
Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 113

Key Management Service

Best Practices

Product Documentation

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 113

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 113

Contents

Best Practices
Symmetrical Encryption and Decryption

Encrypting/Decrypting Sensitive Data
Overview
Operation Guide

Envelope Encryption/Decryption
Overview
Operation Guide

Asymmetric Encryption and Decryption
Overview
Asymmetric Data Encryption and Decryption
Asymmetric Signature Verification

Overview
SM2 Signature Verification
RSA Signature Verification
ECC Signature Verification

Importing External Key
Overview
Operation Guide

Implementing Exponential Backoff to Deal with Service Frequency

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 113

Best Practices
Symmetrical Encryption and Decryption
Encrypting/Decrypting Sensitive Data
Overview
Last updated：2024-01-11 16:31:21

Sensitive information encryption is a core capability of KMS, which is mainly used to protect small pieces of sensitive
data (less than 4 KB) such as keys, certificates, and configuration files. A CMK is used to encrypt sensitive data
instead of storing it in plaintext. During decryption, the data ciphertext is decrypted to the memory, so that the plaintext

does not get stored in the disk. HTTPS requests are used in the entire interaction and transfer process, ensuring the
security of sensitive data.
If you need to use KMS for high-performance encryption/decryption of massive amounts of data, please see Envelope
Encryption scenario.

Examples of sensitive information

- Key/Certificate Backend Configuration File

Usage
Encrypts business data, communication
channels, and digital signatures.

Stores system architecture and other
business information, such as
database IP and password.

Risk of data loss
Confidential information is stolen; encrypted
tunnels are monitored; signatures are
faked.

Business data is breached and used
to attack other systems.

Schematic diagram

In this scenario, sensitive data is encrypted/decrypted through a CMK, which is protected by a third-party certified

hardware security module (HSM). The CMK performs encryption/decryption inside the HSM, and any unauthorized
party, including Tencent Cloud, has no access to the CMK in plaintext.

Features

Permission control: Fully integrated with CAM, KMS can control which accounts have access to your CMK through
identity and policy management.

https://www.tencentcloud.com/document/product/1030/31976

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 113

Built-in audit: KMS is integrated with CloudAudit to record all API requests for detailed statistics of key management
activities and key usage, ensuring that all data operations can be traced and audited.
Integrated key management: KMS enables centralized management of keys from various applications.

Security and compliance: KMS leverages a State Cryptography Administration of China or FIPS-140-2 certified
hardware security module (HSM) to generate and protect keys, thereby ensuring their confidentiality, integrity, and
availability.
Sensitive data encryption: KMS supports encryption/decryption of small pieces of sensitive data (less than 4 KB),
such as keys, certificates, and configuration files.

Precautions

Secure storage of SecretId and SecretKey :

Tencent Cloud API authentication mainly relies on SecretId and SecretKey , which are your unique

credentials. Tencent Cloud's service systems need such credentials to call Tencent Cloud APIs.
Permission control over SecretId and SecretKey :

It is recommended to use a sub-account and manage risks by means of API authorization as needed.
Plaintext data storage:

Data has already encrypted through sensitive data encryption. To ensure data security, please make sure that the
original plaintext data is deleted.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 113

Operation Guide
Last updated：2024-01-11 16:31:21

This operation guide takes Python as an example. Operations in other programming languages can be performed in a
similar way.

Preparations

Dependent environment of the sample code: Python 2.7.

Activate KMS: you can do so in the Tencent Cloud Console.
Activate TencentCloud API key service: get the SecretID , SecretKey , and endpoint. The general format of

the endpoint is *.tencentcloudapi.com . For example, the endpoint of KMS is

 kms.tencentcloudapi.com . For more information, please see the documentation of the specified product.

Install the SDK: run the following command. For more information, please see the tencentcloud-sdk-python project on

GitHub.

https://console.tencentcloud.com/kms2
https://github.com/TencentCloud/tencentcloud-sdk-python

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 113

pip install tencentcloud-sdk-python

Process

You can follow the four steps below to encrypt sensitive data.

1. Create a customer master key (CMK) in the console or through the CreateKey API.

2. Call the Encrypt API of KMS to encrypt your sensitive data and get the ciphertext.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 113

3. Store the ciphertext data based on your business needs.
4. When reading data, call the Decrypt API of KMS to decrypt the ciphertext into plaintext.

Directions

Step 1. Create a CMK

For more information on how to create a CMK, please see Creating a Key.

Step 2. Encrypt the sensitive data

Prerequisite: the CMK created in step 1 is enabled.

In the console

The online tools are suitable for one-time or non-batch encryption and decryption operations, such as the initial
generation of key ciphertext. With the online tools, you can focus on your core business without developing tools for
non-batch encryption and decryption. For more information, please see Encryption and Decryption.

In the SDK for Python

The Encrypt API is used to encrypt up to 4 KB of data, such as database passwords, RSA keys, or other

sensitive information. This document describes how to encrypt data through the SDK for Python. You can also use

other supported programming languages.
The KeyId and Plaintext parameters are required for this API. For more information, please see the Encrypt

API document.

Encryption in the SDK for Python

The sample code below demonstrates how to use the specified CMK for data encryption.

Python sample code

https://www.tencentcloud.com/document/product/1030/31971
https://www.tencentcloud.com/document/product/1030/31973
https://www.tencentcloud.com/document/product/1030/32189

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 113

-*- coding: utf-8 -*-

import base64

from tencentcloud.common import credential

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.kms.v20190118 import kms_client, models

def KmsInit(region="ap-guangzhou", secretId="", secretKey=""):

 try:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 113

 credProfile = credential.Credential(secretId, secretKey)

 client = kms_client.KmsClient(credProfile, region)

 return client

 except TencentCloudSDKException as err:

 print(err)

 return None

def Encrypt(client, keyId="", plaintext=""):

 try:

 req = models.EncryptRequest()

 req.KeyId = keyId

 req.Plaintext = base64.b64encode(plaintext)

 rsp = client.Encrypt(req) # Call the `Encrypt` API

 return rsp

 except TencentCloudSDKException as err:

 print(err)

 return None

if __name__ == '__main__':

 # User-defined parameters

 secretId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 secretKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 region = "ap-guangzhou"

 keyId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 plaintext = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 client = KmsInit(region, secretId, secretKey)

 rsp = Encrypt(client, keyId, plaintext)

 print "plaintext=", plaintext, ", cipher=", rsp.CiphertextBlob

Step 3. Store the encrypted data

Store the ciphertext according to the application scenarios of your business.

Step 4. Decrypt the sensitive data

In the console

For more information, please see Encryption and Decryption.

In the SDK for Python

The Decrypt API is used to decrypt data.

The CiphertextBlob parameter is required for this API. For more information, please see the Decrypt API

document.

