
IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 33

IoT Hub

Getting Started

Product Documentation

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 33

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 33

Contents

Getting Started
Quick Start
Scenario 1: Device Interconnection

Overview
Console Operation Steps
Device-Side Operation Steps

Scenario 2: Device Status Reporting and Setting
Scenario Overview
Device Status Reporting
Device Temperature Setting

MQTT.fx Connection Guide

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 33

To get started quickly, you are advised to connect to IoT Hub using MQTT.fx. Find the connection guide as follows:

MQTT.fx Connection Guide
To use sites other than Chinese mainland, see Device Connection Regions to select a suitable site for connection.

We have built a smart home demo to demonstrate the features of IoT Hub. Scenarios include:

Scenario 1: the door is connected with the air conditioner, and actions of entering/leaving the house are monitored
through the door to instruct the air conditioner to turn on/off.
Scenario 2: It describes how the user can set the air conditioner temperature and check the energy consumption of
the air conditioner using an app.

The demo involves the following features of IoT Hub:

Message publishing and subscribing
Device shadow-based status reporting and configuration distribution
Rule engine-based device message communication

You can refer to the demo and customize based on your own needs:

Demo Content

Scenario 1 Device Interconnection

Scenario 2 Device Status Reporting and Setting

Getting Started
Quick Start
Last updated：2021-10-25 10:52:23

https://www.tencentcloud.com/document/product/1105/41469
https://www.tencentcloud.com/document/product/1105/42712
https://www.tencentcloud.com/document/product/1105/42335
https://www.tencentcloud.com/document/product/1105/42340

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 33

Overview

If you need to achieve the features as shown below in a smart home scenario (this is not a real product but only used
to demonstrate IoT Hub's capabilities), you can follow the steps in this document.

Solution

Two types of smart devices (door and air conditioner) can be created in the IoT Hub SDK and connected with each
other based on cross-device messaging and the rule engine as shown below:

Scenario 1: Device Interconnection
Overview
Last updated：2021-09-24 17:48:30

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 33

Note：
 airConditioner1 cannot achieve message communication by directly subscribing to the update

messages of door1 . For the reason, please see Feature Components - Permission Management.

https://www.tencentcloud.com/document/product/1105/41500

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 33

Creating Door Product and Device

1. Log in to the IoT Hub console and click Products on the left sidebar.
2. On the product list page, click Create Product.
3. Create a door product (Door), select the authentication method, enter the product description, and click Confirm.

Note：

For more information on authentication method, see Device Connection Preparations.

Console Operation Steps
Last updated：2021-10-25 10:57:49

https://console.tencentcloud.com/iotcloud
https://www.tencentcloud.com/document/product/1105/41476

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 33

When Custom is selected as the data format, the parsing may fail, resulting in garbled characters. In
such cases, you are advised to create the product again and select JSON as the data format.

4. After successful creation, you can view the basic information of the product.

5. Click the door product (Door), select the Devices tab, and create a device (door1).

Note：
A device key will be returned after device creation under asymmetric encryption, and will be used for device
communication. The key will not be stored in the IoT Hub backend. Keep it properly.

6. Click Manage to view the device information.

Certificate authentication:

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 33

Key authentication:

Creating Air Conditioner Product and Device

1. Log in to the IoT Hub console and click Products on the left sidebar.

2. On the product list page, click Create Product.
3. Create an air conditioner product (AirConditioner), select the authentication method, enter the product description,

and click Confirm.

https://console.tencentcloud.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 33

4. After successful creation, you can view the basic information of the product.
5. Create a device (airConditioner1) on the Devices tab page.

6. Click Manage to view the device information.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 33

In the device information page, device certificate and device private key are used for MQTT over TLS asymmetric
encryption. Symmetric key is used for symmetric encryption (for the differences between the two communication
methods, see Feature Components - Device Connection).

Note：
The creation of the above resources can be done by the backend through RESTful APIs. For more information,
please see API Overview.

Creating Rule

1. Log in to the IoT Hub console and click Rule Engine on the left sidebar.
2. On the rule engine page, click Create Rule, enter the rule name, and click Confirm.

