
User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 174

User Generated Short Video SDK

Integration (No UI)

Product Documentation

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 174

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 174

Contents

Integration (No UI)
SDK Integration

SDK Integration (Xcode)
SDK Integration (Android Studio)

Capturing and Shoot
Capturing and Shoot

iOS
Android

Multi-Segment Shoot
iOS
Android

Shoot Drafts
iOS
Android

Adding Background Music
iOS
Android

Voice Changing and Reverb
iOS
Android

Preview, Clipping, and Splicing
Video Editing

iOS
Android

Video Splicing
iOS
Android

Upload and Playback
Signature Distribution
Video Upload

iOS
Android

Player SDK
iOS
Android

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 174

Tencent Effect SDK
SDK Features
SDK Integration Guide

iOS
Android

Migrating from UGSV Enterprise
Advanced Features and Special Effects

TikTok-like Special Effects
iOS
Android

Stickers and Subtitles
iOS
Android

Video Karaoke
iOS
Android

Image Transition Special Effects
iOS
Android

Customizing Video Data
iOS
Android

Video Porn Detection
Custom Themes

iOS
Android

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 174

Supported Platforms

The SDK is supported on iOS 8.0 or later.

Environment Requirements

Xcode 9 or later
iOS 12.0 or later

Directions

Step 1. Link the SDK and system libraries

Decompress the downloaded SDK resource package and copy the framework files whose filename starts with
 TXLiteAVSDK_ (such as TXLiteAVSDK_UGC.framework) in the SDK folder to the project folder and drag

them to the project.

1. Integrate the libraries based on your SDK version:
For TXLiteAVSDK on v9.5 or earlier, add the integrated libraries

For TXLiteAVSDK 10.0 or later, add the system libraries
i. Select the project target and add the following integrated libraries:

Accelerate.framework
SystemConfiguration.framework
libc++.tbd
libsqlite3.tbd

Integration (No UI)
SDK Integration
SDK Integration (Xcode)
Last updated：2022-11-14 18:18:58

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 174

ii. Then, the project library dependency is as shown below:

2. Select the project target, search for bitcode in Build Settings and set Enable Bitcode to NO.

Step 2. Configure app permissions

The app needs access to the photo album, which can be configured in Info.plist . Right-click Info.plist ,

select Open as > Source Code, and copy and modify the code below.

<key>NSAppleMusicUsageDescription</key>

<string>Video Cloud Toolkit needs to access your media library to obtain music fi

les. It cannot add music if you deny it access.</string>

<key>NSCameraUsageDescription</key>

<string>Video Cloud Toolkit needs to access your camera to be able to shoot vide

o.</string>

<key>NSMicrophoneUsageDescription</key>

<string>Video Cloud Toolkit needs to access your mic to be able to shoot videos w

ith audio.</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>Video Cloud Toolkit needs to access your photo album to save edited video

files.</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>Video Cloud Toolkit needs to access your photo album to edit your video f

iles.</string>

Step 3. Configure the license and get basic information

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 174

Follow the steps in License Application to apply for a license, and copy the key and license URL in the console.

2. Before you integrate UGSV features into your application, we recommend you set - [AppDelegate

application:didFinishLaunchingWithOptions:] as follows:

@import TXLiteAVSDK_UGC;

@implementation AppDelegate

- (BOOL)application:(UIApplication*)applicationdidFinishLaunchingWithOptions:(NSD

ictinoary*)options {

NSString * const licenceURL = @"<License URL obtained>";

NSString * const licenceKey = @"<The key obtained>";

[TXUGCBase setLicenceURL:licenceURL key:licenceKey];

NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]);

}

@end

Note：
If you use a license for the SDK on v4.7 and have upgraded the SDK to v4.9, you can click Switch to New
License in the console to generate a new license key and URL. A new license can be used only for the SDK on

v4.9 or later and should be configured as described above.

Step 4. Configure logs

You can enable/disable console log printing and set the log level in TXLiveBase . Below are the APIs used.

https://www.tencentcloud.com/document/product/1069/38041
https://console.tencentcloud.com/vod/license

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 174

setConsoleEnabled
Sets whether to print the SDK output in the Xcode console.
setLogLevel

Sets whether to allow the SDK to print local logs. By default, the SDK writes logs to the Documents/logs folder of
the current app.
We recommend that you enable local log printing. You may need to provide log files if you run into a problem and
need technical support.
Viewing log files

To reduce the storage space taken up by log files, the UGSV SDK encrypts local logs and limits their number. You
need a log decompression tool to view the content of log files.

[TXLiveBase setConsoleEnabled:YES];

[TXLiveBase setLogLevel:LOGLEVEL_DEBUG];

Step 5. Build and run the project

If the above steps are performed correctly, you will be able to successfully compile the HelloSDK project. Run the

app in the debug mode, and the following SDK version information will be printed in the Xcode console:

2017-09-26 16:16:15.767 HelloSDK[17929:7488566] SDK Version = 5.2.5541

Quick Integration of Feature Module

UGCKit is a UI component library built based on the UGSV SDK. It helps you quickly integrate different features of the
SDK.

You can find UGCKit in Demo/TXLiteAVDemo/UGC/UGCKit of the SDK package, which you can download at

GitHub or here.

UGCKit development environment requirements

Xcode 10 or later
iOS 9.0 or later

Step 1. Integrate UGCKit

1. Use CocoaPods in your project and, based on your actual conditions, do either of the following:

In the root directory of your project, run pod init && pod install to get the Podfile.

Copy the UGCKit folder to the project root directory (the directory of the Podfile).

http://dldir1.qq.com/hudongzhibo/log_tool/decode_mars_log_file.py
https://github.com/tencentyun/UGSVSDK/tree/master/iOS
https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 174

2. Open the Podfile and add the following:

pod 'UGCKit', :path => 'UGCKit/UGCKit.podspec', :subspecs => ["UGC"] #subspecs

Choose according to your SDK

3. To integrate basic beauty filters, copy the BeautySettingKit folder to the project root directory (the directory of the
Podfile) and add the following to the Podfile:

pod 'BeautySettingKit', :path => 'BeautySettingKit/BeautySettingKit.podspec'

4. To integrate the Tencent Effect SDK, copy the xmagickit folder to the project root directory (the directory of the

Podfile) and add the following to the Podfile:

pod 'xmagickit', :path => 'xmagickit/xmagickit.podspec'

5. Run pod install and open project name.xcworkspace . You will find UGCKit , BeautySettingKit ,

and magickit in the Pods/Development Pods directory.

Step 2. Use UGCKit

1. Shooting
 UGCKitRecordViewController provides the video shooting feature. To enable the feature, just instantiate

the controller and display it in the UI.

UGCKitRecordViewController *recordViewController = [[UGCKitRecordViewController

alloc] initWithConfig:nil theme:nil];

[self.navigationController pushViewController:recordViewController]

Shooting results are called back via the completion block, as shown below:

recordViewController.completion = ^(UGCKitResult *result) {

if (result.error) {

// Shooting error.

[self showAlertWithError:error];

} else {

if (result.cancelled) {

// User cancelled shooting and left the shooting view.

[self.navigationController popViewControllerAnimated:YES];

} else {

// Shooting successful. Use the result for subsequent processing.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 174

[self processRecordedVideo:result.media];

}

}

};

2. Editing
 UGCKitEditViewController provides the slideshow making and video editing features. During

instantiation, you need to pass in the media object to be edited. Below is an example that involves the editing of a
shooting result:

- (void)processRecordedVideo:(UGCKitMedia *)media {

// Instantiate the editing view controller.

UGCKitEditViewController *editViewController = [[UKEditViewController alloc] in

itWithMedia:media conifg:nil theme:nil];

// Display the editing view controller.

[self.navigationController pushViewController:editViewController animated:YES];

Editing results are called back via the completion block, as shown below:

editViewController.completion = ^(UGCKitResult *result) {

if (result.error) {

// Error.

[self showAlertWithError:error];

} else {

if (result.cancelled) {

// User cancelled shooting and left the editing view.

[self.navigationController popViewControllerAnimated:YES];

} else {

// Video edited and saved successfully. Use the result for subsequent processing.

[self processEditedVideo:result.path];

}

}

}

3. Selecting video or image from photo album

i. UGCKitMediaPickerViewController is used to select and splice media files. If multiple video files are

selected, a spliced video file will be returned as follows:

// Configure initialization.

UGCKitMediaPickerConfig *config = [[UGCKitMediaPickerConfig alloc] init];

config.mediaType = UGCKitMediaTypeVideo;//Select videos.

config.maxItemCount = 5; // Up to five can be selected.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 174

// Instantiate the media picker view controller.

UGCKitMediaPickerViewController *mediaPickerViewController = [[UGCKitMediaPic

kerViewController alloc] initWithConfig:config theme:nil];

// Display the media picker view controller.

[self presentViewController:mediaPickerViewController animated:YES completio

n:nil];

ii. The selection result will be called back through the completion block. The following is a sample result:

mediaPickerViewController.completion = ^(UGCKitResult *result) {

if (result.error) {

// Error.

[self showAlertWithError:error];

} else {

if (result.cancelled) {

// User cancelled shooting and left the picker view.

[self dismissViewControllerAnimated:YES completion:nil];

} else {

// Video edited and saved successfully. Use the result for subsequent process

ing.

[self processEditedVideo:result.media];

}

}

}

4. Clipping

 UGCKitCutViewController provides the video clipping feature. As with the editing API, you need to pass in

a media project when instantiating the controller and process clipping results in completion .

UGCKitMedia *media = [UGCKitMedia mediaWithVideoPath:@"<#video path#>"];

UGCKitCutViewController *cutViewController = [[UGCKitCutViewController alloc] i

nitWithMedia:media theme:nil];

cutViewController.completion = ^(UGCKitResult *result) {

if (!result.cancelled && !result.error) {

[self editVideo:result.media];

} else {

[self.navigationController popViewControllerAnimated:YES];

}

}

[self.navigationController pushViewController: cutViewController]

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 174

Module Description

Read the documents below to learn more about different modules of the SDK.

Video shooting
Video editing

Video splicing
Video uploading
Playback

https://www.tencentcloud.com/document/product/1069/38007
https://www.tencentcloud.com/document/product/1069/38013
https://www.tencentcloud.com/document/product/1069/38014
https://www.tencentcloud.com/document/product/1069/38016
https://www.tencentcloud.com/document/product/1069/38017

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 174

Android Project Configuration

System requirements

We recommend you run the SDK on Android 5.0 (API level 21) or later.

Development environment

Below are the environment requirements for SDK development. You don't need to meet the same requirements for
application development, but make sure that your application is compatible with the SDK.

Android NDK: android-ndk-r12b
Android SDK Tools: android-sdk_25.0.2
minSdkVersion: 21
targetSdkVersion: 26
Android Studio (recommended)

Step 1. Integrate the SDK

AAR
JAR + SO
Gradle

1. Create a project

2. Configure the project
Add the code that imports the .aar package into build.gradle in the App directory of the project:

SDK Integration (Android Studio)
Last updated：2022-11-15 10:17:24

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 174

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])

// Import the SDK AAR file. Replace `x.y.zzzz` in `LiteAVSDK_UGC_x.y.zzzz` wi

th the latest version number.

compile(name: 'LiteAVSDK_UGC_10.7.1136', ext: 'aar')

...

}

In build.gradle in the project directory, add flatDir to specify the local repository:

allprojects {

repositories {

jcenter()

flatDir {

dirs 'libs'

}

}

}

Specify the NDK-compatible architectures in defaultConfig in build.gradle in the App directory

of the project:

defaultConfig {

...

ndk {

abiFilters "armeabi-v7a", "arm64-v8a"

}

}

Click Sync Now to compile the project.

Step 2. Configure app permissions

Configure application permissions in AndroidManifest.xml . Audio/Video applications generally need the

following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.Camera"/>

<uses-feature android:name="android.hardware.camera.autofocus" />

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 174

Step 3. Configure the license

1. After successfully obtaining a license, copy the license key and URL in the VOD console as shown below:

2. Before you use UGSV features in your application, we recommend that you complete the following configuration in
 - Application onCreate() :

public class DemoApplication extends Application {

String ugcLicenceUrl = ""; // Enter the license URL obtained from the console.

String ugcKey = ""; // Enter the license key obtained from the console.

@Override

public void onCreate() {

super.onCreate();

TXUGCBase.getInstance().setLicence(instance, ugcLicenceUrl, ugcKey);

}

}

Note：
If you use a license for the SDK on v4.7 and have upgraded the SDK to v4.9, you can click Switch to New
License in the console to generate a new license key and URL. A new license can be used only for the SDK on

https://console.tencentcloud.com/vod/license/video

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 174

v4.9 or later and should be configured as described above.

Step 4. Print logs

You can enable/disable console log printing and set the log level in TXLiveBase . See the sample code below.

setConsoleEnabled
Sets whether to print the SDK logs in the Android Studio console.

setLogLevel
It is used to set whether the SDK can print local logs. The SDK will write logs into the Android/data/application
package name/files/log/tencent/liteav folder on the SD card by default. If you need technical support from
Tencent Cloud, we recommend you enable this feature and provide the log file after reproducing the problem.

TXLiveBase.setConsoleEnabled(true);

TXLiveBase.setLogLevel(TXLiveConstants.LOG_LEVEL_DEBUG);

Step 5. Build and run the project

Call an SDK API in your project to get the SDK version number and verify whether your project is correctly configured.

1. Import the SDK:
Import the SDK class in MainActivity.java :

import com.tencent.rtmp.TXLiveBase;

2. Call the API:
Call getSDKVersioin in onCreate to get the version number:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 174

String sdkver = TXLiveBase.getSDKVersionStr();

Log.d("liteavsdk", "liteav sdk version is : " + sdkver);

3. Build and run the project:
If the above steps are performed correctly, you will build the project successfully and, after running it, you will see
the following log information in logcat .

 09-26 19:30:36.547 19577-19577/ D/liteavsdk: liteav sdk version is : 7.4.9211

Troubleshooting

After importing the UGSV SDK, when you build and run your project, if the following error occurs:

Caused by: android.view.InflateException:

Binary XML file #14:Error inflating class com.tencent.rtmp.ui.TXCloudVideoView

Follow the steps below to troubleshoot the problem:

1. Check whether you have copied the JAR and SO files to the jniLibs directory.

2. If you use the full edition integrated with the .aar file, check whether the .so libraries for the x64 architecture are
filtered out in defaultConfig in build.gradle in the project directory.

defaultConfig {

...

ndk {

abiFilters "armeabi-v7a", "arm64-v8a"

}

}

3. Check if the package name of the SDK has been added to the "do not obfuscate" list.

-keep class com.tencent.** { *;}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 174

4. Configure packaging options for your application.

Integrating UGSV Modules

This section describes how to quickly integrate the UGSV SDK into your existing project to implement a complete
range of short video features including shooting, editing, and composition. The code and resources mentioned in this
section can be found in the SDK ZIP file as described in SDK Download and the UGSV demo.

Integrating UGCKit

1. Create a project (empty activity)

i. Create an empty Android Studio project. You can name it ugc and give it a custom package name. Make

sure the project can be built and run successfully.

ii. Configure build.gradle of the project.

https://www.tencentcloud.com/document/product/1069/37914
https://www.tencentcloud.com/document/product/1069/37914
https://github.com/LiteAVSDK/UGSV_Android

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 174

// Top-level build file where you can add configuration options common to all

sub-projects/modules.

buildscript {

repositories {

google()

jcenter()

}

dependencies {

Copying starts.

classpath 'com.android.tools.build:gradle:3.6.1'

Copying ends.

// NOTE: Do not place your application dependencies here; they belong

// in the individual module build.gradle files

}

}

allprojects {

repositories {

google()

jcenter()

Copying starts.

flatDir {

dirs 'src/main/jniLibs'

dirs project(':ugckit').file('libs')

}

Copying ends.

jcenter() // Warning: this repository is going to shut down soon

}

}

task clean(type: Delete) {

delete rootProject.buildDir

}

Copying starts.

ext {

compileSdkVersion = 29

buildToolsVersion = "29.0.2"

supportSdkVersion = "26.1.0"

minSdkVersion = 21

targetSdkVersion = 26

versionCode = 1

versionName = "v1.1"

proguard = true

rootPrj = "$projectDir/.."

ndkAbi = 'armeabi-v7a'

liteavSdk = "com.tencent.liteav:LiteAVSDK_UGC:latest.release"

}

Copying ends.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 174

iii. Configure build.gradle of your application.

plugins {

id 'com.android.application'

}

android {

Copying starts.

compileSdkVersion = rootProject.ext.compileSdkVersion

buildToolsVersion = rootProject.ext.buildToolsVersion

Copying ends.

defaultConfig {

applicationId "com.yunxiao.dev.liteavdemo"

Copying starts.

minSdkVersion rootProject.ext.minSdkVersion

targetSdkVersion rootProject.ext.targetSdkVersion

versionCode rootProject.ext.versionCode

versionName rootProject.ext.versionName

renderscriptTargetApi = 19

renderscriptSupportModeEnabled = true

multiDexEnabled = true

ndk {

abiFilters rootProject.ext.ndkAbi

}

Copying ends.

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

}

buildTypes {

release {

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'progu

ard-rules.pro'

}

}

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8

targetCompatibility JavaVersion.VERSION_1_8

}

}

dependencies {

Copying starts.

implementation fileTree(include: ['*.jar'], dir: 'libs')

implementation 'com.google.android.material:material:1.0.0'

implementation 'androidx.recyclerview:recyclerview:1.0.0'

implementation 'com.google.code.gson:gson:2.3.1'

implementation 'com.tencent.rqd:crashreport:3.4.4'

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 174

implementation 'com.tencent.rqd:nativecrashreport:3.9.2'

implementation 'com.github.castorflex.verticalviewpager:library:19.0.1'

implementation 'com.squareup.okhttp3:okhttp:3.11.0'

implementation 'de.hdodenhof:circleimageview:3.1.0'

implementation rootProject.ext.liteavSdk

implementation project(':ugckit')

implementation 'androidx.constraintlayout:constraintlayout:2.1.3'

implementation('com.blankj:utilcode:1.25.9', {

exclude group: 'com.google.code.gson', module: 'gson'

})

Copying ends.

}

iv. Specify the Gradle version.

distributionUrl=https\://services.gradle.org/distributions/gradle-5.6.4-bin.z

ip

2. Import modules

i. Copy the ugckit module to the ugc directory of your newly created project.

ii. To integrate basic beauty filters, copy the beautysettingkit module to the ugc directory of the project.

iii. To integrate the Tencent Effect SDK, copy the xmagickit module to the ugc directory of the project. For

more information, see SDK Integration Guide (Android).

iv. Import ugckit to settings.gradle of the project.

v. In UGC/settings.gradle of the project, import the modules below:

include ':ugckit'

include ':beautysettingkit'

include ':xmagickit'

vi. Add ugckit as a dependency for the app modules of your project.

implementation project(':ugckit')

https://www.tencentcloud.com/document/product/1069/47917

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 174

3. Apply for a license
You need to set the license first before using UGCKit .

Enabling shooting, importing, clipping, and special effects

1. Set the license and initialize UGCKit

Set the license and initialize UGCKit as early as possible before using UGSV features.

// Configure the license

TXUGCBase.getInstance().setLicence(this, ugcLicenceUrl, ugcKey);

// Initialize `UGCKit`

UGCKit.init(this);

2. Implement video shooting

i. Create an XML file for shooting and add the code below:

<com.tencent.qcloud.ugckit.UGCKitVideoRecord

android:id="@+id/video_record_layout"

android:layout_width="match_parent"

android:layout_height="match_parent" />

ii. Create an empty theme for shooting in res/values/styles.xml and inherit the default shooting theme of

 UGCKit .

<style name="RecordActivityTheme" parent="UGCKitRecordStyle"/>

iii. Create an activity for shooting, inherit FragmentActivity , implement the

 ActivityCompat.OnRequestPermissionsResultCallback API, get a UGCKitVideoRecord

object, and set the callback.

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// You must configure the theme in the code (`setTheme`) or in `AndroidManife

st` (android:theme).

setTheme(R.style.RecordActivityTheme);

setContentView(R.layout.activity_video_record);

// Get `UGCKitVideoRecord`

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 174

mUGCKitVideoRecord = (UGCKitVideoRecord) findViewById(R.id.video_record_layou

t);

// Listen for shooting events

mUGCKitVideoRecord.setOnRecordListener(new IVideoRecordKit.OnRecordListener()

{

@Override

public void onRecordCanceled() {

// Shooting was canceled.

}

@Override

public void onRecordCompleted(UGCKitResult result) {

// Callback for ending shooting

}

});

}

@Override

protected void onStart() {

super.onStart();

// Get whether the camera and audio recording permissions are granted. For de

tails, see `Github/Demo`.

if (hasPermission()) {

// `UGCKit` takes over the shooting lifecycle. For details, see `Github/Demo

`.

mUGCKitVideoRecord.start();

}

}

@Override

public void onRequestPermissionsResult(int requestCode, @NonNull String[] per

missions, @NonNull int[] grantResults) {

if (grantResults != null && grantResults[0] == PackageManager.PERMISSION_GRAN

TED) {

mUGCKitVideoRecord.start();

}

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 174

The UI view looks like this:

3. Implement video import

1. Create an XML file and add the code below:

<com.tencent.qcloud.ugckit.UGCKitVideoPicker

android:id="@+id/video_picker"

android:layout_width="match_parent"

android:layout_height="match_parent" />

2. Create an empty theme in res/values/styles.xml and inherit the default video importing theme of

 UGCKit .

<style name="PickerActivityTheme" parent="UGCKitPickerStyle"/>

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 174

3. Create an activity, inherit Activity , get a UGCKitVideoPicker object, and set the callback.

@Override

public void onCreate(Bundle icicle) {

super.onCreate(icicle);

// You must configure the theme in the code (`setTheme`) or in `AndroidManifest`

(android:theme).

setTheme(R.style.PickerActivityTheme);

setContentView(R.layout.activity_video_picker);

// Get `UGCKitVideoPicker`

mUGCKitVideoPicker = (UGCKitVideoPicker) findViewById(R.id.video_picker);

// Listen for video importing events

mUGCKitVideoPicker.setOnPickerListener(new IPickerLayout.OnPickerListener() {

@Override

public void onPickedList(ArrayList<TCVideoFileInfo> list) {

// `UGCKit` returns the paths of selected videos.

}

});

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 174

The UI view looks like this:

4. Implement video clipping

1. Create an XML file and add the code below:

<com.tencent.qcloud.ugckit.UGCKitVideoCut

android:id="@+id/video_cutter"

android:layout_width="match_parent"

android:layout_height="match_parent" />

2. Create an empty theme in res/values/styles.xml and inherit the default video editing theme of

 UGCKit .

<style name="EditerActivityTheme" parent="UGCKitEditerStyle"/>

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 174

3. Create an activity, implement the FragmentActivity API, get a UGCKitVideoCut object, and set the

callback.

@Override

protected void onCreate(@Nullable Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// You must configure the theme in the code (`setTheme`) or in `AndroidManifest`

(android:theme).

setTheme(R.style.EditerActivityTheme);

setContentView(R.layout.activity_video_cut);

mUGCKitVideoCut = (UGCKitVideoCut) findViewById(R.id.video_cutter);

// Get the paths of videos imported via the previous view

mVideoPath = getIntent().getStringExtra(UGCKitConstants.VIDEO_PATH);

// `UGCKit` sets the video path.

mUGCKitVideoCut.setVideoPath(mVideoPath);

// Listen for the generation of videos

mUGCKitVideoCut.setOnCutListener(new IVideoCutKit.OnCutListener() {

@Override

public void onCutterCompleted(UGCKitResult ugcKitResult) {

// Callback for the completion of video clipping

}

@Override

public void onCutterCanceled() {

// Callback for clipping being canceled

}

});

}

@Override

protected void onResume() {

super.onResume();

// `UGCKit` takes over the lifecycle of the video clipping view. For details, see

`Github/Demo`.

mUGCKitVideoCut.startPlay();

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 174

The UI view looks like this:

5. Implement video special effect editing

1. In the XML file of the editing activity, add the code below:

<com.tencent.qcloud.ugckit.UGCKitVideoEdit

android:id="@+id/video_edit"

android:layout_width="match_parent"

android:layout_height="match_parent" />

2. Create an editing activity, inherit FragmentActivity , get a UGCKitVideoEdit object, and set the

callback.

@Override

protected void onCreate(@Nullable Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 174

// You must configure the theme in the code (`setTheme`) or in `AndroidManifest`

(android:theme).

setTheme(R.style.EditerActivityTheme);

setContentView(R.layout.activity_video_editer);

// Set the video path (optional). You can skip this if the previous view is video

clipping and `setVideoEditFlag(true)` is called.

mVideoPath = getIntent().getStringExtra(UGCKitConstants.VIDEO_PATH);

mUGCKitVideoEdit = (UGCKitVideoEdit) findViewById(R.id.video_edit);

if (!TextUtils.isEmpty(mVideoPath)) {

mUGCKitVideoEdit.setVideoPath(mVideoPath);

}

// Initialize the player

mUGCKitVideoEdit.initPlayer();

mUGCKitVideoEdit.setOnVideoEditListener(new IVideoEditKit.OnEditListener() {

@Override

public void onEditCompleted(UGCKitResult ugcKitResult) {

// Video editing completed.

}

@Override

public void onEditCanceled() {

}

});

}

@Override

protected void onResume() {

super.onResume();

// `UGCKit` takes over the lifecycle of the editing view. For details, see `Githu

b/Demo`.

mUGCKitVideoEdit.start();

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 174

The UI view looks like this:

Detailed description

See the documents below for a detailed description of different UGSV modules.

