
Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 63

Tencent Cloud Elastic Microservice

Practical Tutorial

Product Documentation

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 63

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 63

Contents

Practical Tutorial
Use of GitHub Actions in TEM
Hosting a Static Website
Public Network Access of TEM Applications
TEM Application Access to Public Network (Through API Gateway)
TEM Application Failure Troubleshooting Guide
Quick Access to TEM Application Through API Gateway
Java Application Fine-Tuning
Migration from Java 8 to Java 11

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 63

Practical Tutorial
Use of GitHub Actions in TEM
Last updated：2024-01-09 12:42:59

Use of GitHub Actions in TEM
GitHub Actions

TEM integrates world-class CI/CD tools to facilitate your use of GitHub workflows. You can learn more by referring to
the official documentation of GitHub Actions.
Note：

GitHub Actions makes it easy to automate all your software workflows, now with world-class CI/CD.

Application release types supported by TEM

The TEM platform uses cloud native as its infrastructure, where all applications exist in the form of containers at
runtime. TEM especially supports the release of JAR and WAR packages for Java applications and takes care of the
build and management of images. For other languages, you need to build images on your own and push them to
Tencent Cloud Image Registry.

How to use

The following takes .NET as an example to describe how to use GitHub Actions.

https://docs.github.com/en/actions

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 63

name: .NET

on:

 push:

 branches: [master]

 pull_request:

 branches: [master]

jobs:

 build:

 runs-on: ubuntu-latest

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 63

 steps:

 - uses: actions/checkout@v2

 - name: Setup .NET

 uses: actions/setup-dotnet@v1

 with:

 dotnet-version: 5.0.x

 - name: Declare some variables

 id: vars

 shell: bash

 run: |

 echo "::set-output name=sha_short::$(git rev-parse --short HEAD)"

 - name: Build Code

 run: dotnet publish -o ./target

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v1

 - name: Login to Registry

 uses: docker/login-action@v1

 with:

 registry: ${{ secrets.REGISTRY_URL }}

 username: ${{ secrets.REGISTRY_USERNAME }}

 password: ${{ secrets.REGISTRY_TOKEN }}

 - name: Build and push

 uses: docker/build-push-action@v2

 with:

 context: .

 push: true

 platforms: linux/amd64,linux/arm64

 tags: ccr.ccs.tencentyun.com/han_test/my-web-app:${{ steps.vars.outputs.s

1. Your code repository should include the dockerfile file for use by the built action.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 63

FROM mcr.microsoft.com/dotnet/aspnet:5.0

COPY ./target /app

WORKDIR /app

ENTRYPOINT ["dotnet", "myWebApp.dll"]

2. Here, commitId is used as the image tag, which makes it easier to confirm the runtime's application code

version. If you don't need this, you can directly use the latest image tag.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 63

git rev-parse --short HEAD

3. Tencent Cloud Image Registry Personal Edition requires your login information. The account information will

automatically pop up when you open the Personal Edition page for the first time. The Enterprise Edition works in a
similar way. You can find relevant documents by yourself.

https://console.tencentcloud.com/tke2/registry/user/self?rid=1

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 63

 - name: Login to Registry

 uses: docker/login-action@v1

 with:

 registry: ${{ secrets.REGISTRY_URL }}

 username: ${{ secrets.REGISTRY_USERNAME }}

 password: ${{ secrets.REGISTRY_TOKEN }}

4. Relevant keys can be managed by using the Secrets module on the Repository Settings page.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 63

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 63

Hosting a Static Website
Last updated：2024-07-04 16:25:38

Overview

TEM provides static website resource hosting capabilities through application instance + CFS. This document
takes the popular static website service Hugo as an example to describe the practical tutorial for static resource
hosting. The following will generate a personal static blog through Hugo, deploy a reverse proxy application through

TEM, work together with CFS to manage static resources, and finally offer access to the personal static blog over the
public network through the access configuration in TEM.
The overall process is as follows:
1. Generate a static blog locally through Hugo
2. Upload the static blog content to CFS

3. Deploy the nginx application in TEM and associate CFS
4. Configure the nginx network access in TEM
5. (Optional) Configure a domain name
6. (Optional) Configure a firewall
7. (Optional) Configure CDN