Rule Name: it can contain up to 32 letters, digits, and underscores (the name cannot be modified once
confirmed).
Rule Description: 0–256 characters. This can be modified.

https://www.tencentcloud.com/document/product/1105/41500
https://console.tencentcloud.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 33

3. After the rule is created successfully, you will be automatically redirected to the rule details page.

Then, you can write different forwarding rules.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 33

Downloading SDK

For the SDK download method, please see SDK Download.

Compiling and running SDK for C demo

SDK for C demo:

 samples/scenarized/door_mqtt_sample.c is the MQTT-based logic code for the door device.

 samples/scenarized/aircond_shadow_sample.c is the MQTT-based logic code for the air conditioner

device.

Below describes how to compile and run the device interconnection demo in a Linux environment with key
authentication as an example:

1. Compile the SDK

Modify CMakeLists.txt to ensure that the following options exist:

set(BUILD_TYPE "release")

set(COMPILE_TOOLS "gcc")

set(PLATFORM "linux")

set(FEATURE_MQTT_COMM_ENABLED ON)

set(FEATURE_MQTT_DEVICE_SHADOW ON)

set(FEATURE_AUTH_MODE "KEY")

set(FEATURE_AUTH_WITH_NOTLS OFF)

set(FEATURE_DEBUG_DEV_INFO_USED OFF)

Run the following script for compilation:

./cmake_build.sh

The demo outputs aircond_shadow_sample and door_mqtt_sample are in the

 output/release/bin folder.

2. Enter the device information

Enter the information of the airConditioner1 device created above in the JSON file

 aircond_device_info.json .

Device-Side Operation Steps
Last updated：2021-10-25 15:05:08

https://www.tencentcloud.com/document/product/1105/41840

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 33

"auth_mode":"KEY",

"productId":"GYT9V6D4AF",

"deviceName":"airConditioner1",

"key_deviceinfo":{

"deviceSecret":"vXeds12qazsGsMyf5SMfs6OA6y"

}

Enter the information of the door1 device in another JSON file door_device_info.json .

"auth_mode":"KEY",

"productId":"S3EUVBRJLB",

"deviceName":"door1",

"key_deviceinfo":{

"deviceSecret":"i92E3QMNmxi5hvIxUHjO8gTdg"

}

3. Run the aircond_shadow_sample demo

In the code of aircond_shadow_sample , _register_subscribe_topics implements the subscription to

the /{productID}/{deviceName}/control topic and registers the corresponding callback handler. After

receiving a message from this topic, the callback determines whether the message content is "come_home" or
"leave_home" and instructs airConditioner to turn on or off accordingly.

 _simulate_room_temperature simply simulates the changes in indoor temperature and energy consumption

of airConditioner . You can also implement other custom logic.

Because the device interconnection scenario involves two demos running simultaneously, you can run the air
conditioner demo in the current terminal console first, and you can see that the demo subscribes to the topic and then
enters the loop waiting status. The initial status of the air conditioner is close :

./output/release/bin/aircond_shadow_sample -c ./device_info.json

INF|2019-09-16 23:25:17|device.c|iot_device_info_set(67): SDK_Ver: 3.1.0, Product

_ID: GYT9V6D4AF, Device_Name: airConditioner1

INF|2019-09-16 23:25:19|mqtt_client.c|IOT_MQTT_Construct(125): mqtt connect with

id: Nh9Vc success

DBG|2019-09-16 23:25:19|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(138): t

opicName=$shadow/operation/result/GYT9V6D4AF/airConditioner1|packet_id=56171

DBG|2019-09-16 23:25:19|shadow_client.c|_shadow_event_handler(63): shadow subscri

be success, packet-id=56171

INF|2019-09-16 23:25:19|aircond_shadow_sample.c|event_handler(96): subscribe succ

ess, packet-id=56171

INF|2019-09-16 23:25:19|shadow_client.c|IOT_Shadow_Construct(172): Sync device da

ta successfully

INF|2019-09-16 23:25:19|aircond_shadow_sample.c|main(256): Cloud Device Construct

