
TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 68

TDSQL-C for MySQL

Kernel Features

Product Documentation

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 68

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 68

Contents

Kernel Features
Kernel Overview
Kernel Version Release Notes

TXSQL Engine Kernel Version Release Notes
Database Proxy Version Release Notes

Optimized Kernel Version
Compilation Optimization High-Performance Version

Functionality Features
Automatic Killing of Idle Transactions
Instant DDL Overview
Dynamic Thread Pool
NOWAIT
RETURNING
Flashback Query

Performance Features
Optimization of Plan Caching Point Query
Auto-Increment Column Persistence
Invisible Index
Computation Pushdown
Parallel Initialization of InnoDB Buffer Pool

Stability Feature
Statement Outline
Hotspot Update Protection

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 68

Kernel Features
Kernel Overview
Last updated：2023-11-01 16:22:57

The engine kernel of TDSQL-C for MySQL is fully compatible with native MySQL. You can migrate MySQL data to
TDSQL-C for MySQL without modifying any application code or configuration.
The engine kernel of TDSQL-C for MySQL provides various features similar to those in MySQL Enterprise Edition,

including enterprise-level transparent data encryption, audit, thread pool, encryption function, and backup and
restoration.
The engine kernel of TDSQL-C for MySQL not only deeply optimizes the InnoDB storage engine and query
performance, but also improves the ease of use and maintainability of databases. While providing all the benefits of
MySQL, it offers more enterprise-grade advanced features such as disaster recovery, restoration, monitoring,

performance optimization, read/write separation, transparent data encryption (TDE), and database audit.
More information on the engine kernel of TDSQL-C for MySQL
For updates of the TDSQL-C for MySQL engine kernel version, see Kernel Version Release Notes.
The kernel minor version of TDSQL-C for MySQL can be upgraded automatically or manually. For more information,
see Upgrading Kernel Minor Version.
More information on the proxy kernel of TDSQL-C for MySQL:

The proxy minor version of TDSQL-C for MySQL can be upgraded. For more information, see Upgrading Kernel Minor
Version of Database Proxy.
Release dates of different TDSQL-C for MySQL kernel versions:
TDSQL-C for MySQL 8.0

Kernel Version Release Date

3.1.10 June 2023

3.1.9 November 2022

3.1.8 October 2022

3.1.7 September 2022

3.1.6 August 2022

3.1.5 July 2022

3.1.3 June 2022

3.1.2 February 2022

https://www.tencentcloud.com/document/product/1098/44587
https://www.tencentcloud.com/document/product/1098/44617
https://www.tencentcloud.com/document/product/1098/50001

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 68

3.1.1 November 2021

3.0.1 August 2021

TDSQL-C for MySQL 5.7

Kernel Version Release Date

2.1.10 July 2023

2.0.23/2.1.9 May 2023

2.0.22/2.1.8 November 2022

2.0.21/2.1.7 September 2022

2.0.20/2.1.6 August 2022

2.0.19 July 2022

2.0.17 June 2022

2.0.16 January 2022

2.0.15 October 2021

2.0.14 July 2021

2.0.13 March 2021

2.0.12 November 2020

2.0.11 June 2020

Release dates of different TDSQL-C for MySQL proxy kernel versions:

Database Proxy Kernel Version Release Date

1.3.7 May 2023

1.3.5 November 2022

1.3.4 September 2022

1.3.3 August 2022

1.2.1 July 2022

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 68

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 68

Kernel Version Release Notes
TXSQL Engine Kernel Version Release Notes
Last updated：2024-07-31 14:57:39

This document describes the version updates of the TDSQL-C for MySQL kernel.
Note:
If you need to upgrade the kernel version, see Upgrading Kernel Minor Version. If you want to learn about the release

dates of each kernel version, see Kernel Overview.
TDSQL-C for MySQL 8.0 Kernel Release Notes
TDSQL-C for MySQL 5.7 Kernel Release Notes

Minor
Version

Description

3.1.14

Feature updates
Supported Columnar Storage Index(CSI) (in regional grayscale release), which uses the columnar
data format for storing, searching, and managing data, achieving better query performance and
higher data compression rates.
Supported enhanced parallel query features: parallel subqueries, rollup, Nested-Loop Join (NLJ)
inner table parallelism, and in-mem hash join parallelism.
Bug Fixes
Fixed the issue of RO crash caused by DDL operations on partition tables.
Fixed the issue of garbled characters when a rotate event checksum is received during CDC
subscription.
Fixed the issue of precision loss when {} is used to directly insert a JSON string.

3.1.13

Performance optimizations
Optimized the issue of slow data access due to low cyclic efficiency in full table scan.
Optimized the issue of decreased large query scan performance in concurrent scenarios.
Bug Fixes
Fixed the issue of CPU occupancy after the database auditing feature is enabled.
Fixed the issue of duplicate doc IDs in full-text indexes.
Fixed the issue of read-only instance deadlock caused by full-text indexes in certain scenarios.
Fixed the issue of read-only instance crash caused by DDL operations on partition tables.
Fixed some official bugs as follows:
Fixed bugs related to json prepare: Bug #101284.
Fixed bugs related to sort buffer size: Bug #32738705, Bug #33501541.
Fixed bugs related to temporary table index scan: Bug #33700735.
Fixed bugs related to subquery: Bug #31216115, Bug #31946448, Bug #32813547, Bug
#32813554.
Fixed some segmentation faults: Bug #32813554, Bug #32813547.

https://www.tencentcloud.com/document/product/1098/44617
https://www.tencentcloud.com/document/product/1098/44588
https://www.tencentcloud.com/document/product/1098/58057

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 68

3.1.12 Feature Updates
Enhanced visibility in slow logs, now including metrics on storage layer network IO traffic, execution
time, frequency, and transaction commit latency.
Database auditing supported the addition of transaction ID fields and table names.
Supports the BLACKHOLE storage engine (ENGINE = BLACKHOLE;).
Supports the default algorithms for DDL execution (inplace/instant), which is configurable via the
 innodb_alter_table_default_algorithm parameter.
Performance Optimization
Large transaction commit binlog optimization: Large transaction logs are first written to a temporary
file, which is then renamed the next binlog to reduce the time used by large transactions blocking
other transactions.
Binlog write optimization: Supports the conversion of row-format binlogs to statement-format binlogs,
with regular expression filtering for effective databases and tables.
Enhanced the performance of purging binlogs, reducing performance fluctuations.
Removed CDC, LSN, and CLUSTER as reserved keywords.
Optimized parallel DDL functionality:
Fixed an issue where created index data is incorrect when the number of scan threads is greater than
1 but innodb_parallel_ddl_threads = 1 .
Addressed a crash caused by m_page becoming invalid after a subtree is created.
Resolved an issue where error codes are not reset before indexes are created.
Fixed a crash that occurs when the innodb_disable_sort_file_cache switch is enabled
during parallel DDL index creation.
Corrected a crash that happens when a unique key is added to a column with duplicate data.
Bug Fixes
Rectified an issue where database auditing incorrectly records the type of prepare statements.
Fixed the problem where database auditing incorrectly classifies sql_type in execute statements as
“other”.
Addressed an error in retrieving custom variable strings in session track: now supports constructing
the return value of session track by specifying the string length when fetching custom variables.
Resolved an issue in parallel queries where referencing worker table fields in related subqueries
leads to incorrect query results.

3.1.10 Feature updates
Supported binlog subscription for read-only instances.
Supported blackhole engine.
Updated parallel query: Support parallel queries for full-table scans, full index scans, and index range
scans; support variance and standard deviation functions; support setting parallel policies with the
LIMIT syntax; and support Prepared Statement (PS) query mode.
Supported automatic killing of idle transactions.
 Supported [dynamic thread pool].
 Supported NOWAIT syntax.
Supported flashback query.
Supported the optimization of plan caching point query.
 Supported invisible index.
Supported statement outline.

https://www.tencentcloud.com/document/product/1098/57002
https://www.tencentcloud.com/document/product/1098/56997
https://www.tencentcloud.com/document/product/1098/56990
https://www.tencentcloud.com/document/product/1098/56989
https://www.tencentcloud.com/document/product/1098/57000
https://www.tencentcloud.com/document/product/1098/56993

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 68

Bug fixes
Fixed the issue of excessive columns caused by INSTANT ADD on partitioned tables. The default
algorithm for DDL has been changed from INSTANT to INPLACE. To use instant DDL, you need to
specify algorithm = instant .
Fixed the issue of prohibiting tables with a column name "fts_doc_id" from executing instant DDL.
 Optimized buffer pool resizing.
Optimized the splitting logic of operator splitting for items in parallel queries.
Fixed the performance degradation caused by the failure of binary search in the IN operator in PS
mode.
Optimized the query efficiency for full table count(*) in parallel queries.
Fixed the issue where the stage variable error in Parallel DDL caused the stage null pointer to crash
when creating FTS indexes.
Fixed the possible crash when adding full-text indexes.
Fixed the issue of GTID loss caused by the HA switch in certain scenarios.
Fixed the issue of possible crash triggered by executing show create table after killing the
mysqld process during DDL.
Fixed the issue of premature release of the FTS cache lock in full-text indexing, which caused
inconsistency between reads and writes.
Fixed the issue of data inconsistency between source and replica caused by transaction rollback
during the DDL commit process.
Fixed the issue of deadlock occurred when killing a transaction and dropping a database during the
process of creating a temp table and inserting data.
Fixed the issue of failure when users perform operations on a database with the same name as the
MySQL system database.
Fixed the issue where Canal was unable to obtain the GTID starting point through show master
status when extracting binlogs via read-only instances.