Directions

Step 1. Generate a static blog locally through Hugo

1. Install Hugo (for more information, please see Install Hugo).

Taking macOS as an example, install it with the following command:

https://gohugo.io/
https://gohugo.io/getting-started/installing/

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 63

brew install hugo

2. Run the following command to create a static site.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 63

hugo new site quickstart

3. Run the following command to add a theme.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 63

cd quickstart

git init

git submodule add https://github.com/theNewDynamic/gohugo-theme-ananke.git themes/a

echo theme = \\"ananke\\" >> config.toml

4. Run the following command to add a blog.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 63

hugo new posts/my-first-post.md

5. Run the following command to build a static page.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 63

hugo -D

6. The generated static content is stored in the public/ directory of the quickstart project.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 63

Step 2. Upload the static blog content to CFS

1. Purchase a CFS file system as instructed in Creating File Systems and Mount Targets.
Note:

https://www.tencentcloud.com/document/product/582/9132

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 63

The region and VPC of the purchased CFS file system should be the same as those of the application deployed in
TEM.
2. Upload the files in the public/ directory generated by Hugo to the root directory or subdirectory of the CFS file

system as instructed in Using CFS File Systems on Linux Clients or Using CFS File Systems on Windows Clients.

Step 3. Deploy the nginx application in TEM and associate CFS

1. Log in to the TEM console and associate the CFS instance purchased above with the environment where the
application is deployed.

2. Create an application named hugo on the Application Management page.

https://www.tencentcloud.com/document/product/582/11523
https://www.tencentcloud.com/document/product/582/11524
https://console.tencentcloud.com/tem
https://console.tencentcloud.com/tem/env

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 63

3. Deploy the application and select the associated CFS storage resource in the Persistent Storage module.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 63

Step 4. Configure the nginx network access in TEM

Scheme 1. Configure a forwarding rule (recommended)
Scheme 2. Configure public network CLB

1. On the Application Management page, click the ID of the application you just created to enter its basic
information page.
2. On the application basic information page, click Configure Now in the Access Configuration module to enter the
environment access configuration page.

https://console.tencentcloud.com/tem/env

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 63

3. On the environment access configuration page, click Create to create an access configuration rule.

4. Click Complete to get the following IP address.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 63

Access the Hugo service at the generated address:

1. On the Application Management page, click the ID of the application you just created to enter its basic
information page.
2. On the application basic information page, click Edit and Update in the top-right corner of the Access
Configuration module to add a public network CLB instance.

https://console.tencentcloud.com/tem/env

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 63

3. Select the public network access method and enter the port mapping relationship.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 63

4. Click Submit to get the following public IP.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 63

Access the Hugo service at the generated address:

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 63

Step 5. (Optional) Configure a domain name

1. Register a domain name.
2. Associate the domain name with the CLB instance generated above, and you can access the static website at the

domain name. For more information, please see Getting Started with CLB.

Step 6. (Optional) Configure a firewall

If the static website is accessed through the forwarding configuration settings, it can be connected to Tencent
Cloud WAF for security protection. For more information, please see Configuring WAF protection for CLB listening
domain names.

Step 7. (Optional) Configure CDN

In order to deliver a better user experience, the hosted static website can be connected to Tencent Cloud CDN for

access acceleration. For more information, please see Getting Started.

https://www.tencentcloud.com/document/product/214/8975
https://www.tencentcloud.com/products/waf
https://www.tencentcloud.com/document/product/214/38751
https://www.tencentcloud.com/document/product/228/36383

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 63

Public Network Access of TEM Applications
Last updated：2024-01-09 12:42:59

Overview

Applications running on TEM usually need public network access, and also require allowlist access in scenarios such
as mini programs. In these cases, the application should have a fixed public IP.
This document describes how to enable public network access of the applications deployed on TEM.

Solution

The applications are deployed in a TEM environment, which associates with your VPC. In other words, they are
essentially deployed in your VPC. You can configure a NAT Gateway instance and associate it with an EIP for your
VPC, allowing the applications in your VPC to access the public network.

Steps

1. Deploy the applications in TEM.
2. Create a NAT Gateway.

3. Configure the NAT Gateway in the VPC console.
4. Verify whether the TEM applications can access the public network.
5. (Optional) Query public network access IP addresses.

Directions

Step 1: deploy the applications in TEM

Configure the applications in the TEM console as instructed in Creating Environment and Creating and Deploying
Application.