Python sample code

https://www.tencentcloud.com/document/product/1030/31973
https://www.tencentcloud.com/document/product/1030/32198

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 113

-*- coding: utf-8 -*-

import base64

from tencentcloud.common import credential

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.kms.v20190118 import kms_client, models

def KmsInit(region="ap-guangzhou", secretId="", secretKey=""):

 try:

 credProfile = credential.Credential(secretId, secretKey)

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 113

 client = kms_client.KmsClient(credProfile, region)

 return client

 except TencentCloudSDKException as err:

 print(err)

 return None

def Decrypt(client, keyId="", ciphertextBlob=""):

 try:

 req = models.DecryptRequest()

 req.CiphertextBlob = ciphertextBlob

 rsp = client.Decrypt(req) # Call the `Decrypt` API

 return rsp

 except TencentCloudSDKException as err:

 print(err)

 return None

if __name__ == '__main__':

 # User-defined parameters

 secretId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 secretKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 region = "ap-guangzhou"

 keyId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 ciphertextBlob = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 client = KmsInit(region, secretId, secretKey)

 rsp = Decrypt(client, keyId, ciphertextBlob)

 print "cipher=", ciphertextBlob, ", base64 decoded plaintext=", base64.b64decod

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 113

Envelope Encryption/Decryption
Overview
Last updated：2024-01-11 16:31:21

Envelope encryption is a high-performance encryption/decryption solution for massive amounts of data. For encryption
of large files or performance-sensitive data, use the GenerateDataKey API to generate a data encryption key (DEK).
Only the DEK need to be transferred to the KMS server (which are encrypted/decrypted with a CMK), and all data are

processed with efficient local symmetric encryption which has little impact on user access.
In actual business scenarios where massive amounts of data needs to be encrypted with high encryption performance
needed, a DEK can be generated to encrypt/decrypt local data, which not only meets the requirements for encryption
performance, but also enables KMS to keep DEKs random and secure.

Comparison of KMS encryption schemes

Item Sensitive Data Encryption Envelope Encryption

Related key CMK CMK, DEK

Performance Symmetric encryption, remote call

Remote symmetric encryption for small
amounts of data, and local symmetric
encryption for massive amounts of
data.

Key scenarios
Keys, certificates, and small data entries;
suitable for scenarios with low call frequency

Massive amounts of data; suitable for
scenarios with high requirements for
encryption performance

Schematic diagram

In this scenario, a CMK generated in KMS, as an important resource, is used to generate and get the DEK plaintext

and ciphertext. Based on your actual business needs, you can first encrypt local data through the DEK plaintext in the
memory and store the DEK ciphertext and ciphertext data in the disk, then decrypt the DEK ciphertext using KMS
when necessary, and finally decrypt the data in the memory using the decrypted DEK plaintext.

Features

High efficiency: All business data is encrypted using highly efficient local symmetric encryption, which has little impact
on the access experience in your business. As for the overhead of DEK creation and encryption/decryption, except in

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 113

extreme cases, you need to use a "one key at a time" scheme. In most scenarios, the plaintext and ciphertext of one
DEK can be reused for a certain period of time, so the overhead is generally small.
Security and ease of use: The security of envelope encryption is protected with the key security feature of KMS. As

DEKs protect business data, and KMS protects DEKs and provides increased availability, your CMK is mainly used to
generate DEKs. Only authorized objects can operate on the CMK.

Precautions

Secure storage of SecretId and SecretKey :

Tencent Cloud API authentication mainly relies on SecretId and SecretKey , which are your unique

credentials. Tencent Cloud's service systems need such credentials to call Tencent Cloud APIs.

Permission control over SecretId and SecretKey :

It is recommended to use a sub-account and manage risks by means of API authorization as needed.
Plaintext key processing by the business system:
Envelope encryption uses symmetric encryption, so plaintext keys should not be stored in the disk and need to be
used in the memory during business processes.
DEK processing by the backend system:

Envelope encryption uses symmetric encryption. You can reuse the same DEK as needed by your business, or use
different DEKs for different users and at different times.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 113

Operation Guide
Last updated：2024-01-11 16:31:21

This operation guide takes Python as an example. Operations in other programming languages can be performed in a
similar way.

Preparations

Dependent environment of the sample code: Python 2.7.

Activate KMS: you can do so in the Tencent Cloud Console.
Activate TencentCloud API key service: get the SecretID , SecretKey , and endpoint. The endpoint of KMS is

 kms.tencentcloudapi.com . For more information, please see the documentation of the specified product.

Install the SDK: run the following command. For more information, please see the open-source tencentcloud-sdk-
python project on GitHub.

https://console.tencentcloud.com/kms2
https://github.com/TencentCloud/tencentcloud-sdk-python

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 113

pip install tencentcloud-sdk-python

Process

You can follow the three steps below to complete envelope encryption.

1. Create a CMK.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 113

2. Encrypt data through envelope encryption. Your application calls the KMS GenerateDataKey API to generate

a DEK, and the system encrypts data with the plaintext key and stores the ciphertext key and ciphertext in the disk.
3. Decrypt data. The system reads the ciphertext key and ciphertext, decrypts the ciphertext key through the

 Decrypt API of KMS, returns the plaintext key, and finally decrypts the ciphertext data with the plaintext key.

Steps

Step 1. Create a CMK

For more information on how to create a CMK, please see Creating a Key.

Step 2. Encrypt data through envelope encryption

If a new DEK is needed (e.g., data needs to be encrypted for new users or the reuse of a DEK exceeds the specified
period of time), you can call a KMS API to create a new DEK, then encrypt data with the plaintext key in the memory,
and store the ciphertext and ciphertext key in the disk.

Generating a DEK and encrypting your data

The GenerateDataKey API is used to generate a DEK, which is a second-level key generated based on a CMK

and used for encrypting and decrypting local data. KMS does not store or manage DEKs, which need to be stored by
yourself instead.
The examples below are implemented in the Tencent Cloud SDK for Python, which can also be implemented in other
supported programming languages.
The KeyId parameter is required for this API. For more information, please see the GenerateDataKey API

document.

