
Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 68

Serverless Application Center

Operation Guide

Product Documentation

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 68

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 68

Contents

Operation Guide
Permission Configuration

Configuring Role for Specified Operation
Account and Permission Configuration
Access Management Configuration

.yml File Specification
Project Structure
Local Debugging
Building Application
In-cloud Debugging
Deploying Application
Deleting Application
List of Supported Commands
Multi-Function Application Deployment
Basic Component List
Connecting to MySQL Database
Quickly Deploying Web Function

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 68

In addition to the default role SLS_QcsRole , a root account can also create multiple custom roles and assign them

to sub-users, so that they can have only the policies granted by the corresponding roles as needed, which can
implement permission control. Its flowchart is as follows:

Root Account Configuration Process

You can create a sub-account, configure a role, and grant the role the corresponding policies. The following uses the
deployment of an SCF function triggered by API Gateway as an example:

Creating sub-account role

1. Log in to the CAM Console with your root account and click Role on the left sidebar.
2. On the role page, click Create Role and select Tencent Cloud Service as the role entity.
3. Among the services supporting roles, select Serverless Framework (sls) and click Next.

Operation Guide
Permission Configuration
Configuring Role for Specified Operation
Last updated：2020-07-14 11:41:58

https://console.tencentcloud.com/cam/role

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 68

4. Select presets policies QcloudCOSFullAccess, QcloudAPIGWFullAccess, and QcloudSCFFullAccess and
click Next.

5. Enter a role name such as test-role1 and click Complete.

You can click the role name to view the role page after configuration:

Configuring role policy

1. Click Policy on the left sidebar to enter the policy management page.
2. On the policy management page, click Create Custom Policy and select Create by Policy Syntax.

3. Select Blank Template as the policy template and click Next.
4. Enter the policy name and content and click Complete.

Bind the role policy. Here, you need to populate the resource parameter with the six-segment description of

the role to be bound to the sub-account:

{

"version": "2.0",

"statement": [

{

"action": [

"cam:PassRole"

],

"resource": [

Six-segment role description (such as `qcs::cam::uin/123456789:roleName/test-

role1`)

],

https://console.tencentcloud.com/cam/policy

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 68

"effect": "allow"

}

]

}

Associating sub-user with policy

1. Click User > User List on the left sidebar to enter the user list page.
2. Select the sub-user to be authorized and click Authorize in the "Operation" column.

3. Select the created policy and the preset policy QcloudSLSFullAccess in the policy list and click OK to associate
them with the target sub-account so as to bind the role.

4. (Optional) If you think that QcloudSLSFullAccess contains excessive permissions, you can create a custom

policy to grant a specified resource the SLS call permission with the following policy template:

{

"version": "2.0",

"statement": [

{

"action": [

"sls:*"

],

"resource": [

Enter the project resource name (such as `qcs::sls:ap-guangzhou::appname/*`)

],

"effect": "allow"

}

]

}

Sub-account Configuration Process

Note：

The role resource description can be obtained on the role information page.

Note：

The project resource description must strictly follow the CAM specifications. You can also describe the
resource more specifically by entering a function name or stage name.

https://console.tencentcloud.com/cam

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 68

Create a Serverless project locally, add a global configuration item configRole in the serverless.yaml

configuration file, and enter the role name. After the backend successfully checks the permissions, the deployment will
be completed.

serverless.yml

component: scf # Name of the imported component, which is required. The `tencent-

scf` component is used in this example

name: scfdemo # Name of the instance created by this component, which is required

org: test # Organization information, which is optional. The default value is the

`appid` of your Tencent Cloud account

app: scfApp # SCF application name, which is optional

stage: dev # Information for identifying environment, which is optional. The defa

ult value is `dev`

globalOptions:

configRole: test-role1 # Name of specified role, which is optional

inputs:

name: scfFunctionName

src: ./src

runtime: Nodejs10.15 # Runtime environment of function. Valid values: Python2.7,

Python3.6, Nodejs6.10, Nodejs8.9, Nodejs10.15, PHP5, PHP7, Go1, Java8.

region: ap-guangzhou

handler: index.main_handler

events:

- apigw:

name: serverless_api

parameters:

protocols:

- http

- https

serviceName:

description: The service of Serverless Framework

environment: release

endpoints:

- path: /index

method: GET

Note：

If no role is bounded, the sub-account will use SLS_QcsRole for SLS deployment by default, and the
 configRole parameter does not need to be set in the configuration file.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 68

Granting Permission to Sub-account

If you want to grant a permission to a sub-account, you need to provide the role name and the name of the policy to be
associated together to the root account. Then, the root account can grant the permission in CAM Console > Role.

Once a role is bounded, please check the configRole name in the yaml file carefully. An error will
be reported if the value is incorrect or empty. A sub-account can use only bounded roles but cannot use
other roles.

https://console.tencentcloud.com/cam/role

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 68

Account and Permission Configuration
Last updated：2023-06-25 14:46:23

This document describes several authorization methods of Serverless Cloud Framework and demonstrates actual
operations by configuring sub-account permissions.

Prerequisites

Serverless Cloud Framework enables you to quickly deploy your project to Serverless Application Center (SAC).

Before the deployment, please make sure that you have registered a Tencent Cloud account.

Authorization Method

Authorizing by scanning code

When you perform deployment by running scf deploy , you can scan the QR code for quick authorization and

deployment. After you grant the authorization by scanning the code, temporary key information (which will expire in 60
minutes) will be generated and written to the .env file in the current directory.

https://www.tencentcloud.com/document/product/378/17985

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 68

TENCENT_APP_ID=xxxxxx # `AppId` of authorizing account

TENCENT_SECRET_ID=xxxxxx # `SecretId` of authorizing account

TENCENT_SECRET_KEY=xxxxxx # `SecretKey` of authorizing account

TENCENT_TOKEN=xxxxx # Temporary token

For more information about the permissions obtained during quick authorization, see scf_QcsRole role permission list.

Note
If your account is a Tencent Cloud sub-account, policy authorization needs to be first configured by using the root
account. For more information about the configuration, see Sub-account Permission Configuration.

https://www.tencentcloud.com/document/product/1040/36793#scf_qcsrole-.E8.A7.92.E8.89.B2.E6.9D.83.E9.99.90.E5.88.97.E8.A1.A8-.5B.5D(id.3Alist)

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 68

Authorizing with local key

To eliminate the need for repeated authorization due to information expiration in case of authorization by scanning the
code, you can authorize with a key. Create an .env file in the root directory of the project to be deployed and

configure the Tencent Cloud SecretId and SecretKey information:

.env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

You can obtain SecretId and SecretKey in API Key Management.

https://console.tencentcloud.com/cam/capi

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 68

Note
To ensure the account security, we recommend you use a sub-account key for authorization. The sub-account can
be used to deploy the project only after being granted the relevant permissions. For more information about the

configuration, see Sub-account Permission Configuration.

Configuring with permanent key

You can run the scf credentials command to quickly set the persistent storage of the global key information.

This command must be configured under the created SCF project. Make sure that you have created a project with
 serverless.yml by using scf init or manually.

