
IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 101

IoT Hub

Developer Manual

Product Documentation

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 101

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 101

Contents

Developer Manual
Feature Components
Signature Algorithm
Device Authentication

Overview
Device-Level Key Authentication
Product-Level Key Authentication
Dynamic Registration API Description

Device Connection Protocol
MQTT-Based Device Connection

MQTT-Based Device Connection over TCP
MQTT-Based Device Connection over WebSocket
MQTT Persistent Session

CoAP-Based Device Connection
HTTP-Based Device Connection
Device Connection Regions

Gateway Subdevice
Feature Overview
Topological Relationship Management
Proxied Subdevice Connection and Disconnection
Proxied Subdevice Publishing and Subscribing
Subdevice Firmware Update

Message Communication
Broadcast Communication
RRPC Communication

Device Shadow
Device Shadow Details
Device Shadow Data Flow

Device Firmware Upgrade
Remote Device Configuration
Resource Management
Device Log Reporting
NTP Service

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 101

1. SDK

For more information, please see the SDK documentation. Currently, IoT Hub supports device SDKs for Linux and
Android and supports porting to different hardware platforms.

2. Device Connection

Devices can be connected to the IoT Hub platform through the SDK:

The application layer is based on MQTT and CoAP protocols.
The transport layer is based on TCP and UDP protocols, and on this basis, secure network transfer protocols TLS
and DTLS are introduced for two-way authentication and encrypted data transfer between clients and servers.
The SDK supports RTOS portability for cross-platform porting and detachment of framework from hardware
abstraction layer, enabling quick and easy connection to IoT Hub from different platforms.

The device SDK supports TLS (for MQTT) and DTLS (for CoAP) for asymmetric and symmetric encryption to protect
device communication security:

Asymmetric encryption

This is based on the certificate and asymmetric encryption algorithm for a high security level and suitable for
devices with high hardware specifications and low sensitivity to power consumption. It relies on device certificates,
private keys, and root certificates, and relevant information will be returned when a device is created in IoT Hub.

Symmetric encryption

This is based on the key and symmetric encryption algorithm for a general security level and suitable for resource-
constrained devices sensitive to power consumption. It relies on the device psKey , and relevant information will

be returned when a device is created in IoT Hub.

In addition to connection through the device SDK, IoT Hub also supports HTTP connection, which has low

requirements for connection and is suitable for low-power data reporting scenarios over non-persistent connections.

3. Device Management

Developer Manual
Feature Components
Last updated：2021-09-10 10:39:18

https://www.tencentcloud.com/document/product/1105/41840

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 101

Up to 2,000 products can be created under one Tencent Cloud account, and up to 1 million devices can be created
for one product. A device can only belong to one product. Product names and device names must be unique under

the same Tencent Cloud account.
Devices can be enabled/disabled. After a device is disabled, it cannot be connected to the IoT Hub platform, and
device-related operations cannot be performed, but the information associated with it will be retained, so device
information can still be queried.

4. Permission Management

In IoT Hub, the topics that devices can publish and subscribe to are strictly managed. All devices under the same

product have the same topic class permissions, including the following by default:

Topic Description

${productId}/${deviceName}/event Publishing permission for the device to report data

${productId}/${deviceName}/control Subscribing permission for the device to get the data sent by the
backend

For a specific device, the productId and deviceName marked with the $ symbol above should be mapped

to the specific product ID and device name. For example, if a product named pro (with the product ID pro_id)

has 2 devices (named dev_1 and dev_2 respectively), then the topics that dev_1 can publish include

 pro_id/dev_1/event but not pro_id/dev_2/event , and the topics that it can subscribe to include

 pro_id/dev_1/control but not pro_id/dev_2/control .

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 101

You can edit and modify the topic permissions in the console and add or remove the topic class permissions of
products.

To facilitate batch subscription to topics by the device SDK, wildcards can be used to indicate multiple matching

topics when a device subscribes to or unsubscribes from topics:

Wildcard Description

#
This wildcard can only appear at the end of the topic, representing the topics at the current level and
all sub-levels; for example, if the wildcard topic is pro_id/dev_1/# , it can represent not only
 pro_id/dev_1/event but also pro_id/dev_1/event/subeventA

+

This wildcard can only appear after deviceName , representing all the topics at the current level;
for example, if the wildcard topic is pro_id/dev_1/event/+ , it can represent
 pro_id/dev_1/event/subeventA and pro_id/dev_1/event/subeventB but not
 pro_id/dev_1/event/subeventA/close . This wildcard can appear multiple times, such
as pro_id/dev_1/event/+/subeventA/+

A wildcard must be used as a complete level; for example, both ${productId}/${deviceName}/e# and

 ${productId}/${deviceName}/e+ are invalid.