Example in the SDK for Python

https://www.tencentcloud.com/document/product/1030/32783
https://www.tencentcloud.com/document/product/1030/32188

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 113

-*- coding: utf-8 -*-

import base64

from Crypto.Cipher import AES

from tencentcloud.common import credential

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.kms.v20190118 import kms_client, models

def KmsInit(region="ap-guangzhou", secretId="", secretKey=""):

 try:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 113

 credProfile = credential.Credential(secretId, secretKey)

 client = kms_client.KmsClient(credProfile, region)

 return client

 except TencentCloudSDKException as err:

 print(err)

 return None

def GenerateDatakey(client, keyId, keyspec='AES_128'):

 try:

 req = models.GenerateDataKeyRequest()

 req.KeyId = keyId

 req.KeySpec = keyspec

 # Call the `GenerateDataKey` API

 generatedatakeyResp = client.GenerateDataKey(req)

 # The plaintext key needs to be used in the memory, while the ciphertext ke

 print "DEK cipher=", generatedatakeyResp.CiphertextBlob

 return generatedatakeyResp

 except TencentCloudSDKException as err:

 print(err)

def AddTo16(value):

 while len(value) % 16 != 0:

 value += '\\0'

 return str.encode(value)

User-defined logic. The example here is for reference only

def LocalEncrypt(dataKey="", plaintext=""):

 aes = AES.new(base64.b64decode(dataKey), AES.MODE_ECB)

 encryptedData = aes.encrypt(AddTo16(plaintext))

 ciphertext = base64.b64encode(encryptedData)

 print "plaintext=", plaintext, ", cipher=", ciphertext

if __name__ == '__main__':

 # User-defined parameters

 secretId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 secretKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 region = "ap-guangzhou"

 keyId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 keySpec = "AES_256"

 plaintext = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 client = KmsInit(region, secretId, secretKey)

 rsp = GenerateDatakey(client, keyId, keySpec)

 LocalEncrypt(rsp.Plaintext, plaintext)

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 113

Step 3. Decrypt data

Read the ciphertext key stored in the disk, call the Decrypt API to decrypt the ciphertext key, and then decrypt

data through the decrypted plaintext key.

Decrypting (in KMS SDK for Python)

The Decrypt API is used to decrypt data.

The examples below are called with the Tencent Cloud SDK for Python, which can also be called with any supported
programming languages.
The CiphertextBlob parameter is required for this API. For more information, please see the Decrypt API

document.

Example in the SDK for Python

Decrypt the DEK ciphertext key by calling the KMS Decrypt API, and then use the obtained DEK plaintext to

decrypt the ciphertext data.

https://www.tencentcloud.com/document/product/1030/32198

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 113

-*- coding: utf-8 -*-

import base64

from Crypto.Cipher import AES

from tencentcloud.common import credential

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.kms.v20190118 import kms_client, models

def KmsInit(region="ap-guangzhou", secretId="", secretKey=""):

 try:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 113

 credProfile = credential.Credential(secretId, secretKey)

 client = kms_client.KmsClient(credProfile, region)

 return client

 except TencentCloudSDKException as err:

 print(err)

 return None

def DecryptDataKey(client, ciphertextBlob):

 try:

 req = models.DecryptRequest()

 req.CiphertextBlob = ciphertextBlob

 rsp = client.Decrypt(req) # Call the `Decrypt` API to decrypt the DEK

 return rsp

 except TencentCloudSDKException as err:

 print(err)

User-defined logic. The example here is for reference only

def LocalDecrypt(dataKey="", ciphertext=""):

 aes = AES.new(base64.b64decode(dataKey), AES.MODE_ECB)

 decryptedData = aes.decrypt(base64.b64decode(ciphertext))

 plaintext = str(decryptedData)

 print "plaintext=", plaintext, ", cipher=", ciphertext

if __name__ == '__main__':

 # User-defined parameters

 secretId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 secretKey = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 region = "ap-guangzhou"

 dekCipherBlob="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 ciphertext="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 client = KmsInit(region, secretId, secretKey)

 rsp = DecryptDataKey(client, dekCipherBlob)

 LocalDecrypt(rsp.Plaintext, ciphertext)

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 113

Asymmetric Encryption and Decryption
Overview
Last updated：2024-01-11 16:31:22

A public key and a private key are required for asymmetric encryption and decryption. These two are a pair of
bidirectional keys in cryptography, that is, the public key and private key both can be used for encryption. If one is
used for encryption, the decryption can only be performed using another key. The public key can be disclosed to

anyone even an unreliable party, but the private key must be kept confidential.
Compared to symmetric encryption, asymmetric encryption does not require a reliable channel for key distribution, so
that it is usually applied in communications between systems with different trust levels for encrypted transfer of
sensitive data and digital signature verification.

Asymmetric Key Types

Tencent Cloud KMS currently supports the three asymmetric key algorithms below:

RSA

Currently, KMS supports RSA keys with a modulus of 2,048 bits (KeyUsage =
ASYMMETRIC_DECRYPT_RSA_2048).

SM2

SM2 is a public-key algorithm that meets the standards issued by the State Cryptography Administration (SCA) of
China. It is used to replace the RSA algorithm in China's commercial cryptography system. You can consider using
this type of keys for applications with requirements for compliance with SCA standards (KeyUsage =
ASYMMETRIC_DECRYPT_SM2).

ECC

Elliptic Curve Cryptography (ECC) is an encryption algorithm based on mathematical elliptic curves (KeyUsage =
ASYMMETRIC_SIGN_VERIFY_ECC).

Typical Scenarios of Asymmetric Encryption

There are two typical scenarios of asymmetric encryption and decryption in actual use cases, namely the encrypted
communication and digital signature:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 113

Encrypted communication

Encrypted communication is a typical application of asymmetric encryption algorithm, of which the process is similar to
symmetric encryption with the difference being that the public key is required for encryption and the private key is
required for decryption.

How the encrypted communication works:
1. The information recipient creates a public key-private key pair and sends the public key to one or multiple
information senders.
2. The information sender uses the public key to encrypt the sensitive information and sends the encrypted ciphertext
to the information recipient through a transmission medium.

3. After getting the data from the transmission medium, the information recipient uses the private key to decrypt the
data and restore the original information.
Ciphertext can be decrypted only with a confidential private key, therefore, even if information leakage occurs due to
low security of the transmission medium, those who get the ciphertext still cannot decrypt it, which ensures the
security of sensitive information.
Tencent Cloud KMS offers solutions for encrypted communication. For more information, please see Asymmetric Data

Encryption and Decryption.

Digital signature

Digital signature is another typical application of asymmetric encryption algorithm, which consists of signature
generation and signature verification two processes. The private key is used for signature generation and the public
key is used for signature verification, however, the implementation process of encrypted communication is in contrast.
How the digital signature works:

1. The information sender creates a public key-private key pair and sends the public key to one or multiple information
recipients.
2. The information sender uses the Hash function to generate a message abstract from the original message, and then
uses its private key to encrypt the abstract to get the digital signature of the original message.
3. The information sender transmits the original message and digital signature to the information recipient.