3.1.9

Feature updates
Supported CDC, which can directly and repeatedly backtrack/extract the binlogs in the custom log
retention period. This solves the problem where the compute node loses local binlogs in scenarios
such as HA. For more information on how to set the binlog retention period, see Setting Backup
Retention Period.
Optimized the pages purge rate to improve the database performance.
Bug fixes
Fixed the issue where the worker couldn't pass the table-level NULL ROW FLAG to the coordinator
and thus caused incorrect results.
Fixed the core issue of parallel query caused by the failure of the sort operator to get the order list
during operator splitting because sort order was pushed down to the table.

3.1.8 Feature updates
Supported parallel query, which can automatically identify complicated queries. The parallel query
capability leverages multiple compute cores to greatly shorten the response time of large queries. For
more information on how to use this feature, see Enabling/Disabling Parallel Query.
Bug fixes
Fixed several database issues in debug mode.

https://www.tencentcloud.com/document/product/1098/48396
https://www.tencentcloud.com/document/product/1098/51769

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 68

Fixed the issue where abnormal information appeared in database proxy-related fields when show
detailed processlist was used to display connection information.

3.1.7

Feature updates
Added the password dictionary parameter as described in Configuring Custom Password Strength,
and optimized HA's dependence on dictionary files.
Supported completing purged binlogs in the kernel.
Supported the built-in database proxy for the Serverless architecture to implement connection
persistence and momentary disconnection prevention, and fixed the connection error reported during
the first wakeup.

3.1.6

Bug fixes
Fixed the crash caused by full-text index (non-tree index) encountered during index check.
Fixed the issue where the liveness probe of the database proxy caused the kernel to output a large
number of error logs, and blocked the printing of redundant logs.
Fixed the issue where the uninitialized GCR LSN in the session LSN tracker might return a random
value of the database proxy and thus cause the statement execution to time out.

3.1.5 Feature updates
Supported traffic throttling for bulk insert .
Supported setting the change buffer and merge modes.
Supported database proxy. For more information on how to use this feature, see Database Proxy
Overview.
Supported logical backup for read-only instances.
Supported parallel replication of binlogs at the table level.
Supported SQL throttling.
Supported hotspot update protection.
Supported interesting order judgment in sort merge join.
Supported TABLESAMPLE.
Supported the HISTOGRAM() function.
Supported histogram versioning and compressed histogram.
Supported show detail processlist .
Performance optimizations
Optimized the physical replication of transactions to greatly improve the write-only performance.
Optimized the parallel initialization of the transaction system to accelerate the system startup.
Optimized the logic of page locking during log replay in read-only instances to accelerate the replay
thread.
Bug fixes
Fixed the issue where the MySQL client exited abnormally when receiving an incomplete package.
Fixed the crash of the FSP management fraction caused by the incorrect commit order of the nested
MTRs generated by blob.
Fixed the transaction consistency issue that might be caused by the purge of the host when RO
accessed the secondary index.
Fixed the issue where backup lock couldn't be locked due to the lock table statement.
Fixed the issue where several keywords introduced by TDSQL-C couldn't be used as identifiers, such
as CDB_GET_TABLE_VERSION, CLUSTER, and THREADPOOL.

https://www.tencentcloud.com/document/product/1098/49981
https://www.tencentcloud.com/document/product/1098/50004
https://www.tencentcloud.com/document/product/1098/56996

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 68

Fixed the issue where the startup time was prolonged due to the failure to add dict op lock to
the main thread caused by large transactions or long-line transaction rollbacks during instance
startup.
Fixed the crash caused by TRX reuse after the failure to allocate the undo page.
Fixed the crash caused by executing alter table on a partitioned table to migrate from the
extended tablespace to the system tablespace.
Fixed the crash caused by the startup before the truncate log was completely written.
Fixed the crash caused by inserting data after drop table partition force .
Fixed the possible crash caused by rollbacks after instant DDL.
Fixed the issue where creating tables in the extended tablespace with create temporary
table like failed.
Fixed the OOM caused by the continuous increase of the cache during data writes to the full-text
index table.
Fixed the error of unstable performance after hotspot update was enabled after optimization.
Fixed the issue where select count(*) parallel scans caused full-table scans in extreme
cases.
Fixed the issue where the statistics were read as zero in various cases, and fixed the official
Bug#31889883.
Fixed the bug where queries were in the query end status for a long time.
Fixed the case sensitivity issue of column names in the json_table function (official
Bug#32591074).
Fixed the bug where an error was reported when the Temptable engine was used and the number of
aggregate functions in the selected column exceeded 255.
Fixed the bug that caused correctness issues in window functions because expressions returned
early during return true .
Fixed the correctness issue caused by the pushdown by derived condition pushdown
when it contained user variables.
Fixed the issue where SQL filters were prone to crash when no namespaces were added in a rule.
Fixed the QPS jitters when the thread pool was enabled under high concurrency and high conflict.
Fixed the crash when information was not cleared during execution of the update statement or
stored procedures.
Fixed the issue where the histogram couldn't be stopped by CTRL+C on the existing version.

3.1.3 Feature updates
Supported adding the binlog with the specified filename to an index file.
Added a backup lock in the syntax of LOCK TABLES FOR BACKUP, UNLOCK TABLES.
Added a binlog lock in the syntax of LOCK BINLOG FOR BACKUP, UNLOCK BINLOG.
Bug fixes
Fixed the bug where dynamic metadata persistence caused instance table corruptions or visibility
errors.
Merged the official bugfix #32897503 to solve the issue where the execution path of some query
statements was incorrect under the prepare statement.
Merged the official bugfix to solve the crash when set resource group failed.
Fixed the bug where the previous gtid was empty after HA switch.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 68

Fixed the bug where an auto-increment column could be set to a value smaller than the inserted
maximum value.
Fixed the issue where explicit transactions in read-only instances would block the replay thread from
replaying DDL logs.
Fixed the issue where tables with "-" in the name might crash when replicated in a read-only instance
after DDL.
Fixed the crash caused by the undo request to the DDL log system table when a read-only
instance experienced DDL recovery upon startup.

3.1.2

Feature updates
Supported MySQL 8.0 for read-only nodes and source-replica physical replication.
Supported table space expansion and up to above 1 PB of capacity per instance.
Supported limiting the number of preloaded rows, which achieved a 1%-5% performance increase
during point query testing.
Supports extended ANALYZE syntax (UPDATE HISTOGRAM c USING DATA 'json') and direct
writes to histograms.
Performance optimizations
Replaced index dive with histogram to reduce evaluation errors and I/O overheads (this capability is
not enabled by default).
Bug fixes
Fixed the issue where updates related to large object pages were not written to the log when a full-
text index containing large object columns was created.
Fixed the issue with inconsistent formats of undo page and different definitions of
 TRX_UNDO_HISTORY_NODE in the computing and storage layers.
Fixed the issue where statistics information might be zero during online-DDL.
Fixed the issue where columns generated from replica instances were not updated.
Fixed the issue where the instance hung when binlog was compressed.
Fixed the issue of missing GTID in the previous_gtids event of the newly generated binlog file.
Fixed possible deadlocks when system variables were modified.
Fixed the issue where the information of the SQL thread of the replica instance in SHOW
PROCESSLIST was incorrectly displayed.
Implemented the bug fix related to hash join provided in MySQL 8.0.23.
Implemented the bug fix related to writeset provided in MySQL.
Implemented the bug fix related to the query optimizer provided in MySQL 8.0.24.
Fixed the concurrency bugs of optimizing flush list and releasing pages in FAST DDL.
Optimizes the memory usage during data dictionary update in instances with a large number of
tables.
Fixed the crash caused by new primary key creation after INSTANT ADD COLUMN.
Fixed the OOM caused by memory growth in full-text index query.
Fixed the issue where -1 was included in the TIME field in the result set returned by SHOW
PROCESSLIST.
Fixed the issue where tables might fail to be opened due to histogram compatibility.
Fixed the floating point accumulation error when Singleton histograms were constructed.
Fixed the replication interruption caused by using many Chinese characters in the table name of a
row format log.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 68