Below are all the commands:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 68

scf credentials Manage global user authorization information

 set Store user authorization information

 --secretId / -i (Required) `secretId` of the Tencent Cloud CAM accou

 --secretKey / -k (Required) `secretKey` of the Tencent Cloud CAM acco

 --profile / -n {name} Authorization name, which is `default` by default

 --overwrite / -o Overwrite the key with an existing authorization nam

 remove Remove user authorization information

 --profile / -n {name} (Required) Authorization name

 list View user authorization information

Configure global authorization information:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 68

Configure authorization information through the default profile name

$ scf credentials set --secretId xxx --secretKey xxx

Configure authorization information through the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1

Update the authorization information in the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1 --overw

Delete the global authorization information:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 68

$ scf credentials remove --profile profileName1

View all the current authorization information:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 68

$ scf credentials list

Perform deployment by using the global authorization information:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 68

Deploy through the default profile

$ scf deploy

Deploy through the specified profile

$ scf deploy --profile newP

Ignore global variables and scan the QR code for deployment

$ scf deploy --login

Sub-account Permission Configuration

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 68

Directions

If you use a Tencent Cloud sub-account, it does not have the operation permissions by default; therefore, it needs to
be authorized by the root account (or a sub-account with the authorization permission) in the following steps:
1. On the CAM User List page, select the target sub-account and click Authorize in the Action column.

2. Search for and select QcloudscfFullAccess in the pop-up window and click OK to grant the sub-account the

permission to manipulate all Serverless Cloud Framework resources.

https://console.tencentcloud.com/cam/user

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 68

3. On the CAM User List page, select the target sub-account and click the username to go to the user details page.

4. Click Associate Policy. On the policy adding page, click the Select policies from the policy list tab, and then
click Create Custom Policy.

https://console.tencentcloud.com/cam/user

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 68

Policy association page:

Policy creation page:

5. Choose Create by Policy Syntax > Blank Template and enter the following content. Make sure to replace the
role parameter with the UIN of your root account:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 68

{

 "version": "2.0",

 "statement": [

 {

 "action":[

 "cam:PassRole"

],

 "resource": [

 "qcs::cam::uin/${Enter the UIN of your account}:roleName/scf_QcsRole"

],

 "effect": "allow"

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 68

 },

 {

 "resource": [

 "*"

],

 "action":[

 "name/sts:AssumeRole"

],

 "effect": "allow"

 }

]

}

6. After completing the custom policy configuration, go back to the authorization page in step 4, search for the custom
policy just created, click Next, and then click OK to grant the sub-account the operation permissions of
 scf_QcsRole . At this point, your sub-account should have a custom policy and a preset policy

QcloudscfFullAccess and can use Serverless Cloud Framework normally.

Note

In addition to the permission to call the default scf_QcsRole role, you can also grant the sub-account the

permission to call a custom role and control the sub-account permissions with refined permission policies in the
custom role. For more information, see Configuring Role for Specified Operation.

scf_QcsRole role permission list

Policy Description

QcloudCOSFullAccess Full access to Tencent Cloud Object Storage (COS).

QcloudSCFFullAccess Full access to Serverless Cloud Function (SCF).

https://www.tencentcloud.com/document/product/1040/36819

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 68

QcloudSSLFullAccess Full access to SSL Certificate Service.

QcloudTCBFullAccess Full access to Tencent CloudBase (TCB).

QcloudAPIGWFullAccess Full access to API Gateway.

QcloudVPCFullAccess Full access to Virtual Private Cloud (VPC).

QcloudMonitorFullAccess Full access to Cloud Monitor.

QcloudslsFullAccess Full access to Serverless Cloud Framework (SLS).

QcloudCDNFullAccess Full access to Content Delivery Network (CDN).

QcloudCKafkaFullAccess Full access to CKafka.

QcloudCodingFullAccess Full access to CODING DevOps.

QcloudPostgreSQLFullAccess Full access to TencentDB for PostgreSQL.

QcloudCynosDBFullAccess Full access to TencentDB for CynosDB.

QcloudCLSFullAccess Full access to Tencent Cloud Log Service (CLS).

QcloudAccessForscfRole

This policy can be associated with the service role (scf_QCSRole) of
Serverless Cloud Framework to access other Tencent Cloud service
resources by using the quick experience feature of Serverless Cloud
Framework. The scf_QCSRole role has the permissions to perform CAM-
related operations.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 68

CAM Overview

Cloud Access Management (CAM) is a web-based Tencent Cloud service that helps you securely manage and control
access permissions, resources, and use permissions of your Tencent Cloud account. Using CAM, you can create,
manage, and terminate users (groups), and control the Tencent Cloud resources that can be used by the specified

user through identity and policy management.

Tencent Cloud SLS supports resource-level authorization. You can use policy syntax to grant sub-accounts
permissions to manage individual resources. For more information, please see Authorization Scheme Examples.

Authorizable Resource Types

SLS supports resource-level authorization. You can grant a specified sub-account the API permission of a specified
resource. APIs supporting resource-level authorization include:

API Name Description Six-Segment Example of Resource

SaveInstance

Saves the
instance
information
of
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

GetInstance

Gets the
instance
information
of
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

ListInstances

Gets the
instance
list
information
of
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

Access Management Configuration
Last updated：2022-05-16 11:57:21

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 68

API Name Description Six-Segment Example of Resource

RunComponent
Runs
component
instance

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

RunFinishComponent

Finishes
running
component
instance

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

Authorization Scheme Examples

Six-Segment resource description

Parameter Required Description

qcs Yes Tencent Cloud service abbreviation, which indicates a resource of Tencent Cloud.

project_id Yes Project information description, which is only used to enable compatibility with legacy
logic.

service_type Yes Product abbreviation, which is sls for Serverless Framework.

region Yes Region information, such as bj . For more information, please see Region List.

account No
Root account of resource owner, such as uin/164256472 . If it is empty, it indica
root account of the CAM user who creates the policy.

resource Yes
Detailed resource information of each product, which is
 qcs::sls:${Region}:uin/:appname/${AppName}/stagename/${Stage

for Serverless Framework

Sample

You can log in to the CAM console as a root account to configure and manage the permissions of Serverless
Framework. Currently, Serverless Framework provides two preset policies for full access permission and read-
only access permission:

Full access permission

Grant a sub-account full access to Serverless Framework (SLS).
Policy name: QcloudSLSFullAccess

https://www.tencentcloud.com/document/product/213/6091
https://console.tencentcloud.com/cam/policy

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 68

{

"version": "2.0",

"statement": [

{

"action": [

"sls:*"

],

"resource": "*",

"effect": "allow"

}

]

}

Read-only access permission

Grant a sub-account read-only access to Serverless SSR (SLS).
Policy name: QcloudSLSReadOnlyAccess

{

"version": "2.0",

"statement": [

{

"action": [

"sls:Get*",

"sls:List*"

],

"resource": "*",

"effect": "allow"

}

]

}

Sub-account Resource Management

The sub-account can access and manage the resources authorized to it by the root account.
If the sub-account has the permission to create resources and pay bills, it can purchase resources by itself in the
normal process, and the root account will be charged.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 68

Serverless Framework uses the project configuration file serverless.yml to identify the application type and

configure the resources. After you develop a project locally, you must configure the .yml file first before you can

deploy the project in the cloud by running the sls deploy command to pass the configuration information in

 serverless.yml and the specified parameters or code directory in inputs to the Serverless Components

deployment engine.

