
Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 11

Mobile Live Video Broadcasting

Mic Connect

Product Documentation

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 11

Copyright Notice

©2013-2019 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 11

Overview

In RTMP-based mic connect, the MLVB SDK offers the MLVBLiveRoom component to help you quickly

implement the mic connect feature. To better cater to your mic connect needs, Tencent Cloud has launched an RTC-
based mic connect scheme and offered simpler and more flexible V2 APIs.

MLVB’s V2 APIs support publishing/mic connect via RTMP as well as RTC. You can choose whichever scheme fits
your needs. Below is a comparison of the two schemes.

Item RTMP RTC

Protocol Based on TCP Based on UDP (more suitable for streaming)

QoS Poor adaptability to bad
network connection

Video streaming unaffected with 50% packets loss; audio mic
connect unaffected with 70% packets loss

Region Chinese mainland Worldwide

Tencent Cloud
products used

MLVB, CSS MLVB, CSS, TRTC

Price 0.0028 USD/min Tiered pricing. For details, see Mic Connect > Billing.

Demonstration

The MLVB SDK provides new V2 APIs via V2TXLivePusher (publishing) and V2TXLivePlayer (playback)

to power larger-scale live streaming scenarios with greater flexibility and lower latency. Hosts can use the capabilities
provided by the APIs for RTC-based publishing. Audience, by default, play streams via CDNs, whose cost is relatively

low. To connect mic with hosts, audience can switch to RTC-based playback, which has lower latency and guarantees
better interactive experience. To enable RTC-based mic connect, you must activate TRTC.

Below are the UI views of the MLVB-API-Example demo.

UI demonstration

Before streaming

Host (Phone A) Mic-connecting audience (Phone Audience (Phone C)

Mic Connect
Last updated：2022-06-14 12:41:46

https://www.tencentcloud.com/document/product/1071/42210#billing

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 11

B)

Mic connecting

Host (Phone A) Mic-connecting audience (Phone
B)

Audience (Phone C)

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 11

Implementation

As shown in the figure below, user A is the host, while user B and C are the audience. For user B to connect mic with
user A, follow these steps:

User B: Start publishing using the trtc:// protocol and switch from CDN playback to the ultra-low-latency

 trtc:// protocol.

User A: Start playing user B’s stream and initiate a stream mixing task to mix his or her stream with user B’s.
User C can continue to play streams via a CDN and will see the mic connecting images of user A and B after
stream mixing.

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 11

1. Publish streams via RTC (host)

User A calls V2TXLivePusher to publish a stream. For how to splice a publishing URL, please see

Publish/Playback URL.

java java
Objective-C ObjectiveC

V2TXLivePusher pusher = new V2TXLivePusherImpl(this, V2TXLiveMode.TXLiveMode_RT

C);

pushURLA= "trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&userId=A&u

https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 11

2. Play streams via CDNs (audience)

All audience call V2TXLivePlayer to play user A’s stream. For how to splice a playback URL, please see

Publish/Playback URL.

java java
Objective-C ObjectiveC

3. Initiate mic connect (audience)

User B (the mic-connecting user B) calls V2TXLivePusher to publish streams.

java java
Objective-C ObjectiveC

4. Start mic connect

User A calls V2TXLivePlayer to play the stream of the mic-connecting user B via RTC.

java java
Objective-C ObjectiveC

sersig=xxx";

pusher.startPush(pushURLA);

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

/**

* Streams are played via CDNs in the example. The protocols supported include FL

V, HLS, and WebRTC. Standard protocols such as FLV and HLS are more cost-effecti

ve, but WebRTC delivers interactive experience with lower latency.

* playURLA= "http://3891.liveplay.myqcloud.com/live/streamidA.flv";

* playURLA= "http://3891.liveplay.myqcloud.com/live/streamidA.hls";

* playURLA= "webrtc://3891.liveplay.myqcloud.com/live/streamidA"

*/

player.startPlay(playURLA);

V2TXLivePusher pusher = new V2TXLivePusherImpl(this,V2TXLiveMode.TXLiveMode_RT

C);

pushURLB= "trtc://cloud.tencent.com/push/streamid?sdkappid=1400188888&userId=B&u

sersig=xxx";

pusher.startPush(pushURLB);

https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 11

The mic-connecting user B calls V2TXLivePlayer to switch to RTC and play user A’s stream.

java java

Objective-C ObjectiveC

User A and the mic-connecting user B start ultra-low-latency interaction.

5. Mix streams

To make sure that other audience can see the host and the mic-connecting user interact with each other, user A
needs to initiate a stream mixing task to mix his or her stream and user B’s into one stream. Specifically, user A needs

to call the setMixTranscodingConfig API to start On-Cloud MixTranscoding, specifying audio-related

parameters including audioSampleRate , audioBitrate , and audioChannels .

If your application involves the transfer of video data, you must also set video-related parameters such as
 videoWidth , videoHeight , videoBitrate , and videoFramerate .