4. After receiving the original message and digital signature, the information recipient uses the same Hash function to
generate the abstract A from the original message and uses the public key given by the information sender to decrypt
the digital signature to get the abstract B, and then compares the two abstracts to check whether they are identical
and the original data is tampered with.
The signature is unique as it is generated and encrypted with a confidential private key. Digital signatures can
guarantee confidential data transmission, the correctness of information senders, and the non-repudiation of

transactions.
Tencent Cloud KMS offers solutions for digital signatures. For more information, please see Asymmetric Signature
Verification.
Note:

https://www.tencentcloud.com/document/product/1030/39478
https://www.tencentcloud.com/document/product/1030/39479

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 113

 Because of the characteristics of use cases of the public key-private key pair, KMS does not support the automatic
rotation of asymmetric CMKs. If you need to update the used keys regularly or from time to time, you can create new
asymmetric keys.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 113

Asymmetric Data Encryption and Decryption
Last updated：2024-01-11 16:31:21

Operation Process

If you need to encrypt sensitive information before transferring it (in scenarios such as key exchange), you can use the
asymmetric key-based encryption and decryption scheme. As an information recipient, you need to perform the
following operations:

1. Create an asymmetric encryption key on KMS. For more information, please see CreateKey.
2. Get the public key on KMS. For more information, please see GetPublicKey.
3. The information recipient distributes the public key to the information sender.
4. The information sender uses the obtained public key to encrypt the sensitive data locally and sends the ciphertext to
the information recipient.

5. The information recipient calls the KMS decryption API to decrypt the ciphertext. For more information on the API,
please see AsymmetricSm2Decrypt and AsymmetricRsaDecrypt. For operations using TCCLI, please see
Asymmetric key decryption.
Ciphertext is transferred throughout the entire sensitive data transfer process, and the only key that can decrypt the
ciphertext is managed and protected by KMS, which cannot be obtained by other people including Tencent Cloud.
This scheme greatly improves the security of encrypted sensitive data transfer.

Operation Directions

RSA sample

1. Create an asymmetric encryption key
Request:

https://www.tencentcloud.com/document/product/1030/32199
https://www.tencentcloud.com/document/product/1030/35179
https://www.tencentcloud.com/document/product/1030/35180
https://www.tencentcloud.com/document/product/1030/35181
https://www.tencentcloud.com/document/product/1030/35539

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 113

tccli kms CreateKey --Alias test --KeyUsage ASYMMETRIC_DECRYPT_RSA_2048

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 113

{

 "Response": {

 "KeyId": "22d79428-61d9-11ea-a3c8-525400******",

 "Alias": "test",

 "CreateTime": 1583739580,

 "Description": "",

 "KeyState": "Enabled",

 "KeyUsage": "ASYMMETRIC_DECRYPT_RSA_2048",

 "RequestId": "0e3c62db-a408-406a-af27-dd5ced******"

 }

}

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 113

2. Download the public key.

Request:

tccli kms GetPublicKey --KeyId 22d79428-61d9-11ea-a3c8-525400******

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 113

{

 "Response": {

 "RequestId": "408fa858-cd6d-4011-b8a0-653805******",

 "KeyId": "22d79428-61d9-11ea-a3c8-525400******",

 "PublicKey": "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzQk7x7ladgVFEEGYDbeU

 "PublicKeyPem": "-----BEGIN PUBLIC KEY-----\\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A

 }

}

3. Use the public key for encryption.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 113

3.1 Store the public key PublicKey in the file public_key.base64 and Base64-decode it.

Store it in the file:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 113

echo "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzQk7x7ladgVFEEGYDbeUc5aO9TfiDplIO

Base64-decode the public key to get its content:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 113

openssl enc -d -base64 -A -in public_key.base64 -out public_key.bin

3.2 Create a testing plaintext file.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 113

 echo "test" > test_rsa.txt

3.3 Use OpenSSL to encrypt the file test_rsa.txt with the public key.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 113

 openssl pkeyutl -in test_rsa.txt -out encrypted.bin -inkey public_key.bin -keyform

3.4 Base64-encode the data encrypted with the public key for transmission.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 113

 openssl enc -e -base64 -A -in encrypted.bin -out encrypted.base64

4. Use the private key on KMS for decryption.

Use the above-mentioned Base64-encoded ciphertext encrypted.base64 as the Ciphertext parameter for

 AsymmetricRsaDecrypt to decrypt the ciphertext with the private key.

Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 113

tccli kms AsymmetricRsaDecrypt --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algor

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 113

{

 "Response": {

 "RequestId": "6758cbf5-5e21-4c37-a2cf-8d47f5******",

 "KeyId": "22d79428-61d9-11ea-a3c8-525400******",

 "Plaintext": "dGVzdAo="

 }

}

Note:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 113

 The process of using SM2 asymmetric keys for encryption and decryption is similar to this example. For more
information on the private key-based decryption API, please see AsymmetricSm2Decrypt.

https://www.tencentcloud.com/document/product/1030/35180

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 113

Asymmetric Signature Verification
Overview
Last updated：2024-01-11 16:31:21

In sensitive information transmission, the information sender can provide the identity certification through asymmetric
signature verification. The operation process is as follows:
1. Create a pair of asymmetric keys in the KMS console. For more information, please see CreateKey.

2. The information sender uses the created private key to generate a signature for the data to be transmitted. For more
information, please see SignByAsymmetricKey.
3. The information sender transmits the signature and data to the information recipient.
4. After receiving the signature and data, the information recipient verifies the signature by one of the two methods
below:

 ① Call the KMS signature verification API to verify the signature. For more information, please see
VerifyByAsymmetricKey.
 ② Download the KMS public asymmetric key, and then locally verify the signature using GmSSL, OpenSSL,
password library, KMS SM-CRYPTO Encryption SDK, or any other tools.
Note:
Asymmetric signature verification currently supports SM2, RSA, and ECC algorithms.

https://www.tencentcloud.com/document/product/1030/32199
https://www.tencentcloud.com/document/product/1030/39509
https://www.tencentcloud.com/document/product/1030/39508

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 113

SM2 Signature Verification
Last updated：2024-01-11 16:31:21

This document describes how to use the SM2 signature verification algorithm.

Operation Directions

Step 1: Creating an asymmetric signature key

Note:
To use the signature feature, the correct key purpose KeyUsage= ASYMMETRIC_SIGN_VERIFY_SM2 is required

when calling the KMS CreateKey API to create a CMK.
Request:

https://www.tencentcloud.com/document/product/1030/32199

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 113

tccli kms CreateKey --Alias test --KeyUsage ASYMMETRIC_SIGN_VERIFY_SM2

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 113

{

 "Response": {

 "KeyId": "22d79428-61d9-11ea-a3c8-525400******",

 "Alias": "test",

 "CreateTime": 1583739580,

 "Description": "",

 "KeyState": "Enabled",

 "KeyUsage": "ASYMMETRIC_SIGN_VERIFY_SM2",

 "TagCode": 0,

 "TagMsg": "",

 "RequestId": "0e3c62db-a408-406a-af27-dd5ced******"

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 113

 }

}

Step 2: Downloading the public key

Request:

tccli kms GetPublicKey --KeyId 22d79428-61d9-11ea-a3c8-525400******

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 113

{

 "Response": {

 "RequestId": "408fa858-cd6d-4011-b8a0-653805******",

 "KeyId": "22d79428-61d9-11ea-a3c8-525400******",

 "PublicKey": "MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzis

 "PublicKeyPem": "-----BEGIN PUBLIC KEY-----\\nMFkwEwYHKoZIzj0CAQYIKoEcz1UBg

 }

}

Convert the public key PublicKeyPem into the PEM format and save it in the file public_key.pem :

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 113

echo "-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzisgXJa

hujq+PvM***************bBs/f3axWbvgvHx8Jmqw==

-----END PUBLIC KEY-----" > public_key.pem

Note:

You can also log in to the KMS console, click Customer Managed CMK on the left sidebar, click a key ID/name in
the key list to view the key information, and download the public asymmetric key.