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 33

Success

DBG|2019-09-16 23:25:19|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(138): t

opicName=GYT9V6D4AF/airConditioner1/control|packet_id=56172

DBG|2019-09-16 23:25:19|shadow_client.c|_shadow_event_handler(63): shadow subscri

be success, packet-id=56172

INF|2019-09-16 23:25:19|aircond_shadow_sample.c|event_handler(96): subscribe succ

ess, packet-id=56172

INF|2019-09-16 23:25:19|aircond_shadow_sample.c|main(291): airConditioner state:

close

INF|2019-09-16 23:25:19|aircond_shadow_sample.c|main(292): currentTemperature: 3

2.000000, energyConsumption: 0.000000

4. Run the door_mqtt_sample demo to simulate a homecoming event

Open another terminal console and run the door demo. According to the program launch parameter -t

airConditioner1 -a come_home , you can see that the demo sends a JSON message {"action": "come_home",

"targetDevice": "airConditioner1"} to the /{productID}/{deviceName}/event topic, which notifies the target

device airConditioner1 of the homecoming event.

./output/release/bin/door_mqtt_sample -c ./output/release/bin/device_info.json -t

airConditioner1 -a come_home

INF|2019-09-16 23:29:11|device.c|iot_device_info_set(67): SDK_Ver: 3.1.0, Product

_ID: S3EUVBRJLB, Device_Name: door1

INF|2019-09-16 23:29:11|mqtt_client.c|IOT_MQTT_Construct(125): mqtt connect with

id: d89Wh success

INF|2019-09-16 23:29:11|door_mqtt_sample.c|main(229): Cloud Device Construct Succ

ess

DBG|2019-09-16 23:29:11|mqtt_client_publish.c|qcloud_iot_mqtt_publish(329): publi

sh topic seq=46683|topicName=S3EUVBRJLB/door1/event|payload={"action": "come_hom

e", "targetDevice": "airConditioner1"}

INF|2019-09-16 23:29:11|door_mqtt_sample.c|main(246): Wait for publish ack

INF|2019-09-16 23:29:11|door_mqtt_sample.c|event_handler(81): publish success, pa

cket-id=46683

5. Observe the message reception of the air conditioner and simulate a message response

Observe the printout of aircond_shadow_sample . You can see that the homecoming message sent by

 door1 and forwarded by the cloud has been received, the state has changed to open , and the indoor

temperature currentTemperature (adjusted to the configured default temperature) and the energy consumption

 energyConsumption have changed dynamically.

INF|2019-09-16 23:29:11|aircond_shadow_sample.c|main(291): airConditioner state:

close

INF|2019-09-16 23:29:11|aircond_shadow_sample.c|main(292): currentTemperature: 3

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 33

2.000000, energyConsumption: 0.000000

INF|2019-09-16 23:29:12|aircond_shadow_sample.c|on_message_callback(140): Receive

Message With topicName:GYT9V6D4AF/airConditioner1/control, payload:{"action":"com

e_home","targetDevice":"airConditioner1"}

INF|2019-09-16 23:29:12|aircond_shadow_sample.c|main(291): airConditioner state:

open

INF|2019-09-16 23:29:12|aircond_shadow_sample.c|main(292): currentTemperature: 3

1.000000, energyConsumption: 1.000000

Configuring SDK for Android demo

Implement SDK for Android door demo

Door.java is the door device class. Please enter the PRODUCT_ID, DEVICE_NAME, DEVICE_CERT_NAME, and

DEVICE_KEY_NAME obtained in the previous steps for product and device creation and place the device certificate
and device private key files in the assets directory:

/**

* Product ID

*/

private static final String PRODUCT_ID = "YOUR_PRODUCT_ID";

/**

* Device name

*/

protected static final String DEVICE_NAME = "YOUR_DEVICE_NAME";

/**

* Key

*/

private static final String SECRET_KEY = "YOUR_DEVICE_PSK";

/**

* Device certificate name

*/

private static final String DEVICE_CERT_NAME = "YOUR_DEVICE_NAME_cert.crt";

/**

* Device private key file name

*/

private static final String DEVICE_KEY_NAME = "YOUR_DEVICE_NAME_private.key";

1. Perform an emptiness check on the MQTT connection instance in enterRoom() . If it is empty, perform

initialization and initiate connect() ; otherwise, determine whether the connection is valid, and if so, publish the

 event topic.

