. Use Map to select the two names in the processing chain to convert the nested format into a single-level

JSON format. The processing result is as follows:

"@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-9997aea90de

d/c_tke-es-687995d557-n29jr_default_nginx-add90ccf49626ef42d5615a636aae74d6380

996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-02-10_15_4.log",

"log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO com.qcl

oud.jgw.gateway.server.topic.TopicService",

"$.kubernetes.pod_name": "tke-es-687995d557-n29jr",

"$.kubernetes.namespace_name": "default",

"$.kubernetes.pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

"$.kubernetes.labels": {

"k8s-app": "tke-es",

"pod-template-hash": "687995d557",

"qcloud-app": "tke-es"

},

"$.kubernetes.annotations": {

"qcloud-redeploy-timestamp": "1648016531476",

"tke.cloud.tencent.com/networks-status": "[{\n \"name\": \"tke-bridge\",\n \"i

nterface\": \"eth0\",\n \"ips\": [\n \"172.16.0.31\"\n],\n \"mac\": \"ae:61:1

2:4a:c2:ba\",\n \"default\": true,\n \"dns\": {}\n}]"

},

"$.kubernetes.host": "10.0.96.47",

"$.kubernetes.container_name": "nginx",

"$.kubernetes.docker_id": "add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d

8131f21a4d8ba",

"$.kubernetes.container_hash": "nginx@sha256:e1211ac17b29b585ed1aee166a17fad63

d344bc973bc63849d74c6452d549b3e",

"$.kubernetes.container_image": "nginx"

}

{

"@timestamp": 1648803500.63659,

"@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-9997aea90de

d/c_tke-es-687995d557-n29jr_default_nginx-add90ccf49626ef42d5615a636aae74d6380

996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-02-10_15_4.log",

"log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO com.qcl

oud.jgw.gateway.server.topic.TopicService",

"$.kubernetes.pod_name": "tke-es-687995d557-n29jr",

"$.kubernetes.namespace_name": "default",

"$.kubernetes.pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

"$.kubernetes.host": "10.0.96.47",

"$.kubernetes.container_name": "nginx",

"$.kubernetes.docker_id": "add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d

8131f21a4d8ba",

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 89

3. Rename the keys of the corresponding mapped fields and delete unnecessary fields. Click Add Processing

Chain and Process All Upper-Level Results. Below is a sample result after organization and optimization:

Note：

If the key contains a period (.) when you use JSONPath to process a parameter, you need to add square

brackets and single quotation marks to the path for isolation.

For example, to get the desired fields from {"key1.key2":"value1"} , you need to use $.

['key1.key2'] to get the corresponding key values.

Processing serialized JSON string-type log

Sometimes, the JSON format needs to be escaped to the string format during data transfer in order to meet the format

or performance requirements. This string format is called raw JSON, which must be deserialized to the JSON format

"$.kubernetes.container_hash": "nginx@sha256:e1211ac17b29b585ed1aee166a17fad63

d344bc973bc63849d74c6452d549b3e",

"$.kubernetes.container_image": "nginx",

"$.kubernetes.labels.k8s-app": "tke-es",

"$.kubernetes.labels.pod-template-hash": "687995d557",

"$.kubernetes.labels.qcloud-app": "tke-es",

"$.kubernetes.annotations.qcloud-redeploy-timestamp": "1648016531476",

"$.kubernetes.annotations.tke.cloud.tencent.com/networks-status": "[{\n \"name

\": \"tke-bridge\",\n \"interface\": \"eth0\",\n \"ips\": [\n \"172.16.0.31

\"\n],\n \"mac\": \"ae:61:12:4a:c2:ba\",\n \"default\": true,\n \"dns\": {}

\n}]"

}

{

"@timestamp": 1.64880350063659E9,

"@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-9997aea90de

d/c_tke-es-687995d557-n29jr_default_nginx-add90ccf49626ef42d5615a636aae74d6380

996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-02-10_15_4.log",

"log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO com.qcl

oud.jgw.gateway.server.topic.TopicService",

"pod_name": "tke-es-687995d557-n29jr",

"namespace_name": "default",

"pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

"host": "10.0.96.47",

"container_name": "nginx",

"docker_id": "add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8b

a"

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 89

in data processing. The following uses the raw JSON format in MongoDB as an example, and the overall structure is
as shown below:

After the raw JSON format is converted to the general JSON format during data processing, the message can be
directly shipped to the target downstream service without changing the field format. The overall processing process is
as follows:

1. Set Parsing Mode to JSON to preread the message into the internal MAP format. The parsing result is as follows:

2. Click Add Processing Chain, use MAP to select the key , and select JSON as the parsing mode. Then, data

processing can automatically convert the raw JSON format to the JSON format. The parsing result is as follows:

3. Click Add Processing Chain and Process All Upper-Level Results, rename the keys of the corresponding

mapped fields, and delete unnecessary fields. Below is a sample result after organization and optimization:

{

"key": " {\n \"categories\": [\"dev\"],\n \"created_at\": \"2020-01-05 13:42:19.