Step 3: Creating the plaintext file

https://console.tencentcloud.com/kms2/index

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 113

Create the testing plaintext file:

echo "test" > test_verify.txt

Note:
 If there are any invisible characters such as line breaks in the generated content, you need to truncate the file
(truncate -s -1 test_verify.txt) to provide a correct signature.

Step 4: Calculating the message abstract

If the message to be generated a signature for is not longer than 4,096 bytes, you can skip this step to Step 5.

https://www.tencentcloud.com/document/product/1030/39762#step5

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 113

If the message to be generated a signature for is longer than 4,096 bytes, you need to calculate a message abstract
locally first.
Use GmSSL to calculate the message abstract for test_verity.txt :

gmssl sm2utl -dgst -in ./test_verify.txt -pubin -inkey ./public_key.pem -id 1234567

Step 5: Calling the KMS signature API to generate a signature

Call the KMS SignByAsymmetricKey API to calculate the signature.
1. Base64-encode the original message or message abstract before signature calculation.

https://www.tencentcloud.com/document/product/1030/39509

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 113

// Base64-encode the message abstract

gmssl enc -e -base64 -A -in digest.bin -out encoded.base64

// Base64-encode the original message

gmssl enc -e -base64 -A -in test_verify.txt -out encoded.base64

2. Calculate the signature.

Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 113

// Generate the signature for the message abstract using the content of the file `e

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

// Generate the signature for the Base64-encoded original message

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

 Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 113

{

 "Response": {

 "Signature": "U7Tn0SRReGCk4yuuVWaeZ4******",

 "RequestId": "408fa858-cd6d-4011-b8a0-653805******"

 }

}

 Save the signature content Signature in the file signContent.sign :

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 113

echo "U7Tn0SRReGCk4yuuVWaeZ4******" | base64 -d > signContent.bin

Step 6: Verifying the signature

Call the KMS signature verification API to verify the signature (recommended).

 Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 113

// Verify the Base64-encoded original message

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

// Verify the message abstract (verify the signature for the message abstract using

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

Note:

The value of the parameter Message and MessageType used in the signature API call should be the same as

those of the signature verification API call.
 Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 113

{

 "Response": {

 "SignatureValid": true,

 "RequestId": "6758cbf5-5e21-4c37-a2cf-8d47f5******"

 }

}

Verify the signature locally using the KMS public key and signature content.
 Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 113

gmssl sm2utl -verify -in ./test_verify.txt -sigfile ./signContent.bin -pubin -inke

 Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 113

Signature Verification Successful

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 113

RSA Signature Verification
Last updated：2024-01-11 16:31:21

This document describes how to use the RSA signature verification algorithm.

Operation Directions

Step 1: Creating an asymmetric signature key

Note:
To use the signature feature, the correct key purpose KeyUsage= ASYMMETRIC_SIGN_VERIFY_RSA_2048 is

required when calling the CreateKey API to create a CMK.
Request:

https://www.tencentcloud.com/document/product/1030/32199

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 113

tccli kms CreateKey --Alias test_rsa --KeyUsage ASYMMETRIC_SIGN_VERIFY_RSA_2048

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 113

{

"Response": {

"KeyId": "22d79428-61d9-11ea-a3c8-525400******",

"Alias": "test_rsa",

"CreateTime": 1583739580,

"Description": "",

"KeyState": "Enabled",

"KeyUsage": "ASYMMETRIC_SIGN_VERIFY_RSA_2048",

"TagCode": 0,

"TagMsg": "",

"RequestId": "0e3c62db-a408-406a-af27-dd5ced******"

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 113

}

}

Step 2: Downloading the public key

Request:

tccli kms GetPublicKey --KeyId 22d79428-61d9-11ea-a3c8-525400******

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 113

{

"Response": {

"RequestId": "408fa858-cd6d-4011-b8a0-653805******",

"KeyId": "22d79428-61d9-11ea-a3c8-525400******",

"PublicKey": "MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzisgXJahujq

"PublicKeyPem": "-----BEGIN PUBLIC KEY-----\\nMFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEF

}

}

Convert the public key PublicKeyPem into the PEM format and save it in the file public_key.pem .

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 113

echo "-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzisgXJa

hujq+PvM***************bBs/f3axWbvgvHx8Jmqw==

-----END PUBLIC KEY-----" > public_key.pem

Note:

You can also log in to the KMS console, click Customer Managed CMK on the left sidebar, click a key ID/name in
the key list to view the key information, and download the public asymmetric key.

Step 3: Creating the plaintext file

https://console.tencentcloud.com/kms2/index

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 113

Create the testing plaintext file.

echo "test" > test_verify.txt

Note:
 If there are any invisible characters such as line breaks in the generated content, you need to truncate the file (e.g.,
truncate -s -1 test_verify.txt) to provide a correct signature.

Step 4: Calculating the message abstract

Note:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 113

If the message to be generated a signature for is not longer than 4,096 bytes, you can skip this step to Step 5.
If the message to be generated a signature for is longer than 4,096 bytes, you need to calculate a message abstract
locally first.

Use OpenSSL to calculate the message abstract for test_verity.txt .

openssl dgst -sha256 -binary -out digest.bin test_verify.txt

Step 5: Calling the KMS signature API to generate a signature

Call the KMS SignByAsymmetricKey API to calculate the signature.

https://www.tencentcloud.com/document/product/1030/39763#step5
https://www.tencentcloud.com/document/product/1030/39509

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 113

1. Base64-encode the original message or message abstract before signature calculation.

// Base64-encode the message abstract

openssl enc -e -base64 -A -in digest.bin -out encoded.base64

// Base64-encode the original message

openssl enc -e -base64 -A -in test_verify.txt -out encoded.base64

2. Calculate the signature.
Request:
RSA_PSS_SHA_256

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 113

// Generate the signature for the message abstract using the content of the file `e

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

// Generate the signature for the Base64-encoded original message

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

RSA_PKCS1_SHA_256

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 113

// Generate the signature for the message abstract using the content of the file `e

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

// Generate the signature for the Base64-encoded original message

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 113

{

"Response": {

 "Signature": "U7Tn0SRReGCk4yuuVWaeZ4******",

 "RequestId": "408fa858-cd6d-4011-b8a0-653805******"

}

}

Save the signature content Signature in the file signContent.sign :

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 113

echo "U7Tn0SRReGCk4yuuVWaeZ4******" | base64 -d > signContent.bin

Step 6: Verifying the signature

1. Call the KMS signature verification API to verify the signature (recommended).

Request:
RSA_PSS_SHA_256

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 113

// Verify the message abstract (verify the signature for the message abstract using

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

// Verify the Base64-encoded original message.