Capturing and Shooting
Video Editing
Video Splicing
Video Upload
Player SDK

FAQs

Can I use AndroidX?

https://www.tencentcloud.com/document/product/1069/38019
https://www.tencentcloud.com/document/product/1069/38024
https://www.tencentcloud.com/document/product/1069/38025
https://www.tencentcloud.com/document/product/1069/38026
https://www.tencentcloud.com/document/product/1069/38027

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 174

The latest version of UGCKit uses AndroidX. If you still use UGCKit based on the Android Support Library, you

can update it to the latest version or switch to AndroidX as follows. Here, UGSVSDK is used as an example, which

also uses the UGCKit module in its demo.

1. Prerequisites:
Update Android Studio to v3.2 or later.
Update the Android Gradle plugin to v4.6 or later.

Update compileSdkVersion to 28 or later.

Update buildToolsVersion to 28.0.2 or later.

2. Migrate to AndroidX:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 174

i. Import the project to Android Studio and select Refactor > Migrate to AndroidX.

ii. Click Migrate to migrate the current project to AndroidX.

What should I do if a UGCKit build version error occurs?

Error message:

ERROR: Unable to find method 'org.gradle.api.tasks.compile.CompileOptions.setBo

otClasspath(Ljava/lang/String;)V'.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 174

Possible causes for this unexpected error include:

Cause: The problem occurs because the version of the Gradle plugin used for UGCKit is v2.2.3, but that of

Gradle is v3.3.

Solution: Check whether the versions of Android Studio Gradle and Gradle match. For details, see

Update the Android Gradle plugin.

What should I do if the following error occurs when I build UGCKit ?

Error message:

Cause: The problem occurs because renderscript-v8.jar is missing from the ugckit module.

 renderscript-v8.jar is responsible for image processing, blurring, and rendering.

Solution: Create a libs folder under the ugckit module and add renderscript-v8.jar , which you can

find in \sdk\build-tools\ , to the folder.

https://developer.android.google.cn/studio/releases/gradle-plugin.html#updating-plugin

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 174

Overview

You can implement video shooting features including speed change, beautification, filters, audio effects, and
background music.

Classes

The UGSV SDK offers different video shooting APIs.

API File Description

 TXUGCRecord.h Shooting videos

 TXUGCRecordListener.h Shooting callbacks

 TXUGCRecordEventDef.h Shooting events

 TXUGCRecordTypeDef.h Definitions of basic parameters

 TXUGCPartsManager.h
Video segment management class, which is used for multi-segment shooting

and segment deletion

Video Shooting Process

The process of shooting videos is as follows:

1. Configure shooting parameters
2. Enable preview
3. Set shooting effects
4. End shooting

Capturing and Shoot
Capturing and Shoot
iOS
Last updated：2022-10-25 11:27:24

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 174

Example

@interface VideoRecordViewController <TXUGCRecordListener> {

UIView *_videoRecordView;

}

@implementation VideoRecordViewController

- (void)viewDidLoad {

[super viewDidLoad];

// Create a view for the camera preview

_videoRecordView = [[UIView alloc] initWithFrame:self.view.bounds];

[self.view addSubview:_videoRecordView];

// 1. Configure shooting parameters

TXUGCSimpleConfig * param = [[TXUGCSimpleConfig alloc] init];

param.videoQuality = VIDEO_QUALITY_MEDIUM;

// 2. Enable preview. Specify preview parameters and the view to display the prev

iew.

[[TXUGCRecord shareInstance] startCameraSimple:param preview:_videoRecordView];

// 3. Set shooting effects. In the example below, a watermark is added.

UIImage *watermarke = [UIImage imageNamed:@"watermarke"];

[[TXUGCRecord shareInstance] setWaterMark:watermarke normalizationFrame:CGRectMak

e(0.01, 0.01, 0.1, 0)];

}

// 4. Start shooting

- （IBAction)onStartRecord:(id)sender {

[TXUGCRecord shareInstance].recordDelegate = self;

int result = [[TXUGCRecord shareInstance] startRecord];

if(0 != result) {

if(-3 == result) [self alert:@"Failed to start shooting." msg:@"Please check whet

her the camera permission is granted."];

else if(-4 == result) [self alert:@"Failed to start shooting." msg:@"Please check

whether the mic permission is granted."];

else if(-5 == result) [self alert:@"Failed to start shooting." msg:@"License auth

entication failed."];

} else {

// Started shooting successfully

}

}

// End shooting

- （IBAction)onStopRecord:(id)sender {

[[TXUGCRecord shareInstance] stopRecord];

}

// Callback for ending shooting

-(void) onRecordComplete:(TXUGCRecordResult*)result

{

if (result.retCode == UGC_RECORD_RESULT_OK) {

// The video was shot successfully and was saved to `result.videoPath`.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 174

} else {

// Handle errors. For the definitions of error codes, see `TXUGCRecordResultCode`

in `TXUGCRecordTypeDef.h`.

}

}

-(void)alert:(NSString *)title msg:(NSString *)msg

{

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title message:msg delegat

e:self cancelButtonTitle:@"Confirm" otherButtonTitles:nil, nil];

[alert show];

}

@end

Preview

 TXUGCRecord in TXUGCRecord.h is used to implement video shooting. The first step of shooting videos is

using startCameraSimplePreview to enable preview. Because mic and camera permissions are required for

preview, you need to configure pop-up windows to request the permissions.

1. Enable preview

TXUGCRecord *record = [TXUGCRecord sharedInstance];

record.recordDelegate = self; //Configure shooting callbacks. For details, see `T

XUGCRecordListener`.

// Configure camera parameters and start preview

TXUGCSimpleConfig * param = [[TXUGCSimpleConfig alloc] init];

//param.videoQuality = TXRecordCommon.VIDEO_QUALITY_LOW;// 360p

//param.videoQuality = TXRecordCommon.VIDEO_QUALITY_MEDIUM;// 540p

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_HIGH; // 720p

param.frontCamera = YES; // Use the front camera

param.minDuration = 5;// Set the minimum shooting duration to 5 seconds

param.maxDuration = 60;// Set the maximum shooting duration to 60 seconds

param.enableBFrame = YES; // Enable B frame encoding, which produces better video

quality at the same bitrate

// Display the preview in `self.previewView`

[recorder startCameraSimple:param preview:self.previewView];

// Disable preview

[[TXUGCRecord shareInstance] stopCameraPreview];

2. Modify preview parameters

To modify preview parameters after the camera is turned on, refer to the code below:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 174

// Change the shooting resolution to 540p

[recorder setVideoResolution: VIDEO_RESOLUTION_540_960];

// Change the video bitrate for shooting to 6500 Kbps

[recorder setVideoBitrate: 6500];

// Set the focal length to 3. 1 indicates the widest angle of view (original), an

d 5 indicates the narrowest angle of view (zoomed in).

[recorder setZoom: 3];

// Switch the camera. `Yes`: Front Camera; `No`: Rear camera.

[recorder switchCamera: NO];

// Turn on/off the flashlight. `Yes`: Turn on the flashlight; `No`: Turn off the

flashlight.

[recorder toggleTorch: YES];

// Set the callback for custom processing

recorder.videoProcessDelegate = delegate;

Shooting control

Start, pause, and resume shooting

// Start shooting a video

[recorder startRecord];

// Start shooting. You can specify the path to save the video and the path of the

thumbnail image.

[recorder startRecord:videoFilePath coverPath:coverPath];

// Start shooting. You can specify the paths to save the video and video segment

s, as well as the path of the thumbnail image.

[recorder startRecord:videoFilePath videoPartsFolder:videoPartFolder coverPath:co

verPath];

// Pause shooting

[recorder pauseRecord];

// Resume shooting

[recorder resumeRecord];

// Ending shooting

[recorder stopRecord];

The shooting progress and result callbacks are implemented by TXUGCRecordListener (defined in

 TXUGCRecordListener.h).

 onRecordProgress is the shooting progress callback. The millisecond parameter indicates the

recorded duration in milliseconds.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 174

@optional

(void)onRecordProgress:(NSInteger)milliSecond;

 onRecordComplete is the shooting result callback. The retCode and descMsg fields in

 TXRecordResult indicate the error code and error message respectively. videoPath indicates the path of

the video, and coverImage is the first frame of the video, which is used as the thumbnail.

@optional

(void)onRecordComplete:(TXUGCRecordResult*)result;

 onRecordEvent is the callback reserved for the shooting event and is not used currently.

@optional

(void)onRecordEvent:(NSDictionary*)evt;

Shooting settings

1. Video

// Shoot in landscape mode

[recorder setHomeOrientation:VIDOE_HOME_ORIENTATION_RIGHT];

// Set orientation for preview

// The valid values for `rotation` are 0, 90, 180, and 270, which indicate the cl

ockwise rotation angle.

// You must set the rotation before you call `startRecord` for the setting to tak

e effect.

[recorder setRenderRotation:rotation];

// Set the aspect ratio

// VIDEO_ASPECT_RATIO_9_16: 9:16

// VIDEO_ASPECT_RATIO_3_4: 3:4

// VIDEO_ASPECT_RATIO_1_1: 1:1

// You must set the rotation before you call `startRecord` for the setting to tak

e effect.

[recorder setAspectRatio:VIDEO_ASPECT_RATIO_9_16];

2. Speed

// Set the shooting speed

// VIDEO_RECORD_SPEED_SLOWEST: Very slow

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 174

// VIDEO_RECORD_SPEED_SLOW: Slow

// VIDEO_RECORD_SPEED_NOMAL: Original

// VIDEO_RECORD_SPEED_FAST: Fast

// VIDEO_RECORD_SPEED_FASTEST: Very fast

[recorder setRecordSpeed:VIDEO_RECORD_SPEED_NOMAL];

3. Audio

// Set the mic volume. This is used to control the volume of the mic when backgro

und music is mixed.

// Volume. The normal volume is 1. We recommend 0-2, but you can set it to a larg

er value if you want louder music.

[recorder setMicVolume:volume];

// Mute/Unmute. The `isMute` parameter specifies whether to mute audio. Audio is

unmuted by default.

[recorder setMute:isMute];

Picture taking

// Take a photo/Capture a frame from a video. This API works only if it is called

after `startCameraSimplePreview` or `startCameraCustomPreview`.

[recorder snapshot:^(UIImage *image) {

// `image` is the capturing result.

}];

Effects

You can add various effects to your video during shooting.

1. Watermarks

// Add a global watermark

// normalizationFrame: The normalized position of the watermark in relation to th

e video. The SDK calculates the watermark height based on the aspect ratio.

// Suppose the video dimensions are 540 x 960, and `frame` is set to `(0.1，0.1，

0.1, 0)`.

// The actual coordinates of the watermark would be:

// (540*0.1, 960*0.1, 540*0.1, 540*0.1*waterMarkImage.size.height / waterMarkImag

e.size.width)

[recorder setWaterMark:waterMarkImage normalizationFrame:frame)

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 174

2. Filters

// Set the filter style

// Set the color filter: Romantic, refreshing, elegant, pink, retro, and more

// filterImage: The color lookup table, which must be in PNG format.

// The color lookup table used in the demo is in `FilterResource.bundle`.

[recorder setFilter:filterImage];

// Set the strength of filters. Value range: 0-1. Default: 0.5. The greater the v

alue, the stronger the filter.

[recorder setSpecialRatio:ratio];

// Set a filter combination

// mLeftBitmap: The left filter

// leftIntensity: The strength of the left filter

// mRightBitmap: The right filter

// rightIntensity: The strength of the right filter

// leftRatio: The ratio of the width of the left picture to the video width

// You can use this API to implement "swipe to change filter".

[recorder setFilter:leftFilterImgage leftIntensity:leftIntensity rightFilter:righ

tFilterImgage rightIntensity:rightIntensity leftRatio:leftRatio];

3. Beauty filters

// Set the beauty filter style and strength and the strength of the skin brighten

ing and blush effects

// beautyStyle:

// typedef NS_ENUM(NSInteger, TXVideoBeautyStyle) {

// VIDOE_BEAUTY_STYLE_SMOOTH = 0, // Smooth

// VIDOE_BEAUTY_STYLE_NATURE = 1, // Natural

// };

// The value range for the strength parameter is 0-9. `0` means to disable the fi

lter. The greater the value, the stronger the filter.

[recorder setBeautyStyle:beautyStyle beautyLevel:beautyLevel whitenessLevel:white

nessLevel ruddinessLevel:ruddinessLevel];

Advanced Features

Multi-segment shooting
Drafts
Adding background music
Voice changing and reverb
Customizing video data

https://www.tencentcloud.com/document/product/1069/38008
https://www.tencentcloud.com/document/product/1069/38009
https://www.tencentcloud.com/document/product/1069/38010
https://www.tencentcloud.com/document/product/1069/38011
https://www.tencentcloud.com/document/product/1069/38038

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 174

Video shoot includes features such as adjustable-speed shoot, beauty filters, filters, sound effects, and background
music configuration.

Overview of Relevant Classes

Class Feature

TXUGCRecord Video shoot implementation

TXUGCPartsManager Video segment management class, which is used to shoot multiple video segments and
delete existing segments

ITXVideoRecordListener Shoot callback

TXRecordCommon Basic parameter definition, including video shoot callback and release callback APIs

Use Instructions

The following is the basic usage process of video shoot:

1. Configure the shoot parameters.
2. Start video image preview.
3. Set the shoot effects.
4. Complete shoot.

Code Example

// Create `TXCloudVideoView` for camera preview

mVideoView = (TXCloudVideoView) findViewById(R.id.video_view);

// 1. Configure the shoot parameters. The recommended configuration of `TXUGCSimp

leConfig` is used here as an example

TXRecordCommon.TXUGCSimpleConfig param = new TXRecordCommon.TXUGCSimpleConfig();

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_MEDIUM;

// 2. Start video image preview

mTXCameraRecord.startCameraSimplePreview(param, mVideoView);

// 3. Set the shoot effects. Watermarking is used here as an example

TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

Android
Last updated：2022-05-24 15:45:26

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 174

rect.x = 0.5f;

rect.y = 0.5f;

rect.width = 0.5f;

mTXCameraRecord.setWatermark(BitmapFactory.decodeResource(getResources(), R.drawa

ble.watermark), rect);

// 4. Start shoot

int result = mTXCameraRecord.startRecord();

if (result != TXRecordCommon.START_RECORD_OK) {

if (result == -4) {The video image has not been displayed yet}

else if (result == -3) {// The version is too low}

else if (result == -5) {// License verification failed] }

}

else{// Started successfully}

// End shoot

mTXCameraRecord.stopRecord();

// Callback for shoot completion

public void onRecordComplete(TXRecordCommon.TXRecordResult result) {

if (result.retCode >= 0) {

// The shoot is successful, and the video file is in `result.videoPath`

}else{

// Process the error. For the error code definition, please see "Definition of er

ror codes for shoot result callback" in `TXRecordCommon`.

}

}

Previewing Video Image

 TXUGCRecord (in TXUGCRecord.java) is used for short video shoot. The preview feature needs to be

implemented first, where the startCameraSimplePreview function is used to start preview. As camera and mic

need to be enabled before the preview can be started, prompt windows for permission application may pop up at this
point.

1. Start preview

TXUGCRecord mTXCameraRecord = TXUGCRecord.getInstance(this.getApplicationContext

());

mTXCameraRecord.setVideoRecordListener(this); // Set shoot callback

mVideoView = (TXCloudVideoView) findViewById(R.id.video_view); // Prepare a view

for camera image preview

TXRecordCommon.TXUGCSimpleConfig param = new TXRecordCommon.TXUGCSimpleConfig();

//param.videoQuality = TXRecordCommon.VIDEO_QUALITY_LOW; // 360p

//param.videoQuality = TXRecordCommon.VIDEO_QUALITY_MEDIUM; // 540p

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_HIGH; // 720p

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 174

param.isFront = true; // Whether to use the front camera

param.minDuration = 5000; // Minimum video shoot duration in milliseconds

param.maxDuration = 60000; // Maximum video shoot duration in milliseconds

param.touchFocus = false; // false: autofocus; true: manual focus

mTXCameraRecord.startCameraSimplePreview(param,mVideoView);

// End video image preview

mTXCameraRecord.stopCameraPreview();

2. Adjust preview parameters

After starting the camera, you can adjust the preview parameters as follows:

// Switch the video shoot resolution to 540p

mTXCameraRecord.setVideoResolution(TXRecordCommon.VIDEO_RESOLUTION_540_960);

// Switch the video shoot bitrate to 6,500 Kbps

mTXCameraRecord.setVideoBitrate(6500);

// Get the maximum focal length supported by the camera

mTXCameraRecord.getMaxZoom();

// Set the focal length to 3. 1 indicates the furthest view (normal lens), and 5

indicates the nearest view (enlarging lens)

mTXCameraRecord.setZoom(3);

// Switch to the rear camera. true: switches to front camera; false: switches to

rear camera

mTXCameraRecord.switchCamera(false);

// Enable the flash. true: enables; false: disables

mTXCameraRecord.toggleTorch(false);

// If `param.touchFocus` is `true`, manual focus will be used. You can use the fo

llowing API to set the focus position

mTXCameraRecord.setFocusPosition(eventX, eventY);

// Set the callback for custom image processing

mTXCameraRecord.setVideoProcessListener(this);

Capturing

After enabling the camera preview, you can use the photo capturing feature.

// Photo capturing, which will take effect if called after `startCameraSimplePrev

iew` or `startCameraCustomPreview`

mTXCameraRecord.snapshot(new TXRecordCommon.ITXSnapshotListener() {

@Override

public void onSnapshot(Bitmap bmp) {

// Save or display the photo

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 174

}

});

Controlling Shoot Process

The shoot can be started, paused, and resumed as follows:

// Start shoot

mTXCameraRecord.startRecord();

// Start shoot. You can specify the addresses for the output video file and cover

mTXCameraRecord.startRecord(videoFilePath, coverPath);

// Start shoot. You can specify the addresses for the output video file, video se

gment storage, and cover

mTXCameraRecord.startRecord(videoFilePath, videoPartFolder, coverPath);

// Pause shoot

mTXCameraRecord.pauseRecord();

// Resume shoot

mTXCameraRecord.resumeRecord();

// End shoot

mTXCameraRecord.stopRecord();

The shoot process and result will be returned through the TXRecordCommon.ITXVideoRecordListener API

(defined in TXRecordCommon.java):

 onRecordProgress returns the shoot progress, and the millisecond parameter indicates the shoot

duration in milliseconds.

@optional

void onRecordProgress(long milliSecond);

 onRecordComplete returns the shoot result, the retCode and descMsg fields of TXRecordResult

indicate the error code and error message, respectively, videoPath indicates the path of the shot short video

file, and coverImage indicates the short video's first-frame image that is automatically captured and will be

used in video release.

@optional

void onRecordComplete(TXRecordResult result);

 onRecordEvent is the shoot event callback, which contains the event ID and event-related parameters in the

format of (key,value).

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 174

@optional

void onRecordEvent(final int event, final Bundle param);

Setting Shoot Attributes

Set the video image

// Set the landscape or portrait mode for shoot

mTXCameraRecord.setHomeOrientation(TXLiveConstants.VIDEO_ANGLE_HOME_RIGHT);

// Set the video preview direction

// TXLiveConstants.RENDER_ROTATION_0 (normal portrait)

// TXLiveConstants.RENDER_ROTATION_90 (rotated 90 degrees leftwards)

// TXLiveConstants.RENDER_ROTATION_180 (rotated 180 degrees leftwards)

// TXLiveConstants.RENDER_ROTATION_270 (rotated 270 degrees leftwards)

// Note: it needs to be set before `startRecord` and will not take effect if set

during shoot

mTXCameraRecord.setRenderRotation(TXLiveConstants.RENDER_ROTATION_PORTRAIT);

// Set the aspect ratio for shoot

// TXRecordCommon.VIDEO_ASPECT_RATIO_9_16 The aspect ratio is 9:16

// TXRecordCommon.VIDEO_ASPECT_RATIO_3_4 The aspect ratio is 3:4

// TXRecordCommon.VIDEO_ASPECT_RATIO_1_1 The aspect ratio is 1:1

// Note: it needs to be set before `startRecord` and will not take effect if set

during shoot

mTXCameraRecord.setAspectRatio(TXRecordCommon.VIDEO_ASPECT_RATIO_9_16);

Set the speed

// Set the video shoot speed

// TXRecordCommon.RECORD_SPEED_SLOWEST (ultra-slow)

// TXRecordCommon.RECORD_SPEED_SLOW (slow)

// TXRecordCommon.RECORD_SPEED_NORMAL (standard)

// TXRecordCommon.RECORD_SPEED_FAST (fast)

// TXRecordCommon.RECORD_SPEED_FASTEST (ultra-fast)

mTXCameraRecord.setRecordSpeed(TXRecordCommon.VIDEO_RECORD_SPEED_NORMAL);

Set the audio

// Set the mic volume level. It is used to adjust the mic volume level when backg

round music is played back

// Volume level. 1 indicates the normal volume level. The recommended value range

is 0–2. If you want to increase the volume level, you can set a higher value

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 174

mTXCameraRecord.setMicVolume(volume);

// Set whether the shoot is muted in the `isMute` parameter. The shoot is unmuted

by default

mTXCameraRecord.setMute(isMute);

Setting Effects

During video shoot, you can set various special effects for the shot video.

Watermark

// Set a global watermark

// TXRect: normalized value of watermark relative to video image. The SDK will au

tomatically calculate the `height` according to the watermark aspect ratio

// Suppose the video image dimensions are (540, 960), and three parameters in `TX

Rect` are all set to 0.1

// Then, the actual pixel coordinates of the watermark are (540 * 0.1, 960 * 0.1,

540 * 0.1)

// 540 * 0.1 * watermarkBitmap.height / watermarkBitmap.width）

mTXCameraRecord.setWatermark(watermarkBitmap, txRect)

Filter

// Set the color filter to Romantic, Fresh, Aesthetic, Rosy, Vintage, etc.

// filterBitmap: color lookup table used for filter. Note: it must be in .png for

mat

// The filter color lookup table used by the demo is in the `RTMPAndroidDemo/app/

src/main/res/drawable-xxhdpi/` directory

mTXCameraRecord.setFilter(filterBitmap);

// Set the filter mix effect

// mLeftBitmap Filter on the left

// leftIntensity Level of the filter on the left

// mRightBitmap Filter on the right

// rightIntensity Level of the filter on the right

// leftRadio Ratio of the dimensions of the image on the left

// You can use this API to implement the effect of switching filters by swipe. Fo

r more information, please see the demo

mTXCameraRecord.setFilter(mLeftBitmap, leftIntensity, mRightBitmap, rightIntensit

y, leftRatio);

// It is used to set the filter effect level. Value range: 0–1. The greater the v

alue, the more obvious the effect. Default value: 0.5

mTXCameraRecord.setSpecialRatio(0.5);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 174

Beauty filter

// Set the beauty filter type

mTXCameraRecord.setBeautyStyle(style);

// Set the eye enlarging effect level. Recommended value range: 0–9. If you want

a more obvious effect, you can set a greater value

mTXCameraRecord.setEyeScaleLevel(eyeScaleLevel);

// Set the face slimming effect level. Recommended value range: 0–9. If you want

a more obvious effect, you can set a greater value

mTXCameraRecord.setFaceScaleLevel(faceScaleLevel);

// Set the chin slimming effect level. Recommended value range: 0–9. If you want

a more obvious effect, you can set a greater value

mTXCameraRecord.setFaceVLevel(level);

// Set the chin lengthening/shortening effect level. Recommended value range: 0–

9. If you want a more obvious effect, you can set a greater value

mTXCameraRecord.setChinLevel(scale);

// Set the face shortening effect level. Recommended value range: 0–9. If you wan

t a more obvious effect, you can set a greater value

mTXCameraRecord.setFaceShortLevel(level);

// Set the nose narrowing effect level. Recommended value range: 0–9. If you want

a more obvious effect, you can set a greater value

mTXCameraRecord.setNoseSlimLevel(scale);

// Set the green screen keying file. It can be in formats supported by Android, s

uch as .jpg and .png for images and .mp4 and .3gp for videos, and can be looped

mTXCameraRecord.setGreenScreenFile(path, isLoop);

// Set `motionTmplPath`, which is the path of the animated effect file of the ani

mated sticker. An empty string ("") indicates to cancel the animated effect

mTXCameraRecord.setMotionTmp(motionTmplPath);

// Set whether to mute the animated sticker. true: mutes; false: unmutes

mTXCameraRecord.setMotionMute(true);

Getting License Information

UGSV license verification is added in the new version of the SDK. If the verification fails, you can use the following API

to query the specific information in the license:

TXUGCBase.getInstance().getLicenceInfo(Context context);

Advanced Features

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 174

Multi-segment shoot
Shoot drafts
Adding background music

Voice changing and reverb
Customizing video data

https://www.tencentcloud.com/document/product/1069/38020
https://www.tencentcloud.com/document/product/1069/38021
https://www.tencentcloud.com/document/product/1069/38022
https://www.tencentcloud.com/document/product/1069/38023
https://www.tencentcloud.com/document/product/1069/38039

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 174

The following is the basic usage process of multi-segment video shoot:

1. Start video image preview.
2. Start shoot.

3. Play back the background music.
4. Pause shoot.
5. Pause the background music.
6. Resume the background music.
7. Resume shoot.