Step 2: create a NAT Gateway

Log in to the NAT Gateway console, select the region where the TEM applications are deployed, and click +New to

create a NAT Gateway instance.

https://www.tencentcloud.com/document/product/1094/41888?!editLang=zh&!preview=&lang=en&pg=#step1
https://www.tencentcloud.com/document/product/1094/41888?!editLang=zh&!preview=&lang=en&pg=#step2
https://www.tencentcloud.com/document/product/1094/41888?!editLang=zh&!preview=&lang=en&pg=#step3
https://www.tencentcloud.com/document/product/1094/41888?!editLang=zh&!preview=&lang=en&pg=#step4
https://www.tencentcloud.com/document/product/1094/41888?!editLang=zh&!preview=&lang=en&pg=#step5
https://www.tencentcloud.com/document/product/1094/40358
https://www.tencentcloud.com/document/product/1094/40362
https://console.tencentcloud.com/vpc/nat?rid=4

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 63

Network: select the VPC with which the environment of the TEM applications associates.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 63

Elastic IP: if there is no available elastic IP (EIP), click Create Now to purchase an EIP, and then return to the
Create NAT Gateway page to select it.

Step 3: configure the NAT Gateway in the VPC console

1. Log in to the TEM console and access the Environment page. Select the environment in which the TEM

applications are deployed to enter its details page.
2. Click the VPC next to Cluster Network to enter the VPC details page.

3. Select the Route Table module.

4. Click Create on the Route Table page to configure a route table.

https://console.tencentcloud.com/tem/env

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 63

Destination: select the public IP address to be accessed. You can configure a CIDR block for this parameter. For
example, if you enter 0.0.0.0/0 , all traffic will be forwarded to the NAT Gateway.

Next hop type: select NAT Gateway.
Next hop: select the NAT Gateway created in the step 2.
For detailed directions, see Creating Custom Route Tables.
5. On the Route Table page, locate the route table just created, and click More > Associated Subnets under the
Operation column. In the pop-up window, select the subnet associated with the environment in which the TEM

applications are deployed.

Step 4: verify whether the TEM applications can access the public network

1. Log in to the TEM console and access the Application Management page. Click the ID/Name of the TEM
applications to enter the instance list page.
2. Click Webshell under the Operationcolumn of the target application.

https://www.tencentcloud.com/document/product/215/35236
https://console.tencentcloud.com/tem/application?rid=4

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 63

3. Verify whether the application can access the public network.

Step 5: (optional) query public network access IP addresses

1. Log in to the TEM console and access the Environment page. Select the environment in which the TEM
applications are deployed to enter its details page.
2. Click the VPC next to Cluster Network to enter the VPC details page.

https://console.tencentcloud.com/tem/env

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 63

3. Select the NAT Gateway model to go to the NAT Gateway page.
4. Click the ID/Name of the target NAT Gateway to access its details page. Select the Bind Elastic IP tab to view the

IP addresses that can access the public network.

Additional Fees

The NAT Gateway and EIP will be charged separately. For pricing details, see:
NAT Gateway Billing Overview
Elastic IP Billing

https://www.tencentcloud.com/product/nat
https://www.tencentcloud.com/document/product/1015/30248
https://www.tencentcloud.com/document/product/213/17156

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 63

TEM Application Access to Public Network
(Through API Gateway)
Last updated：2024-01-26 16:40:24

Overview

Applications running on TEM usually need to access the public network for business and other reasons. In many
cases, these requests are all HTTP/HTTPS requests. You can use API Gateway to easily access HTTP/HTTPS
requests from the public network through simple configuration.

Note:
If your access to the public network does not only include HTTP/HTTPS, refer to Public Network Access of TEM
Applications to configure a NAT gateway for implementation.

Prerequisites

Create an environment and create and deploy an application.

Directions

Step 1. Associate public network HTTP/HTTPS requests in API Gateway

1. Log in to the API Gateway console and click Service on the left sidebar to enter the service list page.

2. Select the same region as the TEM application and click Create in the top-left corner to create a service.
When creating the service, you can select the frontend type (HTTP, HTTPS, or HTTP/HTTPS), access mode (VPC),
and instance type (shared).

https://www.tencentcloud.com/zh/document/product/1094/41888
https://www.tencentcloud.com/document/product/1094/40358
https://www.tencentcloud.com/document/product/1094/40362
https://console.tencentcloud.com/apigateway

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 63

3. Click the API Gateway service ID to enter the API management page and click Create API.
4. In the Frontend Configuration step, enter the API name, select HTTP&HTTPS as the frontend type, / as the

path, ANY as the request method (to include all requests), and No authentication as the authentication type, and
click Next.

5. In the Backend Configuration step, select Public URL/IP as the backend type, configure the public domain

name and path you need to access (Tencent Cloud official website is used as an example here), and click Next.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 63

6. Set the return type of the application (which is HTML here), select JSON as the RESTful service, and click

Complete to publish the service.