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

RSA_PKCS1_SHA_256

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 113

// Verify the message abstract (verify the signature for the message abstract using

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

// Verify the Base64-encoded original message.

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 113

{

"Response": {

"SignatureValid": true,

"RequestId": "6758cbf5-5e21-4c37-a2cf-8d47f5******"

}

}

Note:
The value of the parameter Message and MessageType used in the signature API call should be the same as

those of the signature verification API call.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 113

2. Verify the signature locally using the KMS public key and signature content.
Request:

// Use the `RSA_PSS_SHA_256` algorithm to verify the signature.

openssl dgst -verify public_key.pem -sha256 -sigopt rsa_padding_mode:pss -sigopt rs

// Use the `RSA_PKCS1_SHA_256` algorithm to verify the signature.

openssl dgst -verify public_key.pem -sha256 -signature ./signContent.bin ./test_ver

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 113

Verified OK

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 113

ECC Signature Verification
Last updated：2024-01-11 16:31:21

This document describes how to use the ECC signature verification algorithm.

Operation Directions

Step 1: Creating an asymmetric signature key

Note:
To use the signature feature, the correct key purpose ASYMMETRIC_SIGN_VERIFY_ECC is required when calling

the KMS CreateKey API to create a CMK.
Request:

https://www.tencentcloud.com/document/product/1030/32199

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 113

tccli kms CreateKey --Alias test_ecc --KeyUsage ASYMMETRIC_SIGN_VERIFY_ECC

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 113

{

"Response": {

"KeyId": "22d79428-61d9-11ea-a3c8-525400******",

"Alias": "test_ecc",

"CreateTime": 1583739580,

"Description": "",

"KeyState": "Enabled",

"KeyUsage": "ASYMMETRIC_SIGN_VERIFY_ECC",

"TagCode": 0,

"TagMsg": "",

"RequestId": "0e3c62db-a408-406a-af27-dd5ced******"

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 113

}

}

Step 2: Downloading the public key

Request:

tccli kms GetPublicKey --KeyId 22d79428-61d9-11ea-a3c8-525400******

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 113

{

"Response": {

"RequestId": "408fa858-cd6d-4011-b8a0-653805******",

"KeyId": "22d79428-61d9-11ea-a3c8-525400******",

"PublicKey": "MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzisgXJahujq

"PublicKeyPem": "-----BEGIN PUBLIC KEY-----\\nMFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEF

}

}

Convert the public key PublicKeyPem into the PEM format and save it in the file `public_key.pem:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 113

echo "-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoEcz1UBgi0DQgAEFLlge0vtct949CwtadHODzisgXJa

hujq+PvM***************bBs/f3axWbvgvHx8Jmqw==

-----END PUBLIC KEY-----" > public_key.pem

Note:

You can also log in to the KMS console, click Customer Managed CMK on the left sidebar, click a key ID/name in
the key list to view the key information, and download the public asymmetric key.

Step 3: Creating the plaintext file

https://console.tencentcloud.com/kms2/index

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 113

Create the testing plaintext file.

echo "test" > test_verify.txt

Note:
 If there are any invisible characters such as line breaks in the generated content, you need to truncate the file (e.g.,
truncate -s -1 test_verify.txt) to provide a correct signature.

Step 4: Calculating the message abstract

Note:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 113

If the message to be generated a signature for is not longer than 4,096 bytes, you can skip this step to Step 5.
If the message to be generated a signature for is longer than 4,096 bytes, you need to calculate a message abstract
locally first.

Use OpenSSL to calculate the message abstract for test_verity.txt .

openssl dgst -sha256 -binary -out digest.bin test_verify.txt

Step 5: Calling the KMS signature API to generate a signature

Call the KMS SignByAsymmetricKey API to calculate the signature.

https://www.tencentcloud.com/document/product/1030/39764#step5
https://www.tencentcloud.com/document/product/1030/39509

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 113

1. Base64-encode the original message or message abstract before signature calculation.

// Base64-encode the message abstract.

openssl enc -e -base64 -A -in digest.bin -out encoded.base64

// Base64-encode the original message.

openssl enc -e -base64 -A -in test_verify.txt -out encoded.base64

2. Calculate the signature.
Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 113

// Generate the signature for the message abstract using the content of the file `e

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

// Generate the signature for the Base64-encoded original message.

tccli kms SignByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Algori

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 113

{

"Response": {

 "Signature": "U7Tn0SRReGCk4yuuVWaeZ4******",

 "RequestId": "408fa858-cd6d-4011-b8a0-653805******"

}

}

Save the signature content Signature in the file signContent.sign :

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 113

echo "U7Tn0SRReGCk4yuuVWaeZ4******" | base64 -d > signContent.bin

Step 6: Verifying the signature

1. Call the KMS signature verification API to verify the signature (recommended).

Request:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 113

// Verify the message abstract (verify the signature for the message abstract using

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

// Verify the Base64-encoded original message.

tccli kms VerifyByAsymmetricKey --KeyId 22d79428-61d9-11ea-a3c8-525400****** --Sign

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 113

{

"Response": {

 "SignatureValid": true,

 "RequestId": "6758cbf5-5e21-4c37-a2cf-8d47f5******"

}

}

Note:
The value of the parameter Message and MessageType used in the signature API call should be the same as

those of the signature verification API call.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 113

2. Verify the signature locally using the KMS public key and signature content.
Request:

openssl dgst -verify public_key.pem -sha256 -signature ./signContent.bin ./test_ver

Returned result:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 113

Verified OK

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 113

Importing External Key
Overview
Last updated：2024-01-11 16:31:22

A customer master key (CMK) is a basic element of the KMS service. The CMK contains key ID, key metadata (alias,
description, status, etc.), and key material used to encrypt and decrypt data.
By default, the underlying encryptor of KMS creates secure key material for a CMK when the CMK is created in KMS.

If you want to use your own key material, i.e., implementing a Bring Your Own Key (BYOK) solution, you can use KMS
to generate a CMK with the key material left empty, and then import your own key material into the CMK to form an
external CMK. The external CMK can be distributed and managed by KMS.