Sample code:

java java

Objective-C ObjectiveC

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

playURLB= "trtc://cloud.tencent.com/play/streamid?sdkappid=1400188888&userId=B&u

sersig=xxx&appscene=live";

player.startPlay(playURLB);

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

playURLA= "trtc://cloud.tencent.com/play/streamid?sdkappid=1400188888&userId=A&u

sersig=xxx&appscene=live";

player.startPlay(playURLA);

V2TXLiveDef.V2TXLiveTranscodingConfig config = new V2TXLiveDef.V2TXLiveTranscodi

ngConfig();

// Set the resolution to 720 × 1280 px, bitrate 1500 Kbps, and frame rate 20 fps

config.videoWidth = 720;

config.videoHeight = 1280;

config.videoBitrate = 1500;

config.videoFramerate = 20;

config.videoGOP = 2;

config.audioSampleRate = 48000;

config.audioBitrate = 64;

config.audioChannels = 2;

config.mixStreams = new ArrayList<>();

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 11

Note：
In On-Cloud MixTranscoding, the default ID for the post-mixing stream is the stream ID of the user who initiates
the stream mixing task. To specify an ID for the post-mixing stream, pass in the ID when calling the API.

// Position of the camera image of the host

V2TXLiveDef.V2TXLiveMixStream local = new V2TXLiveDef.V2TXLiveMixStream();

local.userId = "localUserId";

local.streamId = null; // `streamID` is required for the remote user but not for

the local user

local.x = 0;

local.y = 0;

local.width = videoWidth;

local.height = videoHeight;

local.zOrder = 0; // When `zOrder` is set to `0`, it indicates that the host’s i

mage is displayed at the bottom

config.mixStreams.add(local);

// Image position of the mic-connecting user

V2TXLiveDef.V2TXLiveMixStream remoteA = new V2TXLiveDef.V2TXLiveMixStream();

remoteA.userId = "remoteUserIdA";

remoteA.streamId = "remoteStreamIdA"; // `streamID` is required for the remote u

ser but not for the local user

remoteA.x = 400; // For reference only

remoteA.y = 800; // For reference only

remoteA.width = 180; // For reference only

remoteA.height = 240; // For reference only

remoteA.zOrder = 1;

config.mixStreams.add(remoteA);

// Image position of the mic-connecting user

V2TXLiveDef.V2TXLiveMixStream remoteB = new V2TXLiveDef.V2TXLiveMixStream();

remoteB.userId = "remoteUserIdB";

remoteB.streamId = "remoteStreamIdB"; // `streamID` is required for the remote u

ser but not for the local user

remoteB.x = 400; // For reference only

remoteB.y = 800; // For reference only

remoteB.width = 180; // For reference only

remoteB.height = 240; // For reference only

remoteB.zOrder = 1;

config.mixStreams.add(remoteB);

// Start On-Cloud MixTranscoding

pusher.setMixTranscodingConfig(config);

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 11

After the above steps are performed, other audience will be able to see user A and B interact with each other.

Note：
Since you need to maintain room and user status by yourself, the new RTC-based mic connect scheme may
seem more complicated than the old one. In fact, there isn’t an always better scheme, only one that
better suits your needs.

You can stick to the old mic connect scheme if your application scenarios do not require low latency or high

concurrency.
If you want to use V2 APIs without having to manage a room and users, try using Tencent Cloud’s IM SDK to
implement the necessary logic.

Billing

For billing details, please see Purchase Guide.

FAQs

1. Why is publishing and playback using the same streamid on the same device possible with
 TXLivePusher and TXLivePlayer but not with V2TXLivePusher and V2TXLivePlayer ?

 V2TXLivePusher and V2TXLivePlayer are based on Tencent Cloud’s TRTC protocol. This is a UDP-based

private protocol that features ultra-low latency and does not support using the same streamid for ultra-low-

latency publishing and playback on the same device. We have determined that it’s not necessary to support this
given the current use cases, but may consider optimizing the protocol in the future.

2. What are the parameters mentioned in Activate TRTC above?

 SDKAppID identifies your application, and UserID your user. UserSig is a security signature calculated

based on the two parameters using the HMAC SHA256 encryption algorithm. Attackers cannot use your Tencent
Cloud traffic without authorization as long as they cannot forge a UserSig . UserSig calculation involves

hashing crucial information such as SDKAppID , UserID , and ExpireTime , as shown below.

// UserSig formula, in which `secretkey` is the key used to calculate UserSig

usersig = hmacsha256(secretkey, (userid + sdkappid + currtime + expire +

base64(userid + sdkappid + currtime + expire)))

https://www.tencentcloud.com/document/product/1047
https://www.tencentcloud.com/document/product/1071/38114
https://www.tencentcloud.com/document/product/647/39958

Mobile Live Video Broadcasting

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 11

3. How can I set audio or video quality using V2TXLivePusher and V2TXLivePlayer ?

We provide APIs for the setting of audio and video quality. For details, please see setAudioQuality() and
setVideoQuality:resolutionMode:().

4. What does the error code -5 mean?

The error code -5 means failure to call an API due to invalid license. The enumerated value is

V2TXLIVE_ERROR_INVALID_LICENSE. For other error codes, please see V2TXLiveCode.

5. What is the typical latency of RTC-based mic connect?

In the new RTC-based mic connect scheme, the mic connect latency is lower than 200 ms, and the latency for hosts
and audience is 100-1,000 ms.

6. What should I do if the 404 error occurs when I try to play streams via CDNs after successfully
publishing streams over RTC?

Check if you have enabled TRTC’s relayed push feature. The feature is needed because, after publishing streams via
RTC, to enable CDN playback, you need to relay the streams to CDNs.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a88956a3ad5e030af7b2f7f46899e5f13
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html