3.1.1 Feature updates
Supported the official updates of MySQL 8.0.19, 8.0.20, 8.0.21, and 8.0.22.
Supported dynamic setting of thread pooling mode or connection pooling mode by using the
 thread_handling parameter.
Supported source-replica buffer pool sync: after a high-availability (HA) source-replica switch occurs,
it usually takes a long time to warm up the replica, that is, to load hotspot data into its buffer pool. To
accelerate the replica's warmup, TXSQL now supports the buffer pool sync between the source and
the replica.
Supported sort merge join.
Supported async commit: With the thread pool enabled and binlog disabled, async commit can be
enabled by setting the parameter innodb_log_sync_method to async .
Supported fast DDL operations.
Supported querying the value of the character_set_client_handshake parameter.
Supported database audit.
Performance optimizations
Optimized the mechanism of scanning and flushing the dirty pages tracked in the flush list, so as to
solve the performance fluctuation issue while creating indexes and thus improve the system stability.
Optimized the BINLOG LOCK_done conflict to improve write performance.
Optimized the trx_sys mutex conflict by using lock free hash and improve performance.
Optimized redo log flushing.
Optimized the buffer pool initialization time.
Optimized the clearing of adaptive hash indexes (AHI) during the drop table operations on big
tables.
Bug fixes
Fixed the deadlocks caused by the modification of the offline_mode and
 cdb_working_mode parameters.
Fixed the concurrency issue while persistently storing max_trx_id of global object trx_sys .
Fixed performance fluctuation when cleaning InnoDB temporary tables.
Fixed the read-only performance decrease when the instance has many cores.
Fixed the error (error code: 1032) caused by hash scans.
Fixed concurrency security issues caused by hotspot update.

3.0.1 Feature updates
Supported three methods of querying cynos_version : select CYNOS_VERSION() ,
 select @@cynos_version , and show variables like 'cynos_version' .
Added a space limit parameter. If the total space usage exceeds the limit, an error will be reported to
prompt you to release the space or upgrade the specification.
Added the innodb_ncdb_log_priority read-only parameter, which indicates the priority of
the source instance's backend log thread.
Added the innodb_ncdb_apply_priority read-only parameter, which indicates the priority
of the read-only instance's log replay thread.
Added the innodb_ncdb_fast_shutdown dynamic parameter, which controls whether to
quickly shut down processes. After it is enabled, when a process exits, no destruction operations on
the global structure will be performed, which reduces the shutdown time. It is disabled by default.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 68

Added the innodb_max_temp_data_file_size read-only parameter. Its default value is 128
MB. If its value is greater than 0, it indicates the maximum size of the temp tablespace in the local
storage.

Minor
Version

Description

2.1.12

Feature Updates
Read-only instances now support binlog subscription via log positions.
Performance Enhancements
Optimized the performance of purging binlogs, reducing performance fluctuations.
Bug Fixes
Resolved compatibility issues in certain scenarios where Flink subscribes to the binlog of
TDSQL-C read-only instances.
Addressed the official Bug #27422376.
Fixed an issue where traversing a B-Tree in reverse order would cause retries when
encountering expired data pages.
Corrected a problem where reducing the size of the buffer pool might lead to the repeated
recycling of pages.

2.1.11

Feature Updates
Database auditing now supports the addition of transaction ID fields and table names.
Supports multi-threaded logical backup.
Database proxy now supports Transaction Split Feature.
Performance Optimization
Optimized memory usage mechanisms, reducing the risk of Out Of Memory (OOM).
Removed CDC, LSN, and CLUSTER as reserved keywords.
Enhanced the logic for applying logs, improving the storage layer's ability to process redo logs.
Bug Fixes
Rectified an issue where database auditing incorrectly records the type of prepare statements.
Fixed the problem where database auditing incorrectly classifies sql_type in execute statements
as “other”.
Fixed official Bug #111686 and official Bug #26225783.

2.1.10

Feature updates
Supported binlog subscription for read-only instances.
Supported blackhole engine.
 Supported buffer pool resizing.
Bug fixes
Fixed the issue of frequent disconnections when extracting binlogs via read-only instances.

2.0.23/2.1.9 Feature updates
Supported automatic killing of idle transactions.
 Supported dynamic thread pool.
 Supported NOWAIT syntax.

https://www.tencentcloud.com/document/product/1098/58070?has_map=1
https://www.tencentcloud.com/document/product/1098/57002
https://www.tencentcloud.com/document/product/1098/57003
https://www.tencentcloud.com/document/product/1098/56997

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 68

 Supported returning.
 Supported auto-increment column persistence.
 Supported invisible index.
 Supported computation pushdown.
 Supported buffer pool initialization.
Supported hotspot update protection.
Bug fixes
Fixed the issue of GTID loss caused by the HA switch in certain scenarios.
Fixed the issue of possible crash triggered by executing show create table after killing
the mysqld process during DDL.
Fixed the issue of premature release of the FTS cache lock in full-text indexing, which caused
inconsistency between reads and writes.

2.0.22/2.1.8

Feature updates
Supported CDC, which can directly and repeatedly backtrack/extract the binlogs in the custom
log retention period. This solves the problem where the compute node loses local binlogs in
scenarios such as HA. For more information on how to set the binlog retention period, see
Setting Backup Retention Period.
Optimized the pages purge rate to improve the database performance.
Bug fixes
Fixed the repeated crashes of the compute instance when the upper limit of the space was
reached.

2.0.21/2.1.7

Feature updates
Added the password dictionary parameter as described in Configuring Custom Password
Strength, and optimized HA's dependence on dictionary files.
Supported completing purged binlogs in the kernel.
Supported the built-in database proxy for the serverless architecture to implement connection
persistence and momentary disconnection prevention, and fixed the connection error reported
during the first wakeup.

2.0.20/2.1.6

Bug fixes
Fixed the issue where the liveness probe of the database proxy caused the kernel to output a
large number of error logs, and blocked the printing of redundant logs.
Fixed the issue where the uninitialized GCR LSN in the session LSN tracker might return a
random value of the database proxy and thus cause the statement execution to time out.
Fixed the issue where creating a temp table in a read-only instance might cause a deadlock.

2.0.19 Feature updates
Supported logical backup for read-only instances.
Supported database proxy. For more information on how to use this feature, see Database Proxy
Overview.
Supported parallel replication of binlogs at the table level.
Supported setting the change buffer and merge modes.
Supported show detail processlist .
Bug fixes

https://www.tencentcloud.com/document/product/1098/56998
https://www.tencentcloud.com/document/product/1098/56999
https://www.tencentcloud.com/document/product/1098/57000
https://www.tencentcloud.com/document/product/1098/56988
https://www.tencentcloud.com/document/product/1098/57001
https://www.tencentcloud.com/document/product/1098/56996
https://www.tencentcloud.com/document/product/1098/48396
https://www.tencentcloud.com/document/product/1098/49981
https://www.tencentcloud.com/document/product/1098/50004

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 68

Fixed the official Bug#22991924 related to the JSON character set.
Merged the official bugfix for Bug#25865525 to solve the issue where LOAD DATA INFILE
failed to read escape characters plus UTF8 characters.
Merged the official bugfix for Bug#31529221 to fix the issue where the error Incorrect key
file was reported upon ALTER TABLE failure.
Merged several official bugfixes related to column generation and cascading deletion, including
Bug#33053297, Bug#32124113, and Bug#29127203.
Fixed the official Bug#31599938 where resetting the source caused a crash when binary logging
was disabled in the replica.
Fixed the issue where the startup time was prolonged due to the failure to add dict op
lock to the main thread caused by large transactions or long-line transaction rollbacks during
instance startup.
Fixed the crash caused by TRX reuse after the failure to allocate the undo page.
Fixed the crash caused by executing alter table on a partitioned table to migrate from the
extended tablespace to the system tablespace.
Fixed the crash caused by the startup before the truncate log was completely written.
Fixed the crash caused by inserting data after drop table partition force .
Fixed the possible crash caused by rollbacks after instant DDL.
Fixed the issue where creating tables in the extended tablespace with create temporary
table like failed.
Fixed the OOM caused by the continuous increase of the cache during data writes to the full-text
index table.

2.0.17

Feature updates
Supported adding the binlog with the specified filename to an index file.
Bug fixes
Merged the official bugfix for Bug#25865525 to solve the issue where LOAD DATA INFILE
failed to read escape characters plus UTF8 characters.

2.0.16

Performance optimizations
Optimized undo space truncate to improve the speed of undo truncate on large-
spec instances.
Optimized the performance of large-scale queries on read-only instances.
Bug fixes
Fixed the issue where backup lock couldn't be locked due to the lock table
statement.
Fixed the issue where table share went wrong for the read-only instances after thousands
of columns were added through INSTANT ADD .
Fixed the replay error when the content of binlog contained escaped keywords.
Fixed the issue where externally prepared XA transactions were not explicitly rolled back and
thus blocked normal shutdown.
Fixed the issue where the warning "tablespace -1 not found" was reported during read-only
instance startup.