Step 2. Verify public network request connectivity

1. Go to the API Gateway service's basic configuration page and copy its VPC access address.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 63

2. Open the deployed TEM application page, enter the webshell of the application instance, and visit the API Gateway
VPC access address to verify the network connectivity.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 63

TEM Application Failure Troubleshooting
Guide
Last updated：2024-01-09 12:42:59

When a TEM application is in failed status, at least one instance is not in Running status. This document describes
some common instance error statuses and how to troubleshoot the problems.

Instance Error Status

CrashLoopBackOff

Status description

An application in the instance has a problem while running, and the container failed to start/run.

Solution

View the instance logs and troubleshoot the problem based on the log content.

Error

Status description

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 63

Similar to CrashLoopBackOff , an application in the instance has a problem while running, and the container

failed to start/run.

Solution

View the instance logs and troubleshoot the problem based on the log content.

Running Unhealthy: Readiness probe failed

Status description

The readiness health check configured for the application failed.

Solution

Go to Application Deployment > Health check and check whether the Readiness Probe configuration item of the
application is correct.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 63

Running Unhealthy: Liveness probe failed

Status description

The aliveness health check configured for the application failed.

Solution

Go to Application Deployment > Health check and check whether the Aliveness Probe configuration of the

application is correct.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 63

Running Unhealthy: Readiness check failed according to l4 listener: xxx of CLB xxx. Service:
xxx

Status description

The access configuration of the application cannot take effect, and the application cannot be accessed.

Solution

Go to Application details > Basic information > Access configuration and check whether the port and protocol

are correct.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 63

PostStartHookError

Status description

PostStart configured for the application failed.

Solution

Go to Application Deployment > Application start/stop management and check whether PostStart configured

for the application can run normally.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 63

ContainerCreating

Status description

The instance container failed to be created.

Solution

Go to Application Deployment > Persistent storage and check whether the application is mounted with a

nonexistent data volume.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 63

CreateContainerConfigError

Status description

The instance container failed to be configured.

Solution

Go to Application Deployment > Environment variable and check whether the application uses nonexistent

configuration.

ImagePullBackOff

Status description

The instance image failed to be pulled.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 63

Solution

Go to the TCR console and check whether the image used by the application exists or has been deleted by mistake.

https://console.tencentcloud.com/tcr/repository?rid=1

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 63

Quick Access to TEM Application Through
API Gateway
Last updated：2024-01-09 12:42:59

API Gateway Overview

API Gateway is an API hosting service launched by Tencent Cloud, which supports the management of APIs
throughout their lifecycle from creation, maintenance, launch, and operation to deactivation. For more information, see
API Gateway product documentation.

Overview

This document describes how to quickly use API Gateway to access a TEM application and manage its APIs. With the
combination of API Gateway and TEM, you can enjoy the advanced capabilities of API Gateway such as traffic
throttling, authentication, and caching for better business outcomes.

Prerequisites

Log in to the TEM console, create an environment, and create and deploy an application.

https://www.tencentcloud.com/zh/document/product/628
https://console.tencentcloud.com/tem
https://www.tencentcloud.com/document/product/1094/40358
https://www.tencentcloud.com/document/product/1094/40362

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 63

Directions

Step 1. Configure VPC access for the TEM application

1. Log in to the TEM console, click Application Management on the left sidebar, and click the target application to
enter the application details page .
2. Click Edit and Update in the Access Configuration section to enter the application access configuration page.

3. Select VPC access (layer-4 forwarding), select the subnet, protocol, container port, and application listening port,
and click Submit. At this point, TEM will automatically create a layer-4 forwarding VPC CLB instance for you.

Step 2. Create an API Gateway service and bind it to the TEM application

1. Log in to the API Gateway console and click Service on the left sidebar to enter the service list page.
2. Select the same region as the TEM application and click Create in the top-left corner to create a service.
When creating the service, you can select the frontend type (HTTP, HTTPS, or HTTP/HTTPS), access mode (VPC or

public network), and instance type (shared or dedicated).

3. Click the API Gateway service ID to enter the API management page and click Create API.
4. In the Frontend Configuration step, enter the API name, select HTTP&HTTPS as the frontend type, / as the
path, ANY as the request method (to include all requests), and Authentication-free as the authentication type, and

click Next.

https://console.tencentcloud.com/tem
https://console.tencentcloud.com/apigateway/service

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 63

5. In the Backend Configuration step, select VPC resource as the backend type, select the VPC where the TEM
application deployment environment is located, set the backend domain name, select the CLB instance automatically

created by the TEM application (named "cls-xxxdefault{TEM application name}"), select the corresponding listener
(i.e., the port mapping set in the previous step), and enter / as the backend address.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 63

6. At this point, you can see the API you configured and access your TEM application at the default domain name
provided by API Gateway.