8. Stop shoot.
9. Stop the background music.

// Start video image preview

recorder = [TXUGCRecord shareInstance];

[recorder startCameraCustom:param preview:preview];

// Start shoot

[recorder startRecord];

// Set the background music

[recorder setBGM:BGMPath];

// Play back the background music

[recorder playBGMFromTime:beginTime toTime:_BGMDuration withBeginNotify:^(NSInteg

er errCode) {

// Start playback

} withProgressNotify:^(NSInteger progressMS, NSInteger durationMS) {

// Playback progress

} andCompleteNotify:^(NSInteger errCode) {

// End playback

}];

// After `pauseRecord` is called, a video segment will be generated, which can be

obtained from and managed in `TXUGCPartsManager`

[recorder pauseRecord];

// Pause the background music

[recorder pauseBGM];

// Resume the background music

[recorder resumeBGM];

// Resume video shoot

[recorder resumeRecord];

Multi-Segment Shoot
iOS
Last updated：2022-05-24 15:59:37

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 174

// Stop video shoot and compose multiple video segments into one video

[recorder stopRecord];

// Stop the background music

[recorder stopBGM];

// Get the video segment management object

TXUGCPartsManager *partsManager = recorder.partsManager;

// Get the total duration of all video segments

[partsManager getDuration];

// Get the paths of all video segments

[partsManager getVideoPathList];

// Delete the last video segment

[partsManager deleteLastPart];

// Delete a specified video segment

[partsManager deletePart:1];

// Delete all video segments

[partsManager deleteAllParts];

// You can add videos except the one currently being shot

[partsManager insertPart:videoPath atIndex:0];

// Compose all video segments

[partsManager joinAllParts: videoOutputPath complete:complete];

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 174

The following is the basic usage process of multi-segment video shoot:

1. Start video image preview.
2. Start shoot.

3. Play back the background music.
4. Pause shoot.
5. Pause the background music.
6. Resume shoot.
7. Resume the background music.

8. Stop shoot.
9. Stop the background music.

// Start shoot

mTXCameraRecord.startRecord();

// After `pauseRecord` is called, a video segment will be generated, which can be

obtained from `TXUGCPartsManager`

mTXCameraRecord.pauseRecord();

mTXCameraRecord.pauseBGM();

// Resume video shoot

mTXCameraRecord.resumeRecord();

mTXCameraRecord.resumeBGM();

// Stop video shoot and compose multiple video segments into one video

mTXCameraRecord.stopBGM();

mTXCameraRecord.stopRecord();

// Get the video segment management object

mTXCameraRecord.getPartsManager();

// Get the total duration of all video segments

mTXUGCPartsManager.getDuration();

// Get the paths of all video segments

mTXUGCPartsManager.getPartsPathList();

// Delete the last video segment

mTXUGCPartsManager.deleteLastPart();

// Delete a specified video segment

mTXUGCPartsManager.deletePart(index);

// Delete all video segments

mTXUGCPartsManager.deleteAllParts();

// You can add videos except the one currently being shot

mTXUGCPartsManager.insertPart(videoPath, index) ;

Android
Last updated：2022-05-24 16:00:18

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 174

How the shooting drafts feature works

Starting a shooting

1. Start shooting a video.
2. Pause/End the shooting.

3. Cache the video segment locally (draft box).

Resuming the shooting

1. Preload the locally cached video segment.
2. Continue with the shooting.
3. End the shooting.

//Get the object of the previous shooting

record = [TXUGCRecord shareInstance];

//Start shooting a video.

[record startRecord];

//Pause the shooting and cache the video segment

[record pauseRecord:^{

NSArray *videoPathList = record.partsManager.getVideoPathList;

//Set `videoPathList` to a local path.

}];

//Get the object of the resumed shooting.

record2 = [TXUGCRecord shareInstance]；

//Preload the locally cached video segment.

[record2.partsManager insertPart:videoPath atIndex:0];

//Start the shooting

[record2 startRecord];

//End the shooting. The SDK will splice together the two video segments.

[record2 stopRecord];

Note：

For detailed instructions, see the UGCKitRecordViewController class in (Demo) Source Code for All-

Feature UGSV Apps.

Shoot Drafts
iOS
Last updated：2022-05-24 16:02:12

https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 174

You can implement the drafts logic as follows:

First Shooting

1. Start shooting.
2. Pause/End the first shooting.

3. Cache the video segment locally (in drafts).

Second Shooting

1. Preload the locally cached video segment.
2. Resume shooting.
3. End shooting.

Android
Last updated：2022-05-24 16:02:37

// Get the first video shooting object

mTXCameraRecord = TXUGCRecord.getInstance(this.getApplicationContext());

// Start shooting

mTXCameraRecord.startRecord();

// Pause shooting

mTXCameraRecord.pauseRecord();

// Get the cached video segment and write it locally

List<string> pathList = mTXCameraRecord.getPartsManager().getPartsPathList(); //

Write `pathList` locally

// Open the application again and get the shooting object

mTXCameraRecord2 = TXUGCRecord.getInstance(this.getApplicationContext());

// Preload the locally cached segment

mTXCameraRecord2.getPartsManager().insertPart(videoPath, 0);

// Start shooting

mTXCameraRecord2.startRecord();

// End shooting, and the SDK will compose the cached video segment with the curr

ently shot one

mTXCameraRecord2.stopRecord();

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 174

Note：
For the specific implementation method, please see the usage of the RecordDraftManager class in the

shooting module in the UGSV application demo source code.

https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 174

Adding Background Music During Shooting

// Get the `recorder` object

TXUGCRecord *recorder = [TXUGCRecord shareInstance];

// Set the background music file path

[recorder setBGMAsset:path];

// Set the background music. If the music file is loaded from the system media li

brary, you can directly pass in the corresponding `AVAsset`

[recorder setBGMAsset:asset];

// Play back the background music

[recorder playBGMFromTime:beginTime

toTime:endTime

withBeginNotify:^(NSInteger errCode) {

// Callback for the start of playback. If `errCode` is 0, it is a success; otherw

ise, it is a failure

} withProgressNotify:^(NSInteger progressMS, NSInteger durationMS) {

// progressMS: duration of the part that has been played back. durationMS: total

duration

} andCompleteNotify:^(NSInteger errCode) {

// Callback for the end of playback. If `errCode` is 0, it is a success; otherwis

e, it is a failure

}];

// Stop the background music

[recorder stopBGM];

// Pause the background music

[recorder pauseBGM];

// Resume the background music

[recorder resumeBGM];

// Set mic volume level. It is used to adjust the mic volume level when backgroun

d music is played back

// volume: volume level. 1 indicates the normal volume level. The recommended val

ue range is 0–2. If you want to increase the volume level, you can set a higher v

alue

[recorder setMicVolume:1.0];

// `setBGMVolume` is used to set the background music volume level. It controls t

he background music volume level during playback.

// volume: volume level. 1 indicates the normal volume level. The recommended val

ue range is 0–2. If you want to increase the background music volume level, you c

Adding Background Music
iOS
Last updated：2022-05-24 16:03:54

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 174

an set a higher value

[recorder setBGMVolume:1.0];

Adding Background Music During Editing

// Initialize the editor

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = videoView;

param.renderMode = PREVIEW_RENDER_MODE_FILL_EDGE;

ugcEdit = [[TXVideoEditer alloc] initWithPreview:param];

// Set the background music file path

[ugcEdit setBGMAsset:fileAsset result:^(int result) {

}];

// Set the start and end time for background music playback

[ugcEdit setBGMStartTime:0 endTime:5];

// Set whether to loop the background music

[ugcEdit setBGMLoop:YES];

// Set the start position where the background music is to be added in the video

[ugcEdit setBGMAtVideoTime:0];

// Set the video volume level

[ugcEdit setVideoVolume:1.0];

// Set the background music volume level

[ugcEdit setBGMVolume:1.0];

After you set the background music, when you start the editor for video preview, the background music will be played
back according to the configured parameters. After you start the editor for video generation, the background music will
be composed into the generated video according to the configured parameters.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 174

Adding music during shooting

Adding music during editing

Android
Last updated：2022-05-24 16:04:08

// Specify the path of the music to add

mTXCameraRecord.setBGM(path);

// Set the callback (TXRecordCommon.ITXBGMNotify) for music playback

mTXCameraRecord.setBGMNofify(notify);

// Play the music

mTXCameraRecord.playBGMFromTime(startTime, endTime)

// Stop the music

mTXCameraRecord.stopBGM();

// Pause the music

mTXCameraRecord.pauseBGM();

// Resume the music

mTXCameraRecord.resumeBGM();

// Set the volume of the music mixed into other audio of the video

// Volume. The normal volume is 1. We recommend 0-2, but you can set it to a lar

ger value if you want louder music.

mTXCameraRecord.setBGMVolume(x);

// Set the start and end time for music playback. This API must be called before

startPlay to take effect.

mTXCameraRecord.seekBGM(startTime, endTime);

// Set the path of the music to add. If 0 is returned, the setting is successfu

l. Other values indicate failure to set the path due to reasons such as unsuppor

ted audio format.

public int setBGM(String path);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 174

Note：
After you complete the settings, the music will be played as configured when the video is previewed and will
also be added to the video generated.

// Set the start and end time (ms) for music playback

public void setBGMStartTime(long startTime, long endTime);

// Set whether to loop the music. true: loop; false: do not loop

public void setBGMLoop(boolean looping);

// Set where to start adding the music

public void setBGMAtVideoTime(long videoStartTime);

// Set the audio volume of the video. The value range of the volume parameter is

0-1. 0 means to mute the video, and 1 means to use the original volume.

public void setVideoVolume(float volume);

// Set the volume of the music. The value range of the volume parameter is 0-1.

0 means to mute the music, and 1 means to use the original volume.

public void setBGMVolume(float volume);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 174

Voice changing and reverb for video shooting:

// Get the `recorder` object

recorder = [TXUGCRecord shareInstance];

// Set reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_0 Disable reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_1 Karaoke room

// TXRecordCommon.VIDOE_REVERB_TYPE_2 Small room

// TXRecordCommon.VIDOE_REVERB_TYPE_3 Big hall

// TXRecordCommon.VIDOE_REVERB_TYPE_4 Deep

// TXRecordCommon.VIDOE_REVERB_TYPE_5 Resonant

// TXRecordCommon.VIDOE_REVERB_TYPE_6 Metallic

// TXRecordCommon.VIDOE_REVERB_TYPE_7 Husky

[recorder setReverbType:VIDOE_REVERB_TYPE_1];

// Set voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_0 Disable voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1 Naughty boy

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_2 Little girl

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_3 Middle-aged man

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_4 Heavy metal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_6 Non-native speaker

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_7 Furious animal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_8 Chubby

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_9 Strong electric current

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_10 Robot

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_11 Ethereal voice

[record setVoiceChangerType:VIDOE_VOICECHANGER_TYPE_1];

Note：
Voice changing and reverb take effect only for recorded human voice but not for background music.

Voice Changing and Reverb
iOS
Last updated：2022-05-24 16:06:06

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 174

Voice changing and reverb for video shooting:

// Set reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_0 Disable reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_1 Karaoke room

// TXRecordCommon.VIDOE_REVERB_TYPE_2 Small room

// TXRecordCommon.VIDOE_REVERB_TYPE_3 Big hall

// TXRecordCommon.VIDOE_REVERB_TYPE_4 Deep

// TXRecordCommon.VIDOE_REVERB_TYPE_5 Resonant

// TXRecordCommon.VIDOE_REVERB_TYPE_6 Metallic

// TXRecordCommon.VIDOE_REVERB_TYPE_7 Husky

mTXCameraRecord.setReverb(TXRecordCommon.VIDOE_REVERB_TYPE_1);

// Set voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_0 Disable voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1 Naughty boy

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_2 Little girl

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_3 Middle-aged man

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_4 Heavy metal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_6 Non-native speaker

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_7 Furious animal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_8 Chubby

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_9 Strong electric current

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_10 Robot

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_11 Ethereal voice

mTXCameraRecord.setVoiceChangerType(TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1);

Note：
Voice changing and reverb take effect only for recorded human voice but not for background music.

Android
Last updated：2022-05-24 16:06:34

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 174

Feature Overview

Video editing includes features such as video clipping, time-based special effects (slow motion, reverse, and loop),
special effect filters (dynamic light-wave, darkness and phantom, soul out, and cracked screen), filter styles (aesthetic,
rosy, blues, etc.), music mix, animated stickers, static stickers, and bubble subtitles.

Overview of Relevant Classes

Class Name Feature

TXVideoInfoReader.h Gets media information

TXVideoEditer.h Edits video

Use Instructions

The following is the basic usage process of video editing:

1. Set the video path.
2. Add effects.
3. Generate a video and output it to a specified file.
4. Listen on the generation event.

Sample

// Here, `Common/UGC/VideoPreview` in the demo is used as the preview view

#import "VideoPreview.h"

@implementation EditViewController

{

TXVideoEditer *editor;

Preview, Clipping, and Splicing
Video Editing
iOS
Last updated：2022-05-24 15:54:21

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 174

VideoPreview *_videoPreview;

}

- (void)viewDidLoad {

[super viewDidLoad];

_videoPreview = [[VideoPreview alloc] initWithFrame:self.view.bounds];

[self.view addSubview:_videoPreview];

// Edit preview parameters

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = _videoPreview.renderView;

param.renderMode = PREVIEW_RENDER_MODE_FILL_EDGE;

// 1. Initialize the editor. If you do not need preview, you can pass in `nil` or

directly call the `init` method

TXVideoEditer *editor = [[TXVideoEditer alloc] initWithPreview:param];

// Set the source video path

NSString *path = [[NSBundle mainBundle] pathForResource:@"demo" ofType:@"mp4"]

[editor setVideoPath: path];

// Configure the delegation

editor.generateDelegate = self; // Set the callback delegation object of the gene

ration event, which can be used to get the generation progress and result

// 2. Process the video. Watermarking is used as an example here

[editor setWaterMark:[UIImage imageNamed:@"water_mark"]

normalizationFrame:CGRectMake(0,0,0.1,0)];

}

// 3. Generate the video. Response to a user click is used as an example here

- (IBAction)onGenerate:(id)sender {

NSString *output = [NSTemporaryDirectory() stringByAppendingPathComponent:@"temp.

mp4"];

[editor generateVideo:VIDEO_COMPRESSED_720P videoOutputPath:output];

}

// 4. Get the generation progress

-(void) onGenerateProgress:(float)progress

{

}

// Get the generation result

-(void) onGenerateComplete:(TXGenerateResult *)result

{

if (result.retCode == 0) {

// Generated successfully

} else {

// Generation failed. For the specific cause, please see `result.descMsg`.

}

}

@end

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 174

Getting Video Information

The getVideoInfo method of TXVideoInfoReader can get certain basic information of a specified video

file. The relevant APIs are as detailed below:

// Get the video file information

+ (TXVideoInfo *)getVideoInfo:(NSString *)videoPath;

/** Get the video file information

* @param videoAsset Video file attributes

* @return Video information

*/

+ (TXVideoInfo *)getVideoInfoWithAsset:(AVAsset *)videoAsset;

The returned TXVideoInfo is defined as follows:

/// Video information

@interface TXVideoInfo : NSObject

/// Image of the first video frame

@property (nonatomic, strong) UIImage* coverImage;

/// Video duration in seconds

@property (nonatomic, assign) CGFloat duration;

/// Video size in bytes

@property (nonatomic, assign) unsigned long long fileSize;

/// Video frame rate in fps

@property (nonatomic, assign) float fps;

/// Video bitrate in Kbps

@property (nonatomic, assign) int bitrate;

/// Audio sample rate

@property (nonatomic, assign) int audioSampleRate;

/// Video width

@property (nonatomic, assign) int width;

/// Video height

@property (nonatomic, assign) int height;

/// Video image rotation angle

@property (nonatomic, assign) int angle;

@end

Getting Thumbnail

The thumbnail APIs are mainly used to generate the preview thumbnails displayed on the video editing page, get the
video cover, and perform other relevant operations.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 174

1. Get the thumbnails evenly distributed along the video duration by number

 getSampleImages of TXVideoInfoReader can get the specified number of thumbnails at the same time

intervals:

/** Get the list of thumbnails of the video

* @param count Number of the thumbnails to be obtained (at even sampling interval

s)

* @param maxSize Maximum thumbnail dimensions. The dimensions of the generated th

umbnails will not exceed the specified width and height.

* @param videoAsset Video file attributes

* @param sampleProcess Sampling progress

*/

+ (void)getSampleImages:(int)count

maxSize:(CGSize)maxSize

videoAsset:(AVAsset *)videoAsset

progress:(sampleProcess)sampleProcess;

 VideoRangeSlider in the SDK uses getSampleImages to get 10 thumbnails so as to construct a progress

bar consisting of video preview images.

2. Get thumbnails according to the list of points in time

/**

* Get the thumbnails according to the list of points in time

* @param asset Video file object

* @param times List of points in time for getting thumbnails

* @param maxSize Thumbnail dimensions

*/

+ (UIImage *)getSampleImagesFromAsset:(AVAsset *)asset

times:(NSArray<NSNumber*> *)times

maxSize:(CGSize)maxSize

progress:(sampleProcess)sampleProcess;

Editing and Previewing

Video editing supports two effect preview modes: pinpoint preview (the video image is frozen at a specified point in
time) and range preview (a video segment within a specified time range (A–B) is looped). To use a preview mode,

you need to bind a UIView to the SDK in order to display the video image.

1. Bind UIView

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 174

The initWithPreview function of TXVideoEditer is used to bind a UIView to the SDK for video image

rendering. You can set whether to use the fit or fill mode by controlling renderMode of TXPreviewParam .

PREVIEW_RENDER_MODE_FILL_SCREEN - Fill mode, where the video image will cover the

entire screen with no black bars present, but the video image may be cropped.

PREVIEW_RENDER_MODE_FILL_EDGE - Fit mode, where the video image will be complete

but black bars will exist if the aspect ratio of the video is different from that

of the screen.

2. Use pinpoint preview

The previewAtTime function of TXVideoEditer is used to preview the video image at a specified point in

time.

/** Render the video image at a specified point in time

* @param time Preview frame time in seconds

*/

- (void)previewAtTime:(CGFloat)time;

3. Use range preview

The startPlayFromTime function of TXVideoEditer is used to loop a video segment within the time range

of A–B.

/** Play back a video segment within a time range

* @param startTime Playback start time in seconds

* @param endTime Playback end time in seconds

*/

- (void)startPlayFromTime:(CGFloat)startTime

toTime:(CGFloat)endTime;

4. Pause and resume preview

/// Pause the video

- (void)pausePlay;

/// Resume the video

- (void)resumePlay;

/// Stop the video

- (void)stopPlay;

5. Add a beauty filter

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 174

You can add filter effects such as skin brightening, romantic, and fresh to the video. The demo provides multiple filters
(with resources in Common/Resource/Filter/FilterResource.bundle) for your choice, and you can also

set custom filters.

You can set a filter as follows:

- (void) setFilter:(UIImage *)image;

Here, image is the filter mapping image. If image is set to null , the filter effect will be removed.

Demo:

TXVideoEditer *_ugcEdit;

NSString * path = [[NSBundle mainBundle] pathForResource:@"FilterResource" ofTyp

e:@"bundle"];

path = [path stringByAppendingPathComponent:@"langman.png"];

UIImage* image = [UIImage imageWithContentsOfFile:path];

[_ugcEdit setFilter:image];

6. Set a watermark

1. Set a global watermark

You can set a watermark image for the video and specify the image position.
You can set a watermark as follows:

- (void) setWaterMark:(UIImage *)waterMark normalizationFrame:(CGRect)normalizati

onFrame;

Here, waterMark indicates the watermark image, and normalizationFrame is a normalized frame

value relative to the video image. The values of x , y , width , and height in frame all range from 0 to

1.

Demo:

UIImage *image = [UIImage imageNamed:@"watermark"];

[_ugcEdit setWaterMark:image normalizationFrame:CGRectMake(0, 0, 0.3 , 0.3 * imag

e.size.height / image.size.width)];// The watermark width is 30% of the video wid

th, and the height is proportionally scaled according to the width

2. Set a post-roll watermark

You can set a post-roll watermark for the video and specify the watermark position.
You can set a post-roll watermark as follows:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 174

- (void) setTailWaterMark:(UIImage *)tailWaterMark normalizationFrame:(CGRect)nor

malizationFrame

duration:(CGFloat)duration;

Here, tailWaterMark indicates the post-roll watermark image, and normalizationFrame is a normalized

frame relative to the video image. The values of x , y , width , and height in frame all range from 0 to

1. duration indicates the watermark duration in seconds.

Demo: set a post-roll watermark that can be displayed for 1 second in the middle of the video image

UIImage *tailWaterimage = [UIImage imageNamed:@"tcloud_logo"];

float w = 0.15;

float x = (1.0 - w) / 2.0;

float width = w * videoMsg.width;

float height = width * tailWaterimage.size.height / tailWaterimage.size.width;

float y = (videoMsg.height - height) / 2 / videoMsg.height;

[_ugcEdit setTailWaterMark:tailWaterimage normalizationFrame:CGRectMake(x,y,w,0)

duration:1];

Compressing and Clipping

Setting video bitrate

/**

* Set the video bitrate

* @param bitrate Video bitrate in Kbps

* If the bitrate is set, it will be selected preferably when the SDK compresses v

ideos. Please set an appropriate bitrate. If it is too low, the video image will

be blurry; if it is too high, the video size will be too large

* We recommend you set it to a value between 600 and 12000. If this API is not ca

lled, the SDK will automatically calculate the bitrate based on the compression q

uality

*/

- (void) setVideoBitrate:(int)bitrate;

Clipping video

Video editing operations all follow the same principle: set the operation commands first and use generateVideo

to run all commands in sequence, which can prevent unnecessary quality loss caused by multiple compression

operations on the same video.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 174

TXVideoEditer* _ugcEdit = [[TXVideoEditer alloc] initWithPreview:param];

// Set the clipping start and end time

[_ugcEdit setCutFromTime:_videoRangeSlider.leftPos toTime:_videoRangeSlider.right

Pos];

// ...

// Generate the final video file

_ugcEdit.generateDelegate = self;

[_ugcEdit generateVideo:VIDEO_COMPRESSED_540P videoOutputPath:_videoOutputPath];

Specify the file compression quality and output path during output, and the output progress and result will be returned

as a callback through generateDelegate .

Advanced Features

TikTok-like special effects
Setting background music
Stickers and subtitles
Editing image

https://www.tencentcloud.com/document/product/1069/38028
https://www.tencentcloud.com/document/product/1069/38010
https://www.tencentcloud.com/document/product/1069/38032
https://www.tencentcloud.com/document/product/1069/38036

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 174

Overview

Video editing supports clipping, time effects (slow motion, reverse, loop), filters (rock light, dark dream, soul out,
screen split), filter styles (artistic, rosy, blues, etc.), music mixing, animated stickers, static stickers, bubble subtitles,
etc.

Classes

Class Description

 TXVideoInfoReader Media information obtaining

 TXVideoEditer Video editing

Directions

Follow the steps below to edit your video:

1. Choose the video path
2. Import your video
3. Apply effects
4. Generate a file of the editing result

5. Listen for the callback for video generation
6. Release the resources

Getting Video Information

You can use getVideoFileInfo of TXVideoInfoReader to obtain some basic video information. Below is a request
sample:

/**

* Acquire video information

Android
Last updated：2022-10-25 11:13:13

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 174

* @param videoPath Video file path

* @return

*/

public TXVideoEditConstants.TXVideoInfo getVideoFileInfo(String videoPath);

 TXVideoInfo is returned and is defined as follows:

public final static class TXVideoInfo {

public Bitmap coverImage; // First video frame

public long duration; // Video duration (ms)

public long fileSize; // Video file size (byte)

public float fps; // Video frame rate (fps)

public int bitrate; // Video bitrate (Kbps)

public int width; // Video width

public int height; // Video height

public int audioSampleRate; // Audio bitrate

}

Below is a complete sample:

//sourcePath Path of the video to edit

String sourcePath = Environment.getExternalStorageDirectory() + File.separator +

"temp.mp4";

TXVideoEditConstants.TXVideoInfo info = TXVideoInfoReader.getInstance().getVideoF

ileInfo(sourcePath);

Getting Thumbnails

The thumbnail obtaining API is used to generate thumbnail preview during video editing or get the cover of a video.

1. Get thumbnails by splitting a video evenly

Quick generation

Below is a request sample:

/**

* Get the thumbnail list

* @param count Number of thumbnails to get

* @param width Thumbnail width

* @param height Thumbnail height

* @param fast Whether to get keyframes

* @param listener Callback API for thumbnail generation

*/

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 71 of 174

public void getThumbnail(int count, int width, int height, boolean fast, TXThumbn

ailListener listener)

The @param fast parameter supports two modes:
-Quick generation: Pass in true to use this mode, under which thumbnails are generated relatively quickly, but

they may not correspond exactly to video frames.
-Precise generation: Pass in false to use this mode, under which the thumbnails generated correspond exactly to

video frames, but the generation may be slow if the resolution is high.

Below is a complete sample:

mTXVideoEditer.getThumbnail(TCVideoEditerWrapper.mThumbnailCount, 100, 100, false

, mThumbnailListener);

private TXVideoEditer.TXThumbnailListener mThumbnailListener = new TXVideoEditer.

TXThumbnailListener() {

@Override

public void onThumbnail(int index, long timeMs, final Bitmap bitmap) {

Log.i(TAG, "onThumbnail: index = " + index + ",timeMs:" + timeMs);

// Insert the thumbnails into the image control

}

};

Precise generation

See Importing Video below.