Features

KMS allows you to use your own key material to encrypt and decrypt sensitive data by implementing a Bring Your
Own Key (BYOK) solution in Tencent Cloud.

KMS gives you full control over the key services used in Tencent Cloud, including importing and deleting key material
as needed.
You can back up your key material in local key management infrastructure as an additional disaster recovery measure
for KMS.
You can use your own key material for encryption and decryption operations in the cloud to meet your industry-specific
compliance requirements.

Notes

You need to ensure the security of the key material:
When using the key importing feature, you need to ensure that the random material generation source is secure and
reliable. Currently, the SM-CRYPTO edition of KMS only supports importing 128-bit symmetric keys, while the FIPS-
compliant edition only supports importing 256-bit symmetric keys.
You need to ensure the availability of the key material:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 113

KMS provides high availability of its own services and the capability for restoring from backups, but the availability of
your key material is your responsibility. It is strongly recommended that you keep the original backup of the key
material in a safe and reliable way, so that if the key material is deleted accidentally or expired, the backup can be

imported into KMS timely.
You need to ensure the correctness of the key importing operations:
Once the key material is imported into an external CMK, the two will be associated permanently, i.e., other key
materials cannot be imported into this CMK. If this CMK is used for data encryption, the encrypted data can only be
decrypted with the CMK used for encryption (i.e., the CMK metadata and key material should match those of the

imported key); otherwise, decryption would fail. Please be cautious when deleting key materials and CMKs.
You need to pay attention to the key importing status:
 Keys in "Pending Import" status are actually enabled keys and incur fees.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 113

Operation Guide
Last updated：2024-01-11 16:31:22

Process

You can follow the four steps below to create an external CMK.
1. Create a CMK whose source is "external" in the console or through the API, i.e., creating an external CMK.
2. Call an API to get the parameters of the material to be imported into a CMK, including a public key used to encrypt

the key material and an import token.
3. Use an encryptor or other secure encryption measures to encrypt your key material locally with the public key
obtained in step 2.
4. Call an API to import the encrypted key material and the import token obtained in step 2 into the external CMK.

Directions

Step 1. Create an external CMK

You can create an external CMK in the console or through the API.

Via the console
(1). Log in to the KMS Console.
(2). Select the region where you want to create a key and click Create.
(3). In the "Create Key" window, enter the key name and select "External" for key material source, read the document
on the methods of importing external key materials and the precautions, and check the box.
(4). Click OK to create the external CMK. You can view the created CMK in the console, where the "Key Source" is

displayed as "External".
Via the API
Below is an example using Tencent Cloud TCCLI, which can be called with any supported programming language.
 When requesting the CreateKey API, set the Type parameter to 2 by running the following command:

https://console.tencentcloud.com/kms2
https://www.tencentcloud.com/product/cli

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 113

tccli kms CreateKey --Alias <alias> --Type 2

 Sample source code of the CreateKey API:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 113

def create_external_key(client, alias):

 """

 Generate a BYOK key,

 :param Type = 2

 """

 try:

 req = models.CreateKeyRequest()

 req.Alias = alias

 req.Type = 2

 rsp = client.CreateKey(req)

 return rsp, None

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 113

 except TencentCloudSDKException as err:

 return None, err

Step 2. Get the parameters of the material to be imported into a CMK

To ensure the security of your key material, you need to encrypt your key material before importing it. You can get its
parameters through an API, including a public key used to encrypt the key material and an import token.
Run the following command on TCCLI:

tccli kms GetParametersForImport --KeyId <keyid> --WrappingAlgorithm RSAES_PKCS1_V1

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 113

Sample source code of the GetParametersForImport function:

def get_parameters_for_import(client, keyid):

 """

 Get the parameters of the material to be imported into a CMK,

 of which the returned `Token` is a parameter that executes the `ImportKeyMateri

 and the returned `PublicKey` is used to encrypt the key material.

 The `Token` and `PublicKey` will expire in 24 hours. After that, you need to ca

 `WrappingAlgorithm ` is used to specify the algorithm for key material encrypti

 `WrappingKeySpec` is used to specify the type of key material encryption. Curre

 """

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 113

 try:

 req = models.GetParametersForImportRequest()

 req.KeyId = keyid

 req.WrappingAlgorithm = 'RSAES_PKCS1_V1_5' # RSAES_PKCS1_V1_5 | RSAES_OAEP_

 req.WrappingKeySpec = 'RSA_2048' # RSA_2048

 rsp = self.client.GetParametersForImport(req)

 return rsp, None

 except TencentCloudSDKException as err:

 return None, err

Step 3. Encrypt your key material locally

Use the encryption public key obtained in step 2 to encrypt your key material locally. The encryption public key is a
2,048-bit RSA public key, and the encryption algorithm used should be the same as specified for getting the
parameters of the key material. As the encryption public key returned by the API is Based64-encoded, you need to
Base64-decode it before using it. Currently, algorithms supported by KMS include RSAES_OAEP_SHA_1 ,

 RSAES_OAEP_SHA_256 , and RSAES_PKCS1_V1_5 .

Below is an example of encrypting the key material using OpenSSL. In actual use, it is recommended to encrypt your
key material using an encryptor or other secure encryption measures.
(1). Call the GetParametersForImport API to get the Token and PublicKey , and write the PublicKey into

the public_key.base64 file.

(2). Generate a random number using OpenSSL.

https://www.tencentcloud.com/document/product/1030/32796#step2

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 113

openssl rand -out raw_material.bin 16

You can also use the GenerateRandom API to generate a random number for Base64-decoding.

Note：
The length of a SM-CRYPTO key material must be 128 bits, while that of a FIPS-compliant one must be 256 bits.
(3). Decode the public key.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 113

openssl enc -d -base64 -A -in public_key.base64 -out public_key.bin

(4). Use the public key to encrypt the key material.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 113

The command line corresponding to `RSAES_OAEP_SHA_1` is as follows:

openssl pkeyutl -in raw_material.bin -out encrypted_key_material.bin -inkey public_

The command line corresponding to `RSAES_PKCS1_V1_5` is as follows:

openssl pkeyutl -in raw_material.bin -out encrypted_key_material.bin -inkey public_

The command line corresponding to `RSAES_OAEP_SHA_256` is as follows:

openssl pkeyutl -in raw_material.bin -out encrypted_key_material.bin -inkey public_

(5). Import the encoded ciphertext into KMS as a parameter.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 113

openssl enc -e -base64 -A -in encrypted_key_material.bin -out encrypted_material.ba

Import the final output encrypted_material.base64 into KMS as EncryptedKeyMaterial .