Step 3. Access the TEM application through API Gateway

Call the API Gateway API created in step 2 to access the TEM application through API Gateway.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 63

Notes

In order to ensure that applications can access API Gateway in a non-intrusive manner, we recommend you bind an
API Gateway service to only one TEM application and keep the frontend address and backend address the same. If
they are both / , all APIs can be blocked. You can also make separate configurations for some of your application's

APIs.
You can refer to Overview to bind the plugin to the API Gateway API with a TEM backend and then enjoy advanced
features provided by API Gateway.

https://www.tencentcloud.com/zh/document/product/628/40214

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 63

Java Application Fine-Tuning
Last updated：2024-07-04 16:25:38

Optimizing Container Image

By optimizing the container image in the following ways, you can reduce the loading and startup time:
Minimize the container image size.
Avoid using nested JAR packages.

Use TEM JAR/WAR for deployment.
Deployment based on TEM JAR/WAR is easy to use and efficient. It provides practical tutorials for JAR package
image builds by default. TEM offers a build process that can fully utilize the build cache by default and uses the new-
gen build tool BuildKit to increase the build speed by over 50%. Moreover, build logs can be queried to make the
entire build process traceable.

Setting Application Acceleration

If you use TEM JAR/WAR for deployment and select the KONA JDK 11/Open JDK 11 runtime environment, TEM will
enable the application acceleration feature and support zero-code modification acceleration for Spring Boot
applications by default. TEM enhances the AppCDS feature in OpenJDK, so you don't need to modify the nested JAR
package structure in the original Spring Boot application, and TEM directly provides practical tutorials of Java
application acceleration to shorten the startup time by 10%–40% during instance scale-out.

JVM Parameter Optimization

Using JDK that can perceive container memory resources

On a VM or physical machine, when allocating CPU and memory resources, JVM will search for available resources

from common locations such as /proc/cpuinfo and /proc/meminfo on Linux. However, at the container

runtime, the CPU and memory restrictions are stored in /proc/cgroups/... . JDK on an early version will still

search for resources in /proc but not /proc/cgroups , which may cause the CPU and memory usage to

exceed the allocated upper limit and further lead to more severe problems:
There are too many threads, as the size of the thread pool is configured by

 Runtime.availableProcessors() .

The memory used by JVM exceeds the upper limit of the container memory and causes the OOMKilled error in

the container.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 63

JDK 8u131 first implements the UseCGroupMemoryLimitForHeap parameter, but this parameter has a defect.

After the UnlockExperimentalVMOptions and UseCGroupMemoryLimitForHeap parameters are added

to your application, JVM can perceive the container memory and control the actual heap size of the application, but

JVM still cannot fully utilize the memory allocated to the container.
Therefore, JVM provides the -XX:MaxRAMFraction flag to help better calculate the heap size. The default value

of MaxRAMFraction is 4 (that is, 4 is the divisor), but it is a fraction, not a percentage; therefore, it is difficult

to set a value that can use available memory effectively.
JDK 10 provides better support for the container environment. If you run a Java application in a Linux container, JVM

will use the UseContainerSupport option to automatically check the memory limits and use

 InitialRAMPercentage , MaxRAMPercentage , and MinRAMPercentage to control the memory. Here,

percentages rather than fractions are used to make the control more accurate.
By default, the UseContainerSupport parameter is activated, MaxRAMPercentage is 25%, and

 MinRAMPercentage is 50%.

Note that MinRAMPercentage here is not used to set the minimum value of the heap size but to restrict the heap

size by JVM only when the total available memory of the physical server (or container) is less than 250 MB.
Similarly, MaxRAMPercentage here is used to restrict the heap size by JVM only when the total available memory

of the physical server (or container) exceeds 250 MB.
These parameters have been backported to JDK 8u191. By default, UseContainerSupport is activated. You

can set -XX:InitialRAMPercentage=50.0 -XX:MaxRAMPercentage=80.0 to enable JVM to perceive

and fully utilize the available memory of the container. Note that if -Xms -Xmx is specified,

 InitialRAMPercentage and MaxRAMPercentage will become invalid.