2. Get thumbnails according to the time list

List<Long> list = new ArrayList<>();

list.add(10000L);

list.add(12000L);

list.add(13000L);

list.add(14000L);

list.add(15000L);

TXVideoEditer txVideoEditer = new TXVideoEditer(TCVideoPreviewActivity.this);

txVideoEditer.setVideoPath(mVideoPath);

txVideoEditer.setThumbnailListener(new TXVideoEditer.TXThumbnailListener() {

@Override

public void onThumbnail(int index, long timeMs, Bitmap bitmap) {

Log.i(TAG, "bitmap:" + bitmap + ",timeMs:" + timeMs);

saveBitmap(bitmap, timeMs);

}

});

txVideoEditer.getThumbnailList(list, 200, 200);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 72 of 174

Note：

If a time point in the list is larger than the total video duration, the last video frame will be returned.
Time points in the list are measured in milliseconds.

Importing Video

1. Quick import

This mode supports preview during editing. You can trim a video, play a video in slow motion, apply filters, change the
filter style, mix music, and add animated/static stickers and bubble subtitles, among others. It does not support video

looping or reversing.

2. Complete import

This mode supports all video editing features, including the time effects looping and reversing. Videos are pre-
processed in this mode.
In this mode, you can locate any time point of a video and view the corresponding video frame. Thumbnails that
correspond exactly to video frames are also generated during pre-processing.

The steps of complete import and the APIs used during the process are as follows:
1.Configure precise generation of thumbnails

/**

* Configure the thumbnails generated during pre-processing

*/

public void setThumbnail(TXVideoEditConstants.TXThumbnail thumbnail)

2. Configure the callback for thumbnail generation

/**

Configure the callback for thumbnail generation during pre-processing

@param listener

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 73 of 174

 /

public void setThumbnailListener(TXThumbnailListener listener)

Note：
We recommend you do not specify thumbnail width or height as scaling by the SDK is more efficient.
3. Configure the callback for video pre-processing

/**

* Configure the callback for video pre-processing

* @param listener

*/

public void setVideoProcessListener(TXVideoProcessListener listener)

4. Pre-process videos

public void processVideo();

Below is a complete sample:

int thumbnailCount = 10; //Number of thumbnails to generate

TXVideoEditConstants.TXThumbnail thumbnail = new TXVideoEditConstants.TXThumbnail

();

thumbnail.count = thumbnailCount;

thumbnail.width = 100; // Thumbnail width

thumbnail.height = 100; // Thumbnail height

mTXVideoEditer.setThumbnail(thumbnail); // Configure the thumbnails generated dur

ing pre-processing

mTXVideoEditer.setThumbnailListener(mThumbnailListener); // Configure the callbac

k for thumbnail generation

mTXVideoEditer.setVideoProcessListener(this); // Configure the callback of video

pre-processing progress

mTXVideoEditer.processVideo(); // Pre-process videos

Preview

You can preview a video during editing in two modes. Time-point preview shows the frame of a certain time point,
while time-range preview plays a video segment between two time points on loop (A<=>B). You need to bind the SDK

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 74 of 174

with a UIView to display video images.

1. Configure preview layout

public void initWithPreview(TXVideoEditConstants.TXPreviewParam param)

Two video rendering modes are supported, which are defined in the constant TXVideoEditConstants .

public final static int PREVIEW_RENDER_MODE_FILL_SCREEN = 1; // Aspect fill. The

image is stretched to fill the entire screen, and the excess parts are cropped.

public final static int PREVIEW_RENDER_MODE_FILL_EDGE = 2; // Aspect fit. The ima

ge is kept intact, and there may be black bars if the aspect ratio does not matc

h.

2. Time-point preview

You can locate any time point of a video imported in the complete import mode.

public void previewAtTime(long timeMs);

3. Time-range preview

You can use startPlayFromTime of TXVideoEditer to play a video segment between two time points

(A<=>B).

// Play a segment of a video from `startTime` to `endTime`

public void startPlayFromTime(long startTime, long endTime);

4. Pause and resume preview

// Pause preview

public void pausePlay();

// Resume preview

public void resumePlay();

// Stop preview

public void stopPlay();

5. Add beauty filter

You can apply filter effects such as skin brightening, romantic, and refreshing to your video. The demo offers 16 filters.
You can also customize filters.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 75 of 174

The method to set filter is:

void setFilter(Bitmap bmp)

A bitmap is a mapping of the filter image. Setting bmp to null means to remove the filter effect.

void setSpecialRatio(float specialRatio)

You can use this API to set the filter strength on a scale of 0.0 to 1.0.

void setFilter(Bitmap leftBitmap, float leftIntensity, Bitmap rightBitmap, float

rightIntensity, float leftRatio)

You can use this API to apply different filters to the left and right sections of your video. leftBitmap represents

the left filter and leftIntensity the strength of the left filter. rightBitmap represents the right filter and

 rightIntensity the strength of the right filter. leftRatio indicates the ratio (0.0-1.0) of the image section

the left filter is applied to. If leftBitmap or rightBitmap is set to null, the filter effect for the corresponding

section will be removed.

6. Watermark

1. Add a global watermark

You can add a watermark to a specified position of a video.

The method to add a watermark is as follows:

public void setWaterMark(Bitmap waterMark, TXVideoEditConstants.TXRect rect);

 waterMark represents the watermark image. rect is the normalized frame of the watermark image in relation

to the video image. The value range of x , y , width , and height is 0 to 1.

Demo:

TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

rect.x = 0.5f;

rect.y = 0.5f;

rect.width = 0.5f;

mTXVideoEditer.setWaterMark(mWaterMarkLogo, rect);

2. Add an ending watermark

You can add a watermark to the end of a video at the specified location.

The method to add an ending watermark is as follows:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 76 of 174

setTailWaterMark(Bitmap tailWaterMark, TXVideoEditConstants.TXRect txRect, int du

ration);

 tailWterMark represents the watermark image. txRect is the normalized frame of the watermark image in

relation to the video image, and the value range of x , y , and width in txRect is from 0 to 1.

 duration indicates for how long (s) the watermark is displayed.

Demo: add an ending watermark to the center of a video and show the watermark for 3 seconds

Bitmap tailWaterMarkBitmap = BitmapFactory.decodeResource(getResources(), R.drawa

ble.tcloud_logo);

TXVideoEditConstants.TXRect txRect = new TXVideoEditConstants.TXRect();

txRect.x = (mTXVideoInfo.width - tailWaterMarkBitmap.getWidth()) / (2f * mTXVideo

Info.width);

txRect.y = (mTXVideoInfo.height - tailWaterMarkBitmap.getHeight()) / (2f * mTXVid

eoInfo.height);

txRect.width = tailWaterMarkBitmap.getWidth() / (float) mTXVideoInfo.width;

mTXVideoEditer.setTailWaterMark(tailWaterMarkBitmap, txRect, 3);

Compression and Clipping

Setting video bitrate

You can specify a custom value, preferably between 600 and 12000 (Kbps), for video bitrate. The SDK will prioritize
the bitrate set during video compression. Do not set the bitrate too high or too low. The former drives up the size of
video files, and the latter results in blurry videos.

public void setVideoBitrate(int videoBitrate);

Clipping video

Set the start and end time for clipping

/**

* Specify the time range for video clipping

* @param startTime Start time (ms) for clipping

* @param endTime End time (ms) for clipping

*/

public void setCutFromTime(long startTime, long endTime)

// ...

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 77 of 174

// Generate the video file

public void generateVideo(int videoCompressed, String videoOutputPath)

The constants of videoCompressed in TXVideoEditConstants are as follows:

VIDEO_COMPRESSED_360P – Compress to 360p (360 × 640)

VIDEO_COMPRESSED_480P – Compress to 480p (640 × 480)

VIDEO_COMPRESSED_540P – Compress to 540p (960 × 540)

VIDEO_COMPRESSED_720P – Compress to 720p (1280 × 720)

VIDEO_COMPRESSED_1080P – Compress to 1080p (1920 × 1080)

If the resolution of the original video is lower than the configured constant, the original resolution will be used.
If the resolution of the original video is higher than the configured constant, the video will be compressed to the

configured resolution.

Releasing Resources

When you no longer use the mTXVideoEditer object, be sure to call release() to release it.

Advanced Features

TikTok-like Special Effects
Adding Background Music
Stickers and Subtitles

Image Transition Special Effects

https://www.tencentcloud.com/document/product/1069/38029
https://www.tencentcloud.com/document/product/1069/38022
https://www.tencentcloud.com/document/product/1069/38033
https://www.tencentcloud.com/document/product/1069/38037

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 78 of 174

Reusing Existing UI

The video splicer has complicated interaction logic, which means that the UI is also complicated; therefore, we
recommend you reuse the UI source code in the SDK. The VideoJoiner directory contains the UI source code of

the short video splicer.

VideoJoinerController: it is used to implement the video splicing list as shown above, which supports drag-
up/drag-down for order adjustment.
VideoJoinerCell: it is used to splice all video segments in the list.
VideoEditPrevController: it is used to preview the spliced video.

Implementing UI on Your Own

If you do not want to reuse the UI code in the SDK, you can implement the UI on your own as follows:

1. Select video files

In the demo, the QBImagePicker open-source library is used to implement the multi-file selection feature. The

relevant code can be found in MainViewController of the demo.

2. Set the preview view

You need to create a TXVideoJoiner object for video splicing. Just like TXUGCEditer , the preview feature

also requires the upper layer to provide the preview UIView :

// Prepare the preview view

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = _videoPreview.renderView;

param.renderMode = PREVIEW_RENDER_MODE_FILL_EDGE;

// Create a `TXVideoJoiner` object and set the preview view

TXVideoJoiner* _videoJoin = [[TXVideoJoiner alloc] initWithPreview:param];

_videoJoin.previewDelegate = _videoPreview;

// Set the video file group `_composeArray` for splicing, i.e., multiple files se

lected in step 1

[_videoJoin setVideoPathList:_composeArray];

Video Splicing
iOS
Last updated：2022-05-24 15:47:45

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 79 of 174

After setting the preview view and passing in the array of video files to be spliced, you can play back the preview. The
splicing module provides some APIs for video playback preview:

 startPlay : starts the video.

 pausePlay : pauses the video.

 resumePlay : resumes the video.

3. Generate the final file

If the preview effect is satisfactory, you can call the generation API to generate the spliced file:

_videoJoin.joinerDelegate = self;

[_videoJoin joinVideo:VIDEO_COMPRESSED_540P videoOutputPath:_outFilePath];

Specify the file compression quality and output path during splicing, and the output progress and result will be
returned as a callback through joinerDelegate .

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 80 of 174

Reusing Existing UI

The video splicer has complicated interaction logic, which means that the UI is also complicated; therefore, we
recommend you reuse the UI source code in the SDK. The videojoiner directory contains the UI source code of

the short video splicer.

 TCVideoJoinerActivity is used to implement the video splicing list as shown above, which supports drag-

up/drag-down for order adjustment.
 TCVideoJoinerPreviewActivity is used to preview the spliced video.

Implementing UI on Your Own

If you do not want to reuse the UI code in the SDK, you can implement the UI on your own as follows:

1. Select video files

Implement the multi-file selection feature on your own.

2. Set the preview

You need to create a TXVideoJoiner object for video splicing. Just like TXVideoEditer , the preview feature

also requires the upper layer to provide the preview FrameLayout :

// Prepare the preview view

TXVideoEditConstants.TXPreviewParam param = new TXVideoEditConstants.TXPreviewPar

am();

param.videoView = mVideoView;

param.renderMode = TXVideoEditConstants.PREVIEW_RENDER_MODE_FILL_EDGE;

// Create a `TXUGCJoiner` object and set the preview view

TXVideoJoiner mTXVideoJoiner = new TXVideoJoiner(this);

mTXVideoJoiner.setTXVideoPreviewListener(this);

mTXVideoJoiner.initWithPreview(param);

// Set the video file group `mVideoSourceList` for splicing, i.e., multiple files

selected in step 1

mTXVideoJoiner.setVideoPathList(mVideoSourceList);

Android
Last updated：2022-05-24 15:51:14

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 81 of 174

After setting the preview view and passing in the array of video files to be spliced, you can play back the preview. The
splicing module provides some APIs for video playback preview:

startPlay: starts the video.

pausePlay: pauses the video.
resumePlay: resumes the video.

3. Generate the final file

If the preview effect is satisfactory, you can call the generation API to generate the spliced file:

mTXVideoJoiner.setVideoJoinerListener(this);

mTXVideoJoiner.joinVideo(TXVideoEditConstants.VIDEO_COMPRESSED_540P, mVideoOutput

Path);

Specify the file compression quality and output path during splicing, and the output progress and result will be
returned as a callback through TXVideoJoiner.TXVideoJoinerListener .

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 82 of 174

Video upload from client refers to uploading local videos to the VOD platform by an end user of the application. For
more information, please see Guide. This document describes how to generate a signature for upload from client.

Overview

The overall process for upload from client is as follows:

To support upload from client, you need to build two backend services: signature distribution service and event
notification receipt service.

The client first requests an upload signature from the signature distribution service.
The signature distribution service verifies whether the client user has the upload permission. If the verification
passes, a signature will be generated and distributed; otherwise, an error code will be returned, and the upload

process will end.
After receiving the signature, the client will use the upload feature integrated in the UGSV SDK to upload the video.

Upload and Playback
Signature Distribution
Last updated：2020-08-28 16:53:57

https://www.tencentcloud.com/document/product/266/33921

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 83 of 174

After the upload is completed, the VOD backend will send an upload completion event notification to your event
notification receipt service.
If the signature distribution service specifies a video processing task flow in the signature, the VOD service will

automatically process the video accordingly after the video is uploaded. Video processing in UGSV scenarios is
generally AI-based porn detection.
After the video is processed, the VOD backend will send a task flow status change event notification to your event
notification receipt service.

At this point, the entire video upload and processing flow ends.

Signature Generation

For more information on the signature for upload from client, please see Signature for Upload from Client.

Signature Distribution Service Implementation Sample

/**

* Calculate a signature

*/

function createFileUploadSignature({ timeStamp = 86400, procedure = '', classId =

0, oneTimeValid = 0, sourceContext = '' }) {

// Determine the current time and expiration time of the signature

let current = parseInt((new Date()).getTime() / 1000)

let expired = current + timeStamp; // Signature validity period: 1 day

// Enter the parameters into the parameter list

let arg_list = {

//required

secretId: this.conf.SecretId,

currentTimeStamp: current,

expireTime: expired,

random: Math.round(Math.random() * Math.pow(2, 32)),

//opts

procedure,

classId,

oneTimeValid,

sourceContext

}

// Calculate the signature

let orignal = querystring.stringify(arg_list);

let orignal_buffer = new Buffer(orignal, "utf8");

https://www.tencentcloud.com/document/product/266/33950
https://www.tencentcloud.com/document/product/266/33931
https://www.tencentcloud.com/document/product/1069/38040#.E4.BD.BF.E7.94.A8-ai-.E9.89.B4.E9.BB.84
https://www.tencentcloud.com/document/product/266/33953
https://www.tencentcloud.com/document/product/266/33922

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 84 of 174

let hmac = crypto.createHmac("sha1", this.conf.SecretKey);

let hmac_buffer = hmac.update(orignal_buffer).digest();

let signature = Buffer.concat([hmac_buffer, orignal_buffer]).toString("base64");

return signature;

}

/**

* Respond to a signature request

*/

function getUploadSignature(req, res) {

res.json({

code: 0,

message: 'ok',

data: {

signature: gVodHelper.createFileUploadSignature({})

}

});

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 85 of 174

Calculating Upload Signature

Video upload from client refers to uploading local videos to the VOD platform by an end user of the application. For
more information, please see Guide. This document describes how to generate a signature for upload from client.

Overview

The overall process for upload from client is as follows:

To support upload from client, you need to build two backend services: signature distribution service and event
notification receipt service.

The client first requests an upload signature from the signature distribution service.
The signature distribution service verifies whether the client user has the upload permission. If the verification
passes, a signature will be generated and delivered; otherwise, an error code will be returned, and the upload

process will end.

Video Upload
iOS
Last updated：2022-05-24 16:08:49

https://www.tencentcloud.com/document/product/266/33921

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 86 of 174

After receiving the signature, the client will use the upload feature integrated in the UGSV SDK to upload the video.
After the upload is completed, the VOD backend will send an upload completion event notification to your event
notification receipt service.

If the signature distribution service specifies a video processing task flow in the signature, the VOD service will
automatically process the video accordingly after the video is uploaded. Video processing in UGSV scenarios is
generally AI-based porn detection.
After the video is processed, the VOD backend will send a task flow status change event notification to your event
notification receipt service.

At this point, the entire video upload and processing flow ends.

Signature generation

For more information on the signature for upload from client, please see Signature for Upload from Client.

Signature distribution service implementation sample

/**

* Calculate a signature

*/

function createFileUploadSignature({ timeStamp = 86400, procedure = '', classId =

0, oneTimeValid = 0, sourceContext = '' }) {

// Determine the generation time and expiration time of the signature

let current = parseInt((new Date()).getTime() / 1000)

let expired = current + timeStamp; // Signature validity period: 1 day

// Enter the parameters into the parameter list

let arg_list = {

//required

secretId: this.conf.SecretId,

currentTimeStamp: current,

expireTime: expired,

random: Math.round(Math.random() * Math.pow(2, 32)),

//opts

procedure,

classId,

oneTimeValid,

sourceContext

}

// Calculate the signature

let orignal = querystring.stringify(arg_list);

let orignal_buffer = new Buffer(orignal, "utf8");

let hmac = crypto.createHmac("sha1", this.conf.SecretKey);

let hmac_buffer = hmac.update(orignal_buffer).digest();

let signature = Buffer.concat([hmac_buffer, orignal_buffer]).toString("base64");

return signature;

https://www.tencentcloud.com/document/product/266/33950
https://www.tencentcloud.com/document/product/266/33931
https://www.tencentcloud.com/document/product/266/33944
https://www.tencentcloud.com/document/product/266/33953
https://www.tencentcloud.com/document/product/266/33922

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 87 of 174

}

/**

* Respond to a signature request

*/

function getUploadSignature(req, res) {

res.json({

code: 0,

message: 'ok',

data: {

signature: gVodHelper.createFileUploadSignature({})

}

});

}

Connection Process

Publishing short video

Upload a .mp4 file to Tencent Video Cloud and get the online watch URL. Tencent Video Cloud can meet various
video watch needs such as nearby scheduling, instant live streaming and playback, dynamic acceleration, and global
connection, delivering a smooth watch experience.

Step 1. Use the TXUGCRecord API to shoot a short video, and a .mp4 short video file will be generated after the

shoot ends and be called back.
Step 2. Your application applies for an upload signature ("credential" for the application to upload the .mp4 file to
VOD) to your business server. To ensure the security, upload signatures should be distributed by your business
server but not generated by the client application.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 88 of 174

Step 3. Use the TXUGCPublish API to publish the video. After the video is successfully published, the SDK will

call back the watch URL to you.

Notes

You should never write the SecretID or SecretKey for upload signature calculation into the client code of

the application, as their disclosure will cause security risks. If attackers get such information by cracking the
application, they can misappropriate your traffic and storage service.
The correct practice is to generate a one-time upload signature by using the SecretID and SecretKey on

your server and send the signature to the application. As the server is generally hard to be intruded, the security is
guaranteed.

When publishing a short video, please make sure that the Signature field is correctly passed in; otherwise, the

release will fail.

Connection directions

1. Select a video

You can upload the shot or edited video as described in previous documents or upload a local video on your phone.

2. Compress the video

Use the TXVideoEditer.generateVideo(int videoCompressed, String videoOutputPath) API

to compress the selected video. Four resolutions are supported for compression currently, and compression with
customizable bitrate will be supported in the future.

3. Publish the video

Publish the generated .mp4 file to Tencent Cloud. The application needs to get the upload signature with a short
validity period for file upload as instructed in Signature Distribution.
 TXUGCPublish (in TXUGCPublish.h) is used to publish .mp4 files to VOD so as to meet various video watch

needs such as nearby scheduling, instant live streaming and playback, dynamic acceleration, and global connection.

TXPublishParam * param = [[TXPublishParam alloc] init];

param.signature = _signature; // Enter the upload signature calculated in step 4

// Video file path generated by shoot, which can be obtained through the `onRecor

dComplete` callback of `TXVideoRecordListener`

param.videoPath = _videoPath;

// Path of the first-frame video preview image generated by shoot. The value is t

he file path specified by calling `startRecord`. You can also specify a path and

save the `UIImage` obtained in the `onRecordComplete` callback of `TXVideoRecordL

istener` to the specified path. It can be set to `nil`.

param.coverPath = _coverPath;

TXUGCPublish *_ugcPublish = [[TXUGCPublish alloc] init];

https://www.tencentcloud.com/document/product/1069/38015

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 89 of 174

// Checkpoint restart is used for file release by default

_ugcPublish.delegate = self; // Set the `TXVideoPublishListener` callback

[_ugcPublish publishVideo:param];

The release process and result will be returned through the TXVideoPublishListener API (defined in the

 TXUGCPublishListener.h header file):

 onPublishProgress is used to return the file release progress, the uploadBytes parameter indicates the

number of uploaded bytes, and the totalBytes parameter indicates the total number of bytes that need to be

uploaded.

@optional

-(void) onPublishProgress:(NSInteger)uploadBytes totalBytes: (NSInteger)totalByte

s;

 onPublishComplete is used to return the release result, the errCode and descMsg fields of

 TXPublishResult indicate the error code and error message respectively, videoURL indicates the VOD

address of the short video, coverURL indicates the cloud storage address of the video cover, and videoId

indicates the cloud storage ID the video file, with which you can call VOD's server APIs.

@optional

-(void) onPublishComplete:(TXPublishResult*)result;

Release result
You can check the short video release result against the error code table.

4. Play back the video

After the video is successfully uploaded in step 3, the video fileId , playback URL, and cover URL will be

returned. You can directly pass in the fileId or playback URL to the VOD player for playback.

https://www.tencentcloud.com/document/product/266/34110
https://www.tencentcloud.com/document/product/1069/38042
https://www.tencentcloud.com/document/product/1069/38017

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 90 of 174

Connection Process

Short video release: upload a .mp4 file to Tencent Video Cloud and get the online watch URL. Tencent Video Cloud
can meet various video watch needs such as nearby scheduling, instant live streaming and playback, dynamic
acceleration, and global connection, delivering a smooth watch experience.

Step 1. Use the TXUGCRecord API to shoot a short video, and a .mp4 short video file will be generated after the

shoot ends and be called back.
Step 2. Your application applies for an upload signature ("credential" for the application to upload the .mp4 file to
VOD) to your business server. To ensure the security, upload signatures should be distributed by your business
server but not generated by the client application.

Step 3. Use the TXUGCPublish API to publish the video. After the video is successfully published, the SDK will

call back the watch URL to you.

Notes

You should never write the SecretID or SecretKey for upload signature calculation into the client code of

the application, as their disclosure will cause security risks. If attackers get such information by cracking the
application, they can misappropriate your traffic and storage service.

Android
Last updated：2022-05-24 16:09:04

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 91 of 174

The correct practice is to generate a one-time upload signature by using the SecretID and SecretKey on

your server and send the signature to the application.
When publishing a short video, please make sure that the Signature field is correctly passed in; otherwise, the

release will fail.

Connection Directions

Integrate the short video upload feature as instructed in Upload SDK for Android.

1. Select a video

Uploaded a shot, edited, or spliced video or select a local video for upload.

2. Compress the video

Video compression can reduce the short video file size but will also reduce the video definition. You can determine
whether to compress videos as needed.

Use the TXVideoEditer.generateVideo(int videoCompressed, String videoOutputPath)

API to compress the video. Four resolutions are supported for compression currently, and compression with
customizable bitrate will be supported in the future.

3. Publish the video

Publish the generated .mp4 file to Tencent Cloud. The application needs to get the upload signature with a short
validity period for file upload as instructed in Signature Distribution. TXUGCPublish (in TXUGCPublish.java)

is used to publish .mp4 files to VOD so as to meet various video watch needs such as nearby scheduling, instant live

streaming and playback, dynamic acceleration, and global connection.

mVideoPublish = new TXUGCPublish(TCVideoPublisherActivity.this.getApplicationCont

ext());

// Checkpoint restart is used for file release by default

TXUGCPublishTypeDef.TXPublishParam param = new TXUGCPublishTypeDef.TXPublishParam

();

param.signature = mCosSignature; // Enter the upload signature calculated in step

4

// Video file path generated by shoot, which can be obtained through the `onRecor

dComplete` callback of `ITXVideoRecordListener`

param.videoPath = mVideoPath;

// First-frame video preview generated by shoot, which can be obtained through th

e `onRecordComplete` callback of `ITXVideoRecordListener`

param.coverPath = mCoverPath;

mVideoPublish.publishVideo(param);

https://www.tencentcloud.com/document/product/266/33925
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXVideoEditer__android.html#af3f16bcb21f26c608c980b91671e386e
https://www.tencentcloud.com/document/product/1069/38015

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 92 of 174

The release process and result will be returned through the TXRecordCommon.ITXVideoPublishListener

API (in the TXRecordCommon.java header file):

 onPublishProgress is used to return the release progress, the uploadBytes parameter indicates the

number of uploaded bytes, and the totalBytes parameter indicates the total number of bytes that need to be

uploaded.

void onPublishProgress(long uploadBytes, long totalBytes);

 onPublishComplete is used to return the release result.

void onPublishComplete(TXPublishResult result);

The fields in the TXPublishResult parameter and their descriptions are as detailed below:

Field Description

errCode Error code.

descMsg Error message.

videoURL VOD address of short video.

coverURL Cloud storage address of video cover.

videoId Cloud storage ID of video file, through which you can call VOD's server APIs.