2. As an example, the content of the message is assembled and published based on the action (come_home or

 leave_home) and targetDeviceName (name of the device to relay to) parameters you specified when

https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/src/main/java/com/tencent/iot/hub/device/android/app/scenarized/Door.java

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 33

running the program. You can organize the message content and topic on your own to execute your own message
publishing logic.

Implementing SDK for Android air conditioner demo

Airconditioner.java is the air conditioner device class. Just like in Implementing SDK for Android door demo, you need

to enter the information related to the product and device first.

1. Initialize the MQTT connection instance in the Airconditioner constructor and initiate connect() .

2. After the MQTT connection is successfully established, subscribe to the control topic.

Running demo

1. Click the Run icon in Android Studio to install the demo.

2. Switch the bottom tab to the device interconnection fragment and observe the log information in the demo and

logcat. The following is the log information in logcat:
airConditioner1 was connected to IoT Hub and subscribed to the topic

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Start connecting to ss

l://connect.iot.qcloud.com:8883

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: onSuccess!

com.qcloud.iot I/IoTEntryActivity: connected to ssl://connect.iot.qcloud.com:88

83

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Starting subscribe topi

c: ******/airConditioner1/control

com.qcloud.iot I/IoTEntryActivity: onSubscribeCompleted, subscribe success

3. Click Enter to connect to IoT Hub and publish the control topic. The corresponding message is:

"{\"action\": \"come_home\", \"targetDevice\": \"airConditioner1\"}"

4. Observe the log information in the demo and logcat. The following is the log information in logcat:

door1 was connected to IoT Hub

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Start connecting to ss

l://connect.iot.qcloud.com:8883

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: onSuccess!

com.qcloud.iot I/IoTEntryActivity: connected to ssl://connect.iot.qcloud.com:

8883

https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/src/main/java/com/tencent/iot/hub/device/android/app/scenarized/Airconditioner.java
https://www.tencentcloud.com/document/product/1105/42335

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 33

door1 published a topic (come_home)

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Starting publish topi

c: ******/door1/event Message: {"action": "come_home", "targetDevice": "airCo

nditioner1"}

airConditioner1 received the topic forwarded by the rule engine

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Received topic: *****

*/airConditioner1/control, message: {"action":"come_home","targetDevice":"air

Conditioner1"}

com.qcloud.iot D/IoTEntryActivity: receive command: open airconditioner, coun

t: 1

5. Click Leave to publish the control topic. The corresponding message is:

"{\"action\": \"leave_home\", \"targetDevice\": \"airConditioner1\"}"

6. Observe the log information in the demo and logcat. The following is the log information in logcat:

door1 published a topic (leave_home)

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Starting publish topi

c: ******/door1/event Message: {"action": "leave_home", "targetDevice": "airC

onditioner1"}

airConditioner1 received the topic forwarded by the rule engine

com.qcloud.iot I/com.qcloud.iot.mqtt.TXMqttConnection: Received topic: *****

*/airConditioner1/control, message: {"action":"leave_home","targetDevice":"ai

rConditioner1"}

com.qcloud.iot D/IoTEntryActivity: receive command: close airconditioner, cou

nt: 2

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 33

Operation Scenario

If you need to set a device target temperature and report device status information in a smart home scenario (this is
not a real product but only used to demonstrate IoT Hub's capabilities), you can follow the steps in this document.

Setting Device Target Temperature

Scenario 2: Device Status Reporting and
Setting
Scenario Overview
Last updated：2021-10-25 10:43:58

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 33

The management backend uses the cloud APIs provided by IoT Hub to update device shadow's configuration and
registration parameters, and associate the corresponding callback function to update the configuration locally.

For the implementation of relevant TencentCloud APIs for device shadow, please download
iotcloud_RestAPI_python.zip. You need to configure your profile according to the RESTful API description. You can
customize the features by modifying the parameters in airConditionerCtrl.py in the RestAPI folder.