Disabling the optimization compiler

By default, JVM has multi-stage JIT compilation. Though such stages can gradually improve the application efficiency,
they also increase the memory overheads and the application startup time.
For short-lived cloud native applications, you can consider using the following parameters to disable the optimization

stage, so as to reduce the startup time at the cost of the long-term running efficiency.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 63

JAVA_TOOL_OPTIONS="-XX:+TieredCompilation -XX:TieredStopAtLevel=1"

Disabling class verification

When JVM loads a class to the memory for execution, it will verify whether the class is not tampered with, modified
maliciously, or corrupted. However, in a cloud native environment, the CI/CD pipeline is provided by the cloud native
platform, which means that the application compilation and deployment are trusted. Therefore, you need to consider

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 63

using the following parameters to disable verification. If many classes need to be loaded during startup, disabling
verification may accelerate the startup.

JAVA_TOOL_OPTIONS="-noverify"

Reducing the thread size

Most Java web applications use the one-thread-per-connection model, where each Java thread will consume the
memory of the local server rather than the heap memory (this is called thread stack), and each thread is 1 MB in size

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 63

by default. If your application processes 100 concurrent requests, it may have at least 100 threads, which means that
it uses 100 MB thread stack space. The memory is not counted as the heap size, and you can use the following
parameter to reduce the thread stack size:

JAVA_TOOL_OPTIONS="-Xss256k"

Note that if you reduce the size too much, java.lang.StackOverflowError will occur. You can analyze the

application to find the optimal thread stack size to be configured.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 63

Optimizing a Spring Boot Application

Using Spring Boot 2.2 or later

Staring from v2.2, Spring Boot has significantly increased the startup speed. However, if you use an earlier version,
consider upgrading the version or making optimizations manually.

Using delayed initialization

On Spring Boot 2.2 or later, you can enable global delayed initialization to increase the startup speed at the cost of

lengthening the delay of the first request, as you need to wait for the first initialization of the component.
You can enable delayed initialization in application.properties :

https://spring.io/blog/2018/12/12/how-fast-is-spring

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 63

spring.main.lazy-initialization=true

Alternatively, you can use the following environment variable:

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 63

SPRING_MAIN_LAZY_INITIALIZATIION=true

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 63

Migration from Java 8 to Java 11
Last updated：2024-07-04 16:25:38

Since the release of Java 9, Java has been improved and enhanced in many features with some modifications in APIs
to improve startup, performance, and memory usage of your applications.

Significant Improvements From Java 8 to Java 11

Module system

The module system JSR 376 is integrated to Java since Java 9 to solve problems such as disordered class paths,

complex configuration, and ineffective encapsulation in large applications.
A module is a collection of Java classes, APIs, and relevant resources. It can customize the application runtime
configuration. It uses a smaller space (which is very useful in the microservice architecture) and allows you to use jlink
to link an application to a custom runtime for deployment. JVM is faster to load a class from a module than to directly
load it from a class path.

Modules help implement strong encapsulation by requiring explicit declaration of which packages a module exports
and which components it requires, and by restricting reflective access. This level of encapsulation makes an
application more secure and easier to maintain.
An application compiled with Java 8 can continue to use the class path and does not have to migrate to modules as a
requisite for running on Java 11.
For more information on how the module system works, see The State of the Module System.

JVM analysis and diagnosis tools

Java Flight Recorder and Java Mission Control

Java Flight Recorder (JFR) JEP 328 collects diagnosis and analysis data from running Java applications. It almost
has no impact on running applications. You can use Mission Control (JMC) and other tools to analyze collected data.
JFR and JMC are commercial features in Java 8 but open-source in Java 11.

JVM log system

Java 11 has a common logging system JEP 158 for all components of the JVM. This unified logging system allows you
to define what components to log, and to what level. This fine-grained logging is useful for performing root-cause

analysis on JVM crashes and for diagnosing performance issues in a production environment.

Low-overhead heap profiling

A new API has been added to the Java Virtual Machine Tool Interface (JVMTI) for sampling Java heap allocations
(JEP 331. The sampling features low overheads.

http://openjdk.java.net/projects/jigsaw/spec/
https://docs.oracle.com/en/java/javase/11/tools/jlink.html
http://openjdk.java.net/projects/jigsaw/spec/sotms
http://openjdk.java.net/jeps/328
http://openjdk.java.net/jeps/158
http://openjdk.java.net/jeps/331

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 63

Garbage collection

The following garbage collectors are available in Java 11: Serial, Parallel, Garbage-First (G1), and Epsilon. The
default garbage collector in Java 11 is G1.
The aim of G1 is to strike a balance between latency and throughput. It is designed to avoid full collections, but when

the concurrent collections can't reclaim memory fast enough, a full GC will occur.
The Parallel garbage collector is the default collector in Java 8. It is a throughput collector that uses multiple threads to
speed up garbage collection.
The Epsilon garbage collector handles allocations but does not reclaim any memory. When the heap is exhausted, the
JVM will shut down. It is useful for short-lived services and for applications that are known to be garbage-free.