You can check the short video release result against the error code table.

4. Play back the video

After the video is successfully uploaded in step 3, the video fileId , playback URL, and cover URL will be

returned. You can directly pass in the fileId or playback URL to the VOD player for video playback.

https://www.tencentcloud.com/document/product/266/7788
https://www.tencentcloud.com/document/product/1069/38042
https://www.tencentcloud.com/document/product/1069/38027

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 93 of 174

Overview

Tencent Cloud RT-Cube Player for iOS is an open-source Tencent Cloud player component. It can provide powerful
playback functionality similar to Tencent Video with just a few lines of code. It has basic features such as
landscape/portrait mode switching, definition selection, gestures, and small window playback, as well as special

features such as video buffering, software/hardware decoding switching, and adjustable-speed playback. It supports
more formats and has better compatibility and functionality than system-default players. In addition, it features instant
broadcasting of the first frame and low latency and offers advanced capabilities like video thumbnail.

If the Player component cannot meet your custom requirements and you have development experience, you can
integrate the RT-Cube Player SDK as instructed in Integration Guide to customize the player UI and playback

features.

Prerequisites

1. Activate VOD. If you don't have an account yet, sign up first.
2. Download and install Xcode from App Store.
3. Download and install CocoaPods as instructed at the CocoaPods website.

Content Summary

How to integrate the RT-Cube Player component for iOS
How to create and use a player

Directions

Step 1. Download the player code package

GitHub page: LiteAVSDK/Player_iOS

Player SDK
iOS
Last updated：2022-11-21 17:29:27

https://www.tencentcloud.com/document/product/266/47849
https://www.tencentcloud.com/product/vod
https://www.tencentcloud.com/login
https://cocoapods.org/
https://github.com/LiteAVSDK/Player_iOS

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 94 of 174

You can download a ZIP file of the Player component from the GitHub page or use the Git clone command to
download the component.

Download the ZIP file

Download using a Git command

Go to the Player GitHub page and click Code > Download ZIP.

Step 2. Integrate the component

This step describes how to integrate the Player component. We recommend you integrate it through CocoaPods or

manually download the SDK and then import it into your current project.

Integrate via CocoaPods
Manually download the SDK

1. To install the component using CocoaPods, add the code below to the Podfile:
(1) Directly integrate SuperPlayer as a Pod:

pod 'SuperPlayer

To use the Player edition, add the following dependency to podfile :

pod 'SuperPlayer/Player'

To use the All-in-one edition, add the following dependency to podfile :

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 95 of 174

pod 'SuperPlayer/Professional'

2. Run pod install or pod update .

Step 3. Use the player features

This step describes how to create a player and use it for video playback.

1. Create a player
Create a SuperPlayerView object to play videos (SuperPlayerView is the main class of the

Superplayer).

// Import the header file

#import <SuperPlayer/SuperPlayer.h>

// Create a player

_playerView = [[SuperPlayerView alloc] init];

// Set a delegate for events

_playerView.delegate = self;

// Set the parent view. _playerView will be automatically added under holderVie

w.

_playerView.fatherView = self.holderView;

2. License configuration
If you have the required license, get the license URL and key in the RT-Cube console.
If you don't have the required license, please contact us to get a license.

After getting the license information, before calling relevant APIs of the SDK, initialize the license through the
following API. We recommend you set the following in - [AppDelegate

application:didFinishLaunchingWithOptions:] :

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:

(NSDictionary *)launchOptions {

NSString * const licenceURL = @"<The license URL obtained>";

NSString * const licenceKey = @"<The key obtained>";

//TXLiveBase can be found in the "TXLiveBase.h" header file

[TXLiveBase setLicenceURL:licenceURL key:licenceKey];

NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]);

}

https://console.tencentcloud.com/vcube
https://www.tencentcloud.com/contact-us

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 96 of 174

3. Video playback:
This step describes how to play back a video. The RT-Cube Player for iOS supports playback through FileId

in VOD or URL. We recommend you integrate the FileId because it allows you to use more VOD

capabilities.
Play by VOD file ID
Play by URL

A video file ID is returned by the server after the video is uploaded.

i. After a video is published from a client, the server will return a file ID to the client.

ii. When the video is uploaded to the server, the corresponding FileId will be included in the notification of

upload confirmation.
If the video you want to play is already saved with VOD, you can go to Media Assets to view its file ID.

>!
>- To play by VOD file ID, you need to use the Adaptive-HLS template (ID: 10) to transcode the video or use the
player signature psign to specify the video to play; otherwise, the playback may fail. For more information on

how to transcode a video and generate psign , see Play back a video with the Player component and Player

Signature.
>- If a "no v4 play info" exception occurs during playback through FileId , the above problem may exist. In

this case, we recommend you make adjustments as instructed above. You can also directly get the playback link
of the source video for playback through URL.
>- We recommend you transcode videos for playback because untranscoded videos may experience

compatibility issues during playback.

// If you haven't enabled hotlink protection and a "no v4 play info" error occ

urs, we recommend you transcode your video using the Adaptive-HLS template (I

D: 10) or get the playback URL of the video and play it by URL.

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

model.appId = 1400329071;// Configure AppId

model.videoId = [[SuperPlayerVideoId alloc] init];

https://console.tencentcloud.com/vod/media
https://www.tencentcloud.com/document/product/266/38098
https://www.tencentcloud.com/document/product/266/38099

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 97 of 174

Stop playback
If the player is no longer needed, call resetPlayer to reset the player and free up memory.

[_playerView resetPlayer];

At this point, you have learned how to create a player, use it to play videos, and stop playback.

More Features

1. Full screen playback

The Player component supports full screen playback, where it allows setting screen lock, volume and brightness
control through gestures, on-screen commenting, screencapturing, and definition selection. This feature can be tried
out in TCToolkit App > Player > Player Component, and you can enter the full screen playback mode by clicking
the full screen icon.

You can call the API below to go full screen from the windowed playback mode:

- (void)superPlayerFullScreenChanged:(SuperPlayerView *)player {

// You can customize the logic after switching to the full screen mode here

}

Features of full screen playback mode

Back to windowed mode
Enable screen locking
On-screen comments
Screenshot
Change resolution

model.videoId.fileId = @"5285890799710173650"; // Configure FileId

// If you enable hotlink protection, you need to enter a psign (player signatu

re) for playback. For more information on the signature and how to generate i

t, see Player Signature.

//model.videoId.pSign = @"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6MTQ

wMDMyOTA3MSwiZmlsZUlkIjoiNTI4NTg5MDc5OTcxMDE3MzY1MCIsImN1cnJlbnRUaW1lU3RhbXAiO

jEsImV4cGlyZVRpbWVTdGFtcCI6MjE0NzQ4MzY0NywidXJsQWNjZXNzSW5mbyI6eyJ0IjoiN2ZmZmZ

mZmYifSwiZHJtTGljZW5zZUluZm8iOnsiZXhwaXJlVGltZVN0YW1wIjoyMTQ3NDgzNjQ3fX0.yJxpn

Q2Evp5KZQFfuBBK05BoPpQAzYAWo6liXws-LzU";

[_playerView playWithModelNeedLicence:model];

https://www.tencentcloud.com/document/product/266/38099

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 98 of 174

Tap the back button to return to the windowed mode. The delegate method that will be triggered after the SDK
implements the logic for exiting full screen is as follows:

// The back button tapping event

- (void)superPlayerBackAction:(SuperPlayerView *)player;

Triggered by tapping of the back button at the top left

// The exit full screen notification

- (void)superPlayerFullScreenChanged:(SuperPlayerView *)player;

2. Floating window playback

The Player component supports playback in a small floating window, which allows users to switch to another page of
the application without interrupting the video playback. You can try out this feature in TCToolkit App > Player >
Player Component by clicking Back in the top-left corner.

// Tapping the back button during playback in portrait mode will trigger the API

[SuperPlayerWindowShared setSuperPlayer:self.playerView];

[SuperPlayerWindowShared show];

// The API triggered by tapping the floating window to return to the main window

SuperPlayerWindowShared.backController = self;

3. Thumbnail

The Player component supports customizing a video thumbnail, which is displayed before the callback is received for
playing back the first video frame. This feature can be tried out in TCToolkit App > Player > Player Component >
Thumbnail Customization Demo.

When the Player component is set to the automatic playback mode PLAY_ACTION_AUTO_PLAY , the video will

be played back automatically, and the thumbnail will be displayed before the first video frame is loaded.
When the Player component is set to the manual playback mode PLAY_ACTION_MANUAL_PLAY , the video will

be played back only after the user clicks Play. The thumbnail will be displayed until the first video frame is loaded.

You can set the thumbnail by specifying the URL of a local or online file. For detailed directions, see the code below. If
you play by VOD file ID, you can also set the thumbnail in the VOD console.

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

SuperPlayerVideoId *videoId = [SuperPlayerVideoId new];

videoId.fileId = @"8602268011437356984";

model.appId = 1400329071;

model.videoId = videoId;

// Playback mode, which can be set to automatic (`PLAY_ACTION_AUTO_PLAY`) or manu

al (`PLAY_ACTION_MANUAL_PLAY`)

model.action = PLAY_ACTION_MANUAL_PLAY;

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 99 of 174

// Specify the URL of an online file to use as the thumbnail. If `coverPictureUrl

` is not set, the thumbnail configured in the VOD console will be used.

model.customCoverImageUrl = @"http://1500005830.vod2.myqcloud.com/6c9a5118vodcq15

00005830/cc1e28208602268011087336518/MXUW1a5I9TsA.png";

[self.playerView playWithModelNeedLicence:model];

4. Video playlist loop

The Player component supports looping a video playlist:

After a video ends, the next video in the list can be played automatically or users can manually start the next video.
After the last video in the list ends, the first video in the list will start automatically.

You can try out this feature in TCToolkit App > Player > Player Component > Video List Loop Demo.

// Step 1. Create a `NSMutableArray` for the loop data

NSMutableArray *modelArray = [NSMutableArray array];

SuperPlayerModel *model = [SuperPlayerModel new];

SuperPlayerVideoId *videoId = [SuperPlayerVideoId new];

videoId.fileId = @"8602268011437356984";

model.appId = 1252463788;

model.videoId = videoId;

[modelArray addObject:model];

model = [SuperPlayerModel new];

videoId = [SuperPlayerVideoId new];

videoId.fileId = @"4564972819219071679";

model.appId = 1252463788;

model.videoId = videoId;

[modelArray addObject:model];

// Step 2. Call the loop API of `SuperPlayerView`

[self.playerView playWithModelListNeedLicence:modelArray isLoopPlayList:YES start

Index:0];

(void)playWithModelListNeedLicence:(NSArray *)playModelList isLoopPlayList:(BOOL)

isLoop startIndex:(NSInteger)index;

API parameters:

Parameter Type Description

playModelList NSArray * Loop data list

isLoop Boolean Whether to loop the playlist

index NSInteger Index of the video from which to start the playback

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 100 of 174

5. Picture-in-Picture (PiP) feature

The Picture-in-Picture (PiP) feature has been launched on iOS 9 but can currently be used only on iPads. To use PiP
on an iPhone, you need to update the iOS version to iOS 14.
The Player component supports both in-app PiP and system-wide PiP. To use the feature, you need to enable

background modes: In Xcode, choose your target, click Signing & Capabilities > +Capability > Background
Modes, and select Audio, AirPlay, and Picture in Picture.

Code sample for using PiP capabilities:

// Enter the PiP mode

if (![TXVodPlayer isSupportPictureInPicture]) {

return;

}

[_vodPlayer enterPictureInPicture];

// Exit the PiP mode

[_vodPlayer exitPictureInPicture];

6. Video preview

The Player component supports video preview, which is useful if you want to allow non-subscribers to watch the
beginning of a video. We offer parameters for you to set the video preview duration, pop-up message, and preview

end screen. You can find a demo for this feature in the TCToolkit app: Player > Player Component > Preview
Feature Demo.

// Step 1. Create a preview model

TXVipWatchModel *model = [[TXVipWatchModel alloc] init];

model.tipTtitle = @"You can preview 15 seconds of the video. Become a subscriber

to watch the full video.";

model.canWatchTime = 15;

// Step 2. Set the preview model

self.playerView.vipWatchModel = model;

// Step 3. Call the method below to display the preview

[self.playerView showVipTipView];

 TXVipWatchModel class parameter description:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 101 of 174

Parameter Type DescriptionParameter Type Description

tipTtitle NSString Pop-up message

canWatchTime float Preview duration in seconds

7. Dynamic watermark

The Player component allows you to add a randomly moving text watermark to protect your content against piracy.
Watermarks are visible in both the full screen mode and windowed mode. The text, font size, and color of a watermark
are customizable. You can find a demo for this feature in the TCToolkit app: Player > Player Component >
Dynamic Watermark Demo.

// Step 1. Create a video source information model

SuperPlayerModel * playermodel = [SuperPlayerModel new];

// Add other information of the video source

// Step 2. Create a dynamic watermark model

DynamicWaterModel *model = [[DynamicWaterModel alloc] init];

// Step 3. Set the data of the dynamic watermark

model.dynamicWatermarkTip = @"shipinyun";

model.textFont = 30;

model.textColor = [UIColor colorWithRed:255.0/255.0 green:255.0/255.0 blue:255.0/

255.0 alpha:0.8];

playermodel.dynamicWaterModel = model;

// Step 4. Call the method below to display the dynamic watermark

[self.playerView playWithModelNeedLicence:playermodel];

Parameters for DynamicWaterModel :

Parameter Type Description

dynamicWatermarkTip NSString Watermark text

textFont CGFloat Font size

textColor UIColor Text color

Demo

To try out more features, you can directly run the demo project or scan the QR code to download the TCToolkit App
demo.

Running a demo project

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 102 of 174

1. In the Demo directory, run the pod update command to generate the TXLiteAVDemo.xcworkspace

file again.
2. Double-click the file to open it, modify the certificate, and run the project on a real device.

3. After the demo is run successfully, go to Player > Player Component to try out the player features.

TCToolkit app

You can try out more features of the Player component in TCToolkit App > Player.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 103 of 174

Overview

The Tencent Cloud RT-Cube Player for Android is an open-source player component of Tencent Cloud. It integrates
quality monitoring, video encryption, Top Speed Codec, definition selection, and small window playback and is
suitable for all VOD and live playback scenarios. It encapsulates complete features and provides upper-layer UIs to

help you quickly create a playback program comparable to mainstream video applications.

If the Player component cannot meet your custom requirements and you have development experience, you can
integrate the RT-Cube Player SDK as instructed in Integration Guide to customize the player UI and playback
features.

Prerequisites

1. To try out all features of the player, we recommend you activate VOD. If you don't have an account yet, sign up for

one first. If you don't use the VOD service, you can skip this step; however, you will only be able to use basic player
features after integration.

2. Download and install Android Studio. If you have already done so, skip this step.

Content Summary

1. How to integrate the Player component for Android
2. How to create and use the player

Directions

Step 1. Download the player code package

GitHub page: LiteAVSDK/Player_Android

You can download the Player for Android by downloading the Player component ZIP package or running the
Git clone command.

Download the ZIP file

Android
Last updated：2022-11-14 18:22:09

https://www.tencentcloud.com/document/product/266/47849
https://www.tencentcloud.com/product/vod
https://www.tencentcloud.com/login
https://developer.android.com/studio
https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 104 of 174

Download using a Git command

Go to the Player GitHub page and click Code > Download ZIP.

Step 2. Integrate the component

This step describes how to integrate the player. You can integrate the project by using Gradle for automatic loading,
manually downloading the AAR and importing it into your current project, or importing the JAR and SO libraries.

Automatic loading in Gradle (AAR)
Manual download in Gradle (AAR)

SDK integration (jar + so)

1. Download the SDK + demo package for Android here.

2. Copy the Demo/superplayerkit module to your project and then configure as follows:

Import superplayerkit into setting.gradle in your project directory.

include ':superplayerkit'

Open the build.gradle file of the superplayerkit project and modify the constant values of

 compileSdkVersion , buildToolsVersion , minSdkVersion , targetSdkVersion , and

https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 105 of 174

 rootProject.ext.liteavSdk .

compileSdkVersion 26

buildToolsVersion "26.0.2"

defaultConfig {

targetSdkVersion 23

minSdkVersion 19

}

dependencies {

// To integrate an older version, change `latest.release` to the correspondin

g version number, such as `8.5.290009`

implementation 'com.tencent.liteav:LiteAVSDK_Player:latest.release'

}

Import the common module into your project as instructed above and configure it.

3. Configure the mavenCentral repository in Gradle, and LiteAVSDK will be automatically downloaded and

updated. Open app/build.gradle and configure as follows:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 106 of 174

i. Add the LiteAVSDK_Player dependencies to dependencies .

dependencies {

implementation 'com.tencent.liteav:LiteAVSDK_Player:latest.release'

implementation project(':superplayerkit')

// Third-party library for integration of the on-screen commenting feature of

the Player component

implementation 'com.github.ctiao:DanmakuFlameMaster:0.5.3'

}

If you need to integrate an older version of the LiteAVSDK_Player SDK, view it in MavenCentral and then
integrate it as instructed below:

dependencies {

// Integrate the LiteAVSDK_Player SDK v8.5.10033

implementation 'com.tencent.liteav:LiteAVSDK_Player:8.5.10033'

}

ii. In the defaultConfig of app/build.gradle , specify the CPU architecture to be used by the

application (currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a, which you can configure as

needed).

https://repo1.maven.org/maven2/com/tencent/liteav/LiteAVSDK_Player/

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 107 of 174

ndk {

abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"

}

If you haven't used the download cache feature (APIs in TXVodDownloadManager) of the SDK v9.4 or earlier
and don't need to play back the downloaded files in the SDK v9.5 or later, you don't need to use the SO file of the
feature, which helps reduce the size of the installation package. For example, if you have downloaded a cached

file by using the setDownloadPath and startDownloadUrl functions of the

 TXVodDownloadManager class in the SDK v9.4 or earlier, and the getPlayPath path called back by

 TXVodDownloadManager is stored in the application for subsequent playback, you will need

 libijkhlscache-master.so to play back the file at the getPlayPath path; otherwise, you won't

need it. You can add the following to app/build.gradle :

packagingOptions{

exclude "lib/armeabi/libijkhlscache-master.so"

exclude "lib/armeabi-v7a/libijkhlscache-master.so"

exclude "lib/arm64-v8a/libijkhlscache-master.so"

}

iii. Add the mavenCentral repository to the build.gradle in your project directory.

repositories {

mavenCentral()

}

4. Click Sync Now to sync the SDK. If mavenCentral can be connected to, the SDK will be automatically

downloaded and integrated into the project very soon.

At this point, you have completed integrating the RT-Cube Player for Android.

Step 3. Configure application permissions

Configure permissions for your application in AndroidManifest.xml . LiteAVSDK needs the following

permissions:

<!--network permission-->

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

https://www.tencentcloud.com/document/product/266/47849#txvoddownloadmanager

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 108 of 174

<!--VOD player floating window permission -->

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />

<!--storage-->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

Step 4. Set obfuscation rules

In the proguard-rules.pro file, add the classes related to the TRTC SDK to the "do not obfuscate" list:

-keep class com.tencent.** { *;}

At this point, you have completed configuring permissions for the RT-Cube Player application for Android.

Step 5. Use the player features

This step describes how to create a player and use it for video playback.

1. Player creation

The main class of the player is SuperPlayerView , and videos can be played back after it is created.

 FileId or URL can be integrated for playback. Create SuperPlayerView in the layout file:

<!-- Player component -->

<com.tencent.liteav.demo.superplayer.SuperPlayerView

android:id="@+id/superVodPlayerView"

android:layout_width="match_parent"

android:layout_height="200dp" />

2. License configuration

If you have the required license, get the license URL and key in the RT-Cube console.
If you don't have the required license, contact us to get it.

After obtaining the license information, before calling relevant APIs of the SDK, initialize the license through the
following API. We recommend you set the following in the Application class:

public class MApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

String licenceURL = ""; // The license URL obtained

String licenceKey = ""; // The license key obtained

TXLiveBase.getInstance().setLicence(this, licenceURL, licenceKey);

https://console.tencentcloud.com/vcube
https://www.tencentcloud.com/contact-us

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 109 of 174

TXLiveBase.setListener(new TXLiveBaseListener() {

@Override

public void onLicenceLoaded(int result, String reason) {

Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

}

});

}

}

3. Video playback

This step describes how to play back a video. The RT-Cube Player for Android can be used for VOD and live
playback as follows:

VOD playback: The Player component supports two VOD playback methods, namely, through FileID or

URL.
Live playback: The Player component can use the playback through URL method for live playback. A live

audio/video stream can be pulled for playback simply by passing in its URL. For more information on how to
generate a Tencent Cloud live streaming URL, see Splicing Live Streaming URLs.

VOD and live playback through URL
VOD playback through `FileID`

A URL can be the playback address of a VOD file or the pull address of a live stream. A video file can be played
back simply by passing in its URL.

SuperPlayerModel model = new SuperPlayerModel();

model.appId = 1400329073; // Configure `AppId`

model.url = "http://your_video_url.mp4"; // Configure a URL for your video fo

r playback

mSuperPlayerView.playWithModelNeedLicence(model);

4. Playback exit
If the player is no longer needed, call resetPlayer to reset the player and free up memory.

mSuperPlayerView.resetPlayer();

At this point, you have learned how to create a player, use it to play videos, and stop playback.

More Features

This section describes several common player features. For more features, see Demo. For features supported by the
Player component, see Feature Description.

https://www.tencentcloud.com/document/product/267/38393
https://www.tencentcloud.com/document/product/266/42965

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 110 of 174

1. Full screen playback

The Player component supports full screen playback. In full screen mode, users can lock the screen, control volume
and brightness with gestures, send on-screen comments, take screenshots, and switch the video definition. You can
try out this feature in TCToolkit App > Player > Player Component, and you can enter the full screen playback

mode by clicking the full screen icon in the bottom-right corner.

You can call the API below to enter full screen from the windowed playback mode:

mControllerCallback.onSwitchPlayMode(SuperPlayerDef.PlayerMode.FULLSCREEN);

Features of full screen playback mode

Return to the window
Screen lock

On-screen comments
Screenshot
Change resolution

Tap Back to return to the window playback mode.

// API triggered after tapping

mControllerCallback.onBackPressed(SuperPlayerDef.PlayerMode.FULLSCREEN);

onSwitchPlayMode(SuperPlayerDef.PlayerMode.WINDOW);

2. Floating window playback

The Player component supports playback in a small floating window, which allows users to switch to another
application without interrupting the video playback. You can try out this feature in TCToolkit App > Player > Player

Component by clicking Back in the top-left corner.

Floating window playback relies on the following permission in AndroidManifest :

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />

// The API triggered by switching to the floating window

mSuperPlayerView.switchPlayMode(SuperPlayerDef.PlayerMode.FLOAT);

// The API triggered by tapping the floating window to return to the main window

mControllerCallback.onSwitchPlayMode(SuperPlayerDef.PlayerMode.WINDOW);

3. Thumbnail

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 111 of 174

The Player component supports customizing a video thumbnail, which is displayed before the callback is received for
playing back the first video frame. You can try out this feature in TCToolkit App > Player > Player Component >
Thumbnail Customization Demo.

When the Player component is set to the automatic playback mode PLAY_ACTION_AUTO_PLAY , the video will

be played back automatically, and the thumbnail will be displayed before the first video frame is loaded.
When the Player component is set to the manual playback mode PLAY_ACTION_MANUAL_PLAY , the video will

be played back only after the user clicks Play. The thumbnail will be displayed until the first video frame is loaded.

You can set the thumbnail by specifying the URL of a local or online file. For detailed directions, see the code below. If

you play by VOD file ID, you can also set the thumbnail in the VOD console.

SuperPlayerModel model = new SuperPlayerModel();

model.appId = "Your `appid`";

model.videoId = new SuperPlayerVideoId();

model.videoId.fileId = "Your `fileId`";

// Playback mode, which can be set to automatic (`PLAY_ACTION_AUTO_PLAY`) or manu

al (`PLAY_ACTION_MANUAL_PLAY`)

model.playAction = PLAY_ACTION_MANUAL_PLAY;

// Specify the URL of an online file to use as the thumbnail. If `coverPictureUrl

` is not set, the thumbnail configured in the VOD console will be used.

model.coverPictureUrl = "http://1500005830.vod2.myqcloud.com/6c9a5118vodcq1500005

830/cc1e28208602268011087336518/MXUW1a5I9TsA.png"

mSuperPlayerView.playWithModelNeedLicence(model);

4. Video playlist loop

The Player component supports looping a video playlist:

After a video ends, the next video in the list can be played automatically or users can manually start the next video.

After the last video in the list ends, the first video in the list will start automatically.

This feature can be tried out in TCToolkit App > Player > Player Component > Video List Loop Demo.