Reporting Device Status Information

https://mc.qcloudimg.com/static/archive/c6b492abe009de1c47b91b8bfd93c7d2/iotcloud_RestAPI_python.zip

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 33

The device reports its own status data to the device shadow, and the home appliance management backend directly
gets data from the device shadow through the RESTful API.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 33

Directions for SDK for C

Program implementation

As an example, the energy consumption status is reported to the device shadow through the call of
 IOT_Shadow_Update by the following function in the SDK code

 sample/scenarized/aircond_shadow_sample_v2.c . Then, the corresponding callback function is

registered to handle the response of the device shadow. You can customize the reported attributes here.

_do_report_energy_consumption(...)

...

IOT_Shadow_Update(...)

Program compilation and execution

1. Run ./aircond_shadow_sample_v2 . Please note that if MQTT asymmetric encryption is used, the root

certificate, device certificate, and device key files should be placed in the parent directory of ./../certs .

2. Call the relevant RESTful API to get the status data of the shadow. For detailed directions, please see "Querying
and getting device information". Observe the output log of the demo:

3. Run ./door_mqtt_sample come_home/leave_home airConditioner1 . door1 will communicate

with airConditioner1 , and then airConditioner1 will be instructed to turn on through the rule engine.

The reported changes in energy consumption and indoor temperature can be observed in the log, and the shadow

data is obtained again through the RESTful API (as detailed in step 2):

It can be seen that after airConditioner1 is turned on, the air conditioner energy consumption is dynamically

reported to the shadow, and the data can be successfully queried and obtained through the RESTful API.

Directions for SDK for Android

Device Status Reporting
Last updated：2021-10-25 15:11:02

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 33

Program implementation

Please see the instructions in Directions for SDK for Android - Program implementation.

Program compilation and execution

Please see the instructions in Directions for SDK for Android - Program compilation and execution.

Querying and getting device information

Call the RESTful API GetDeviceShadow to get the status data of the shadow, which is used by the application to

display the device's energy consumption.
The RESTful API request parameter is: deviceName=airConditioner1,

productName=AirConditioner .

https://www.tencentcloud.com/document/product/1105/42340
https://www.tencentcloud.com/document/product/1105/42340

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 33

Directions for SDK for C

Program implementation

1. The device shadow uses the code logic of sample/scenarized/aircond_shadow_sample_v2.c . It adds

the following logic to sample/scenarized/aircond_shadow_sample.c :

2. As an example, the SDK internally calls IOT_Shadow_Register_Property to bind the shadow's

configuration class attribute and callback function. When the shadow has a configuration change of this attribute,
the underlying layer of the SDK will perform the corresponding callback. The temperatureDesire field in the

shadow is registered here, which means that when the application sets the target temperature for the device
shadow, the local configuration can be corrected by the callback function to adjust the desired temperature. You
can also implement custom configuration-based attribute listening and callback binding.

rc = _register_config_shadow_property();

Program compilation and execution

1. Run make in the root directory of the SDK, compile, and get the aircond_shadow_sample_v2 executable

program.
2. Run ./aircond_shadow_sample_v2 in the ./output/release/bin directory. Please note that if

MQTT asymmetric encryption is used, the root certificate, device certificate, and device key files should be placed

in the parent directory of ./../certs .

3. Run ./door_mqtt_sample come_home airConditioner1 in the ./output/release/bin

directory to turn on airConditioner .

INF|2018-01-11 20:52:50|aircond_shadow_sample_v2.c|main(377): Cloud Device Cons

truct Success

INF|2018-01-11 20:52:50|aircond_shadow_sample_v2.c|main(389): Cloud Device Regi

ster Delta Success

4. Call the RESTful API to simulate the home appliance management backend and publish the target temperature
configuration. For detailed directions, please see "Publishing target temperature configuration" and observe the

output log of the demo:

In the output log, it can be seen that the on_temperature_actuate_callback function has been called,

indicating that the delta topic sent by the shadow has been received, and the operation modify desire

temperature to: 10.000000 has been performed for updating the locally set temperature.