In addition, Java 11 provides other three garbage collectors:
ZGC is a concurrent and low-latency collector that attempts to keep pause times under 10 milliseconds. It is available
as an experimental feature in Java 11.
Shenandoah is a low-pause collector that reduces GC pause times by performing more garbage collection
concurrently with the running Java program. It is an experimental feature in Java 12, but there are backports to Java
11.

CMS is available in Java 11 but has been deprecated since Java 9.

Improvements on the container environment

Prior to Java 10, memory and CPU constraints set on a container were not recognized by the JVM. In Java 8, for
example, the JVM will default the maximum heap size to 1/4 of the physical memory of the underlying host. Starting
with Java 10, the JVM uses constraints set by container control groups (cgroups) to set memory and CPU limits. For
example, the default maximum heap size is 1/4 of the container's memory limit.

New JVM parameters were also added to Java 10 to give Docker container users fine-grained control over the amount
of system memory that will be used for the Java heap.
Note:
Most of the cgroup enablement work was backported to Java 8 as of JDK 8u191.

Migration from Java 8 to Java 11

There's no one-size-fits-all solution to migrate applications from Java 8 to Java 11. Potential issues include removed

APIs, deprecated packages, use of internal APIs, changes to class loaders, and changes to garbage collectors.

Trying directly compiling and running the application

In general, the simplest method is to try running the application compiled with Java 8 on Java 11 without recompiling,
or to compile with JDK 11 first. If the goal is to get an application up and running as quickly as possible, just trying
running on Java 11 is often the best method.

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 63

Other tools

Java 11 has two tools, jdeprscan and jdeps, which are useful for sniffing out potential issues. These tools can be run
against existing class or JAR files. You can assess the migration effort without having to recompile.

jdeprscan

jdeprscan looks for use of deprecated or removed APIs. Use of deprecated APIs is not a blocking issue, but is

something to look into, as such APIs may be removed in later versions.
The easiest way to use jdeprscan is to give it a JAR file from an existing build. You can also give it a directory, such as
the compiler output directory, or an individual class name. Use the --release 11 parameter to get the most

complete list of deprecated APIs; for example, you can run jdeprscan --release 11 my-

application.jar .

If an error: cannot find class XXX error occurs, you need to check whether the dependent class file

exists in the class path of the JAR file. If the dependent class is not a third-party dependency, you may use an API
removed in Java 11.
You can run jdeprscan --release 11 --list to get an understanding of what APIs have been deprecated

since Java 8. To get the list of APIs that have been removed, run jdeprscan --release 11 --list --for-

removal .

jdeps

jdeps is a Java class dependency analyzer. When used with the --jdk-internals parameter, jdeps tells you

which class depends on which internal APIs. We recommend you add the --multi-release 11 parameter to

support multi-version build JAR files; for example, you can run jdeps --jdk-internals --multi-release

11 --class-path log4j-core-2.13.0.jar my-application.jar .

You can continue to use internal APIs in Java 11, but replacing the usage should be a priority. The OpenJDK wiki

page Java Dependency Analysis Tool has recommended replacements for some commonly used JDK internal APIs.
Try to eliminate the use of any API coming from the module jdk.unsupported . Even though your code may use

JDK internal APIs, it will continue to run, for a while at least. Do take a look at JEP 260 since it does point to
replacements for some internal APIs.
There are jdeps and jdeprscan plugins for both Gradle and Maven. We recommend you add these tools to your build

scripts.

Tool Gradle Plugin Maven Plugin

jdeps jdeps-gradle-plugin Apache Maven JDeps Plugin

jdeprscan jdeprscan-gradle-plugin Apache Maven JDeprScan Plugin

What jdeprscan and jdeps cannot do is warn about the use of reflection to access encapsulated APIs. You need to
check for reflective access in your code at runtime.

https://docs.oracle.com/en/java/javase/11/tools/jdeprscan.html
https://docs.oracle.com/en/java/javase/11/tools/jdeprscan.html
https://docs.oracle.com/en/java/javase/11/tools/jdeps.html
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool
http://openjdk.java.net/jeps/260
https://github.com/kordamp/jdeps-gradle-plugin
https://maven.apache.org/plugins/maven-jdeps-plugin/index.html
https://github.com/kordamp/jdeprscan-gradle-plugin
https://maven.apache.org/plugins/maven-jdeprscan-plugin/index.html

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 63

Check at runtime

Checking JVM parameters

Check JVM parameters before running your application on Java 11. Using a removed JVM parameter will cause JVM
to crash (Error: Could not create the Java Virtual Machine). If you enable GC logs, parameter

check is especially important, as GC logs have changed drastically from Java 8. You can use JaCoLine to check JVM

parameters.