The system topics defined by IoT Hub ($shadow , $ota , and $sys) don't support wildcards.

Effect of the wildcard when subscribing to topics: all the topics with the subscribing permission under the product

matching the wildcard topic are subscribed to, and a success message will be returned even if the matched topic
list is empty.
Effect of the wildcard when unsubscribing from topics: all the subscribed topics matching the wildcard topic are
unsubscribed from, and a success message will be returned even if the matched topic list is empty.
 ${productId}/${deviceName}/# can be used to unsubscribe from all topics.

5. Message Management

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 101

For MQTT data transfer, IoT Hub supports QoS 0 or 1 but not QoS 2. Device messages can be stored offline.

If QoS is 0, the message will be sent to the device at most once

For scenarios where the requirement for data transfer reliability is not high, please select this QoS level for

publishing and subscribing.
If QoS is 1, the device should receive the message at least once

For scenarios where the requirement for data transfer reliability is high, please select this QoS level for publishing
and subscribing.

Other parameters are as follows:

Parameter Description

Topic name length Up to 64 bytes

MQTT protocol packet size Up to 16 KB

QoS 1 message storage period (if the recipient is offline or online sending fails) 24 hours

Number of QoS 1 messages not confirmed by the device Up to 150

6. Device Shadow

Device shadow is essentially a copy of device data in JSON format cached on the server and is mainly used to save:

Current device configurations
Current device status

As an intermediary, device shadow can effectively implement two-way data sync between device and user application:

For device configuration, the user application does not need to directly modify the device; instead, it can modify the
device shadow on the server, which will sync modifications to the device. In this way, if the device is offline at the

time of modification, it will receive the latest configuration from the shadow once coming back online.
For device status, the device reports the status to the device shadow, and when users initiate queries, they can
simply query the shadow. This can effectively reduce the network interactions between the device and the server,
especially for low-power devices.

The figure below is a sample use case of the device shadow in "Getting Started":

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 101

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 101

Note：

Device shadow and device message have different applicable scenarios. In terms of implementation
mechanism, the server-side device shadow always saves the last copy of data, and multiple messages that
successively arrive do not overwrite one another.

For scenarios where the device reports data, the device shadow is more suitable for reporting the device's own
information (such as energy consumption), while the device message is more suitable for reporting the data

collected by the device (such as the measured temperature).
For scenarios where the device receives data, the device shadow is more suitable for notifying the device of
updated configuration (such as changing the target temperature), while the device message is more suitable for
real-time control of the device (such as turning the device to the left by 45 degrees).

For more information, please see Device Shadow Details.

7. Rule Engine

Based on the rule engine, you can configure rules to do the following:

Syntax rules

 IoT Hub supports SQL-like syntax and basic semantic operations. The contents of device messages can be
parsed, filtered, extracted, and reintegrated through simple syntax, with the results forwarded to Tencent Cloud's
backend services such as storage, function, and TBDS for seamless data connection.
Device-to-Device connection

 In order to isolate device data, devices can only publish and subscribe to messages in their own topics (for more
information, please see Permission Management). To implement message connection, the repub feature of the rule
engine is needed.
Device-to-Server connection

The rule engine provides a simple forwarding feature that can copy messages to your server through HTTP

requests. This can implement fast connection between device messages and your services.
Device-to-Cloud connection

Tencent Cloud offers corresponding services (such as TencentDB and TBDS) for scenarios where users require
further processing of device data (such as persistent storage and big data analysis).

For more information, please see Rule Engine Details.

https://www.tencentcloud.com/document/product/1105/41834
https://www.tencentcloud.com/document/product/1105/41484

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 101

8. Message Queue

As devices are connected only to IoT Hub, IoT Hub can write specified device messages to Tencent Cloud CMQ or
CKafka queues. From there, third-party services can get the device messages through the SDK APIs of CMQ or
CKafka, enabling async message communication between devices and third-party services. Based on this, data

storage, computational analysis, and device control logic can be implemented on the backend.