Device Temperature Setting
Last updated：2021-10-26 15:16:57

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 33

INF|2018-01-11 21:04:31|aircond_shadow_sample_v2.c|on_temperature_actuate_callbac

k(181): actuate callback jsonString=10},"desired":{"temperatureDesire":10},"repor

ted":{"energyConsumption":0.0}},"timestamp":1515675847609,"version":5},"result":0

,"timestamp":1515675871,"type":"get"}|dataLen=2

INF|2018-01-11 21:04:31|aircond_shadow_sample_v2.c|on_temperature_actuate_callbac

k(184): modify desire temperature to: 10.000000

INF|2018-01-11 21:04:31|aircond_shadow_sample_v2.c|on_request_handler(123): Metho

d=GET|Ack=ACK_ACCEPTED

INF|2018-01-11 21:04:31|aircond_shadow_sample_v2.c|on_request_handler(124): recei

ved jsonString={"clientToken":"EJSKHKIS1M-0","payload":{"metadata":{"delta":{"tem

peratureDesire":{"timestamp":1515675847609}},"desired":{"temperatureDesire":{"tim

estamp":1515675847609}},"reported":{"energyConsumption":{"timestamp":151567488148

5}}},"state":{"delta":{"temperatureDesire":10},"desired":{"temperatureDesire":10

},"reported":{"energyConsumption":0.0}},"timestamp":1515675847609,"version":5},"r

esult":0,"timestamp":1515675871,"type":"get"}

In the above output log of airConditioner1 , it can be seen that the configuration operation has taken effect and

 airConditioner has adjusted the locally set temperature.

Directions for SDK for Android

Program implementation

ShadowSample.java is the device shadow class with the following main features:

1. Establish a shadow connection: connect(), which internally calls the connect() API of TXShadowConnect .

2. Close the shadow connection: closeConnect(), which internally calls the disconnect() API of

 TXShadowConnection .

3. Register the device attribute: registerProperty(), which internally calls the registerProperty() API of

 TXShadowConnection .

4. Get the device shadow: getDeviceShadow(), which internally calls the get() API of

 TXShadowConnection .

5. Regularly update the device shadow: loop(), which internally calls the update() API of

 TXShadowConnection .

Program compilation and execution

Before running the application, please enter the PRODUCT_ID, DEVICE_NAME, DEVICE_CERT_NAME, and
DEVICE_KEY_NAME obtained in the previous steps for product and device creation and place the device certificate
and device private key files in the assets directory:

/**

* Product ID

https://github.com/tencentyun/iot-device-java/blob/master/hub/hub-android-demo/src/main/java/com/tencent/iot/hub/device/android/app/shadow/ShadowSample.java

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 33

*/

private static final String PRODUCT_ID = "YOUR_PRODUCT_ID";

/**

* Device name

*/

protected static final String DEVICE_NAME = "YOUR_DEVICE_NAME";

/**

* Key

*/

private static final String SECRET_KEY = "YOUR_DEVICE_PSK";

/**

* Device certificate name

*/

private static final String DEVICE_CERT_NAME = "YOUR_DEVICE_NAME_cert.crt";

/**

* Device private key file name

*/

private static final String DEVICE_KEY_NAME = "YOUR_DEVICE_NAME_private.key";

1. After entering the device information, click the Run icon in Android Studio to install and run the demo.

2. Switch the bottom tab to the device shadow fragment to use the features of the shadow.
3. Each feature has a corresponding operation button. Click a button and observe the log output of the demo and

logcat.
4. For more information on the operations of the RESTful APIs, please see Publishing target temperature

configuration or Querying and getting device information.

Publishing target temperature configuration

Call the RESTful API UpdateDeviceShadow to simulate the home appliance management backend and publish the

target temperature configuration.
The RESTful API request parameter is: deviceName=airConditioner1, state={"desired" :

{"temperatureDesire": 10}}, productName=AirConditioner , which adjusts the control temperature to

10°C.

https://www.tencentcloud.com/zh/document/product/1105/42340
https://www.tencentcloud.com/zh/document/product/1105/42340

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 33

Overview

MQTT.fx is a mainstream MQTT desktop client. Compatible with Windows, macOS, and Linux, it can quickly verify
whether it is possible to connect to IoT Hub and publish or subscribe to messages. For more information on the MQTT
protocol, please see MQTT Introduction. This document describes how MQTT.fx can interact with IoT Hub with

MQTT.fx 1.7.0 for macOS as an example.

Directions

Connecting to IoT Hub

1. Download an appropriate version of MQTT.fx client on the MQTT.fx download page and install it.
2. Open the MQTT.fx client program and click the Settings icon.
3. Click + to create a profile.