Basic Information

The first-level field in a basic serverless.yml file is configured as follows:

Organization information (optional)

app: '' # Application name. If it is left empty, the instance name of the current

component will be used by default

stage: '' # Environment name. The default value is `dev`. We recommend you use th

e `${env.STAGE}` variable to define the environment name

Component information

component: scf # Component name, which is required. It is `scf` in this example

name: scfdemo # Component instance name, which is required

Component parameter configuration, which configures specific resource informati

on for each component

inputs:

Detailed Configuration

In the inputs field, the corresponding information will be configured for the resources created by each component

in the cloud. The SCF Component is taken as an example here. The second-level directory in the input field is as

follows:

inputs:

name: xxx # Function name, which is `${name}-${stage}-${app}` by default

src: ./src # Project code path in the default format. Create a specifically named

COS bucket and upload it

handler: index.main_handler # Entry

.yml File Specification
Last updated：2021-03-05 15:26:29

https://github.com/serverless-components/tencent-scf

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 68

runtime: Nodejs10.15 # Runtime environment, which is Nodejs10.15 by default

region: ap-guangzhou # Function region

description: This is a function in ${app} application.

environment: # Environment variable

variables: # Environment variable object

TEST: value

layers: # Layer configuration

- name: scfLayer # Layer name

version: 1 # Version

events: # Trigger configuration

- timer: # Scheduled trigger

parameters:

cronExpression: '*/5 * * * * * *' # Trigger once every 5 seconds

enable: true

Full Configuration List

Below is the list of full configuration information for each component of Serverless Framework:

Basic components

Component Full Configuration

SCF SCF - serverless.yml configuration

Website Website - serverless.yml configuration

API Gateway API Gateway - serverless.yml configuration

VPC VPC - serverless.yml configuration

COS COS - serverless.yml configuration

PostgreSQL PostgreSQL - serverless.yml configuration

CynosDB CynosDB - serverless.yml configuration

CDN CDN - serverless.yml configuration

Layer Layer - serverless.yml configuration

Framework components

Component Full Configuration

https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-website/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-apigateway/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-postgresql/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cdn/blob/master/example/serverless.yml
https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 68

Express Express - serverless.yml configuration

Koa Koa - serverless.yml configuration

Egg Egg - serverless.yml configuration

Next.js Next.js - serverless.yml configuration

Nuxt.js Nuxt.js - serverless.yml configuration

Flask Flask - serverless.yml configuration

Django Django - serverless.yml configuration

Laravel Laravel - serverless.yml configuration

ThinkPHP ThinkPHP - serverless.yml configuration

https://github.com/serverless-components/tencent-express/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-koa/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-egg/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-nextjs/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-nuxtjs/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-flask/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-django/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-laravel/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-thinkphp/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 68

Serverless Cloud Framework deploys applications based on the Serverless components. There are no mandatory
requirements for the local project structure, but for the ease of management and deployment, we recommend you
organize your application in the following directory structure:

Single-Function Application

For single-function applications, you can place your business code in the src directory and import this directory in

the serverless.yml configuration file to achieve separate management of the project and the configuration file.

Below is an example:

.

├── serverless.yml # Configuration file

├── src

│ ├── package.json # Dependency file

│ └── index.js # Entry function

└── .env # Environment variable file

Multi-Function/Multi-Resource Application

Serverless Cloud Framework not only supports deploying single-function projects, but also can implement unified
deployment at the application level for multi-function projects. You should configure the corresponding configuration
file for each function; therefore, we recommend the following directory structure:

.

├── package.json # Dependency file

├── function1

│ ├── serverless.yml # Configuration file of function 1

│ └── index1.js # Entry function 1

├── function2

│ ├── serverless.yml # Configuration file of function 2

│ └── index2.js # Entry function 2

└── .env # Environment variable file

Under this structure, you only need to run scf deploy in the root directory, and Serverless Cloud Framework will

automatically traverse all the .yml configuration files in the directory to deploy resources.

Project Structure
Last updated：2022-10-21 15:50:59

https://github.com/serverless/components/blob/master/README.cn.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 68

Meanwhile, if you import the creation of other cloud resources in the function project, you can also use the same
directory structure:

.

├── package.json # Dependency file

├── src

│ ├── serverless.yml # Function configuration file

│ └── index1.js # Entry function

├── cos

│ └── serverless.yml # COS bucket configuration file

├── db

│ └── serverless.yml # Database configuration file

└── .env # Environment variable file

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 68

Overview

With the local debugging capabilities of Serverless Framework, you can run code in your local simulation environment,
send simulated test events, and get information such as execution logs of the function code.

Prerequisites

The Node.js environment has been installed in your system.

Note：

Currently, the commands are supported only for Node.js and Python runtimes. In order to ensure that the
results of cloud-based deployment and local execution are consistent, we recommend you install the same
runtime version locally and in the cloud. For example, if you use Node.js 12.x in the cloud, we recommend
you install Node.js 12.x locally.

Currently, only the SCF component supports local debugging.
Local debugging is supported only for event functions. For web functions, please test them as instructed in
Cloud Test.

Directions

The code can be triggered locally by running the sls invoke local command. The Serverless Framework CLI

will run the corresponding code in the specified local directory according to the specified function template
configuration file and then implement the execution in the local SCF simulation environment through the specified

trigger event.

The related commands are as follows:

invoke local Invoke the local function

--function / -f Function name (you can only specify a function name

in the yml file in the unified directory)

--data / -d Serialized event data to be passed to the invoked fu

Local Debugging
Last updated：2022-04-28 11:53:41

https://www.tencentcloud.com/document/product/583/40689

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 68

nction (String)

--path / -p Path to the event JSON file to be passed to the invo

ked function

--context Serialized context data to be passed to the invoked

function (String)

--contextPath / -x Path to the context JSON file to be passed to the in

voked function

--env / -e Overwrite environment variable information, such as

--env VAR1=val1 --env VAR2=val2

--config / -cPath to serverless config file

Directions

The following uses Node.js as an example to describe how to perform local debugging:

1. Run the following command to initialize the sample code.

sls init scf-nodejs && cd scf-nodejs

2. Create the test event template test.json in the directory. Below is an example:

{

"value": "test",

"text": "Hello World event template",

"context": {

"key1": "test value 1",

"key2": "test value 2"

}

}

3. Create a .env file and enter your permanent key. Below is an example:

.env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

Note：

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 68

You can also scan the QR code to deploy and get a temporary key to automatically generate the configuration
file.
4. Run the following command to view the invocation result locally.

Below is a sample:

sls invoke local -p xxxx.json

sls invoke local -p test.json

Hello World

{

value: 'test',

text: 'Hello World event template',

context: { key1: 'test value 1', key2: 'test value 2' }

}

undefined

{}

Serverless: invocation succeeded

{

value: "test",

text: "Hello World event template",

context: {

key1: "test value 1",

key2: "test value 2"

}

}

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 68

Overview

After Serverless Framework is installed, you can initialize a project template and build a multiple-component
application as instructed in this document.