Step 4. Import the key material

Call an API to import the encrypted key material and the import token obtained in step 2 into the external CMK created
in step 1.
The import token and the public key for key material encryption are bound, and a token can only be used to import key
material for the CMK specified when it was generated. The import token is valid for 24 hours and can be reused within

https://www.tencentcloud.com/document/product/1030/32796#step2
https://www.tencentcloud.com/document/product/1030/32796#step2#step1

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 113

its validity period. If it expires, you need to get a new token and encryption public key.
If the GetParametersForImport API is called multiple times to get the key material, only the token and publicKey
obtained from the last call will be valid, while those returned from previous calls will expire automatically.

You can import key material into an external key where no key materials have ever been imported, reimport key
material that has expired or been deleted, or reset the expiration time of key material.
Make a request to import key material through the ImportKeyMaterial API. Below is a sample command:

tccli kms ImportKeyMaterial --EncryptedKeyMaterial <material> --ImportToken <token>

Sample source code of the ImportKeyMaterial function:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 113

def import_key_material(client, material, token, keyid):

 try:

 req = models.ImportKeyMaterialRequest()

 req.EncryptedKeyMaterial = material

 req.ImportToken = token

 req.KeyId = keyid

 rsp = client.ImportKeyMaterial(req)

 return rsp, None

 except TencentCloudSDKException as err:

 return None, err

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 113

At this point, the external CMK has been imported. You can use it just like an ordinary key.

More Operations

Deleting an external CMK

Deleting an external CMK involves two kinds of operations: deleting the CMK at the scheduled time, and deleting the
key material, which will lead to different results.

Deleting a CMK at the scheduled time

The schedule deletion feature can be used to delete an external CMK and has a mandatory waiting period of 7-30
days, after which the external key will be deleted. Please note that once deleted, the CMK cannot be recovered, and
the data encrypted with it cannot be decrypted.

Deleting key material

You can delete key material in two ways. If the key material expires or is deleted, the external CMK can no longer be
used, and the data encrypted with the CMK can no longer be decrypted, unless you import the same key material into

the CMK again.
You can call the DeleteImportedKeyMaterial API to delete the key material. After the key material is deleted, the key
status will become PendingImport .

In an ImportKeyMaterial API call, set the expiration time using the ValidTo input parameter, and KMS will

automatically delete the key material upon expiration.
Note：

Waiting for the key material to become invalid upon expiration and deleting it manually have the same effect.
Delete the key material by running the following command:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 113

 tccli DeleteImportedKeyMaterial --KeyId <keyid>

Sample source code of the DeleteImportedKeyMaterial function:

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 113

def delete_key_material(client, keyid):

 try:

 req = models.DeleteImportedKeyMaterialRequest()

 req.KeyId = keyid

 rsp = client.DeleteImportedKeyMaterial(req)

 return rsp, None

 except TencentCloudSDKException as err:

 return None, err

Note：

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 113

Once the key material is imported into an external CMK, the two will be associated permanently, i.e., other key
materials cannot be imported into this CMK. In other words, after the key material is deleted, if you need to import key
material into the CMK again, you need to make sure that the key material to be imported is exactly the same as the

deleted one; otherwise, the import will fail.
If a CMK is used for data encryption, the encrypted data can only be decrypted with the CMK used for encryption (i.e.,
the CMK metadata and key material should match the imported key material); otherwise, decryption would fail. Please
be cautious when deleting key materials and CMKs.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 113

Implementing Exponential Backoff to Deal with
Service Frequency
Last updated：2024-01-11 16:31:22

Suggestions for Dealing with Exceptions

If exceptional errors occur when you call KMS APIs to send requests from your application to the remote KMS server,
you can deal with the errors as suggested below:
Cancel the call: if an error shows that the failure is not temporary and persists after several re-executions, you need

to terminate or cancel the application call and report the error.
Try again immediately: if an uncommon error is returned, for example, network packets are damaged during
transfer but still sent, in this case, you can try again immediately.
Increase delays between re-executions: if an error is generally caused by connections, it indicates that the server
is busy and needs to clear the loads first. You can try again in a while in such cases.

The following paragraphs introduce how to increase delays between re-executions. The delay can be gradually
increased or scheduled (by implementing exponential backoff). As the frequency of KMS API calls is limited, you can
increase delays between re-executions to avoid errors caused by high frequency.

Exponential Backoff

Pseudocode

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 113

// Gradually increase re-execution delays

InitDelayValue = 100

For(Retries = 0; Retries < MAX_RETRIES; Retries = Retries+1)

 wait for (2^Retries * InitDelayValue) milliseconds

 Status = KmsApiRequest()

 IF Status == SUCCESS

 BREAK // Succeeded, stop calling the API again.

 ELSE IF Status = THROTTLED || Status == SERVER_NOT_READY

 CONTINUE // Failed due to throttling or server busy, try again.

 ELSE

 BREAK // another error occurs, stop calling the API again.

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 113

 END IF

Method

Python: implement exponential backoff for frequency errors in KMS API calls to Encrypt

-*- coding: utf-8 -*-

import base64

import math

import time

from tencentcloud.common import credential

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 113

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.kms.v20190118 import kms_client, models

def KmsInit(region="ap-guangzhou", secretId="", secretKey=""):

 try:

 credProfile = credential.Credential(secretId, secretKey)

 client = kms_client.KmsClient(credProfile, region)

 return client

 except TencentCloudSDKException as err:

 print(err)

 return None

def BackoffFunction(RetryCount):

 InitDelayValue = 100

 DelayTime = math.pow(2, RetryCount) * InitDelayValue

 return DelayTime

if __name__ == '__main__':

 # User-defined parameters

 secretId = "replace-with-real-secretId"

 secretKey = "replace-with-real-secretKey"

 region = "ap-guangzhou"

 keyId = "replace-with-realkeyid"

 plaintext = "abcdefg123456789abcdefg123456789abcdefg"

 Retries = 0

 MaxRetries = 10

 client = KmsInit(region, secretId, secretKey)

 req = models.EncryptRequest()

 req.KeyId = keyId

 req.Plaintext = base64.b64encode(plaintext)

 while Retries < MaxRetries:

 try:

 Retries += 1

 rsp = client.Encrypt(req) # Call the API `Encrypt`

 print 'plaintext: ',plaintext,'CiphertextBlob: ',rsp.Ciphertext

 break

 except TencentCloudSDKException as err:

 if err.code == 'InternalError' or err.code == 'RequestLimitExce

 if Retries == MaxRetries:

 break

 time.sleep(BackoffFunction(Retries + 1))

 continue

 else:

 print(err)

Key Management Service

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 113

 break

 except Exception as err:

 print(err)

 break

Note:
To deal with other specific errors, you can directly modify the content of the statement except .

You can customize the schedule policy based on your code logic and business policy to set the optimal initial delay
value (InitDelayValue) and the number of retries (Retries), preventing your business from being affected by a too-low
or too-high threshold.