Checking third-party dependent class libraries

You need to update all your third-party dependent class libraries to versions supporting Java 11. The OpenJDK
Quality Group maintains a Quality Outreach wiki page that lists the status of testing of many Free Open Source
Software (FOSS) projects against versions of OpenJDK.

Checking garbage collection parameters

The Parallel garbage collector is the default collector in Java 8. Starting from Java 9, the default garbage collector has

been changed to G1. You need to check whether your garbage collection parameters are correct.

Notes on class loaders

The class loader hierarchy has changed in Java 11. SystemClassloader (also known as AppClassloader)

is now an internal class. Casting to a URLClassLoader will report a ClassCastException at runtime. Java

11 does not have APIs to dynamically augment the classpath at runtime but it can be done through reflection.

In Java 11, BootstrapClassloader only loads core modules. If you create a class loader with a null parent, it

may not find all platform classes. In Java 11, you need to pass in ClassLoader.getPlatformClassLoader()

instead of null as the parent class loader in such cases.

Locale data changes

The default source for locale data in Java 11 was changed with JEP 252 to the Unicode Consortium's Common
Locale Data Repository. This may have an impact on localized formatting. Set the system property
 java.locale.providers=COMPAT,SPI to revert to the Java 8 locale behavior, if necessary.

Common issues

Unrecognized options

If a JVM parameter has been removed, the application will print Unrecognized option: or Unrecognized

VM option . An unrecognized parameter will cause the JVM to exit (Error: Could not create the Java

Virtual Machine). Options that have been deprecated, but not removed, will produce a JVM warning (VM

Warning: Option <option> was deprecated).

In general, such unrecognized JVM parameters need to be removed. The exception is parameters for garbage
collection logging. GC logging was reimplemented in JEP 271. Refer to Enable Logging with the JVM Unified Logging

https://wiki.openjdk.java.net/display/quality/Quality+Outreach
http://openjdk.java.net/jeps/252
http://openjdk.java.net/jeps/271
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-BE93ABDC-999C-4CB5-A88B-1994AAAC74D5

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 63

Framework to configure parameters.

WARNING: An illegal reflective access operation has occurred

When Java code uses reflection to access a JDK internal API, the runtime will issue an illegal reflective access
warning.

java.lang.reflect.InaccessibleObjectException

This exception indicates that you are trying to call setAccessible(true) on a field or method of an

encapsulated class/module. Use the --add-opens parameter to give your code access to the non-public

members of a package/module.

java.lang.NoClassDefFoundError

If the application runs on Java 8 but reports a java.lang.NoClassDefFoundError or

 java.lang.ClassNotFoundException error on Java 11, then it is likely that the application is using a

package from the Java EE or CORBA modules. These modules were deprecated in Java 9 and removed in Java 11.
For more information, see JEP 320: Remove the Java EE and CORBA Modules.
To resolve the issue, add a runtime dependency to your project.

Removed Module Affected Package Suggested Dependency

JAX-WS java.xml.ws JAX WS RI Runtime

JAXB java.xml.bind JAXB Runtime

JAV java.activation JavaBeans (TM) Activation Framework

Common Annotations java.xml.ws.annotation Javax Annotation API

CORBA java.corba GlassFish CORBA ORB

JTA java.transaction Java Transaction API

UnsupportedClassVersionError

This exception means that you are trying to run code that was compiled with a later version of Java on an earlier
version of Java. For example, you are running on Java 11 with a JAR that was compiled with JDK 13.

Java Version Class File Format Version

8 52

9 53

10 54

https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-BE93ABDC-999C-4CB5-A88B-1994AAAC74D5
https://openjdk.java.net/jeps/320
https://mvnrepository.com/artifact/com.sun.xml.ws/jaxws-rt
https://mvnrepository.com/artifact/org.glassfish.jaxb/jaxb-runtime
https://mvnrepository.com/artifact/javax.activation/activation
https://mvnrepository.com/artifact/javax.annotation/javax.annotation-api
https://mvnrepository.com/artifact/org.glassfish.corba/glassfish-corba-orb
https://mvnrepository.com/artifact/javax.transaction/jta

Tencent Cloud Elastic Microservice

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 63

11 55

12 56

13 57