Prerequisites

You have installed Serverless Framework.

Directions

Initializing project template

You can quickly initialize a demo project by running the following command and modify it for further development:

sls init scf-demo

This command can quickly build a basic function application locally with the following directory structure:

.

├── serverless.yml # Configuration file

└── src

└── index.js # Entry function

You can enter this directory and develop your project based on the demo template.

Building multiple-component application

Serverless Framework provides multiple basic resource components, which you can mix and use to quickly create
and deploy resources in the cloud, thus eliminating the need for manual operations in the console (for more

Building Application
Last updated：2021-03-29 15:51:16

Note：

 sls init can quickly initialize multiple project templates. You can run the sls registry command to
view all supported project templates.

https://www.tencentcloud.com/document/product/1040/37034

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 68

information, please see Basic Component List and Configuration Method).

This document uses deploying a function project triggered by a COS trigger as an example to describe how to import
multiple components into your project and quickly complete the deployment. The steps are as follows:

1. Adjust the structure of the project directory, create a COS folder, and write the configuration file
 serverless.yml for the COS component in this directory. The adjusted structure of the directory is as follows:

.

├── src

│ ├── serverless.yml # Function configuration file

│ └── index.js # Entry function

├── cos

│ └── serverless.yml # COS bucket configuration file

└── .env # Environment variable file

A sample .yml file for the COS component is provided below. For more information on all configuration items,

please see COS Component Configuration.

app: appDemo

stage: dev

component: cos

name: cosdemo

inputs:

bucket: my-bucket

region: ap-guangzhou

2. Modify the .yml configuration file for the SCF project and impot the deployment result of the COS component

according to the following syntax in the trigger configuration part:

app: appDemo

stage: dev

component: scf

name: scfdemo

inputs:

...

events:

- cos: # COS trigger

parameters:

bucket: ${output:${stage}:${app}:cosdemo.bucket}

https://www.tencentcloud.com/document/product/1040/39135
https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 68

3. In the project root directory, run sls deploy to complete COS bucket creation and use the output of the COS

component as the input of the SCF component to configure the trigger.

Variable import description

 serverless.yml supports multiple ways to import variables:

Import basic Serverless parameters
In the inputs field, you can directly import basic Serverless configuration information through the ${org}

and ${app} syntax.

Import environment variables
In serverless.yml , you can directly import the environment variable configuration (including the environment

variable configuration in the .env file and variable parameters manually configured in the environment) through

the ${env} syntax.

For example, you can import the environment variable REGION through ${env:REGION} .

Import the output results of other components
If you want to import the output information of other component instances into the current component configuration
file, you can configure it by using the following syntax: ${output:[app]:[stage]:[instance name].

[output]}

Sample .yml file:

app: demo

component: scf

name: rest-api

stage: dev

inputs:

name: ${stage}-${app}-${name} # The final name is "acme-prod-ecommerce-rest-api"

region: ${env:REGION} # `REGION=` information specified in the environment variab

le

vpcName: ${output:prod:my-app:vpc.name} # Get the output information of other com

ponents

Note：

When deploying multiple component instances in the same project, you need to make sure that the app and
 stage parameters of each project are the same; otherwise, they cannot be successfully imported.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 68

vpcName: ${output:${stage}:${app}:vpc.name} # The above methods can also be used

in combination

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 68

Development Mode

The development mode enables you to write code for and develop and debug projects in development status more
easily, so that you can continuously focus on the process from development to debugging while minimizing the
interruptions caused by other tasks such as packaging and update.

Entering development mode

Under a project, you can run serverless dev to enter the development mode:

Below is an example:

$ sls dev

serverless ⚡ framework
Dev Mode - Watching your Component for changes and enabling streaming logs, if su

pported...

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools fo

r Node] to debug your code.

--------------------- The realtime log ---------------------

17:13:38 - express-api-demo - deployment

region: ap-guangzhou

apigw:

serviceId: service-b77xtibo

subDomain: service-b77xtibo-1253970226.gz.apigw.tencentcs.com

environment: release

url: http://service-b77xtibo-1253970226.gz.apigw.tencentcs.com/release/

scf:

functionName: express_component_6r6xkh60k

runtime: Nodejs10.15

namespace: default

express-api-demo › Watching

After you enter the development mode, the Serverless tool will output the deployed content and start continuous file
monitoring. When a code file is modified, it will be automatically deployed again to sync the local file to the cloud.

Deploy again and output the deployment information:

In-cloud Debugging
Last updated：2022-06-02 17:13:58

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 68

express-api-demo › Deploying ...

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools fo

r Node] to debug your code.

--------------------- The realtime log ---------------------

21:11:31 - express-api-demo - deployment

region: ap-guangzhou

apigw:

serviceId: service-b7dlqkyy

subDomain: service-b7dlqkyy-1253970226.gz.apigw.tencentcs.com

environment: release

url: http://service-b7dlqkyy-1253970226.gz.apigw.tencentcs.com/release/

scf:

functionName: express_component_uo5v2vp

runtime: Nodejs10.15

namespace: default

Note：
Currently, serverless dev supports only by the Node.js 10 runtime environment. It will support real-time

logging in more environments such as Python and PHP.

Exiting development mode

You can press Ctrl+C to exit the development mode (dev mode).

express-api-demo › Disabling Dev Mode & Closing ...

express-api-demo › Dev Mode Closed

In-cloud Debugging: Node.js 10+

For projects whose runtime environment is Node.js 10+, you can connect them to in-cloud debugging by enabling in-

cloud debugging and using a debugging tool such as Chrome DevTools or VS Code Debugger.

Enabling in-cloud debugging

When you enter the development mode as instructed above, if the project is a function whose runtime environment is
Node.js 10 or above, in-cloud debugging will be automatically enabled and debugging information will be output.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 68

For example, when you enable the development mode, if the following information is output, in-cloud debugging has
been enabled for this function.

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools fo

r Node] to debug your code.

Using Chrome DevTools

The following steps are used as an example to describe how to use DevTools in Chrome to connect to a remote
environment for debugging:

1. Start the Chrome browser.
2. Enter chrome://inspect/ in the address bar to access it.

3. You can open DevTools in two ways as shown below:

4. (Recommended) Click Open dedicated DevTools for Node under "Devices".
5. Select inspect under a specific target in "Remote Target #LOCALHOST".

If you cannot open the target or there are no targets, please check whether configuration of localhost:9229

or localhost:9222 exists in "Configure" under "Devices", which corresponds to the output after in-cloud

debugging is enabled.

6. In DevTools opened after you click Open dedicated DevTools for Node, you can click the Sources tab to view
the remote code. The actual code of the function is in the /var/user/ directory.

On the Sources tab, the code that you want to view may be loaded. More remote files will be displayed as the
debugging proceeds.

7. Open a file as needed and set a breakpoint at the specified position in it.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 68

8. If you trigger the function in any means such as URL access, page, command, or API, the remote environment will
start running and be interrupted at the breakpoint to wait for further operations.