// Step 1. Create a loop list<SuperPlayerModel>

ArrayList<SuperPlayerModel> list = new ArrayList<>();

SuperPlayerModel model = new VideoModel();

model = new SuperPlayerModel();

model.videoId = new SuperPlayerVideoId();

model.appid = 1252463788;

model.videoId.fileId = "4564972819219071568";

list.add(model);

model = new SuperPlayerModel();

model.videoId = new SuperPlayerVideoId();

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 112 of 174

model.appid = 1252463788;

model.videoId.fileId = "4564972819219071679";

list.add(model);

// Step 2. Call the loop API

mSuperPlayerView.playWithModelListNeedLicence(list, true, 0);

public void playWithModelListNeedLicence(List<SuperPlayerModel> models, boolean i

sLoopPlayList, int index);

API parameters:

Parameter Type Description

models List Loop data list

isLoopPlayList boolean Whether to loop video playback

index int Index of SuperPlayerModel from which to start the playback

5. Preview

The Player component supports the video preview feature, which allows non-member viewers to view a preview of the
video. You can pass in different parameters to control the video preview duration, prompt message, and preview end

screen. You can try out this feature in Tencent Cloud Toolkit App > Player > Player Component > Preview
Feature Demo.

Method 1:

// Step 1. Create a video model

SuperPlayerModel mode = new SuperPlayerModel();

//... Add the video source information

// Step 2. Create a preview information model

VipWatchModel vipWatchModel = new VipWatchModel("You can preview %ss and activate

the VIP membership to watch the full video",15);

mode.vipWatchMode = vipWatchModel;

// Step 3. Call the method for playing back videos

mSuperPlayerView.playWithModelNeedLicence(mode);

Method 2:

// Step 1. Create a preview information model

VipWatchModel vipWatchModel = new VipWatchModel("You can preview %ss and activate

the VIP membership to watch the full video",15);

// Step 2. Call the method for setting the preview feature

mSuperPlayerView.setVipWatchModel(vipWatchModel);

public VipWatchModel(String tipStr, long canWatchTime)

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 113 of 174

 VipWatchModel API parameter description:

Parameter Type Description

tipStr String Preview prompt message

canWatchTime Long Preview duration in seconds

6. Dynamic watermark

The Player component allows you to add a randomly moving text watermark to protect your content against piracy.
Watermarks are visible in both the full screen mode and windowed mode. The text, font size, and color of a watermark
are customizable. You can find a demo for this feature in the TCToolkit app: Player > Player Component >
Dynamic Watermark Demo.

Method 1:

// Step 1. Create a video model

SuperPlayerModel mode = new SuperPlayerModel();

//... Add the video source information

// Step 2. Create a watermark information model

DynamicWaterConfig dynamicWaterConfig = new DynamicWaterConfig("shipinyun", 30, C

olor.parseColor("#80FFFFFF"));

mode.dynamicWaterConfig = dynamicWaterConfig;

// Step 3. Call the method for playing back videos

mSuperPlayerView.playWithModelNeedLicence(mode);

Method 2:

// Step 1. Create a watermark information model

DynamicWaterConfig dynamicWaterConfig = new DynamicWaterConfig("shipinyun", 30, C

olor.parseColor("#80FFFFFF"));

// Step 2. Call the method for setting the dynamic watermark feature

mSuperPlayerView.setDynamicWatermarkConfig(dynamicWaterConfig);

public DynamicWaterConfig(String dynamicWatermarkTip, int tipTextSize, int tipTex

tColor)

API parameters:

Parameter Type Description

dynamicWatermarkTip String Watermark text information

tipTextSize int Text size

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 114 of 174

Parameter Type Description

tipTextColor int Text color

Demo

To try out more features, you can directly run the project demo or scan the QR code to download the TCToolkit App
demo.

Running a demo project

1. Select File > Open on the navigation bar of Android Studio. In the pop-up window, select the
 $SuperPlayer_Android/Demo directory of the demo project. After the demo project is imported

successfully, click Run app to run the demo.
2. After running the demo successfully, go to Player > Player Component to try out the player features.

TCToolkit app

You can try out more features of the Player component in TCToolkit App > Player.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 115 of 174

The Tencent Effect SDK comes in 11 editions, which fall into two categories: the basic A series and advanced S
series. For details about the features of different editions, see the table below.

Basic A series

Basic A editions offer common beautification features and are for customers who do not have high requirements on

face editing.

Feature
Edition

A1 - 01 A1 - 02 A1 - 03 A1 - 04 A1 - 05 A1 - 06

Basic

Basic beauty filters
Brightening, skin smoothing, and

blush
✓ ✓ ✓ ✓ ✓ ✓

Image settings
Contrast, saturation, and sharpness

✓ ✓ ✓ ✓ ✓ ✓

Basic beautification
Eye enlarging and face slimming

(natural, attractive, and handsome)
✓ ✓ ✓ ✓ ✓ ✓

Filters
10 general filters by default

✓ ✓ ✓ ✓ ✓ ✓

Extended Stickers
(10 2D general stickers for free)

- ✓ ✓ ✓ ✓ ✓

General beautification SDKs
(Face narrowing/Chin

reshaping/Hairline adjustment/Nose
narrowing)

- - ✓ - - -

Gesture recognition
(One gesture sticker for free)

- - - ✓ - -

Keying/Virtual background
(Three keying stickers for free)

- - - - ✓ -

Tencent Effect SDK
SDK Features
Last updated：2022-06-24 14:59:35

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 116 of 174

Feature
Edition

A1 - 01 A1 - 02 A1 - 03 A1 - 04 A1 - 05 A1 - 06

Makeup
(Three full-face makeup looks for free)

- - - - - ✓

SDK
Download

iOS & Android -

Advanced S series

Advanced S editions offer enhanced beautification features (including stickers and makeup looks) and are for
customers with high requirements on face editing.

Feature
Edition

S1 - 00 S1 - 01 S1 - 02 S1 - 03 S1 - 04

Basic Basic beauty filters
Brightening, skin smoothing, and

blush
✓ ✓ ✓ ✓ ✓

Image settings
Contrast, saturation, and sharpness

✓ ✓ ✓ ✓ ✓

Advanced beautification
Eye enlarging, face narrowing, face

slimming (natural, attractive, and
handsome), chin slimming, chin
reshaping, face shortening, face

reshaping, hairline adjustment, eye
brightening, eye distance adjustment,

eye corner adjustment, nose
slimming, nose wing narrowing,

cheekbone slimming, nose
repositioning, teeth whitening, wrinkle
removal, smile line removal, eye bag

removal, mouth reshaping, lip
thickness adjustment, lipstick
application, blush, and facial

contouring

✓ ✓ ✓ ✓ ✓

Filters
(General filters by default)

✓ ✓ ✓ ✓ ✓

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 117 of 174

Feature
Edition

S1 - 00 S1 - 01 S1 - 02 S1 - 03 S1 - 04

Stickers
(2D general stickers by default)

- ✓ ✓ ✓ ✓

Advanced stickers
(3D general stickers by default)

- ✓ ✓ ✓ ✓

Makeup
Full face makeup

- ✓ ✓ ✓ ✓

Extended

Gesture recognition
(One gesture sticker for free)

- - ✓ - ✓

Keying/Virtual background
(Three keying stickers for free)

- - - ✓ ✓

SDK
Download

iOS & Android -

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 118 of 174

Preparations

1. Download and decompress the demo package as described in Demos, and copy the xmagickit folder in the

 demo/XiaoShiPin/ directory in the demo project to the directory of the Podfile of your project.

2. Add the following dependencies to your Podfile and run pod install to import the component.

pod 'xmagickit', :path => 'xmagickit/xmagickit.podspec'

3. Replace the Bundle ID with the one under the obtained trial license.

Developer environment requirements

Xcode 11 or later: Download on App Store or here.
Recommended runtime environment:

Device requirements: iPhone 5 or later. iPhone 6 and older models support up to 720p for front camera.

System requirements: iOS 12.0 or later.

SDK API Integration

Step 1. Initiate authentication

Add the following code to didFinishLaunchingWithOptions of AppDelegate (set LicenseURL and

 LicenseKey according to the authorization information you get from the Tencent Cloud website):

[TXUGCBase setLicenceURL:LicenseURL key:LicenseKey];

[TELicenseCheck setTELicense:LicenseURLkey:LicenseKey completion:^(NSInteger auth

result, NSString * _Nonnull errorMsg) {

if (authresult == TELicenseCheckOk) {

NSLog(@"Authentication successful");

} else {

NSLog(@"Authentication failed");

SDK Integration Guide
iOS
Last updated：2022-11-14 18:18:58

https://www.tencentcloud.com/document/product/1143/45374
https://developer.apple.com/xcode/resources/

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 119 of 174

}

}];

Authentication errorCode description:

Error
Code

Description

0 Succeeded.

-1 The input parameter is invalid; for example, the URL or KEY is empty.

-3 Download failed. Check the network settings.

-4 The Tencent Effect SDK authorization information read from the local system is empty, which may be
caused by an I/O failure.

-5 The content of the read v_cube.license file is empty, which may be caused by an I/O failure.

-6 The JSON field in the v_cube.license file is incorrect. Contact Tencent Cloud for assistance.

-7 Signature verification failed. Contact Tencent Cloud for assistance.

-8 Decryption failed. Contact Tencent Cloud for assistance.

-9 The JSON field in the TELicense field is incorrect. Contact Tencent Cloud for assistance.

-10 The Tencent Effect SDK authorization information parsed online is empty. Contact Tencent Cloud for
assistance.

-11 Failed to write the Tencent Effect SDK authorization information to the local file, which may be caused
by an I/O failure.

-12 Failed to download and failed to parse local assets.

-13 Authentication failed.

Others Contact Tencent Cloud for assistance.

Step 2. Set the path of SDK materials

CGSize previewSize = [self getPreviewSizeByResolution:self.currentPreviewResoluti

on];

NSString *beautyConfigPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirec

tory, NSUserDomainMask, YES) lastObject];

beautyConfigPath = [beautyConfigPath stringByAppendingPathComponent:@"beauty_conf

ig.json"];

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 120 of 174

NSFileManager *localFileManager=[[NSFileManager alloc] init];

BOOL isDir = YES;

NSDictionary * beautyConfigJson = @{};

if ([localFileManager fileExistsAtPath:beautyConfigPath isDirectory:&isDir] && !i

sDir) {

NSString *beautyConfigJsonStr = [NSString stringWithContentsOfFile:beautyConfigPa

th encoding:NSUTF8StringEncoding error:nil];

NSError *jsonError;

NSData *objectData = [beautyConfigJsonStr dataUsingEncoding:NSUTF8StringEncoding

];

beautyConfigJson = [NSJSONSerialization JSONObjectWithData:objectData

options:NSJSONReadingMutableContainers

error:&jsonError];

}

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

@"root_path":[[NSBundle mainBundle] bundlePath],

@"tnn_"

@"beauty_config":beautyConfigJson

};

// Init beauty kit

self.beautyKit = [[XMagic alloc] initWithRenderSize:previewSize assetsDict:assets

Dict];

Step 3. Add the log and event listener

// Register log

[self.beautyKit registerSDKEventListener:self];

[self.beautyKit registerLoggerListener:self withDefaultLevel:YT_SDK_ERROR_LEVEL];

Step 4. Configure beauty filter effects

- (int)configPropertyWithType:(NSString *_Nonnull)propertyType withName:(NSString

*_Nonnull)propertyName withData:(NSString*_Nonnull)propertyValue withExtraInfo:(i

d _Nullable)extraInfo;

Step 5. Render videos

In the preprocessing frame callback, construct YTProcessInput and pass textureId to the SDK for

rendering.

[self.xMagicKit process:inputCPU withOrigin:YtLightImageOriginTopLeft withOrienta

tion:YtLightCameraRotation0]

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 121 of 174

Step 6. Pause/Resume the SDK

[self.beautyKit onPause];

[self.beautyKit onResume];

Step 7. Add the SDK beauty filter panel to the layout

UIEdgeInsets gSafeInset;

#if __IPHONE_11_0 && __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_11_0

if(gSafeInset.bottom > 0){

}

if (@available(iOS 11.0, *)) {

gSafeInset = [UIApplication sharedApplication].keyWindow.safeAreaInsets;

} else

#endif

{

gSafeInset = UIEdgeInsetsZero;

}

dispatch_async(dispatch_get_main_queue(), ^{

// Beauty filter option UI

_vBeauty = [[BeautyView alloc] init];

[self.view addSubview:_vBeauty];

[_vBeauty mas_makeConstraints:^(MASConstraintMaker *make) {

make.width.mas_equalTo(self.view);

make.centerX.mas_equalTo(self.view);

make.height.mas_equalTo(254);

if(gSafeInset.bottom > 0.0){ // Adapt to full-view screen

make.bottom.mas_equalTo(self.view.mas_bottom).mas_offset(0);

} else {

make.bottom.mas_equalTo(self.view.mas_bottom).mas_offset(-10);

}

}];

_vBeauty.hidden = YES;

});

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 122 of 174

Step 1. Replace resources

1. Download the UGSV demo which has been integrated with the Tencent Effect SDK. This demo is built based on the
Tencent Effect SDK S1-04 edition.

2. Replace resources: As the SDK edition used by the demo project may be different from the SDK edition you

actually use, you need to replace the different SDK files in the demo with the files in the SDK edition you actually
use as follows:

In the build.gradle file of the xmagickit module, find the following:

api 'com.tencent.mediacloud:TencentEffect_S1-04:latest.release'

Replace it with the SDK edition you purchased as described in Integrating the Tencent Effect SDK (Android).

If your edition contains animated effects and filters, you need to download the corresponding resources on the
Tencent Effect SDK download page and put them in the following directories of the xmagickit module

respectively:
Animated effects: ../assets/MotionRes .

Filters: ../assets/lut .

3. Import the xmagickit module from the demo into your actual project.

Step 2. Open build.gradle in app and do the following:

Replace the applicationId with the package name under the obtained trial license.

Step 3. Integrate the SDK APIs

You can refer to the UGCKitVideoRecord class of the demo.

1. Authorize:

Android
Last updated：2022-11-14 18:18:58

https://www.tencentcloud.com/document/product/1143/45374
https://www.tencentcloud.com/document/product/1143/45385
https://www.tencentcloud.com/document/product/1143/45377

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 123 of 174

// For details about authentication and error codes, see https://www.tencentclo

ud.com/document/product/1143/45385#.E6.AD.A5.E9.AA.A4.E4.B8.80.EF.BC.9A.E9.89.B

4.E6.9D.83

XMagicImpl.checkAuth(new TELicenseCheck.TELicenseCheckListener() {

@Override

public void onLicenseCheckFinish(int errorCode, String msg) {

if (errorCode == TELicenseCheck.ERROR_OK) {

loadXmagicRes();

} else {

Log.e("TAG", "auth fail, please check auth url and key" + errorCode + " " + ms

g);

}

}

});

2. Initialize the material:

private void loadXmagicRes() {

if (XMagicImpl.isLoadedRes) {

XmagicResParser.parseRes(mActivity.getApplicationContext());

initXMagic();

return;

}

new Thread(new Runnable() {

@Override

public void run() {

XmagicResParser.copyRes(mActivity.getApplicationContext());

XmagicResParser.parseRes(mActivity.getApplicationContext());

XMagicImpl.isLoadedRes = true;

new Handler(Looper.getMainLooper()).post(new Runnable() {

@Override

public void run() {

initXMagic();

}

});

}

}).start();

}

3. Bind beauty filters to UGSV:

private void initBeauty() {

TXUGCRecord instance = TXUGCRecord.getInstance(UGCKit.getAppContext());

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 124 of 174

instance.setVideoProcessListener(new TXUGCRecord.VideoCustomProcessListener() {

@Override

public int onTextureCustomProcess(int textureId, int width, int height) {

if (xmagicState == XMagicImpl.XmagicState.STARTED && mXMagic != null) {

return mXMagic.process(textureId, width, height);

}

return textureId;

}

@Override

public void onDetectFacePoints(float[] floats) {

}

@Override

public void onTextureDestroyed() {

if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main thread

boolean stopped = xmagicState == XMagicImpl.XmagicState.STOPPED;

if (stopped || xmagicState == XMagicImpl.XmagicState.DESTROYED) {

if (mXMagic != null) {

mXMagic.onDestroy();

}

}

if (xmagicState == XMagicImpl.XmagicState.DESTROYED) {

TXUGCRecord.getInstance(UGCKit.getAppContext()).setVideoProcessListener(null);

}

}

}

});

}

4. Pause/Terminate the SDK:
 onPause() is used to pause the beauty filter effect, which can be executed in the Activity/Fragment

lifecycle method. The onDestroy method needs to be called in the GL thread (the onDestroy() of the

 XMagicImpl object can be called in the onTextureDestroyed method). For more information, see the

 onTextureDestroyed method in the sample code.

@Override

public void onTextureDestroyed() {

if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main thread

boolean stopped = xmagicState == XMagicImpl.XmagicState.STOPPED;

if (stopped || xmagicState == XMagicImpl.XmagicState.DESTROYED) {

if (mXMagic != null) {

mXMagic.onDestroy();

}

}

if (xmagicState == XMagicImpl.XmagicState.DESTROYED) {

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 125 of 174

TXUGCRecord.getInstance(UGCKit.getAppContext()).setVideoProcessListener(null);

}

}

}

5. Add the beauty filter panel to the layout:

<RelativeLayout

android:id="@+id/panel_layout"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_alignParentBottom="true"

android:visibility="gone"/>

6. Create a beauty filter object and add the beauty filter panel.

private void initXMagic() {

if (mXMagic == null) {

mXMagic = new XMagicImpl(mActivity, getBeautyPanel());

} else {

mXMagic.onResume();

}

}

For detailed directions, see the UGCKitVideoRecord class of the demo.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 126 of 174

We have deprecated UGSV Enterprise. The beauty filter module in UGSV Enterprise is now offered as an independent
SDK: Tencent Effect SDK. The SDK features more natural effects and more powerful beautification features. It also
offers greater flexibility in terms of integration. This document shows you how to migrate from UGSV Enterprise to

Tencent Effect SDK.

Notes

1. Modify the version number of the glide library in the Xmagic module to make it the same as the actual

version number.
2. Modify the earliest version number in the Xmagic module to make it the same as the actual version number.

Directions

Step 1. Replace resources

1. Download the UGSV demo which has integrated the Tencent Effect SDK. This demo is built based on the Tencent

Effect SDK S1-04 edition.
2. Replace the SDK files in the demo with the files for the SDK you actually use. Specifically, follow the steps below:

Replace the .aar file in the libs directory of the Xmagic module with the .aar file in libs of

your SDK.
Replace all the files in ../src/main/assets of the Xmagic module with those in assets/ of your

SDK. If there are files in the MotionRes folder of your SDK package, also copy them to the

 ../src/main/assets directory.

Replace all the .so files in ../src/main/jniLibs of the Xmagic module with the .so files in

 jniLibs of your SDK package (you need to decompress the ZIP files in the jinLibs folder to get the

 .so files for arm64-v8a and armeabi-v7a).

3. Import the Xmagic module in the demo into your project.

Step 2. Upgrade the SDK edition

Upgrade the SDK from UGSV Enterprise to UGSV Professional.

Before replacement: implementation

'com.tencent.liteav:LiteAVSDK_Enterprise:latest.release'

Migrating from UGSV Enterprise
Last updated：2022-08-02 15:05:19

https://mediacloud-76607.gzc.vod.tencent-cloud.com/TencentEffect/Android/2.4.1.115.vcube/UGSV_Demo.zip

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 127 of 174

After replacement: implementation

'com.tencent.liteav:LiteAVSDK_Professional:latest.release'

Step 3. Configure the license

1. Call the following APIs in oncreate of application in your project:

XMagicImpl.init(this);

XMagicImpl.checkAuth(null);

2. In the XMagicImpl class, replace the values of license URL and key to the ones you obtain from Tencent

Cloud.

Step 4. Implement the code

The following example shows you how to implement the short video shooting view
(TCVideoRecordActivity.java).

1. Add the following variables to the TCVideoRecordActivity.java class:

private XMagicImpl mXMagic;

private int isPause = 0;// 0: not paused; 1: paused; 2: pausing; 3: to be termi

nated

2. Add the following code after onCreate in the TCVideoRecordActivity.java class:

TXUGCRecord instance = TXUGCRecord.getInstance(this);

instance.setVideoProcessListener(new TXUGCRecord.VideoCustomProcessListener() {

@Override

public int onTextureCustomProcess(int textureId, int width, int height) {

if (isPause == 0 && mXMagic != null) {

return mXMagic.process(textureId, width, height);

}

return 0;

}

@Override

public void onDetectFacePoints(float[] floats) {

}

@Override

public void onTextureDestroyed() {

if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main thread

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 128 of 174

if (isPause == 1) {

isPause = 2;

if (mXMagic != null) {

mXMagic.onDestroy();

}

initXMagic();

isPause = 0;

} else if (isPause == 3) {

if (mXMagic != null) {

mXMagic.onDestroy();

}

}

}

}

});

XMagicImpl.checkAuth((errorCode, msg) -> {

if (errorCode == TELicenseCheck.ERROR_OK) {

loadXmagicRes();

} else {

TXCLog.e("TAG", "Authentication failed. Check the authentication URL and key" +

errorCode + " " + msg);

}

});

3. Add the following code to onStop :

isPause = 1;

if (mXMagic != null) {

mXMagic.onPause();

}

4. Add the following code to onDestroy :

isPause = 3;

XmagicPanelDataManager.getInstance().clearData();

5. Add the following code at the beginning of onActivityResult :

if (mXMagic != null) {

mXMagic.onActivityResult(requestCode, resultCode, data);

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 129 of 174

6. Add the following two methods to the end of this class:

private void loadXmagicRes() {

if (XMagicImpl.isLoadedRes) {

XmagicResParser.parseRes(getApplicationContext());

initXMagic();

return;

}

new Thread(() -> {

XmagicResParser.setResPath(new File(getFilesDir(), "xmagic").getAbsolutePath());

XmagicResParser.copyRes(getApplicationContext());

XmagicResParser.parseRes(getApplicationContext());

XMagicImpl.isLoadedRes = true;

new Handler(Looper.getMainLooper()).post(() -> {

initXMagic();

});

}).start();

}

/**

* Initialize the beauty filter SDK

*/

private void initXMagic() {

if (mXMagic == null) {

mXMagic = new XMagicImpl(this, mUGCKitVideoRecord.getBeautyPanel());

}else{

mXMagic.onResume();

}

}

Step 5. Modify other classes

1. Change the type of mBeautyPanel in the AbsVideoRecordUI class to RelativeLayout and the

response type of getBeautyPanel() to RelativeLayout . You also need to modify the corresponding

XML file and comment out the code that reports errors.
2. Comment out the code that reports errors in the UGCKitVideoRecord class.

3. In the ScrollFilterView class, delete the mBeautyPanel variable and comment out the code that

reports errors.

Step 6. Delete the beautysettingkit dependencies

In the build.gradle file of the ugckit module, delete the beautysettingkit dependencies, compile

the project, and comment out the code that report errors.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 130 of 174

Special Effect Filter

You can add multiple special effect filters for your videos. Currently, 11 filters are supported, all of which allow you to
set the start and end time for display in the video. If multiple filters are set at the same point in time, the SDK will
display the last set one.

You can set a special effect as follows:

- (void) startEffect:(TXEffectType)type startTime:(float)startTime;

- (void) stopEffect:(TXEffectType)type endTime:(float)endTime;

// The special effect type (`type` parameter) is defined in the `TXEffectType` co

nstant:

typedef NS_ENUM(NSInteger,TXEffectType)

{

TXEffectType_ROCK_LIGHT, // Dynamic light-wave

TXEffectType_DARK_DRAEM, // Dark dream

TXEffectType_SOUL_OUT, // Soul out

TXEffectType_SCREEN_SPLIT,// Screen split

TXEffectType_WIN_SHADOW, // Window blinds

TXEffectType_GHOST_SHADOW,// Ghost shadow

TXEffectType_PHANTOM, // Phantom

TXEffectType_GHOST, // Ghost

TXEffectType_LIGHTNING, // Lightening

TXEffectType_MIRROR, // Mirror

TXEffectType_ILLUSION, // Illusion

};

- (void) deleteLastEffect;

- (void) deleteAllEffect;

You can call deleteLastEffect() to delete the last set special effect filter.

You can call deleteAllEffect() to delete all set special effect filters:

Demo:
Use the first special effect filter between the first and second seconds, use the second special effect filter between the
third and fourth seconds, and delete the special effect filter set between the third and fourth seconds:

Advanced Features and Special Effects
TikTok-like Special Effects
iOS
Last updated：2021-09-15 17:15:24

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 131 of 174

// Use the first special effect filter between the first and second seconds

[_ugcEdit startEffect:TXEffectType_SOUL_OUT startTime:1.0];

[_ugcEdit stopEffect:TXEffectType_SOUL_OUT startTime:2.0)];

// Use the second special effect filter between the third and fourth seconds

[_ugcEdit startEffect:TXEffectType_SPLIT_SCREEN startTime:3.0];

[_ugcEdit stopEffect:TXEffectType_SPLIT_SCREEN startTime:4.0];

// Delete the special effect filter set between the third and fourth seconds

[_ugcEdit deleteLastEffect];

Slow/Fast Motions

You can change the playback speed of multiple video segments by setting slow/fast playback as follows:

- (void) setSpeedList:(NSArray *)speedList;

// The `TXSpeed` parameters are as follows:

@interface TXSpeed: NSObject

@property (nonatomic, assign) CGFloat startTime; // Speed change start time in s

@property (nonatomic, assign) CGFloat endTime; // Speed change end time in s

@property (nonatomic, assign) TXSpeedLevel speedLevel; // Speed change level

@end

Currently, multiple speed change levels are supported, which are defined in the `

TXSpeedLevel` constant:

typedef NS_ENUM(NSInteger, TXSpeedLevel) {

SPEED_LEVEL_SLOWEST, // Ultra-slow

SPEED_LEVEL_SLOW, // Slow

SPEED_LEVEL_NOMAL, // Normal

SPEED_LEVEL_FAST, // Fast

SPEED_LEVEL_FASTEST, // Ultra-fast

};

Demo:

// The SDK supports speed change of multiple video segments. This demo only shows

slow playback of one video segment.