MQTT.fx Connection Guide
Last updated：2021-10-26 15:48:18

https://mcxiaoke.gitbooks.io/mqtt-cn/content/mqtt/01-Introduction.html
http://mqttfx.jensd.de/index.php/download

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 33

4. Enter the Connection Profile and General information.

Parameter description

Parameter Description

Profile
Name

Name of the profile

Broker
Address

MQTT server connection address. For more information, see Device Connection Regions.
`PRODUCT_ID` in the domain is a variable parameter, and you should replace it with the product
ID automatically generated when you create the product, such as
`9****ZW2EZ.iotcloud.tencentdevices.com`.

Broker Port MQTT server connection port. For certificate authentication, enter `8883`. For key authentication,
enter `1883`.

Client ID
MQTT protocol field. Enter product ID + device name according to IoT Hub's requirement, such
as `9****ZW2EZgate_dev01`, where `9****ZW2EZ` is the product ID, and `gate_dev01` is the
device name.

Connection
Timeout

Connection timeout period in seconds

https://cloud.tencent.com/document/product/634/61228

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 33

Parameter Description

Keep Alive
Interval

Heartbeat interval in seconds

Auto
Reconnect

Automatic reconnection after network disconnection

5. Enter the User Credentials information.
User Name : MQTT protocol field. Enter product ID + device name + SDKAppID + connid according to IoT
Hub's requirement, such as 9****ZW2EZgate_dev01;12010126;12345 (the ProductID can be

viewed on the product list or product details page after the product is created). It is sufficient to replace only the
product ID and device name in the example. As the last two parameters are automatically generated by the

connection SDK of IoT Hub, fixed test values are entered here.
Password : the password is required.

Certificate authentication: as MQTT.fx sets the password flag to true by default, you need to enter a

random non-empty string as the password; otherwise, you will not be able to connect to IoT Hub's backend.
When actually accessing IoT Hub's backend, the authentication is based on the certificate, and the random
password entered here will not be used as the access credential.

Key authentication: you can access the corresponding device list in the IoT Hub console to view and get the
password (on the page as described in the key authentication steps below). You can also manually generate
a password as instructed MQTT-Based Device Connection over TCP.

6. (Optional) certificate verification: select Enable SSL/TLS, check Self signed certificates, and upload related
files.

https://www.tencentcloud.com/document/product/1105/41824

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 33

File description

File Description

CA File Root certificate. Click the ca.crt link to download the file.

Client
Certificate
File

Client certificate file, i.e., the device certificate which can be downloaded if the device is created in
a certificate-authenticated product. For more information, please see Device Connection
Preparations.

Client Key
File

Client key file, i.e., the device key which can be downloaded if the device is created in a certificate-
authenticated product. For more information, please see Device Connection Preparations.

PEM
Formatted

The IoT Hub root certificate, device certificate, and device key are all generated by OpenSSL, and
they are all in PEM format. MQTT.fx is a Java client, so it does not recognize PEM certificates.
You need to select this option to enable the client to automatically convert the certificates into
Java-recognized JKS format.

https://main.qcloudimg.com/raw/9aa774ea8c09f98811df361c741df38c/ca.crt
https://www.tencentcloud.com/document/product/1105/41476
https://www.tencentcloud.com/document/product/1105/41476

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 33

7. (Optional) Key authentication:

You can go to the console to get the username and password of the corresponding device:

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 33

8. After completing the above steps, click Apply > OK to save. Then, select the name of the file just created in the
profile box and click Connect.

9. If the round icon in the top-right corner is green, the connection to IoT Hub is successful, and publishing and
subscribing operations can be performed.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 33

Publishing a message

Select the Publish tab in the client, enter a topic name, select a QoS level, and click Publish to publish the message.
The publishing result can be queried through Cloud Log.

Subscribe to a topic

Select the Subscribe tab in the client, enter a topic name, select a QoS level, and click Subscribe to subscribe to
the topic. The subscribing result can be queried through Cloud Log.

https://www.tencentcloud.com/document/product/1105/41482
https://www.tencentcloud.com/document/product/1105/41482