9. On the tool bar on the right of DevTools, you can continue the execution of an interrupted program or perform other

operations such as step-over, step-into, and step-out on it. You can also directly view the current variables or set
the variables that you want to track. For more information on how to use DevTools, please see the DevTools user
guide.

Exiting in-cloud debugging

When you exit the development mode, in-cloud debugging will be disabled automatically.

Command Debugging

The Serverless Framework SCF component supports triggering functions with the invoke command for

debugging. For a function successfully deployed by running sls deploy , enter the project directory and run the

following command to invoke it:

sls invoke --inputs function=functionName clientContext='{"weights":{"2":0.1}}'

Note：

The invoke command must be executed in the same directory as the serverless.yml file

deployed for the function.
 clientContext is the JSON string passed when the function is triggered. You can simulate different

triggering events according to the JSON string format in the triggering event template.

https://www.tencentcloud.com/document/product/583/14572

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 68

Overview

After developing your project locally, you can quickly deploy the application, view deployment information, and
perform function debugging.

Prerequisites

You have developed your project locally (for more information, please see Project Development).

Directions

Quick deployment

Serverless Framework enables you to quickly deploy your project in the cloud by following the steps below:

sls deploy

After you enter this command, Serverless Framework CLI will perform the following operations:

1. Scan QR code to authorize

You can authorize by scanning the QR code. After that, the CLI tool will write the generated temporary key information
into the .env file in the current directory. The temporary key is valid for 2 hours. After it expires, you will be asked

to scan the QR code again to authorize for deployment purposes.

If you don't want to scan the QR code repeatedly, you can also configure a permanent key in the .env file in the

project directory:

.env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

You can get SecretId and SecretKey in API Key Management.

2. Package and upload

Deploying Application
Last updated：2021-01-15 15:30:52

https://www.tencentcloud.com/document/product/1040/38289
https://console.tencentcloud.com/cam/capi

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 68

After authorization is completed, Serverless Framework CLI will automatically package and upload your project
according to the project code path configured in the serverless.yml file.

3. Deploy in the cloud

Resources will be created in the cloud for the uploaded project according to the parameters configured in the .yml

file. After the deployment is completed, the command line will output the resource information.

Advanced capabilities

View specific log information during deployment:

sls deploy --debug

Switch the specified traffic to the $latest function version during multi-version deployment and the rest traffic to

the last published function version for grayscale release:

sls deploy --inputs traffic=0.1 public=true

There are multiple Serverless instances in the application directory, and you want to update the specified project
only:

sls deploy --target xxx

For example, in the project root directory, you can run the sls deploy --target ./cos command to

update the COS instance only without affecting other instances.

.

├── src

│ ├── serverless.yml

│ └── index1.js

├── cos

│ └── serverless.yml

├── db

│ └── serverless.yml

└── .env

Viewing deployment information

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 68

After completing the deployment, you can run the following command to view the configuration information of the
project:

sls info

Debugging function

The Serverless Framework SCF component supports triggering functions with the invoke command for

debugging. For a function successfully deployed by running sls deploy , enter the project directory and run the

function invocation command to remotely debug the function resources in the cloud. The debugging result will be
output on the command line:

sls invoke --inputs function=functionName clientContext='{"weights":{"2":0.1}}'

The invoke command must be executed in the same directory as the serverless.yml file deployed for

the function.
 clientContext is the JSON string passed when the function is triggered. You can simulate different triggering

events according to the JSON string format in the triggering event template.

FAQs

If a proxy is configured in your environment, the following problems may occur:

Problem 1: the wizard does not pop up by default when serverless is entered.

Solution: make sure that your IP is in the Chinese mainland and add the
 SERVERLESS_PLATFORM_VENDOR=tencent configuration item to the .env file.

Problem 2: after sls deploy is entered, the deployment reports a network error.

Solution: add the following proxy configuration to the .env file.

HTTP_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

HTTPS_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

Note：

Currently, this command is supported only for function projects deployed through the Serverless Framework
SCF component. It will be gradually supported for other components in the future.

https://www.tencentcloud.com/document/product/583/14572
https://github.com/serverless-components/tencent-scf

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 68

Basic Features

You can quickly delete cloud resources by running the following command:

sls remove

Advanced Features

View specific log information during deletion:

sls remove --debug

There are multiple Serverless instances in the application directory, and you want to delete the specified project
only:

sls remove --target xxx

For example, in the project root directory, you can run the sls remove --target ./cos command to delete

the COS instance only without affecting other instances.

.

├── src

│ ├── serverless.yml

│ └── index1.js

├── cos

│ └── serverless.yml

├── db

│ └── serverless.yml

└── .env

FAQs

Deleting Application
Last updated：2021-01-15 15:30:53

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 68

What cloud resources will be removed when sls remove is executed?

Serverless Framework removes cloud resources according to the .yml configuration file. Resources created

through the .yml file will be deleted, while imported existing resources will not. For example:

When deploying a function through the SCF component, if you choose to create an API Gateway trigger for

deployment, then when you run the command for deletion, the created function and API Gateway resources will be
deleted.
If you select an existing API Gateway trigger for deployment, then only the function resources will be deleted, while
the used API Gateway trigger will not.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 68

Serverless Application Center (SLS) is deployed based on Serverless Framework and supports the following CLI
commands:

 serverless registry : Lists available components.

 serverless registry publish : Publishes components to the SLS component registry.

 --dev : Publishes components of the @dev version for development or testing.

 serverless init xxx : Downloads a specified template from the component registry by entering the name of

the template to download after init , such as "$ serverless init fullstack".

 sls init xxx --name my-app : Customizes the project directory name.

 --debug : Lists log information during template download.

 serverless deploy : Deploys a component instance in the cloud.

 --debug : Lists log information such as the deployment operations and the status output by

 console.log() during component deployment.

 ---inputs publish=true : Publishes a new version during function deployment.

 ---inputs traffic=0.1 : Switches 10% of the traffic to the $latest function version during deployment

and switches the rest of the traffic to the last published function version.

Note：
The legacy command format sls deploy --inputs.key=value has been changed to sls

deploy --inputs key=value since Serverless CLI v3.2.3. Legacy commands cannot be used in new

versions of Serverless CLI. If you have upgraded Serverless CLI, please use the new commands.

 serverless remove : Removes a component instance from the cloud.

List of Supported Commands
Last updated：2022-06-13 15:10:22

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 68

 --debug : Lists log information such as the removal operations and the status output by console.log()

during component removal.

 serverless info : Gets and displays the information about a component instance.

 --debug : Lists more state values.

 serverless dev : Enables the development mode ("DEV Mode") and automatically deploys changed

information when component status changes are detected. In development mode, information such as execution
logs, invocation information, and errors can be displayed on the CLI in real time. The development mode also
supports in-cloud debugging for Node.js applications.

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 68

You can quickly build and deploy a multi-function application based on the Tencent Cloud multi-scf component, which
greatly reduces the development costs of complex applications.

Prerequisites

Serverless Framework has been installed. For more information, please see Installing Serverless Framework.

Your account has the Serverless Framework permissions. For more information, please see Account and
Permission Configuration.

Development and deployment steps

For details of sample projects, please see Case List.