2.0.15 Feature updates

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 68

Supported the extended table space: When a single table space exceeds the
 innodb_ncdb_extend_space_threshold configuration, a new table will be created in
the extended table space.
Added new JSON functions: JSON_MERGE_PRESERVE, JSON_MERGE_PATCH,
JSON_PRETTY, JSON_STORAGE_SIZE, JSON_ARRAYAGG, JSON_OBJECTAGG.
Optimized the table lock recovery process at system startup to shorten the startup time.
Bug fixes
Fixed the bugs for the group by performance issue in text columns and multiple issues
related to virtual columns.
Fixed the possible crash when large transaction rollback and shutdown operations were
performed concurrently after instance startup.
Fixed the issue where repeatedly failed IO retries of related pages caused instance exit after
 undo space truncate failed.
Fixed the crash when statistics update accessed the snapshot cache for disabled read-only
instances.
Fixed the issue where the truncation log might be behind the truncate operation in undo
space truncate .
Fixed the bug where an error in ICP check for partitioned table scan resulted in slow query.
Fixed the crash when the previous scan in a read-only instance encountered the partial replay of
a split index log.

2.0.14

Feature updates
Supported INSTANT MODIFY COLUMN. For more information, see Instant DDL Overview.
Bug fixes
Fixed the issue where the used space was not reclaimed when a temp table in a read-only
instance was dropped.
Fixed the issue where the process exited when a read-only instance read the old page version
due to changes in storage routes.
Fixed the issue of possible crash when information_schema.metadata_locks was
queried.
Fixed the concurrency error of forward scan and B-tree SMO in read-only instance.
Fixed the issue where when multiple tables had complex foreign key dependencies and the
foreign key attribute was ON DELETE CASCADE , the corresponding record in a child table
might be deleted twice when a record was deleted in its parent table with DELETE.
Fixed the issue where the process exited due to operations such as CREATE USER in a read-
only instance.
Fixed the issue where SHOW VOLUME STATUS in a read-only instance might trigger an
assertion failure.
Fixed the issue where a read-only instance had abnormal query results and crashed when DDL
operations were performed in partitioned tables frequently.
Fixed the issue where the process crashed during historical version construction when an read-
only instance scanned a purged undo log.

2.0.13 Feature updates
Supported INSTANT ADD COLUMN. For more information, see Instant DDL Overview.

https://www.tencentcloud.com/document/product/1098/44589
https://www.tencentcloud.com/document/product/1098/44589

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 68

Optimized the audit performance under high load and added the lock_usleep_time
dynamic parameter.
Bug fixes
Fixed the issue where dict_operation_lock might cause deadlock during foreign key
check.
Fixed the issue where the process might exit when the ACL change log was replayed during
read-only instance startup.
Fixed the issue where data in source and replica instances was inconsistent after INSTANT ADD
COLUMN and TRUNCATE TABLE.
Fixed the log replay error occurring when data was inserted again after INSTANT ADD
COLUMN and TRUNCATE TABLE.
Fixed the issue where the process exited when a primary key containing a column added by
INSTANT ADD COLUMN was created.
Fixed the issue where the process exited during table structure query in a read-only instance
when INSTANT COLUMN was used to create or rebuild a partition.

2.0.12

Feature updates
Supported database audit. For more information on how to use it, see Enabling TDSQL-C for
MySQL Audit.
Supported purging page read-ahead to accelerate space reclaim.
Supported real-time update of the size information of tables and indexes in the system view.
Added a thread to accelerate recycle LSN and storage GC.
Bug fixes
Fixed official bugs in full-text index, including Bug#24938374, Bug#21625016, Bug#27082268,
Bug#27155294, Bug#27326796, Bug#27304661, Bug#25289359, Bug#29717909, and
Bug#30787535.
Fixed official bugs where concurrent update might cause system crashes, including
Bug#30950714, Bug#31205266, and Bug#25669686.
Fixed the official Bug#28104394 where uncommitted INSERT operations would affect the range
scan created by an index and made it return an incorrect number of rows.
Fixed the official Bug#30488700 where an incorrect query execution plan of a derived table could
result in a poor performance.
Fixed the issue where the process exited when a read-only instance replayed statistics logs after
the source (read-write) instance executed a DDL statement.
Fixed the issue where RENAME TABLE was performed on a database that did not exist.
Fixed the issue where a read-only instance might exit when OPTIMIZE TABLE was used for the
source instance.
Fixed the issue where transactions were inconsistent after a table with a full-text index was
updated in a read-only instance.
Fixed the deadlock occurring during SET OFFLINE MODE and SHOW VARIABLES operations.

2.0.11 Feature updates
Optimized the binlog file index to accelerate binlog file scan.
Optimized the shutdown process to make it faster.
Optimized the instance memory to reduce the memory usage by structures such as buffer, ZIP,
and hash.

https://www.tencentcloud.com/document/product/1102/41312

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 68

Optimized the DDL lock recovery process during read-only instance startup to accelerate replay.
Optimized system table loading in read-only instance to accelerate startup.
Optimized worker thread assignment during PURGE COORDINATOR to accelerate purge.
Bug fixes
Fixed the issue where the process crashed during OPEN TABLE due to incorrect index structure
mapping.
Fixed the issue where read-only instance replication was abnormal during XA transaction
rollback.
Fixed the issue where startup crashed when binlog replication was started in a read-only
instance.
Fixed the memory leak caused by FLUSH LOGS.
Fixed the shutdown failure of mysqladmin shutdown .
Fixed the issue where a read-only instance failed to replay logs when DROP COLUMN was
performed on the source instance.
Fixed the issue where data could still be input after space restriction was triggered when a BLOB
was inserted.
Fixed the issue of read-only instance replication availability that might be caused by DDL
statements in big tables or slow log storage in the source instance.
Fixed the issue where storage wasted small tables after
 innodb_max_temp_data_file_size was set for a temp table.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 68

Database Proxy Version Release Notes
Last updated：2024-07-31 14:58:46

This document describes the updates in each release of the TDSQL-C for MySQL database proxy kernel version.
Note:
If the kernel version requirements of TDSQL-C for MySQL are not met, you can upgrade the database kernel version

first as instructed in Upgrading Kernel Minor Version. To learn about the release dates of various database proxy
kernel versions, see Kernel Overview.

Version TDSQL-C for MySQL Kernel
Version Requirement

Description

1.3.10

TDSQL-C for MySQL version 5.7
is equal to or greater than
2.0.20/2.1.6.
TDSQL-C for MySQL version 8.0
is equal to or greater than 3.1.6.

Bug Fixes
Resolved an issue where handling response packets could
result in exceptions when encountering specific messages.

1.3.8

TDSQL-C for MySQL version 5.7
is compatible with versions
2.0.20/2.1.6 and later.
TDSQL-C for MySQL version 8.0
is compatible with version 3.1.6
and later.

Feature Updates
Enhanced support for updated functions in MySQL versions
5.7 and 8.0.
Optimized parser caching to reduce the likelihood of Out of
Memory (OOM) errors under complex SQL queries.
Introduced traffic monitoring metrics for database proxies.
Implemented dynamic load balancing capabilities.
Introduced anti-flapping features.

1.3.7
TDSQL-C for MySQL 5.7 ≥
2.0.20/2.1.6
TDSQL-C for MySQL 8.0 ≥ 3.1.6

Bug fixes
 Fixed the routing error of the select for update statement in
some cases.
Modified the select @@read_only statement and made it
possible to be routed to the source database. This prevents
some frameworks that use read_only flags from misjudging
the database proxy as unwritable.
Fixed the database proxy node exceptions caused by a
database instance HA in some scenarios.

1.3.5
TDSQL-C for MySQL 5.7 ≥
2.0.20/2.1.6
TDSQL-C for MySQL 8.0 ≥ 3.1.6

Bug fixes
Resolved the issue of decreased and fluctuating read
performance in read-only instances under high concurrency
scenarios.

1.3.4 TDSQL-C for MySQL 5.7 ≥
2.0.20/2.1.6TDSQL-C for MySQL

Bug fixes

https://www.tencentcloud.com/document/product/1098/44617
https://www.tencentcloud.com/document/product/1098/44588?lang=en&pg=

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 68

8.0 ≥ 3.1.6 Resolved the issue of incomplete data returned by the show
processlist command.

1.3.3
TDSQL-C for MySQL 5.7 ≥
2.0.20/2.1.6
TDSQL-C for MySQL 8.0 ≥ 3.1.6

Bug fixes
Fixed the issue where an error was reported when the
session connection pool reused connections to send
change_user to the backend, and the issue where the
PREPARE statement was not correctly handled by the
database proxy after a new connection was established.
Fixed the issue where the execute statement lacked
parameter types.