TXSpeed *speed =[[TXSpeed alloc] init];

speed.startTime = 1.0;

speed.endTime = 3.0;

speed.speedLevel = SPEED_LEVEL_SLOW;

[_ugcEdit setSpeedList:@[speed]];

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 132 of 174

Reverse Playback

You can reverse a video as follows:

- (void) setReverse:(BOOL)isReverse;

Demo:

[_ugcEdit setReverse:YES];

Video Segment Loop

You can loop a video segment, but the audio will not be looped.
Set the video segment for loop as follows:

- (void) setRepeatPlay:(NSArray *)repeatList;

// The `TXRepeat` parameters are as follows:

@interface TXRepeat: NSObject

@property (nonatomic, assign) CGFloat startTime; // Loop start time in s

@property (nonatomic, assign) CGFloat endTime; // Loop end time in s

@property (nonatomic, assign) int repeatTimes; // Number of repeats

@end

Demo:

TXRepeat *repeat = [[TXRepeat alloc] init];

repeat.startTime = 1.0;

repeat.endTime = 3.0;

repeat.repeatTimes = 3; // Number of repeats

[_ugcEdit setRepeatPlay:@[repeat]];

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 133 of 174

Special Effect Filter

You can add multiple special effect filters for your videos. Currently, 11 filters are supported, all of which allow you to
set the start and end time for display in the video. If multiple filters are set at the same point in time, the SDK will
display the last set one.

Set the special effect filter:

/**

* Set the start time of the special effect filter

* @param type Special effect filter type

* @param startTime Start time of special effect filter in ms

*/

public void startEffect(int type, long startTime);

/**

* Set the end time of the special effect filter

* @param type Special effect filter type

* @param endTime End time of special effect filter in ms

*/

public void stopEffect(int type, long endTime);

Parameter description: @param type: special effect filter type, which is defined in the TXVideoEditConstants

constant:

public static final int TXEffectType_SOUL_OUT = 0; // Filter 1

public static final int TXEffectType_SPLIT_SCREEN = 1; // Filter 2

public static final int TXEffectType_DARK_DRAEM = 2; // Filter 3

public static final int TXEffectType_ROCK_LIGHT = 3; // Filter 4

public static final int TXEffectType_WIN_SHADDOW = 4; // Filter 5

public static final int TXEffectType_GHOST_SHADDOW = 5; // Filter 6

public static final int TXEffectType_PHANTOM_SHADDOW = 6; // Filter 7

public static final int TXEffectType_GHOST = 7; // Filter 8

public static final int TXEffectType_LIGHTNING = 8; // Filter 9

public static final int TXEffectType_MIRROR = 9; // Filter 10

public static final int TXEffectType_ILLUSION = 10; // Filter 11

Delete the last set special effect filter:

public void deleteLastEffect();

Android
Last updated：2020-09-01 14:52:06

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 134 of 174

Delete all set special effect filters:

public void deleteAllEffect();

Below is a complete sample:
Use the first special effect filter between the first and second seconds, use the second special effect filter between the
third and fourth seconds, and delete the special effect filter set between the third and fourth seconds:

// Use the first special effect filter between the first and second seconds

mTXVideoEditer.startEffect(TXVideoEditConstants.TXEffectType_SOUL_OUT, 1000);

mTXVideoEditer.stopEffect(TXVideoEditConstants.TXEffectType_SOUL_OUT, 2000);

// Use the second special effect filter between the third and fourth seconds

mTXVideoEditer.startEffect(TXVideoEditConstants.TXEffectType_SPLIT_SCREEN, 3000);

mTXVideoEditer.stopEffect(TXVideoEditConstants.TXEffectType_SPLIT_SCREEN, 4000);

// Delete the special effect filter set between the third and fourth seconds

mTXVideoEditer.deleteLastEffect();

Slow/Fast Motions

You can change the playback speed of multiple video segments by setting slow/fast playback as follows:

public void setSpeedList(List speedList);

// The `TXSpeed` parameters are as follows:

public final static class TXSpeed {

public int speedLevel; // Speed change level

public long startTime; // Start time

public long endTime; // End time

}

// Currently, multiple speed change levels are supported, which are defined in th

e `TXVideoEditConstants` constant:

SPEED_LEVEL_SLOWEST - Ultra-slow

SPEED_LEVEL_SLOW - Slow

SPEED_LEVEL_NORMAL - Normal

SPEED_LEVEL_FAST - Fast

SPEED_LEVEL_FASTEST - Ultra-fast

Below is a complete sample:

List<TXVideoEditConstants.TXSpeed> list = new ArrayList<>();

TXVideoEditConstants.TXSpeed speed1 = new TXVideoEditConstants.TXSpeed();

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 135 of 174

speed1.startTime = 0;

speed1.endTime = 1000;

speed1.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOW; // Slow

list.add(speed1);

TXVideoEditConstants.TXSpeed speed2 = new TXVideoEditConstants.TXSpeed();

speed2.startTime = 1000;

speed2.endTime = 2000;

speed2.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOWEST; // Ultra-slow

list.add(speed2);

TXVideoEditConstants.TXSpeed speed3 = new TXVideoEditConstants.TXSpeed();

speed3.startTime = 2000;

speed3.endTime = 3000;

speed3.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOW; // Slow

list.add(speed3);

mTXVideoEditer.setSpeedList(list);

Reverse Playback

You can reverse video playback. Specifically, you can call setReverse(true) / setReverse(false) to

start/stop reverse playback.

Demo:

mTXVideoEditer.setTXVideoReverseListener(mTxVideoReverseListener);

mTXVideoEditer.setReverse(true);

Video Segment Loop

You can loop a video segment, but the audio will not be looped. Currently, Android supports loop of only one video
segment thrice.
You can call setRepeatPlay(null) to cancel the video segment loop set previously.

Note：

The legacy version of setTXVideoReverseListener() (below SDK 4.5) needs to be manually called for the
first listening, while the new version can take effect without being called.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 136 of 174

Set the video segment for loop as follows:

public void setRepeatPlay(List repeatList);

// The `TXRepeat` parameters are as follows:

public final static class TXRepeat {

public long startTime; // Loop start time in ms

public long endTime; // Loop end time in ms

public int repeatTimes; // Number of repeats

}

Demo:

long currentPts = mVideoProgressController.getCurrentTimeMs();

List repeatList = new ArrayList<>();

TXVideoEditConstants.TXRepeat repeat = new TXVideoEditConstants.TXRepeat();

repeat.startTime = currentPts;

repeat.endTime = currentPts + DEAULT_DURATION_MS;

repeat.repeatTimes = 3; // Currently, a video segment can be repeated only for th

rice.

repeatList.add(repeat); // Currently, only one video segment can be looped.

mTXVideoEditer.setRepeatPlay(repeatList);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 137 of 174

Static Sticker

- (void) setPasterList:(NSArray *)pasterList;

// The `TXPaster` parameters are as follows:

@interface TXPaster: NSObject

@property (nonatomic, strong) UIImage* pasterImage; // Sticker image

@property (nonatomic, assign) CGRect frame; // Sticker frame (please note that th

e frame coordinates here are relative to the rendering view)

@property (nonatomic, assign) CGFloat startTime; // Sticker start time in s

@property (nonatomic, assign) CGFloat endTime; // Sticker end time in s

@end

Animated Sticker

- (void) setAnimatedPasterList:(NSArray *)animatedPasterList;

// The `TXAnimatedPaster` parameters are as follows:

@interface TXAnimatedPaster: NSObject

@property (nonatomic, strong) NSString* animatedPasterpath; // Animated image fil

e path

@property (nonatomic, assign) CGRect frame; // Animated image frame (please note

that the frame coordinates here are relative to the rendering view)

@property (nonatomic, assign) CGFloat rotateAngle; // Animated image rotation ang

le. Value range: 0–360

@property (nonatomic, assign) CGFloat startTime; // Animated image start time in

s

@property (nonatomic, assign) CGFloat endTime; // Animated image end time in s

@end

Demo:

- (void)setVideoPasters:(NSArray*)videoPasterInfos

{

Stickers and Subtitles
iOS
Last updated：2020-09-01 14:52:07

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 138 of 174

NSMutableArray* animatePasters = [NSMutableArray new];

NSMutableArray* staticPasters = [NSMutableArray new];

for (VideoPasterInfo* pasterInfo in videoPasterInfos) {

if (pasterInfo.pasterInfoType == PasterInfoType_Animate) {

TXAnimatedPaster* paster = [TXAnimatedPaster new];

paster.startTime = pasterInfo.startTime;

paster.endTime = pasterInfo.endTime;

paster.frame = [pasterInfo.pasterView pasterFrameOnView:_videoPreview];

paster.rotateAngle = pasterInfo.pasterView.rotateAngle * 180 / M_PI;

paster.animatedPasterpath = pasterInfo.path;

[animatePasters addObject:paster];

}

else if (pasterInfo.pasterInfoType == PasterInfoType_static){

TXPaster *paster = [TXPaster new];

paster.startTime = pasterInfo.startTime;

paster.endTime = pasterInfo.endTime;

paster.frame = [pasterInfo.pasterView pasterFrameOnView:_videoPreview];

paster.pasterImage = pasterInfo.pasterView.staticImage;

[staticPasters addObject:paster];

}

}

[_ugcEditer setAnimatedPasterList:animatePasters];

[_ugcEditer setPasterList:staticPasters];

}

Custom Animated Sticker

Adding an animated sticker is actually to arrange a series of images in a certain sequence at a certain interval
and insert them to the video to implement an animated sticker effect.

How do I customize a sticker?
Here, an animated sticker in the SDK demo is used as an example:

{

"name":"glass", // Sticker name

"count":6, // Number of stickers

"period":480, // Playback period: time taken for playing back the sticker once in

ms

"width":444, // Sticker width

"height":256, // Sticker height

"keyframe":6, // Key image, which can represent the animated sticker

"frameArray": [// Set of all images

{"picture":"glass0"},

{"picture":"glass1"},

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 139 of 174

{"picture":"glass2"},

{"picture":"glass3"},

{"picture":"glass4"},

{"picture":"glass5"}

]

}

The SDK will get the corresponding config.json of the animated sticker and display it in the format defined in

the .json file.

Adding Subtitles

1. Bubble subtitles

Video subtitling is supported. You can add subtitles to each frame of a video and set the start and end time to display
each subtitle. All subtitles form a subtitle list, which can be passed to the SDK, and the SDK will automatically add the

subtitles to the video at the corresponding points in time.

You can set subtitles as follows:

- (void) setSubtitleList:(NSArray *)subtitleList;

The `TXSubtitle` parameters are as follows:

@interface TXSubtitle: NSObject

@property (nonatomic, strong) UIImage* titleImage; // Subtitle image (here, you n

eed to convert the text loading control to an image)

@property (nonatomic, assign) CGRect frame; // Subtitle frame (please note that t

he frame coordinates here are relative to the rendering view)

@property (nonatomic, assign) CGFloat startTime; // Subtitle start time in s

@property (nonatomic, assign) CGFloat endTime; // Subtitle end time in s

@end

titleImage: subtitle image. If controls like UILabel are used by the upper layer, please convert the control to

 UIImage first. For detailed directions, please see the sample code of the demo.

frame: subtitle frame (please note that the frame is relative to the frame of the rendering view passed in during
 initWithPreview). For more information, please see the sample code of the demo.

startTime: subtitle start time.
endTime: subtitle end time.

Note：

As this encapsulation format is required by the SDK, please describe animated stickers strictly in this format.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 140 of 174

As the subtitle UI logic is complicated, a complete method is provided at the demo layer. We recommend you directly
implement subtitling as instructed in the demo, which greatly reduces your integration costs.

Demo:

@interface VideoTextInfo : NSObject

@property (nonatomic, strong) VideoTextFiled* textField;

@property (nonatomic, assign) CGFloat startTime; //in seconds

@property (nonatomic, assign) CGFloat endTime;

@end

videoTextInfos = @[VideoTextInfo1, VideoTextInfo2 ...];

for (VideoTextInfo* textInfo in videoTextInfos) {

TXSubtitle* subtitle = [TXSubtitle new];

subtitle.titleImage = textInfo.textField.textImage; //UILabel (UIView) -> UIImage

subtitle.frame = [textInfo.textField textFrameOnView:_videoPreview]; // Calculate

the coordinates relative to the rendering view

subtitle.startTime = textInfo.startTime; // Subtitle start time

subtitle.endTime = textInfo.endTime; // Subtitle end time

[subtitles addObject:subtitle]; // Add the subtitle list

}

[_ugcEditer setSubtitleList:subtitles]; // Set the subtitle list

2. How do I customize bubble subtitles?

Parameters required by bubble subtitles

Font area dimensions: top, left, right, bottom
Default font size

Width and height

Encapsulation format

As bubble subtitles contain many parameters, we recommend you encapsulate relevant parameters at the demo layer.
For example, the Tencent Cloud demo uses the JSON format for encapsulation:

{

"name":"boom", // Bubble subtitle name

Note：

The parameters above are all in px.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 141 of 174

"width": 376, // Width

"height": 335, // Height

"textTop":121, // Top margin of text area

"textLeft":66, // Left margin of text area

"textRight":69, // Right margin of text area

"textBottom":123, // Bottom margin of text area

"textSize":40 // Font size

}

Overlong subtitle

If a subtitle is too long, how do I arrange the layout to make the subtitle neatly fit in the bubble?

An automatic layout control is provided in the demo. If a subtitle is too long, the control will automatically decrease the
font size until the entire subtitle can fit in the bubble.
You can also modify the relevant control source code to meet your unique business needs.

Note：

You can determine the encapsulation format by yourself, which is optional for the SDK.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 142 of 174

Static Sticker

You can set a static sticker as follows:

public void setPasterList(List pasterList);

// The `TXPaster` parameters are as follows:

public final static class TXPaster {

public Bitmap pasterImage; // Sticker image

public TXRect frame; // Sticker frame (please note that the frame coordinates her

e are relative to the rendering view)

public long startTime; // Sticker start time in ms

public long endTime; // Sticker end time in ms

}

Animated Sticker

You can set an animated sticker as follows:

public void setAnimatedPasterList(List animatedPasterList);

// The `TXAnimatedPaster` parameters are as follows:

public final static class TXAnimatedPaster {

public String animatedPasterPathFolder; // Address of animated sticker image

public TXRect frame; // Animated sticker frame (please note that the frame coordi

nates here are relative to the rendering view)

public long startTime; // Animated sticker start time in ms

public long endTime; // Animated sticker end time in ms

public float rotation;

}

Demo:

List animatedPasterList = new ArrayList<>();

List pasterList = new ArrayList<>();

for (int i = 0; i < mTCLayerViewGroup.getChildCount(); i++) {

PasterOperationView view = (PasterOperationView) mTCLayerViewGroup.getOperationVi

Android
Last updated：2020-09-01 14:52:08

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 143 of 174

ew(i);

TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

rect.x = view.getImageX();

rect.y = view.getImageY();

rect.width = view.getImageWidth();

TXCLog.i(TAG, "addPasterListVideo, adjustPasterRect, paster x y = " + rect.x +

"," + rect.y);

int childType = view.getChildType();

if (childType == PasterOperationView.TYPE_CHILD_VIEW_ANIMATED_PASTER) {

TXVideoEditConstants.TXAnimatedPaster txAnimatedPaster = new TXVideoEditConstant

s.TXAnimatedPaster();

txAnimatedPaster.animatedPasterPathFolder = mAnimatedPasterSDcardFolder + view.ge

tPasterName() + File.separator;

txAnimatedPaster.startTime = view.getStartTime();

txAnimatedPaster.endTime = view.getEndTime();

txAnimatedPaster.frame = rect;

txAnimatedPaster.rotation = view.getImageRotate();

animatedPasterList.add(txAnimatedPaster);

TXCLog.i(TAG, "addPasterListVideo, txAnimatedPaster startTimeMs, endTime is : " +

txAnimatedPaster.startTime + ", " + txAnimatedPaster.endTime);

} else if (childType == PasterOperationView.TYPE_CHILD_VIEW_PASTER) {

TXVideoEditConstants.TXPaster txPaster = new TXVideoEditConstants.TXPaster();

txPaster.pasterImage = view.getRotateBitmap();

txPaster.startTime = view.getStartTime();

txPaster.endTime = view.getEndTime();

txPaster.frame = rect;

pasterList.add(txPaster);

TXCLog.i(TAG, "addPasterListVideo, txPaster startTimeMs, endTime is : " + txPaste

r.startTime + ", " + txPaster.endTime);

}

}

mTXVideoEditer.setAnimatedPasterList(animatedPasterList); // Set an animated stic

ker

mTXVideoEditer.setPasterList(pasterList); // Set a static sticker

Custom Animated Sticker

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 144 of 174

Adding an animated sticker is actually to arrange a series of images in a certain sequence at a certain interval
and insert them to the video to implement an animated sticker effect.

Encapsulation format

Here, an animated sticker in the demo is used as an example:

{

"name":"glass", // Sticker name

"count":6, // Number of stickers

"period":480, // Playback period: time taken for playing back the sticker once in

ms

"width":444, // Sticker width

"height":256, // Sticker height

"keyframe":6, // Key image, which can represent the animated sticker

"frameArray": [// Set of all images

{"picture":"glass0"},

{"picture":"glass1"},

{"picture":"glass2"},

{"picture":"glass3"},

{"picture":"glass4"},

{"picture":"glass5"}

]

}

The SDK will get the corresponding config.json of the animated sticker and display it in the format defined in

the .json file.

Adding Subtitles

1. Bubble subtitles

Bubble video subtitling is supported. You can add subtitles to each frame of a video and set the start and end time to
display each subtitle. All subtitles form a subtitle list, which can be passed to the SDK, and the SDK will automatically
add the subtitles to the video at the corresponding points in time.

You can set bubble subtitles as follows:

public void setSubtitleList(List subtitleList);

Note：

As this encapsulation format is required by the SDK, please describe animated stickers strictly in this format.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 145 of 174

// The `TXSubtitle` parameters are as follows:

public final static class TXSubtitle {

public Bitmap titleImage; // Subtitle image

public TXRect frame; // Subtitle frame

public long startTime; // Subtitle start time in ms

public long endTime; // Subtitle end time in ms

}

public final static class TXRect {

public float x;

public float y;

public float width;

}

titleImage: subtitle image. If controls like TextView are used by the upper layer, please convert the control to

 Bitmap first. For detailed directions, please see the sample code of the demo.

frame: subtitle frame (please note that the frame is relative to the frame of the rendering view passed in during
 initWithPreview). For more information, please see the sample code of the demo.

startTime: subtitle start time.
endTime: subtitle end time.

As the subtitle UI logic is complicated, a complete method is provided at the demo layer. We recommend you directly
implement subtitling as instructed in the demo, which greatly reduces your integration costs.

Demo:

mSubtitleList.clear();

for (int i = 0; i < mWordInfoList.size(); i++) {

TCWordOperationView view = mOperationViewGroup.getOperationView(i);

TXVideoEditConstants.TXSubtitle subTitle = new TXVideoEditConstants.TXSubtitle();

subTitle.titleImage = view.getRotateBitmap(); // Get `Bitmap`

TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

rect.x = view.getImageX(); // Get the X coordinate relative to the parent view

rect.y = view.getImageY(); // Get the Y coordinate relative to the parent view

rect.width = view.getImageWidth(); // Image width

subTitle.frame = rect;

subTitle.startTime = mWordInfoList.get(i).getStartTime(); // Set the start time

subTitle.endTime = mWordInfoList.get(i).getEndTime(); // Set the end time

mSubtitleList.add(subTitle);

}

mTXVideoEditer.setSubtitleList(mSubtitleList); // Set the subtitle list

2. How do I customize bubble subtitles?

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 146 of 174

Parameters required by bubble subtitles

Font area dimensions: top, left, right, bottom
Default font size

Width and height

Encapsulation format

As bubble subtitles contain many parameters, we recommend you encapsulate relevant parameters at the demo layer.
For example, the Tencent Cloud demo uses the JSON format for encapsulation:

{

"name":"boom", // Bubble subtitle name

"width": 376, // Width

"height": 335, // Height

"textTop":121, // Top margin of text area

"textLeft":66, // Left margin of text area

"textRight":69, // Right margin of text area

"textBottom":123, // Bottom margin of text area

"textSize":40 // Font size

}

Overlong subtitle

If a subtitle is too long, how do I arrange the layout to make the subtitle neatly fit in the bubble?
An automatic layout control is provided in the demo. If a subtitle is too long, the control will automatically decrease the
font size until the entire subtitle can fit in the bubble.

You can also modify the relevant control source code to meet your unique business needs.

Note：

The parameters above are all in px.

Note：

You can determine the encapsulation format by yourself, which is optional for the SDK.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 147 of 174

This document describes how to implement basic duet features from scratch.

Process Overview

1. Place two views on the page, one for playback, and the other for shoot.
2. Place a button and progress bar for shoot and progress display, respectively.

3. Stop shoot after the video in the same duration as that of the source video has been shot.
4. Compose the shot video with the source video side by side.
5. Preview the composed video.

UI Construction

Create a project first. Open Xcode, select "File" > "New" > "Project", and name the project to create it. The project is
named "Demo" in this example. To shoot a video, the camera and mic permissions are required. Add the following

items to Info :

Privacy - Microphone Usage Description

Privacy - Camera Usage Description

You can enter desired values for the two items, such as "Shooting Video"

Configure a simple shoot page. Open Main.storyboard , drag two UIView objects into it, configure their

width to 0.5 time of the superview , and set their aspect ratio to 16:9.

Video Karaoke
iOS
Last updated：2020-09-01 14:58:16

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 148 of 174

Add the progress bar, bind the page to IBOutlet in ViewController.m , and set the button IBAction .

As the preview page needs to be redirected to after shoot, a navigation controller is required. Click the "VC" icon in
yellow, select "Editor" > "Embed In" in the menu, and click "Navigation Controller" to add a layer of "Navigation

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 149 of 174

Controller" onto the "ViewController". At this point, the basic UI has been constructed.

Sample Code

The duet feature mainly uses three other features: playback, shoot, and composition of the shot and source videos,
which correspond to the TXVideoEditer , TXUGCRecord , and TXVideoJoiner SDK classes,

respectively.

The SDK license needs to be configured before this feature can be used. Open AppDelegate.m and add the

following code to it:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(N

SDictionary *)launchOptions {

[TXUGCBase setLicenceURL:@"<License URL>" key:@"<License key>"];

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 150 of 174

return YES;

}

Here, you need to apply for the license parameters in the UGSV Console. Once submitted, your application will be
generally approved very soon, and the relevant information will be displayed on the page.

1. First, implement the declaration and initialization.
Open ViewContorller.m , import the SDK, and declare the instances of the three classes above. As video

playback, shoot, and composition are all async operations here, you need to listen on their events by adding the

declaration for implementing the three protocols: TXVideoJoinerListener , TXUGCRecordListener ,

and TXVideoPreviewListener . After the declaration is added, the code will be as follows:

#import "ViewController.h"

@import TXLiteAVSDK_UGC;

@interface ViewController () <TXVideoJoinerListener, TXUGCRecordListener, TXVid

eoPreviewListener>

{

TXVideoEditer *_editor;

TXUGCRecord *_recorder;

TXVideoJoiner *_joiner;

TXVideoInfo *_videoInfo;

NSString *_recordPath;

NSString *_resultPath;

}

@property (weak, nonatomic) IBOutlet UIView *cameraView;

@property (weak, nonatomic) IBOutlet UIView *movieView;

@property (weak, nonatomic) IBOutlet UIButton *recordButton;

@property (weak, nonatomic) IBOutlet UIProgressView *progressView;

- (IBAction)onTapButton:(UIButton *)sender;

@end

After preparing the member variables and API implementation declaration, initialize the member variables above in
 viewDidLoad .

- (void)viewDidLoad {

[super viewDidLoad];

// Here, place a .mp4 video file or a .mov video shot on the phone in the proje

ct

https://console.tencentcloud.com/vod/license

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 151 of 174

NSString *mp4Path = [[NSBundle mainBundle] pathForResource:@"demo" ofType:@"mp

4"];

_videoInfo = [TXVideoInfoReader getVideoInfo:mp4Path];

TXAudioSampleRate audioSampleRate = AUDIO_SAMPLERATE_48000;

if (_videoInfo.audioSampleRate == 8000) {

audioSampleRate = AUDIO_SAMPLERATE_8000;

}else if (_videoInfo.audioSampleRate == 16000){

audioSampleRate = AUDIO_SAMPLERATE_16000;

}else if (_videoInfo.audioSampleRate == 32000){

audioSampleRate = AUDIO_SAMPLERATE_32000;

}else if (_videoInfo.audioSampleRate == 44100){

audioSampleRate = AUDIO_SAMPLERATE_44100;

}else if (_videoInfo.audioSampleRate == 48000){

audioSampleRate = AUDIO_SAMPLERATE_48000;

}

// Set the video storage path

_recordPath = [NSTemporaryDirectory() stringByAppendingPathComponent:@"record.m

p4"];

_resultPath = [NSTemporaryDirectory() stringByAppendingPathComponent:@"result.m

p4"];

// Initialize the player

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = self.movieView;

param.renderMode = RENDER_MODE_FILL_EDGE;

_editor = [[TXVideoEditer alloc] initWithPreview:param];

[_editor setVideoPath:mp4Path];

_editor.previewDelegate = self;

// Initialize the shoot parameters

_recorder = [TXUGCRecord shareInstance];

TXUGCCustomConfig *recordConfig = [[TXUGCCustomConfig alloc] init];

recordConfig.videoResolution = VIDEO_RESOLUTION_720_1280;

// The frame rates of the shot video and source video must be the same; otherwi

se, the audio and video may be out of sync

// Note: the frame rate of the duet video obtained here is the average frame ra

te and may be a decimal, which needs to be rounded

recordConfig.videoFPS = (int)(_videoInfo.fps + 0.5);

// The audio sample rates of the shot video and source video must be the same;

otherwise, the audio and video may be out of sync

recordConfig.audioSampleRate = audioSampleRate;

recordConfig.videoBitratePIN = 9600;

recordConfig.maxDuration = _videoInfo.duration;

_recorder.recordDelegate = self;

// Enable camera preview

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 152 of 174

[_recorder startCameraCustom:recordConfig preview:self.cameraView];

// Compose videos

_joiner = [[TXVideoJoiner alloc] initWithPreview:nil];

_joiner.joinerDelegate = self;

[_joiner setVideoPathList:@[_recordPath, mp4Path]];

}

2. Next, implement the shoot feature. You only need to respond to the user click of the button to call the SDK method.
For the sake of convenience, the button is reused here to display the current status, and the logic of displaying the
progress is added to the progress bar.