1. Develop your application project locally. This document takes a project with two functions as an example. The
application directory structure is as follows:

./multi-scf-demo

├── index

│ ├── index.js # Main function 1

│ ├── package.json

│ └── scf_bootstrap # Bootstrap file for HTTP-triggered functions, which can be

ignored for event-triggered functions

├── user

│ ├── index.js # Main function 2

│ ├── package.json

│ └── scf_bootstrap # Bootstrap file for HTTP-triggered functions, which can be

ignored for event-triggered functions

└── serverless.yml # YML configuration file

2. In the root directory, create a serverless.yml file and configure relevant parameters for your project by

referring to the following sample YML. For more configuration content, please see Full Configuration.

app: multi-scf # Application name

component: multi-scf # Component type, which is `multi-scf` here

name: web_demo # Customizable instance name

inputs:

src:

The code directory must be specified here, and SCF will automatically split t

he function code according to the function configuration

Multi-Function Application Deployment
Last updated：2021-11-08 16:54:26

https://github.com/serverless-components/tencent-multi-scf
https://www.tencentcloud.com/document/product/1040/37034
https://www.tencentcloud.com/document/product/1040/36793
https://github.com/serverless-components/tencent-multi-scf/tree/master/examples
https://github.com/serverless-components/tencent-multi-scf/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 68

src: ./

exclude:

- .env

region: ap-guangzhou # Region

runtime: Nodejs12.16 # Function language version

memorySize: 512

timeout: 3

type: web # Function type, which is HTTP-triggered function here

functions:

index:

src: ./index # Entry function of function 1

handler: scf_bootstrap # Bootstrap file

user:

src: ./user # Entry function of function 2

handler: scf_bootstrap # Bootstrap file

triggers: # Trigger configuration

- type: apigw

parameters:

name: serverless

protocols:

- https

- http

apis:

- path: /

method: ANY

The API function configuration has a higher priority than the outer function

function: index

- path: /user

method: ANY

The API function configuration has a higher priority than the outer function

function: user

3. After completing the configuration, run sls deploy in the root directory to test whether the project is

successfully deployed.

Application launch in console

Submit the application through a ticket. Note that your project must include the following:

Parameter Description

Basic configuration
parameter list

Basic configuration parameter list

https://console.tencentcloud.com/workorder/category?level1_id=876&level2_id=1123&source=0&data_title=Serverless%20Framework&step=1

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 68

Parameter Description

Advanced
configuration
parameter list

Optional

Application name,
overview,
documentation link,
and tag

For block display in the console

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 68

The use instructions and full configuration documents of the basic components of Serverless Framework are as
follows:

Component Use Instructions Full Configuration

SCF component Use Instructions serverless.yml Configuration

Website component Use Instructions serverless.yml Configuration

API Gateway
component

Use Instructions serverless.yml Configuration

VPC component Use Instructions serverless.yml Configuration

COS component Use Instructions serverless.yml Configuration

PostgreSQL
component

Use Instructions serverless.yml Configuration

CynosDB
component

Use Instructions serverless.yml Configuration

CDN component Use Instructions serverless.yml Configuration

Layer component Use Instructions serverless.yml Configuration

CynosDB
component

Use Instructions serverless.yml Configuration

Basic Component List
Last updated：2021-01-29 17:30:03

https://github.com/serverless-components/tencent-scf/blob/master/README.md
https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-website/blob/master/README.md
https://github.com/serverless-components/tencent-website/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-apigateway/blob/master/README.md
https://github.com/serverless-components/tencent-apigateway/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-vpc/blob/master/README.md
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cos/blob/master/README.md
https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-postgresql/blob/master/README.md
https://github.com/serverless-components/tencent-postgresql/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/README.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cdn/blob/master/README.md
https://github.com/serverless-components/tencent-cdn/blob/master/example/serverless.yml
https://github.com/serverless-components/tencent-layer/blob/master/README.md
https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/README.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 68

Overview

Currently, TDSQL-C for MySQL supports serverless billing. In this billing mode, the service is billed based on the
actual computing and storage usage which is calculated by second and settled by hour. The TDSQL-C component of
Serverless Framework also supports creating this type of databases.

This document uses a function written in Node.js as an example to describe how to quickly create a TDSQL-C for
MySQL serverless instance and call it in SCF.

Directions

Step Description

Step 1. Configure environment
variables

-

Step 2. Configure a VPC Use the Serverless Framework VPC component to create a VPC and subnet
for communications between the function and the database.

Step 3. Configure Serverless DB Use the Serverless Framework TDSQL-C component to create a MySQL
instance to provide database services for the function project.

Step 4. Write business code
Use the Serverless DB SDK to call the database. SCF allows you to directly
call the Serverless DB SDK to connect to and manage a PostgreSQL
database.

Step 5. Deploy an application Use Serverless Framework to deploy the project in the cloud and test it in
the SCF console.

Step 6. Remove the project
(optional)

You can use Serverless Framework to remove the project.

Step 1. Configure environment variables

1. Create a local directory to store code and dependent modules. This document uses the test-MySQL folder as

an example.

Connecting to MySQL Database
Last updated：2021-07-13 17:08:06

https://www.tencentcloud.com/document/product/1098/40626

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 68

mkdir test-MySQL && cd test-MySQL

2. Currently, TDSQL-C Serverless only supports four regions: ap-beijing-3 , ap-guangzhou-4 , ap-

shanghai-2 , and ap-nanjing-1 , so you need to create the .env file in the project root directory and

then configure the two environment variables REGION and ZONE :

.env

REGION=xxx

ZONE=xxx

Step 2. Configure a VPC

1. Create a VPC folder in the test-MySQL directory.

mkdir VPC && cd VPC

2. Create a serverless.yml file in VPC and use the VPC component to create the VPC and subnet.

The sample content of serverless.yml is as follows (for all configuration items, please see the product

documentation):

Step 3. Configure Serverless DB

1. Create a DB folder in test-MySQL .

2. Create a serverless.yml file in the DB folder and enter the following content to use the Serverless

Framework component to configure the TCB environment:

#serverless.yml

app: mysql-app

stage: dev

component: vpc # (required) name of the component. In that case, it's vpc.

name: mysql-app-vpc # (required) name of your vpc component instance.

inputs:

region: ${env:REGION}

zone: ${env:ZONE}

vpcName: serverless-mysql

subnetName: serverless-mysql

https://github.com/serverless-components/tencent-vpc
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 68

The sample content of serverless.yml is as follows (for all configuration items, please see the product

documentation):

Step 4. Write the business code and configuration file

1. Create an src folder in test-MySQL to store the business logic code and relevant dependencies.

2. Create an index.js file in the src folder and enter the following sample code, so that you can use the SDK

to connect to the MySQL database through the function and call the database in the environment:

3. Install the required dependent modules.

npm install mysql2

serverless.yml

app: mysql-app

stage: dev

component: cynosdb

name: mysql-app-db

inputs:

region: ${env:REGION}

zone: ${env:ZONE}

vpcConfig:

vpcId: ${output:${stage}:${app}:mysql-app-vpc.vpcId}

subnetId: ${output:${stage}:${app}:mysql-app-vpc.subnetId}

exports.main_handler = async (event, context, callback) => {

var mysql = require('mysql2');

var connection = mysql.createConnection({

host : process.env.HOST,

user : 'root',

password : process.env.PASSWORD

});

connection.connect();

connection.query('SELECT 1 + 1 AS solution', function (error, results, fields)