1.2.1 -

Feature updates
Supported MySQL 5.7/8.0.
Supported cluster deployment, enabling the deployment of
multiple instances in a single database proxy.
Supported read/write separation along with corresponding
weight configuration.
Supported the failover feature, rerouting read requests to the
read-write instance in case of read-only instance exceptions.
Supported the load balancing feature to address uneven
connection counts among proxy nodes.
Supported using the hint syntax to specify routing nodes.
Supported session-level connection pooling, handling
scenarios where frequent connections need to be
established with the database in short lived connection-
based businesses.
 Database proxy supported saving connections and reusing
them for subsequent connection attempts.
Supported hot loading, allowing online modifications of
configurations without the need of restarting the dedicated
database proxy.
Supported the reconnection feature for read-only instances.
In scenarios involving long lived connections, the database
proxy will automatically re-establish a connection and restore
the routing nodes if a read-only instance is restarted or a
read-only instance is added.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 68

Optimized Kernel Version
Compilation Optimization High-Performance
Version
Last updated：2024-04-25 09:42:49

The TXSQL kernel of TencentDB for MySQL supports a compilation optimization high-performance version, which
can maintain the original compatibility without changing the internal implementation logic of the kernel. By leveraging
dynamic compiler optimization techniques to identify possible user input behavior, the database kernel demonstrates

stronger performance in common business scenarios, while also reducing power consumption. This article introduces
the compilation optimization high-performance version of TencentDB for MySQL.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.1.11) or later.
TDSQL-C for MySQL 8.0 (kernel version 3.1.12) or later.
Note:

The compilation optimization high-performance version is currently in grayscale release. If you want to experience it in
advance, please submit a ticket to apply for use under the precondition of meeting the above database kernel version
requirements.

Overview

As the internal implementation of modern CPUs becomes increasingly complex, the default compilation, configuration,
and execution methods of cloud databases can hardly fully exploit the performance potential of CPUs, leading to a
significant number of CPU cycles idling. This phenomenon, in the case of the compunded scale effect, not only results

in the wastage of hardware resources but also consumes a lot of power. Therefore, it is necessary to optimize cloud
databases to maximize the performance potential of CPUs, reduce the idling of CPU cycles, improve the utilization
rate of hardware resources, and decrease power consumption waste.
TDSQL-C for MySQL, without changing the database kernel's business logic code precondition, employs dynamic
compiler optimization techniques to achieve kernel performance improvement and power consumption reduction with

minimal cost. By collecting behavior and performance consumption data of cloud databases in typical/real business
scenarios, it improves the default compilation method being unaware of business behavior, analyzes the database
runtime behavior characteristics along with the CPU microarchitecture features, and utilizes compilation optimization
technologies to make the optimized version more friendly to the CPU microarchitecture, fully unleashing the CPU's

https://console.tencentcloud.com/workorder/category

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 68

performance potential; and ensures the optimization effect does not degrade under various conditions through
extensive scenario testing.
The following optimizations were achieved through the above technical measures:

1. Based on database operation behavior data, feedback optimization improves the optimization capabilities of
function inlining/function reordering/basic library reordering, thereby significantly reducing database CPU ICache/ITLB
miss rates and enhancing performance.
2. By utilizing link-time optimization techniques, the compilation optimization perspective is expanded from a single
file/single function to across files/entire binary files, significantly enhancing the optimization space for inlining and

reducing the directive count.
3. In practice, a set of efficient verification and analysis methods has been developed to ensure the effects are close to
theoretical thresholds and guarantee no degradation under various scenarios.

Definition of Compilation Optimization

Compilation optimization refers to the process of enhancing a program's execution efficiency and performance by
optimizing the code and adjusting compilation parameters during code compilation.

Optimization Principles

The high-performance version of TDSQL-C for MySQL uses Profile-Guided Optimization (PGO) technology for

compilation optimization. PGO technology addresses the issue that traditional compilers, during optimization, rely
solely on static code information without considering potential user inputs, thus failing to effectively optimize the code.
PGO technology is divided into the following three stages:
1. Instrument: During the instrument stage, an initial compilation is performed on the application. In this compilation,
the compiler inserts directives into the code so that data can be collected in the next stage. These directives are of

three types, used to track how many times each function is executed, how many times each branch is executed (for
example, in if-else scenarios), and certain variable values (primarily for switch-case scenarios).
2. Train: In the train stage, users need to run the application compiled in the previous stage using the most common
inputs. Since the previous stage has prepared for data collection, the data corresponding to the most common usage
scenarios of that application will be collected after the train stage.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 68

3. Optimization: In the optimization stage, the compiler recompiles the application using the data collected in the
previous stage. Since the data from the previous stage comes from the most common user input scenarios, the final
optimized result will perform better in these scenarios.

Through the optimization of these three stages, the high-performance version of TDSQL-C for MySQL can better meet
the needs of users, improving the performance and efficiency of the application.

Performance Testing

Test Scenario
Mixed read-write (POINT SELECT) test scenario mainly tests the performance of the database while conducting read
and write operations concurrently. It can help evaluate the database's performance in real application scenarios,

including the handling capability of concurrent read-write operations, response time, throughput, and other metrics.
Test Result

Specification Concurrency
Single table data
volume
(table_size)

Total number
of tables
(tables)

QPS

Using the
compilation
optimization
version

Boost percentage

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 68

2-core 16
GB MEM

64 800,000 150 29207 27%

4-core
16GB

256 800,000 300 65562 27%

4-core 32
GB MEM

256 800,000 300 78973 27%

8-core 32
GB

256 800,000 300 139,845 28%

8-core 64
GB MEM

256 800,000 450 154,894 28%

16-core 64
GB

256 800,000 450 249,954 29%

16-core 96
GB

256 800,000 600 238,061 29%

16-core 128
GB

512 5,000,000 300 253,848 29%

32-core 128
GB MEM

512 5,000,000 300 399647 30%

32-core 256
GB MEM

512 5,000,000 400 402,105 30%

64-core 256
GB MEM

512 6,000,000 450 596,706 31%

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 68

Functionality Features
Automatic Killing of Idle Transactions
Last updated：2023-11-01 16:50:53

Overview

This feature kills transactions that have been idle for the specified time period to release resources in time.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
 TDSQL-C for MySQL on kernel version 3.1.10 or later.

Use Cases

If a connection starts a transaction (explicitly using begin / start transaction or implicitly) but no new

statement has been executed for the specified threshold period, the connection will be killed.

Use Limit

Use the cdb_kill_idle_trans_timeout parameter to enable or disable the feature. If it is 0 , the feature is

disabled; otherwise, a connection idle for cdb_kill_idle_trans_timeout or wait_timeout seconds,

whichever is smaller, will be killed. wait_timeout is a session parameter.

Parameter Effective
Immediately

Type Default
Value

Value Range Description

 cdb_kill_idle_trans_timeout YES ulong 0 [0,31536000]

If it is 0 , the feature is dis
otherwise, a transaction idle
 cdb_kill_idle_trans

seconds will be killed.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 68

Instant DDL Overview
Last updated：2024-04-25 10:54:27

Use Cases

This feature can use DDL operations to alter ultra big tables in online businesses within seconds.

Overview

The instant DDL feature can quickly modify columns in big tables while avoiding data replication. This feature does not
replicate the data or consume disk capacity or I/O, and can implement changes within seconds during peak hours.

Supported Versions

MySQL 5.7 with kernel minor version 2.1.3 or later.
MySQL 8.0 with kernel minor version 3.1.1 or later.

Instructions

Instant DDL supports the ADD COLUMN operation.

Description of INSTANT ADD COLUMN

MySQL 8.0 kernel minor version from 3.1.1 to 3.1.10 operation instructions
MySQL 8.0 kernel minor version 3.1.12 and later operation instructions

Syntax of INSTANT ADD COLUMN.
To add a column, you can use the following statements by including the new 'algorithm = instant' clause:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 68

ALTER TABLE t1 ADD COLUMN c INT, ADD COLUMN d INT DEFAULT 1000, ALGORITHM=INSTANT;

Added parameter innodb_alter_table_default_algorithm, which can be set to inplace or instant, with the default value

being instant.
Column addition can be done with the following statement:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 68

ALTER TABLE t1 ADD COLUMN c INT, ADD COLUMN d INT DEFAULT 1000;

Restrictions on INSTANT ADD COLUMN

A statement can contain only column addition operations.

A new column will be added to the end, and column order cannot be changed.
INSTANT ADD COLUMN is not supported in tables with the row format being COMPRESSED.
INSTANT ADD COLUMN is not supported in tables with a full-text index.
INSTANT ADD COLUMN is not supported for temp tables.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 68

Dynamic Thread Pool
Last updated：2024-04-25 10:59:00

Overview

A thread pool (Thread_pool) is a collection of worker threads that are used to handle connection requests. It is often
ideal for OLTP workloads. However, those worker threads may get stuck on high-latency operations when dealing
with many slow queries, resulting in delayed responses to new requests. This limitation makes the thread pool less

efficient than the traditional one-thread-per-connection mode (Per_thread) in terms of system throughput.
The Thread_pool and Per_thread modes each have their own advantages and disadvantages, and they can be
flexibly switched by the system based on business types. Unfortunately, the switch between these two modes requires
a server restart. This usually happens during peak hours, and forcing a server restart during this time can have a
severe effect on the business.