- (IBAction)onTapButton:(UIButton *)sender {

[_editor startPlayFromTime:0 toTime:_videoInfo.duration];

if ([_recorder startRecord:_recordPath coverPath:[_recordPath stringByAppending

String:@".png"]] != 0) {

NSLog(@"Failed to start the camera");

}

[sender setTitle:@"Shooting" forState:UIControlStateNormal];

sender.enabled = NO;

}

#pragma mark TXVideoPreviewListener

-(void) onPreviewProgress:(CGFloat)time

{

self.progressView.progress = time / _videoInfo.duration;

}

3. After shoot, implement the composition. You need to specify the positions of the two videos in the output video.
Here, the left and right positions are set.

-(void)onRecordComplete:(TXUGCRecordResult*)result;

{

NSLog(@"Shoot is completed and composition is started");

[self.recordButton setTitle:@"Composing..." forState:UIControlStateNormal];

// Get the width and height of the shot video

TXVideoInfo *videoInfo = [TXVideoInfoReader getVideoInfo:_recordPath];

CGFloat width = videoInfo.width;

CGFloat height = videoInfo.height;

// Place the shot and source videos on the left and right, respectively

CGRect recordScreen = CGRectMake(0, 0, width, height);

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 153 of 174

CGRect playScreen = CGRectMake(width, 0, width, height);

[_joiner setSplitScreenList:@[[NSValue valueWithCGRect:recordScreen],[NSValue v

alueWithCGRect:playScreen]] canvasWidth:width * 2 canvasHeight:height];

[_joiner splitJoinVideo:VIDEO_COMPRESSED_720P videoOutputPath:_resultPath];

}

4. Implement the delegation method of the composition progress to display the progress on the progress bar.

-(void) onJoinProgress:(float)progress

{

NSLog(@"Composing videos %d%%",(int)(progress * 100));

self.progressView.progress = progress;

}

5. Implement the delegation method of the composition completion and switch to the preview page.

#pragma mark TXVideoJoinerListener

-(void) onJoinComplete:(TXJoinerResult *)result

{

NSLog(@"Video composition completed");

VideoPreviewController *controller = [[VideoPreviewController alloc] initWithVi

deoPath:_resultPath];

[self.navigationController pushViewController:controller animated:YES];

}

At this point, the implementation is completed. The code of the video preview VideoPreviewController

mentioned above is as follows:

 VideoPreviewController.h

#import <UIKit/UIKit.h>

@interface VideoPreviewController : UIViewController

- (instancetype)initWithVideoPath:(NSString *)path;

@end

 VideoPreviewController.m:

@import TXLiteAVSDK_UGC;

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 154 of 174

@interface VideoPreviewController () <TXVideoPreviewListener>

{

TXVideoEditer *_editor;

}

@property (strong, nonatomic) NSString *videoPath;

@end

@implementation VideoPreviewController

- (instancetype)initWithVideoPath:(NSString *)path {

if (self = [super initWithNibName:nil bundle:nil]) {

self.videoPath = path;

}

return self;

}

- (void)viewDidLoad {

[super viewDidLoad];

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = self.view;

param.renderMode = RENDER_MODE_FILL_EDGE;

_editor = [[TXVideoEditer alloc] initWithPreview:param];

_editor.previewDelegate = self;

[_editor setVideoPath:self.videoPath];

[_editor startPlayFromTime:0 toTime:[TXVideoInfoReader getVideoInfo:self.videoP

ath].duration];

}

-(void) onPreviewFinished

{

[_editor startPlayFromTime:0 toTime:[TXVideoInfoReader getVideoInfo:self.videoP

ath].duration];

}

@end

At this point, all basic duet features have been implemented. For the demo with more features, please see Source

Code of Full-Featured UGSV Application Demo.

https://www.tencentcloud.com/document/product/1069/37914#.E5.85.A8.E5.8A.9F.E8.83.BD.E5.B0.8F.E8.A7.86.E9.A2.91-app.EF.BC.88demo.EF.BC.89.E6.BA.90.E4.BB.A3.E7.A0.81

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 155 of 174

This document describes how to implement basic duet features.

Process Overview

1. Place two views on the page, one for playback, and the other for shoot.
2. Place a button and progress bar for shoot and progress display, respectively.

3. Stop shoot after the video in the same duration as that of the source video has been shot.
4. Compose the shot video with the source video side by side.
5. Preview the composed video.

UI Construction

In activity_video_record.xml of the shoot page TCVideoRecordActivity , create two views: the left

one is the shoot page, and the right one is the playback page.

Sample Code

Android
Last updated：2020-09-01 14:57:25

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 156 of 174

The duet feature mainly uses three other features: playback, shoot, and composition of the shot and source videos,
which correspond to the TXVideoEditer , TXUGCRecord , and TXVideoJoiner SDK classes,

respectively. You can also use TXVodPlayer for playback.

1. In the video list on the UGSV application homepage, select a video to enter the playback page
 TCVodPlayerActivity . Then, click "Duet" in the bottom-right corner.

The video will be first downloaded onto the local SD card, the video information such as audio sample rate and
frame rate (in fps) will be obtained, and then the shoot page will be displayed.

2. Enter the shoot page TCVideoRecordActivity for duet. Please pay attention to the following:

The maximum length of the shoot progress bar should be the length of the source video progress bar.
The frame rates of the shot video and source video must be the same; otherwise, the audio and video may be
out of sync.
The audio sample rates of the shot video and source video must be the same; otherwise, the audio and video
may be out of sync.
The rendering mode set for shoot is fit mode, where the video image can be proportionally scaled at the aspect

ratio of 9:16.
You need to set audio mute for shoot on Android; otherwise, the source and shot videos' audios will be mixed.

// Shoot page

mVideoView = mVideoViewFollowShotRecord;

// Played back video

mFollowShotVideoPath = intent.getStringExtra(TCConstants.VIDEO_EDITER_PATH);

mFollowShotVideoDuration = (int)(intent.getFloatExtra(TCConstants.VIDEO_RECORD_

DURATION, 0) * 1000);

initPlayer();

// The maximum length of the shoot progress bar should be the length of the sou

rce video. The frame rate (`fps`) of the source video should also be used for t

he shot video

mMaxDuration = (int)mFollowShotVideoDuration;

mFollowShotVideoFps = intent.getIntExtra(TCConstants.RECORD_CONFIG_FPS, 20);

mFollowShotAudioSampleRateType = intent.getIntExtra(TCConstants.VIDEO_RECORD_AU

DIO_SAMPLE_RATE_TYPE, TXRecordCommon.AUDIO_SAMPLERATE_48000);

// Initialize the duet API

mTXVideoJoiner = new TXVideoJoiner(this);

mTXVideoJoiner.setVideoJoinerListener(this);

// Initialize the player. Here, `TXVideoEditer` is used. You can also use `TXVo

dPlayer`

mTXVideoEditer = new TXVideoEditer(this);

mTXVideoEditer.setVideoPath(mFollowShotVideoPath);

TXVideoEditConstants.TXPreviewParam param = new TXVideoEditConstants.TXPreviewP

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 157 of 174

aram();

param.videoView = mVideoViewPlay;

param.renderMode = TXVideoEditConstants.PREVIEW_RENDER_MODE_FILL_EDGE;

mTXVideoEditer.initWithPreview(param);

customConfig.videoFps = mFollowShotVideoFps;

customConfig.audioSampleRate = mFollowShotAudioSampleRateType; // The audio sam

ple rate of the shot video must be the same as that of the source video

customConfig.needEdit = false;

mTXCameraRecord.setVideoRenderMode(TXRecordCommon.VIDEO_RENDER_MODE_ADJUST_RESO

LUTION); // Set the rendering mode to fit mode

mTXCameraRecord.setMute(true); // The duet audio played back by the speaker wil

l not be recorded, because if it is recorded by mic, the source and shot video

s' audios will be mixed

3. Start shoot. When the maximum shoot duration is reached, the onRecordComplete callback will be returned

to proceed with the composition. Here, you need to specify the positions of the two videos in the result.

private void prepareToJoiner(){

List<String> videoSourceList = new ArrayList<>();

videoSourceList.add(mRecordVideoPath);

videoSourceList.add(mFollowShotVideoPath);

mTXVideoJoiner.setVideoPathList(videoSourceList);

mFollowShotVideoOutputPath = getCustomVideoOutputPath("Follow_Shot_");

// Proportionally scale the video on the right by the width and height of the s

hot video on the left

int followVideoWidth;

int followVideoHeight;

if ((float) followVideoInfo.width / followVideoInfo.height >= (float)recordVide

oInfo.width / recordVideoInfo.height) {

followVideoWidth = recordVideoInfo.width;

followVideoHeight = (int) ((float)recordVideoInfo.width * followVideoInfo.heigh

t / followVideoInfo.width);

} else {

followVideoWidth = (int) ((float)recordVideoInfo.height * followVideoInfo.width

/ followVideoInfo.height);

followVideoHeight = recordVideoInfo.height;

}

TXVideoEditConstants.TXAbsoluteRect rect1 = new TXVideoEditConstants.TXAbsolute

Rect();

rect1.x = 0; // Top-left point position of the first video

rect1.y = 0;

rect1.width = recordVideoInfo.width; // Width and height of the first video

rect1.height = recordVideoInfo.height;

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 158 of 174

TXVideoEditConstants.TXAbsoluteRect rect2 = new TXVideoEditConstants.TXAbsolute

Rect();

rect2.x = rect1.x + rect1.width; // Top-left point position of the second video

rect2.y = (recordVideoInfo.height - followVideoHeight) / 2;

rect2.width = followVideoWidth; // Width and height of the second video

rect2.height = followVideoHeight;

List<TXVideoEditConstants.TXAbsoluteRect> list = new ArrayList<>();

list.add(rect1);

list.add(rect2);

mTXVideoJoiner.setSplitScreenList(list, recordVideoInfo.width + followVideoWidt

h, recordVideoInfo.height); // The second and third parameters: width and heigh

t of the video composition canvas

mTXVideoJoiner.splitJoinVideo(TXVideoEditConstants.VIDEO_COMPRESSED_540P, mFoll

owShotVideoOutputPath);

}

4. Listen on the composition callback. After onJoinComplete , redirect to the preview page for playback.

@Override

public void onJoinComplete(TXVideoEditConstants.TXJoinerResult result) {

mCompleteProgressDialog.dismiss();

if(result.retCode == TXVideoEditConstants.JOIN_RESULT_OK){

runOnUiThread(new Runnable() {

@Override

public void run() {

isReadyJoin = true;

startEditerPreview(mFollowShotVideoOutputPath);

if(mTXVideoEditer != null){

mTXVideoEditer.release();

mTXVideoEditer = null;

}

}

});

}else{

runOnUiThread(new Runnable() {

@Override

public void run() {

Toast.makeText(TCVideoRecordActivity.this, "Composition failed", Toast.LENGTH_S

HORT).show();

}

});

}

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 159 of 174

At this point, all basic duet features have been implemented. For the complete code, please see Source Code of
Full-Featured UGSV Application Demo.

https://www.tencentcloud.com/document/product/1069/37914#.E5.85.A8.E5.8A.9F.E8.83.BD.E5.B0.8F.E8.A7.86.E9.A2.91-app.EF.BC.88demo.EF.BC.89.E6.BA.90.E4.BB.A3.E7.A0.81

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 160 of 174

The image editing feature is added starting from SDK 4.7. You can select a desired image to add effects such as
transition animation, background music, and stickers.
The API functions are as follows:

/*

*pitureList: list of transition images, which must contain at least three images

(note: we recommend you compress the images to 720p or lower (as shown in the dem

o); otherwise, the memory usage may be too high, causing editing exceptions).

*fps: frame rate of the video generated from the transition images in fps. Value

range: 15–30.

* Returned values:

* 0: set successfully

* -1: failed to set. Please check whether the image list exists, the number of im

ages is greater than or equal to 3, and the frame rate (`fps`) is normal

*/

- (int)setPictureList:(NSArray<UIImage *> *)pitureList fps:(int)fps;

/*

*transitionType: transition type. For more information, please see `TXTransitionT

ype`

* Returned values:

* duration: transition video duration (note: the duration for the same image list

may vary by transition animation. You can get the transition image duration here)

*/

- (void)setPictureTransition:(TXTransitionType)transitionType duration:(void(^)(C

GFloat))duration;

The setPictureList API is used to set the image list, which must contain at least three images. If too many

images are set, the image size should be appropriate to avoid editing exceptions due to high memory usage.
The setPictureTransition API is used to set the transition effect. Currently, six effects are available, and

their durations may vary. You can get the transition duration through duration here.

Pay attention to the API call sequence: call setPictureList first and then call setPictureTransition .

Image editing currently does not support loop, reverse, fast/slow motions, and post-roll watermarking, but supports
other video editing features. The call method is the same as that of video editing.

Image Transition Special Effects
iOS
Last updated：2020-09-01 14:52:09

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 161 of 174

The image editing feature is added starting from SDK 4.9. You can select a desired image to add effects such as
transition animation, background music, and stickers.
The API functions are as follows:

/*

* bitmapList: list of transition images, which must contain at least three images

(note: we recommend you compress the images to 720p or lower (as shown in the dem

o); otherwise, the memory usage may be too high, causing editing exceptions).

* fps: frame rate of the video generated from the transition images in fps. Value

range: 15–30.

* Returned values:

* 0: set successfully

* -1: failed to set. Please check whether the image list exists

*/

public int setPictureList(List<Bitmap> bitmapList, int fps);

/*

* type: transition type. For more information, please see `TXVideoEditConstants`

* Returned values:

* duration: transition video duration (note: the duration for the same image list

may vary by transition animation. You can get the transition image duration here)

*/

public long setPictureTransition(int type)

Here, the setPictureList API is used to set the image list, which must contain at least three images. If too

many images are set, the image size should be appropriate to avoid editing exceptions due to high memory usage.

The setPictureTransition API is used to set the transition effect. Currently, six effects are available, and

their durations may vary. You can get the transition duration through the returned value here.
Pay attention to the API call sequence: call setPictureList first and then call setPictureTransition .

Image editing currently does not support loop, reverse, and fast/slow motions, but supports other video editing
features. The call method is the same as that of video editing.

Android
Last updated：2020-09-01 14:52:09

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 162 of 174

Callback for Pre-Processing for Shooting

Callback for Pre-Processing for Video Editing

Customizing Video Data
iOS
Last updated：2022-06-24 14:56:48

/**

* Call back in the OpenGL thread, where captured images can be processed.

* @param texture Texture ID

* @param width Texture width

* @param height Texture height

* @return Texture returned to the SDK

* Note: The type of textures called back by the SDK is GL_TEXTURE_2D, which must

also be the texture type returned by the API. This callback follows the calling

of beauty filter APIs, and the texture format is GL_RGBA.

*/

- (GLuint)onPreProcessTexture:(GLuint)texture width:(CGFloat)width height:(CGFlo

at)height;

/**

* Call back in the OpenGL thread. You can release OpenGL resources here.

*/

- (void)onTextureDestoryed;

/**

Call back in the OpenGL thread, where captured images can be processed.

@param textureId Texture ID

@param width Texture width

@param height Texture height

@param timestamp Texture timestamp (ms)

@return Texture returned to the SDK

Note: The type of textures called back by the SDK is GL_TEXTURE_2D, which must a

lso be the texture type returned by the API. This callback follows the calling o

f beauty filter APIs, and the texture format is GL_RGBA.

Timestamp is the PTS of the current video frame and is measured in milliseconds.

You can customize beauty filter effects based on your needs.

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 163 of 174

*/

- (GLuint)onPreProcessTexture:(GLuint)texture width:(CGFloat)width height:(CGFlo

at)height timestamp:(UInt64)timestamp;

/**

* Call back in the OpenGL thread. You can release OpenGL resources here.

*/

- (void)onTextureDestoryed;

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 164 of 174

Shoot Preprocessing Callback

public interface VideoCustomProcessListener {

/**

* Call back in the OpenGL thread. You can further process the captured video imag

e in the callback

* @param textureId Texture ID

* @param width Texture width

* @param height Texture height

* @return Texture ID returned to SDK. If no processing is required, simply return

the texture ID passed in.

* Note: the texture type called back by the SDK is `GLES20.GL_TEXTURE_2D`, which

must also be the texture type returned to the SDK by the API

*/

int onTextureCustomProcess(int textureId, int width, int height);

/**

* Call back face coordinates in Enterprise Edition

* @param points Normalized face coordinates. Every two coordinates indicate the `

X` and `Y` values of a point. The value range is [0.f,1.f]

*/

void onDetectFacePoints(float[] points);

/**

* Call back in the OpenGL thread. You can release the created OpenGL resources in

the callback

*/

void onTextureDestroyed();

}

Editing Preprocessing Callback

public interface TXVideoCustomProcessListener {

/**

* Call back in the OpenGL thread. You can further process the captured video imag

e in the callback

*

Android
Last updated：2020-09-01 14:52:09

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 165 of 174

* @param textureId Texture ID

* @param width Texture width

* @param height Texture height

* @return Texture ID returned to SDK. If no processing is required, simply return

the texture ID passed in.

* <p>

* Note: the texture type called back by the SDK is `GLES20.GL_TEXTURE_2D`, which

must also be the texture type returned to the SDK by the API

*/

int onTextureCustomProcess(int textureId, int width, int height, long timestamp);

/**

* Call back in the OpenGL thread. You can release the created OpenGL resources in

the callback

*/

void onTextureDestroyed();

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 166 of 174

In scenarios such as personal live streaming shoot and UGSV, the video content is unpredictable. To prevent non-
compliant contents from being displayed on the VOD platform, you need to audit the uploaded videos first and
transcode and distribute them after confirming that they are compliant. The Tencent Cloud UGSV solution supports

AI-based porn detection in videos, which can automatically identify whether a video involves pornographic information.

Using AI-based Porn Detection

The AI-based porn detection feature can be used only after it is integrated into the video processing task flow. It
depends on the video AI - content audit feature on the VOD backend, and the audit result will be sent to the
application backend service as an event notification. VOD has a built-in task flow QCVB_ProcessUGCFile for

UGSV porn detection scenarios. If you use this task flow and specify to perform AI-based porn detection, the porn

detection task will be executed first, and whether to perform subsequent operations (such as transcoding,
watermarking, and screencapturing) will be determined based on the porn detection result.

AI Template Overview

Template
ID

Porn Processing Sample Rate

10

End the task flow (operations such
as transcoding, watermarking, and

screencapturing will not be
executed subsequently)

For videos whose duration is less than 500 seconds, sampling
is performed once per second; for videos whose duration is

greater than or equal to 500 seconds, sampling is performed
once every 1% of the duration

20 Continue executing the task flow None

AI-based Porn Detection Connection Sample

Step 1. Submit an AI-based porn detection task when generating an upload signature

/**

* Generate a signature that contains an AI-based porn detection task

*/

function getUploadSignature(req, res) {

Video Porn Detection
Last updated：2020-09-01 14:56:48

https://www.tencentcloud.com/document/product/266/33944

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 167 of 174

res.json({

code: 0,

message: 'ok',

data: {

// Specify the template parameters and task flow during the upload

signature: gVodHelper.createFileUploadSignature({ procedure: 'QCVB_SimpleProcessF

ile({1,1,1,1})' })

}

});

}

Step 2. Get the AI-based porn detection result when getting the event notification

/**

* Get the AI-based porn detection result of the event

*/

function getAiReviewResult(event){

let data = event.eventContent.data;

if(data.aiReview){

return data.aiReview;

}

return {};

}

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 168 of 174

 UGCKit allows you to freely modify the preset text, colors, and icons.

Text

 UGCKit offers two language packages by default: Simplified Chinese and American English. All their localized

strings are stored in the default standard localized string format in

 UGCKit/UGCKitResources/Localizable.strings . You can replace the text to change the default strings

or add new languages.

Below is an example of changing the Simplified Chinese animated effect names, which are in
 UGCKit/UGCKitResources/zh-Hans.lproj/Localizable.strings .

"UGCKit.Edit.VideoEffect.DynamicLightWave" = "Rock light";

"UGCKit.Edit.VideoEffect.DarkFantasy" = "Dark dream";

"UGCKit.Edit.VideoEffect.SoulOut" = "Soul out";

"UGCKit.Edit.VideoEffect.ScreenSplit" = "Split screen";

"UGCKit.Edit.VideoEffect.Shutter" = "Blinds";

"UGCKit.Edit.VideoEffect.GhostShadow" = "Shadow";

"UGCKit.Edit.VideoEffect.Phantom" = "Phantom";

"UGCKit.Edit.VideoEffect.Ghost" = "Ghost";

"UGCKit.Edit.VideoEffect.Lightning" = "Lightning";

"UGCKit.Edit.VideoEffect.Mirror" = "Mirror";

"UGCKit.Edit.VideoEffect.Illusion" = "Illusion";

To change "Illusion" to "Phantasm", you only need to modify the last line as follows:

"UGCKit.Edit.VideoEffect.Illusion" = "Phantasm";

Color

The methods of getting the colors on all UIs of UGCKit are defined in the UGCKitTheme class. You can modify

the attribute values to change colors. For the specific resource names, see the comments in UGCKitTheme.h .

Below is an example of changing the background color of the application UI:

Custom Themes
iOS
Last updated：2022-11-15 11:20:02

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 169 of 174

UGCKitTheme *theme = [[UGCKitTheme alloc] init];

theme.backgroundColor = [UIColor whiteColor]; // Change the background color to w

hite

UGCKitEditViewController *editViewController = [[UKEditViewController alloc] init

WithMedia:media config:nil theme:theme]; // Use the custom theme to create a cont

roller

Icons

The icons on all UIs of UGCKit are in the UGCKit.xcassets resource file and can be replaced as needed.

The specific icon filenames can be viewed in UGCKitTheme.h . An icon's resource name is the same as its

attribute/method name, and all icons are defined in UGCKitTheme.h . Taking the recording UI as an example, the

following names are the icons' attribute names in UGCKitTheme as well as the resource names in

 UGCKit.xcassets .

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 170 of 174

You can replace icons in UGCKit in two ways:

Directly replace icons in UGCKitTheme.xcassets .

Write code to assign values to objects in UGCKitTheme to change icons.

Below is the sample code for changing icons on the recording UI:

UGCKitTheme *theme = [[UGCKitTheme alloc] init];

theme.nextIcon = [UIImage imageName:@"myConfirmIcon"]; // Set the icon used to co

mplete recording

theme.recordMusicIcon = [UIImage imageName:@"myMusicIcon"]; // Set the icon of th

e music feature

theme.beautyPanelWhitnessIcon = [UIImage imageNamed:@"beauty_whitness"]; // Set t

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 171 of 174

he icon of the brightening filter

UGCKitRecordViewController *viewController = [[UGCKitRecordViewController alloc]

initWithConfig:nil theme:theme]; // Use the custom theme to create a controller

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 172 of 174

 UGCKit is a set of encapsulated interactive UIs, which is the UGSV demo app's theme by default. With simple

modifications, you can customize your own theme and replace the icons, text, and colors.

Customizing the recording theme

The recording UI contains the right icon toolbar, the bottom toolbar, music panel, beauty filter panel, and sound effect

panel.

1. Declare a <style> in app/res/values/style.xml , specify its parent theme as RecordStyle , and

change the theme to the target theme. You can find all available themes in

Android
Last updated：2022-11-14 18:25:34

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 173 of 174

 app/ugckit/res/values.theme_style.xml .

Below is the sample code for replacing the music and beauty filter icons on the recording UI:
2. Declare the custom theme in AndroidManifest.xml :

Customizing the editing theme

The editing UI contains the editing and clipping UI, animated effect, beauty filter, and special effect panel, and speed,
filter, sticker, and bubble subtitles panels.

1. Declare a <style> in app/res/values/style.xml , specify its parent theme as EditerStyle , and

change the theme to the target theme. You can find all available themes in

 app/ugckit/res/values.theme_style.xml .

Below is the sample code for replacing the playback and pause icons on the editing UI:

User Generated Short Video SDK

©2013-2022 Tencent Cloud. All rights reserved. Page 174 of 174

2. Declare the custom theme in AndroidManifest.xml :