324003\",\n \"icon_url\": \"https://assets.chucknorris.host/img/avatar/chuck-nor

ris.png\",\n \"id\": \"elgv2wkvt8ioag6xywykbq\",\n \"updated_at\": \"2020-01-05

13:42:19.324003\",\n \"url\": \"https://api.chucknorris.io/jokes/elgv2wkvt8ioag6

xywykbq\",\n \"value\": \"Chuck Norris's keyboard doesn't have a Ctrl key becaus

e nothing controls Chuck Norris.\"\n }\n"

}

{

"key": " {\n \"categories\": [\"dev\"],\n \"created_at\": \"2020-01-05 13:42:1

9.324003\",\n \"icon_url\": \"https://assets.chucknorris.host/img/avatar/chuck

-norris.png\",\n \"id\": \"elgv2wkvt8ioag6xywykbq\",\n \"updated_at\": \"2020-

01-05 13:42:19.324003\",\n \"url\": \"https://api.chucknorris.io/jokes/elgv2wk

vt8ioag6xywykbq\",\n \"value\": \"Chuck Norris's keyboard doesn't have a Ctrl

key because nothing controls Chuck Norris.\"\n }\n"

}

{

"key.categories": [

"dev"

],

"key.created_at": "2020-01-05 13:42:19.324003",

"key.icon_url": "https://assets.chucknorris.host/img/avatar/chuck-norris.png",

"key.id": "elgv2wkvt8ioag6xywykbq",

"key.updated_at": "2020-01-05 13:42:19.324003",

"key.url": "https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq",

"key.value": "Chuck Norris's keyboard doesn't have a Ctrl key because nothing

controls Chuck Norris."

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 89

Note：
Currently, only MAP-type data in the raw JSON format can be parsed. If the first level is in List type, such as "

[\"test1\",\"test2\"]" or "[{\"key\":\"value\"}]" , as it cannot be parsed into appropriate

key values, a parsing failure will be reported.

{

"categories": [

"dev"

],

"created_at": "2020-01-05 13:42:19.324003",

"icon_url": "https://assets.chucknorris.host/img/avatar/chuck-norris.png",

"id": "elgv2wkvt8ioag6xywykbq",

"updated_at": "2020-01-05 13:42:19.324003",

"url": "https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq",

"value": "Chuck Norris's keyboard doesn't have a Ctrl key because nothing cont

rols Chuck Norris."

}

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 89

Overview

MongoDB uses change streams to track changes. However, to better search for change logs, you usually need to
sync them to Elasticsearch or CLS.

This document uses connecting MongoDB to CKafka and distributing CKafka data to CLS as an example to describe
how to use the data dump service of DataHub to analyze change logs tracked by change streams in MongoDB.

Analysis of Change Logs Tracked by
MongoDB Change Streams
Last updated：2022-06-06 14:39:21

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 89

How It Works

For more information on data access configuration items for MongoDB, see Source Connector. You can set different
configuration items to perform corresponding data processing tasks on the accessed change logs and then write them
to a topic in the CKafka instance.

Prerequisites

TencentDB for MongoDB has been activated, or CLB is used to listen on the self-built MongoDB instance.

The TCP:27017 port has been opened in the security group.
The CKafka service has been activated.
The CLS service has been activated.

Directions

Step 1. Create a data access task

1. Log in to the CKafka console.

2. Click Data Access on the left sidebar, select the region, and click Create Task.
3. In the pop-up window, select Asynchronously pulled data > MongoDB for Data Source Type.
4. Click Next and enter the task details.
5. Click Submit and wait for the task status to become Healthy.
6. When MongoDB data changes, you can see that there will be incremental messages in the selected topic in the

CKafka instance.

Step 2. Create a data distribution task

1. Log in to the CKafka console.
2. Click Data Distribution on the left sidebar, select the region, and click Create Task.
3. Select Cloud Log Service (CLS) as the Target Type and click Next.
4. Enter the task details and select the same CKafka instance and topic as those used in the data access task, so that

produced messages can be directly consumed.

5. Click Submit and wait for the task status to become Healthy.

Note
When a task is in Healthy status and incremental messages are written to the topic, they will be directly
consumed to the specified CLS log topic.

https://docs.mongodb.com/kafka-connector/current/source-connector/
https://console.intl.cloud.tencent.com.cn/ckafka
https://console.intl.cloud.tencent.com.cn/ckafka

Message Queue CKafka

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 89

Step 3. View the distributed data

1. Log in to the CLS console.

2. Select Search and Analysis on the left sidebar, select the logset ID and log topic ID entered during distribution
task creation, and you can view the change logs of MongoDB.

3. You can search by keyword to directly get the required logs.

https://console.intl.cloud.tencent.com.cn/cls/overview?region=ap-guangzhou