To facilitate the switch between Per_thread and Thread_pool, TDSQL-C for MySQL has make an optimization called
dynamic thread pool switch. This means that the thread pool can be dynamically enabled or disabled without
restarting the database service.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

This feature is suitable for the business which is sensitive to performance and needs to flexibly change the database

working mode based on the business type.

Impact on Performance

For switching from the thread pool mode to the one-thread-per-connection mode, there will be no backlog of queries or
performance degradation when the QPS has dropped significantly.
For switching from the one-thread-per-connection mode to the thread pool mode, there may be a backlog of queries
when the QPS stays extremely high. This is because the thread pool is disabled and remains dormant before the

switch and many queries continue to arrive during the switch. The solutions are as follows:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 68

Option 1. You can increase the value of the thread_pool_oversubscribe parameter and decrease the value

of the thread_pool_stall_limit parameter to quickly enable the thread pool. After the backlog of SQL

queries are processed, you can restore the parameters to their original values as needed.

Option 2. If the backlog of SQL queries occurs, you can suspend or reduce service traffic for a few seconds, wait for
the thread pool to become active, and then resume the service traffic to handle high load.

Use Limits

You can use the thread_handling_switch_mode parameter to control whether to dynamically change the

thread working mode. Parameter values are described as follows:

Valid Value Description

disabled The mode cannot be changed dynamically.

stable The mode can only be changed for new connections.

fast (Default value) The mode can be changed for new connections and new requests.

sharp Active connections will be killed in order to force a reconnection so that the mode can be
changed quickly.

The show threadpool status command displays the following new status:

connections_moved_from_per_thread: The number of connections switched from Per_thread to Thread_pool.
connections_moved_to_per_thread: The number of connections switched from Thread_pool to Per_thread.
events_consumed: The total number of events consumed by the worker thread group in each thread pool. After the
thread working mode is switched from Thread_pool to Per_thread, the total number of events won't increase any
more.
average_wait_usecs_in_queue: The average time each event waits in the queue.

The show full processlist command displays the following new status:

Moved_to_per_thread: The number of times that the connection is switched to Per_thread.
Moved_to_thread_pool: The number of times that the connection is switched to Thread_pool.

Parameter Description

Thread pool parameters are described as follows:

Parameter Effective
Immediately

Type Default
Value

Valid Values/Value Range

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 68

thread_pool_idle_timeout Yes uint 60 [1, UINT_MAX]

thread_pool_oversubscribe Yes uint 3 [1,1000]

thread_pool_size Yes uint

The number
of CPUs on
the current
machine.

[1,1000]

thread_pool_stall_limit Yes uint 500 [10, UINT_MAX]

thread_pool_max_threads Yes uint 100000 [1,100000]

thread_pool_high_prio_mode
 Yes,
session enum transactions transactions\\statement\\none

thread_pool_high_prio_tickets Yes, uint UINT_MAX [0, UINT_MAX]

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 68

session

threadpool_workaround_epoll_bug Yes bool false true/false

The show threadpool status command displays the following status:

Status Description

 groupid Thread group ID

connection_count The number of user connections in the thread group

thread_count The number of worker threads in the thread group

 havelistener Whether the thread group has a listener

 active_thread_count The number of active worker threads in the thread group

 waiting_thread_count
The number of worker threads calling wait_begin in the thread
group

 waiting_threads_size

The number of sleeping worker threads waiting to be woken up in the
thread group when there is no network event to handle (such worker
threads will wait for thread_pool_idle_timeout seconds
before being automatically killed).

queue_size The length of the ordinary queue of the thread group

high_prio_queue_size The length of the high priority queue of the thread group

 get_high_prio_queue_num The total number of times that events in the thread group are removed
from the high priority queue

 get_normal_queue_num The total number of times that events in the thread group are removed
from the ordinary queue

create_thread_num The total number of worker threads created in the thread group

wake_thread_num The total number of worker threads in the thread group awakened
from the waiting_threads queue

 oversubscribed_num The number of times that worker threads are ready to go to sleep
because the thread group is oversubscribed

mysql_cond_timedwait_num The total number of times that worker threads in the thread group
enter the waiting_threads queue

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 68

check_stall_nolistener The total number of times that no listener is detected in the thread
group in the stall check performed by the timer thread

check_stall_stall The total number of times that the thread group is considered stalled in
the stall check performed by the timer thread

max_req_latency_us The maximum time in milliseconds for a user connection to wait in the
queue in the thread group

conns_timeout_killed
The total number of times that user connections in the thread group
are killed because there has been no new message on the client for
the threshold period

connections_moved_in The total number of connections migrated from other thread groups to
this thread group

 connections_moved_out The total number of connections migrated from this thread group to
other thread groups

 connections_moved_from_per_thread The total number of connections switched from the one-thread-per-
connection mode to this thread group

connections_moved_to_per_thread The total number of connections switched from this thread group to
the one-thread-per-connection mode

events_consumed The total number of events processed by the thread group

average_wait_usecs_in_queue The average waiting time of all events in the queue in the thread group

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 68

NOWAIT
Last updated：2024-04-25 11:00:51

Overview

DDL statements support NO_WAIT and WAIT options. If a DDL statement with WAIT enabled fails to obtain

an MDL lock, it will wait for WAIT seconds before it directly returns the query result. If a DDL statement with

 NO_WAIT enabled, it will directly return the query result without waiting for the MDL lock.

SELECT FOR UPDATE statement supports NOWAIT and SKIP LOCKED options. If target rows are locked by

another transaction, a SELECT FOR UPDATE statement is supposed to wait for the transaction to release the lock.
But in some use cases like flash sales, you do not want to wait for a lock. You can use SKIP LOCKED to skip

locked rows (as a result, the locked rows won't be returned in the query result set) or NOWAIT to return an error

without waiting for the lock.

Note that NO_WAIT and NOWAIT are different keywords.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

Currently, DevAPI/XPlugin does not support using SKIP LOCKED or NOWAIT in SELECT FOR

UPDATE/SHARE statements. Note that NO_WAIT in DDL statements and NOWAIT in SELECT FOR UPDATE

statements are different keywords for historical reasons.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 68

RETURNING
Last updated：2024-04-25 11:03:22

Overview

In some scenarios, you need to retrieve the rows manipulated by DML statements. There are generally two ways to do
so:
Add a SELECT statement after the DML statement if the transaction is enabled.

Use a trigger or other complex operations.
However, running a SELECT statement increases query costs, and creating a trigger makes SQL implementation
more complex and inflexible.
Therefore, TXSQL supports the RETURNING keyword to optimize such scenarios. The above requirements can be
flexibly and efficiently met by appending RETURNING to a DML statement.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
 TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later support INSERT ... RETURNING , REPLACE

... RETURNING , and DELETE ... RETURNING . The RETURNING keyword returns all rows that have been

manipulated by an INSERT/REPLACE/DELETE statement. RETURNING can also be used in prepared statements
and stored procedures.

TDSQL-C for MySQL 3.1.10 or later supports DELETE ... RETURNING , INSERT ... RETURNING ,

 REPLACE ... RETURNING , and UPDATE ... RETURNING . The RETURNING keyword returns all rows that

have been manipulated by this statement.
Notes:
1. For DELETE ... RETURNING , the returned data rows are pre-images, while for INSERT/REPLACE ...

RETURNING , they are post-images.

2. For INSERT/REPLACE ... RETURNING , columns in the outer table are currently invisible to the subquery in

the RETURNING clause.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 68

3. INSERT/REPLACE ... RETURNING only returns the value of last_insert_id() before the statement is

executed successfully. To obtain the true value of last_insert_id() , you should use RETURNING to return

the auto-increment column ID of the table.