{

if (error) throw error;

console.log('The solution is: ', results[0].solution);

});

connection.end();

}

https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 68

4. After writing the business code and installing the dependencies, create a serverless.yml file as shown

below:

Step 5. Deploy

After the creation, the project directory structure is as follows:

./test-MySQL

├── vpc

│ └── serverless.yml # VPC configuration file

├── db

│ └── serverless.yml # Database configuration file

├── src

│ ├── serverless.yml # SCF component configuration file

│ ├── node_modules # Project dependency file

│ └── index.js # Entry function

└── .env # Environment variable file

1. Run the following command for deployment in test-MySQL on the command line:

sls deploy

app: mysql-app

stage: dev

component: scf

name: mysql-app-scf

inputs:

src: ./

functionName: ${name}

region: ${env:REGION}

runtime: Nodejs10.15

timeout: 30

vpcConfig:

vpcId: ${output:${stage}:${app}:mysql-app-vpc.vpcId}

subnetId: ${output:${stage}:${app}:mysql-app-vpc.subnetId}

environment:

variables:

HOST: ${output:${stage}:${app}:mysql-app-db.connection.ip}

PASSWORD: ${output:${stage}:${app}:mysql-app-db.adminPassword}

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 68

Note：

During deployment, you need to scan the QR code to authorize. If you don't have a Tencent Cloud
account yet, please sign up first.

If your account is a sub-account, please get the authorization first as instructed in Account and
Permission Configuration.

If the following result is returned, the deployment is successful:

2. After the deployment succeeds, you can view and debug the function in the SCF console.

Step 6. Remove the project (optional)

Run the following command in the test-MySQL directory to remove the project:

sls remove

If the following result is returned, the removal is successful:

serverless ⚡ framework
4s › test-MySQL › Success

mysql-app-vpc:

region: xxx

zone: xxx

vpcId: xxxx-xxx

...

mysql-app-db:

dbMode: xxxx

region: xxxx

zone: xxxx

...

mysql-app-scf:

functionName: xxxx

description: xxx

...

59s › test-MySQL › "deploy" ran for 3 apps successfully.

https://www.tencentcloud.com/register
https://www.tencentcloud.com/document/product/1040/36793
https://console.tencentcloud.com/scf/index?rid=1

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 68

Sample Code

Python

In Python, you can use the built-in pymysql dependency package in the SCF environment to connect to the database.
The sample code is as follows:

Node.js

-*- coding: utf8 -*-

from os import getenv

import pymysql

from pymysql.err import OperationalError

mysql_conn = None

def __get_cursor():

try:

return mysql_conn.cursor()

except OperationalError:

mysql_conn.ping(reconnect=True)

return mysql_conn.cursor()

def main_handler(event, context):

global mysql_conn

if not mysql_conn:

mysql_conn = pymysql.connect(

host = getenv('DB_HOST', '<your db="" host="">'),

user = getenv('DB_USER','<your db="" user="">'),

password = getenv('DB_PASSWORD','<your db="" password="">'),

db = getenv('DB_DATABASE','<your db="" database="">'),

port = int(getenv('DB_PORT','<your db="" port="">')),

charset = 'utf8mb4',

autocommit = True

)

with __get_cursor() as cursor:

cursor.execute('select * from employee')

myresult = cursor.fetchall()

print(myresult)

for x in myresult:

print(x)

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 68

Node.js allows you to use a connection pool for connection, which supports automatic reconnection to effectively avoid
connection unavailability due to connection release by the SCF underlying layer or database. The sample code is as
follows:

Note：
Before using a connection pool, you need to install the mysql2 dependency package first. For more
information, please see Dependency Installation.

PHP

In PHP, you can use the pdo_mysql or mysqli dependency package for data connection. The sample code is as

follows:

pdo_mysql

<?php

function handler($event, $context) {

try{

$pdo = new PDO('mysql:host= getenv("DB_HOST");dbname= getenv("DB_DATABASE"),get

env("DB_USER"),getenv("DB_PASSWORD")');

'use strict';

const DB_HOST = process.env[`DB_HOST`]

const DB_PORT = process.env[`DB_PORT`]

const DB_DATABASE = process.env[`DB_DATABASE`]

const DB_USER = process.env[`DB_USER`]

const DB_PASSWORD = process.env[`DB_PASSWORD`]

const promisePool = require('mysql2').createPool({

host : DB_HOST,

user : DB_USER,

port : DB_PORT,

password : DB_PASSWORD,

database : DB_DATABASE,

connectionLimit : 1

}).promise();

exports.main_handler = async (event, context, callback) => {

let result = await promisePool.query('select * from employee');

console.log(result);

}

https://www.tencentcloud.com/document/product/583/34879

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 68

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

}catch(PDOException $e){

echo 'Databases connection failed: '.$e->getMessage();

exit;

}

}

mysqli

<?php

function main_handler($event, $context) {

$host = "";

$username = "";

$password = "";

// Create a connection

$conn = mysqli_connect($servername, $username, $password);

// Test the connection

if (!$conn) {

die("Connection failed: " . mysqli_connect_error());

}

echo "Connected successfully";

mysqli_close($conn);

echo "Disconnected";

}

?>

Java

1. Please install the following dependencies as instructed in Dependency Installation.

<dependencies>

<dependency>

<groupid>com.tencentcloudapi</groupid>

<artifactid>scf-java-events</artifactid>

<version>0.0.2</version>

</dependency>

<dependency>

<groupid>com.zaxxer</groupid>

<artifactid>HikariCP</artifactid>

<version>3.2.0</version>

</dependency>

<dependency>

<groupid>mysql</groupid>

<artifactid>mysql-connector-java</artifactid>

https://www.tencentcloud.com/document/product/583/34879#java-.E8.BF.90.E8.A1.8C.E6.97.B6

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 68

2. Use HikariCP for connection. The sample code is as follows:

<version>8.0.11</version>

</dependency>

</dependencies>

package example;

import com.qcloud.scf.runtime.Context;

import com.qcloud.services.scf.runtime.events.APIGatewayProxyRequestEvent;

import com.qcloud.services.scf.runtime.events.APIGatewayProxyResponseEvent;

import com.zaxxer.hikari.HikariConfig;

import com.zaxxer.hikari.HikariDataSource;

import javax.sql.DataSource;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.HashMap;

import java.util.Map;

public class Http {

private DataSource dataSource;

public Http() {

HikariConfig config = new HikariConfig();

config.setJdbcUrl("jdbc:mysql://" + System.getenv("DB_HOST") + ":"+ System.get

env("DB_PORT") + "/" + System.getenv("DB_DATABASE"));

config.setUsername(System.getenv("DB_USER"));

config.setPassword(System.getenv("DB_PASSWORD"));

config.setDriverClassName("com.mysql.jdbc.Driver");

config.setMaximumPoolSize(1);

dataSource = new HikariDataSource(config);

}

public String mainHandler(APIGatewayProxyRequestEvent requestEvent, Context co

ntext) {

System.out.println("start main handler");

System.out.println("requestEvent: " + requestEvent);

System.out.println("context: " + context);

try (Connection conn = dataSource.getConnection(); PreparedStatement ps = con

n.prepareStatement("SELECT * FROM employee")) {

ResultSet rs = ps.executeQuery();

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 68

SCF DB SDK for MySQL

For ease of use, the SCF team encapsulated the code related to connection pools in Node.js and Python as SCF DB

SDK for MySQL. Please refer to Dependency Installation for installation and use. With this SDK, you can connect to
MySQL, TDSQL-C, or TDSQL for MySQL databases and performs operations such as insertion and query.