Use Limits

INSERT ... RETURNING

MySQL [test]> CREATE TABLE `t1` (id1 INT);

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 68

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> CREATE TABLE `t2` (id2 INT);

Query OK, 0 rows affected (0.03 sec)

MySQL [test]> INSERT INTO t2 (id2) values (1);

Query OK, 1 row affected (0.00 sec)

MySQL [test]> INSERT INTO t1 (id1) values (1) returning *, id1 * 2, id1 + 1, id1 *

+------+---------+---------+-------+--------------------+

| id1 | id1 * 2 | id1 + 1 | alias | (select * from t2) |

+------+---------+---------+-------+--------------------+

| 1 | 2 | 2 | 1 | 1 |

+------+---------+---------+-------+--------------------+

1 row in set (0.01 sec)

MySQL [test]> INSERT INTO t1 (id1) SELECT id2 from t2 returning id1;

+------+

| id1 |

+------+

| 1 |

+------+

1 row in set (0.01 sec)

REPLACE ... RETURNING

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 68

MySQL [test]> CREATE TABLE t1(id1 INT PRIMARY KEY, val1 VARCHAR(1));

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> CREATE TABLE t2(id2 INT PRIMARY KEY, val2 VARCHAR(1));

Query OK, 0 rows affected (0.03 sec)

MySQL [test]> INSERT INTO t2 VALUES (1,'a'),(2,'b'),(3,'c');

Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

MySQL [test]> REPLACE INTO t1 (id1, val1) VALUES (1, 'a');

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 68

Query OK, 1 row affected (0.00 sec)

MySQL [test]> REPLACE INTO t1 (id1, val1) VALUES (1, 'b') RETURNING *;

+-----+------+

| id1 | val1 |

+-----+------+

| 1 | b |

+-----+------+

1 row in set (0.01 sec)

DELETE ... RETURNING

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 68

MySQL [test]> CREATE TABLE t1 (a int, b varchar(32));

Query OK, 0 rows affected (0.04 sec)

MySQL [test]> INSERT INTO t1 VALUES

(7,'ggggggg'),

(1,'a'),

(3,'ccc'),

(4,'dddd'),

(1,'A'),

(2,'BB'),

(4,'DDDD'),

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 68

(5,'EEEEE'),

(7,'GGGGGGG'),

(2,'bb');

Query OK, 10 rows affected (0.03 sec)

Records: 10 Duplicates: 0 Warnings: 0

MySQL [test]> DELETE FROM t1 WHERE a=2 RETURNING *;

 +------+------+

| a | b |

 +------+------+

| 2 | BB |

| 2 | bb |

 +------+------+

2 rows in set (0.01 sec)

MySQL [test]> DELETE FROM t1 RETURNING *;

+------+---------+

| a | b |

+------+---------+

| 7 | ggggggg |

| 1 | a |

| 3 | ccc |

| 4 | dddd |

| 1 | A |

| 4 | DDDD |

| 5 | EEEEE |

| 7 | GGGGGGG |

+------+---------+

8 rows in set (0.01 sec)

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 68

Flashback Query
Last updated：2024-04-25 11:05:59

Overview

Maloperations may occur in the process of database Ops and severely affect the business. Rollback and cloning are
common recovery methods for maloperations, but they are error-prone and time-consuming in case of minor data
changes and urgent troubleshooting, and are uncontrollable in recovery time when dealing with major data changes.

The TXSQL team has developed and implemented the flashback query feature for the InnoDB engine. It allows you to
query the historical data before a maloperation with a simple SQL statement and query the data at a specified time
point through specific SQL syntax. This greatly saves the data query and recovery time and enables fast data recovery
for better business continuity.

Supported Versions

TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

The flashback query feature is used to quickly query the historical data after a maloperation during database Ops.
Notes:
Flashback query is supported only for InnoDB physical tables but not views, other engines, or functions without actual
columns such as last_insert_id() .

Only second-level flashback query is supported, and the accuracy cannot be fully guaranteed. If there are multiple
changes within one second, any of them may be returned.

Flashback query is supported only for primary keys (or GEN_CLUST_INDEX).
Flashback query cannot be used in prepared statements or stored procedures.
Flashback query does not support DDL. If you perform DDL on a table (such as TRUNCATE TABLE, which should be
recovered through the recycle bin), the results obtained by flashback query may not be as expected.
In the same statement, if multiple flashback query times are specified for the same table, the earliest time will be

selected.
Due to the time difference between the read-write and read-only instances, if you specify the same time for flashback
query, the results obtained for the instances may be different.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 68

Enabling the flashback query feature will delay undo log cleanup and increase the memory usage. We recommend
that you not set Innodb_backquery_window to a large value (preferably between 900 and 1,800), especially for

instances with frequent business access requests.

If the database instance restarts or crashes, the historical information before the restart or crash cannot be queried.
The specified time should be within the supported range (which can be viewed through the status variables
 Innodb_backquery_up_time and Innodb_backquery_low_time by running show status like

'%backquery%') .

Use Limits

Flashback query provides a new AS OF syntax. You can set the Innodb_backquery_enable parameter to

 ON to enable the flashback query feature and then query data at the specified time. The syntax involved is as

follows:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 68

SELECT ... FROM <table name>

AS OF TIMESTAMP <time>;

Sample of querying data at the specified time

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 68

MySQL [test]> create table t1(id int,c1 int) engine=innodb;

Query OK, 0 rows affected (0.06 sec)

MySQL [test]> insert into t1 values(1,1),(2,2),(3,3),(4,4);

Query OK, 4 rows affected (0.01 sec)

Records: 4 Duplicates: 0 Warnings: 0

MySQL [test]> select now();

 +---------------------+

| now() |

 +---------------------+

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 68

| 2023-08-17 15:50:01 |

 +---------------------+

1 row in set (0.00 sec)

MySQL [test]> delete from t1 where id=4;

Query OK, 1 row affected (0.00 sec)

MySQL [test]> select * from t1;

 +------+------+

| id | c1 |

 +------+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

 +------+------+

3 rows in set (0.00 sec)

MySQL [test]> select * from t1 as of timestamp '2023-08-17 15:50:01';

 +------+------+

| id | c1 |

 +------+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

| 4 | 4 |

 +------+------+

4 rows in set (0.00 sec)

Sample of creating a table from historical data

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 68

create table t3 select * from t1 as of timestamp '2023-08-17 15:50:01';

Sample of inserting historical data into a table

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 68

insert into t4 select * from t1 as of timestamp '2023-08-17 15:50:01';

Parameter Description

The following table lists the configurable parameters of the flashback query feature.

Parameter Scope Type Default
Value

Value Range/Valid
Values

Restart
Required

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 68

innodb_backquery_enable Global Boolean OFF ON/OFF No

 innodb_backquery_window Global Integer 900 1–86400 No

 innodb_backquery_history_limit Global Integer 8000000 1–
9223372036854476000

No

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 68

Performance Features
Optimization of Plan Caching Point Query
Last updated：2024-04-25 11:10:02

Overview

In TDSQL-C for MySQL, SQL statement execution is divided into four stages: parsing, preparation, optimization, and
execution. The execution plan cache feature is only available for prepared statements. After the feature is enabled, the
first three stages will be skipped when executing a prepared statement, greatly boosting query performance.

Supported Versions

 TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

This feature is mainly used to improve the query performance when executing many online short point queries with
prepared statements. The specific extent of performance improvement depends on the online business.

Use Limits

You can use the cdb_plan_cache parameter to enable or disable the execution plan cache and the

 cdb_plan_cache_stats parameter to query information about cache hits.

Parameter Status Type Default
Value

Valid Values Description

cdb_plan_cache yes bool false true/false
Whether to enable the feature. Only
accounts with the feature permission
can use the parameter.

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.

https://console.tencentcloud.com/workorder/category

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 68

Upon enabling the cdb_plan_cache_stats parameter, one can then view related data through the show

cdb_plan_cache_stat command.

You can run the show cdb_plan_cache_stat command to query information about execution plan cache hits.

The command will return the following fields:

Field Description

sql A SQL statement with the question mark (?) which represents that the execution plan of this
statement has been cached.

mode SQL cache mode. Currently, only the prepare mode is supported.

hit Number of hits for this session

Note：
When the cdb_plan_cache_stats switch is enabled, it essentially functions as an information record, which will

have an impact on performance.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 68

Auto-Increment Column Persistence
Last updated：2023-11-01 16:44:24

Overview

The auto-increment column persistence feature can persist an auto-increment column into a page to avoid duplicate
auto-increment values.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.

Use Cases

This feature is suitable for scenarios where you don't want duplicate auto-increment values, such as legacy data
archive.

Use Limits

This feature is enabled in the kernel by default.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 68

Invisible Index
Last updated：2024-04-25 11:14:26

Overview

You may require the capability to make an index invisible to determine whether it can be deleted By making an index
as invisible, you can test the impact of its deletion on query performance before deleting it. If the index is being used
by any program or database user, an error will occur or be reported. This feature is now available to MySQL 5.7 and

later versions, not just limited to MySQL 8.0.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
 TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

Before deleting an index, you can make it invisible to see if it is still in use. If not, it can be securely deleted.

Use Limits

Run the following statements to create an invisible index or make an index invisible:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 68

CREATE TABLE t1 (

 i INT,

 j INT,

 k INT,

 INDEX i_idx (i) INVISIBLE

) ENGINE = InnoDB;

CREATE INDEX j_idx ON t1 (j) INVISIBLE;

ALTER TABLE t1 ADD INDEX k_idx (k) INVISIBLE;

Run the following statements to make an index visible:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 68

ALTER TABLE t1 ALTER INDEX i_idx INVISIBLE;

ALTER TABLE t1 ALTER INDEX i_idx VISIBLE

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 68

Computation Pushdown
Last updated：2023-11-01 16:47:39

Overview

This feature pushes LIMIT/OFFSET and SUM operations down to the storage engine InnoDB when querying single
tables, effectively reducing query latency.
When LIMIT/OFFSET is executed using secondary indexes, this feature can avoid using the clustered index values as

pointers to find the full table rows, effectively cutting the cost of scanning table data.
This feature pushes SUM operations down to InnoDB. In other words, instead of sending rows to the MySQL server,
InnoDB calculates data itself and returns the final result to the MySQL server.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.

Use Cases

This feature is mainly used to optimize single-table queries with LIMIT/OFFSET or SUM clauses, such as "Select from

tbl Limit 10", "Select from tbl Limit 10,2", and "Select sum(c1) from tbl".
This feature cannot optimize the following queries:
Queries with DISTINCT, GROUP BY, or HAVING clauses
Nested subqueries
Queries with FULLTEXT indexes
Queries with ORDER BY clauses, where the optimizer fails to use indexes to implement ORDER BY

Queries with multi-range read (MRR).
Queries with SQL_CALC_FOUND_ROWS.

Parameter Description

During the execution of a SQL statement, the optimizer automatically modifies the query execution plan to implement
computation pushdown according to the following parameters.
Parameters are as follows:

Parameter Effective Type Default Valid Description

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 68

Immediately Value Values

 cdb_enable_offset_pushdown Yes bool ON {ON,OFF}

Enable or disable
LIMIT/OFFSET
pushdown. It is
enabled by default.

 cdb_enable_sumagg_pushdown Yes bool OFF {ON,OFF}
Enable or disable
SUM pushdown. It is
disabled by default.

Note:
Currently, you cannot directly modify the values of the above parameters. If needed, submit a ticketfor assistance.

https://console.tencentcloud.com/workorder/category

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 68

Parallel Initialization of InnoDB Buffer Pool
Last updated：2024-06-17 16:31:45

Overview

This feature speeds up the initialization of the buffer pool, reducing the startup time of the database instance.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.

Use Cases

This feature is used to speed up the startup of the database instance.

Performance Test Data

Performance test data collected from eight instances:

buffer_pool_size Buffer Pool Initialization Time
(Before Optimization)

Buffer Pool Initialization Time
(After Optimization)

Speed
Enhancement

50GB 2.55s 0.13s 1962%

200GB 10.28s 0.52s 1977%

500GB 25.72s 1.32s 1948%

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 68

Stability Feature
Statement Outline
Last updated：2024-04-25 11:19:15

Overview

SQL tuning is a crucial step in improving database performance. To avoid the impact when the optimizer fails to select
an appropriate execution plan, TXSQL provides the outline feature for you to bind execution plans. TDSQL-C for
MySQL allows you to use hints to manually bind execution plans. The hint information contains the optimization rule

for SQL statements, algorithm to be used, and index for data scan. An outline relies on hints to specify execution
plans. TDSQL-C for MySQL provides the mysql.outline system table for you to add plan binding rules and the

 cdb_opt_outline_enabled switch for you to enable/disable the outline feature.

Supported Versions

 TDSQL-C for MySQL 8.0 (kernel version 3.1.10) or later.

Use Cases

This feature is suitable for scenarios where an execution plan in the production environment has poor performance (for

example, the index in the execution plan is incorrect), but you don't want to modify SQL statements and release a new
version to fix this problem.

Use Limits

The outline syntax uses a new syntax form:
Configure outline information: outline "sql" set outline_info "outline";

Clear outline information: outline reset ""; outline reset all;

Refresh outline information: outline flush;

Below are the outline use methods with the following schemas as examples:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 68

create table t1(a int, b int, c int, primary key(a));

create table t2(a int, b int, c int, unique key idx2(a));

create table t3(a int, b int, c int, unique key idx3(a));

Parameter Effective
Immediately

Type Default
Value

Valid Values Description

cdb_opt_outline_enabled yes bool false true/false Whether to enable the
outline feature.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 68

Note:
Currently, you cannot directly modify the values of the above parameter. If needed, submit a ticket for assistance.

Binding an outline

To bind an outline directly, you can replace one SQL statement with another, without changing the syntax of the SQL.

This simply adds some HINT information to instruct the optimizer on how to execute the statement.
The syntax is in the format of outline "sql" set outline_info "outline"; . Note that the string after

 outline_info must start with "OUTLINE:" , which is followed by the SQL statement with the hint information

added. For example, you can add the index in column a to table t2 in the SQL statement select *from

t1, t2 where t1.a = t2.a as follows:

https://console.tencentcloud.com/workorder/category

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 68

outline "select* from t1, t2 where t1.a = t2.a" set outline_info "OUTLINE:select *

Binding optimizer hint

To make the feature more flexible, TXSQL allows you to add optimizer hints incrementally to SQL statements. You

can also implement the same feature by directly binding an outline.
The syntax is in the format of outline "sql" set outline_info "outline"; . Note that the string after

 outline_info must start with "OPT:" , which is followed by the optimizer hint information to be added. For

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 68

example, you can specify SEMIJOIN of MATERIALIZATION/DUPSWEEDOUT for the SQL statement select

*from t1 where t1.a in (select b from t2) as follows:

outline "select* from t1 where t1.a in (select b from t2)" set outline_info "OPT:2#

outline "select * from t1 where t1.a in (select b from t2)" set outline_info "OPT:1

You can add only one optimizer hint to the original SQL statement at a time and must comply with the following rules:
The OPT keyword must follow ".

':' must be placed before the new statement to be bound.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 68

You must add two fields (query block number#optimizer hint string), which must be separated with "#" (e.g.,
 "OPT:1#max_execution_time(1000)").

Binding index hint

To make the feature more flexible, TXSQL allows you to add index hints incrementally to SQL statements. You can

also implement the same feature by directly binding an outline.
The syntax is in the format of outline "sql" set outline_info "outline"; . Note that the string after

 outline_info must start with "INDEX:" , which is followed by the index hint information to be added.

For example, you can add the index idx1 of USE INDEX in FOR JOIN type to the table t1 in the

database test in query block 3 for the SQL statement select *from t1 where t1.a in (select t1.a

from t1 where t1.b in (select t1.a from t1 left join t2 on t1.a = t2.a)) as follows:

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 68

outline "select* from t1 where t1.a in (select t1.a from t1 where t1.b in (select t

You can add only one index hint to the original SQL statement at a time and must comply with the following rules:

The INDEX keyword must follow ".

':' must be placed before the new statement to be bound.
You must add five fields (query block number#db_name#table_name#index_name#index_type#clause).
Here, index_type has three valid values (0: INDEX_HINT_IGNORE; 1: INDEX_HINT_USE; 2:

INDEX_HINT_FORCE), and clause also has three valid values (1: FOR JOIN; 2: FOR ORDER BY; 3: FOR

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 68

GROUP BY), which must be separated by "#" (e.g., "INDEX:2#test#t2#idx2#1#1" , indicating to bind the

index idx1 in USE INDEX FOR JOIN type to the table test.t2 in the second query block).

Deleting the outline information of a SQL statement

TXSQL allows you to delete the outline binding information from a SQL statement.

The syntax is in the format of outline reset "sql"; . For example, to delete the outline information from

 select *from t1, t2 where t1.a = t2.a , run the following statement: outline reset "select*

from t1, t2 where t1.a = t2.a"; .

Clearing all outline information

TXSQL allows you to clear all outline binding information in the kernel. The syntax is outline reset all , and

the execution statement is outline reset all; .

There may be some specific problems in the production environment where you must bind an index. In this case, you
can directly configure an outline for binding.
You should analyze the possible performance compromise after configuring an outline and bind an outline only if the
compromised performance is acceptable. You can consult kernel engineers if necessary.

TDSQL-C for MySQL

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 68

Hotspot Update Protection
Last updated：2024-04-25 11:21:31

Overview

For businesses with frequent updates or flash sales, the hotspot update feature greatly optimizes the performance of
the UPDATE operation on frequently updated rows. If automatic hotspot update detection is enabled, the system will
automatically detect whether there is a single row of hotspot update. If such an update is detected, it will queue the

large number of concurrent UPDATE operations and execute them sequentially. This helps reduce the risk of
concurrency performance being compromised by numerous row locks.

Supported Versions

TDSQL-C for MySQL 5.7 (kernel version 2.0.23/2.1.9) or later.
TDSQL-C for MySQL 8.0 (kernel version 3.1.5) or later.

Use Cases

This feature is suitable for scenarios where the pressure of updating a single row or multiple rows with the primary key

specified is very high, such as flash sales.

Parameter Description

Parameter Effective
Immediately

Type Default
Value

Valid Values Description

cdb_sql_filter_enable yes bool off on/off Whether to enable hotspot
update

Use Limits

Hotspot Update Protection

https://www.tencentcloud.com/document/product/1098/56996