SCF DB SDK for MySQL has the following features:

It can automatically initialize the database client from environment variables.
It can maintain a persistent database connection globally and handle reconnection after disconnection.

The SCF team will continuously check issues to ensure that the database connection is available, so you don't
need to pay attention to connection issues.

1. SDK for Node.js

while (rs.next()) {

System.out.println(rs.getInt("id"));

System.out.println(rs.getString("first_name"));

System.out.println(rs.getString("last_name"));

System.out.println(rs.getString("address"));

System.out.println(rs.getString("city"));

}

} catch (SQLException e) {

e.printStackTrace();

}

APIGatewayProxyResponseEvent apiGatewayProxyResponseEvent = new APIGatewayProx

yResponseEvent();

apiGatewayProxyResponseEvent.setBody("API GW Test Success");

apiGatewayProxyResponseEvent.setIsBase64Encoded(false);

apiGatewayProxyResponseEvent.setStatusCode(200);

Map<string, string=""> headers = new HashMap<>();

headers.put("Content-Type", "text");

headers.put("Access-Control-Allow-Origin", "*");

apiGatewayProxyResponseEvent.setHeaders(headers);

return apiGatewayProxyResponseEvent.toString();

}

}

'use strict';

const database = require('scf-nodejs-serverlessdb-sdk').database;

exports.main_handler = async (event, context, callback) => {

https://www.tencentcloud.com/document/product/583/34879
https://www.tencentcloud.com/document/product/236/5147
https://www.tencentcloud.com/document/product/1098/40615
https://www.tencentcloud.com/document/product/1042/33311

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 68

Note：

For specific usage of the SDK for Node.js, please see SCF DB SDK for MySQL.

2. SDK for Python

let pool = await database('TESTDB2').pool()

pool.query('select * from coffee',(err,results)=>{

console.log('db2 callback query result:',results)

})

// no need to release pool

console.log('db2 query result:',result)

}

from serverless_db_sdk import database

def main_handler(event, context):

print('Start Serverlsess DB SDK function')

connection = database().connection(autocommit=False)

cursor = connection.cursor()

cursor.execute('SELECT * FROM name')

myresult = cursor.fetchall()

for x in myresult:

print(x)

https://www.npmjs.com/package/scf-nodejs-serverlessdb-sdk

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 68

Overview

Web function is a new function capability in SCF. Compared with event function that has limits on the event format,
web function focuses on optimization of web service scenarios and can directly send HTTP requests to URLs to
trigger function execution. For more information, please see Function Overview.

The Serverless Framework SCF component now supports deploying web functions; therefore, you can use it to
quickly create and deploy web functions.

Directions

1. Run the following command to initialize the serverless web function template.

sls init http-demo

2. Enter the demo project and view the directory structure as shown below:

. http-demo

├── serverless.yml # Configuration file

├── package.json # Dependency file

├── scf_bootstrap # Project bootstrap file

└── index.js # Service function

Here, scf_bootstrap is the project bootstrap file. For the specific writing rules, please see Bootstrap File

Description.

3. Open serverless.yml to view the configuration information.

You only need to add the type parameter in yml to specify the function type and deploy the web function.

Note
For web functions, there is no need to specify the entry function.
If the type parameter is not entered, the function will be an event function by default.

Quickly Deploying Web Function
Last updated：2021-08-23 14:43:04

https://www.tencentcloud.com/document/product/583/40688
https://www.tencentcloud.com/document/product/583/40690

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 68

If there is no scf_bootstrap bootstrap file in the local code, you can specify the entryFile

parameter in yml to specify the entry function, and the component will generate a default

 scf_bootstrap file for you to complete the deployment based on the runtime language. After the

deployment is completed, you need to modify the content of the scf_bootstrap file in the SCF

console according to the actual needs of your project.

Below is a sample yml file:

4. In the root directory, run sls deploy to complete the service deployment. Below is a sample:

$ sls deploy

serverless ⚡components
Action: "deploy" - Stage: "dev" - App: "http" - Name: "http"

type: web

functionName: web-function

description: This is a function in http application

namespace: default

runtime: Nodejs12.16

component: scf

name: http

inputs:

src:

src: ./

exclude:

- .env

Specify web type as the function type

type: web

name: web-function

region: ap-guangzhou

runtime: Nodejs12.16

For Node.js, you can enable automatic dependency installation

installDependency: true

events:

- apigw:

parameters:

protocols:

- http

- https

environment: release

endpoints:

- path: /

method: ANY

https://console.tencentcloud.com/scf/index?rid=1

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 68

handler:

memorySize: 128

lastVersion: $LATEST

traffic: 1

triggers:

-

NeedCreate: true

created: true

serviceId: service-xxxxxx

serviceName: serverless

subDomain: service-xxxxxx.cd.apigw.tencentcs.com

protocols: http&https

environment: release

apiList:

-

path: /

method: ANY

apiName: index

created: true

authType: NONE

businessType: NORMAL

isBase64Encoded: false

apiId: api-xxxxxx

internalDomain:

url: https://service-xxxx.cd.apigw.tencentcs.com/release/

18s › http › executed successfully

Relevant Commands

Viewing access log

Similar to event function, you can directly run the sls log command to view the latest 10 logs of the deployed

function. Below is a sample:

$ sls log

serverless ⚡components
Action: "log" - Stage: "dev" - App: "http" - Name: "http"

-

requestId: xxxxx

retryNum: 0

startTime: 1624262955432

memoryUsage: 0.00

duration: 0

message:

Serverless Application Center

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 68

"""

"""

-

requestId: xxxxx

retryNum: 0

startTime: 1624262955432

memoryUsage: 0.00

duration: 0

message:

"""

"""

Testing service

Scheme 1: directly open the output path URL in a browser, and if it can be accessed normally, the function is
successfully created, as shown below:

Scheme 2: use other HTTP testing tools such as CURL and Postman to test the web function you have
successfully created. Below is a sample test with CURL:

curl https://service-xxx.cd.apigw.tencentcs.com/release/

Deleting service

Run the following command to remove your deployed cloud resources.

sls remove

Web framework migration

Serverless Framework CLI provides an HTTP component specifically for web framework deployment, which can

quickly implement features such as web framework deployment, layer creation, static/dynamic resource separation,
and CDN acceleration. For usage, please see Deploying Framework on Command Line.

https://www.tencentcloud.com/document/product/1040/41597