9. Console

The IoT Hub console provides visual management UIs where you can manage products, devices, and permissions,
configure the rule engine, and perform other operations. You can try it out easily.

10. TencentCloud API

For the device management flow in IoT scenarios, IoT Hub provides various APIs in Python, PHP, Java, Go, Node.js,
and .NET for fast and batch operations on the backend. Currently, it offers APIs related to product, device, task,

message, rule engine, and device shadow. For more information, please see TencentCloud API Overview.

11. Firmware Update

When firmware has security risks or functional problems, IoT Hub servers can perform OTA updates to eliminate
dangers and reduce security risks.

12. Collaboration Management

IoT Hub supports secure access, use, and management of cloud account resources through CAM. Isolation and
collaboration of IoT Hub resources are implemented through identity and policy management of sub-accounts and
collaborators.

https://console.tencentcloud.com/iotcloud
https://www.tencentcloud.com/product/cam

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 101

Overview

When a device initiates an HTTP/HTTPS request to the platform, the request message should contain the signature
information (X-TC-Signature) for requester identity verification.

Signing Steps

Sample device request message:

curl -X POST https://ap-guangzhou.gateway.tencentdevices.com/device/register \

-H "Content-Type: application/json; charset=utf-8" \

-H "X-TC-Algorithm: hmacsha256" \

-H "X-TC-Timestamp: 155****065" \

-H "X-TC-Nonce: 5456" \

-H "X-TC-Signature: 2230eefd229f582d8b1b891af****b91597240707d778ab3738f756258d76

52c" \

-d '{"ProductId":"ASJ****GX","DeviceName":"xyz"}'

1. Concatenate the string to sign

StringToSign =

HTTPRequestMethod + \n +

CanonicalHost + \n +

CanonicalURI + \n +

CanonicalQueryString + \n +

Algorithm + \n +

RequestTimestamp + \n +

Nonce + \n +

HashedCanonicalRequest

Parameter Description

HTTPRequestMethod HTTP request method. POST is supported

CanonicalHost Host address of the HTTP request

Signature Algorithm
Last updated：2021-08-20 16:27:32

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 101

Parameter Description

CanonicalURI
URI of the HTTP request; for example, the URI of https://ap-
guangzhou.gateway.tencentdevices.com/device/register is
 /device/register

CanonicalQueryString
Query string in the URL of the initiated HTTP request, which is always an empty
string "" for POST requests

Algorithm Signature algorithm. Currently, HMACSHA256 and HMACSHA1 are supported

RequestTimestamp Request timestamp

Nonce Random number

HashedCanonicalRequest
Hash value of the request body, which is calculated by SHA256 hashing the HTTP
request body, performing hexadecimal encoding, and then converting the encoded
string to lowercase letters

According to the above rules, the canonical signature string obtained in the sample is as follows:

2. Calculate the signature

The pseudo code for using key signatures, including product-level keys and device-level keys, is as follows:

Signature = Base64_Encode(HMAC_SHA256(SignSecret, StringToSign))

Parameter Description

SignSecret Signature key. `ProductSecret` is used for dynamic registration, and `psk` is used for devices
to publish messages or report logs

StringToSign String to sign

The pseudo code for using certificate signatures is as follows:

POST

ap-guangzhou.gateway.tencentdevices.com

/device/register

hmacsha256

155****065

5456

35e9c5b0e3ae67532d3c9f17ead6c902226****b1ff7f6e89887f1398934f064

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 101

Signature = Base64_Encode(RSA_SHA256(PrivateKey, StringToSign))

Parameter Description

PrivateKey Certificate private key. Device X.509 private key certificate is used for devices to publish
messages or report logs

StringToSign String to sign

3. Assemble the request message

Based on the signature string obtained above, the final complete request is as follows:

POST https://ap-guangzhou.gateway.tencentdevices.com/devregister

Content-Type: application/json

Host: ap-guangzhou.gateway.tencentdevices.com

X-TC-Algorithm: HmacSha256

X-TC-Timestamp: 155****065

X-TC-Nonce: 5456

X-TC-Signature: 2230eefd229f582d8b1b891af71****1597240707d778ab3738f756258d7652c

{"ProductId":"ASJ****GX","DeviceName":"xyz"}

Sample Code

Below is the sample code in Python 3:

import hashlib

import random

import time

import hmac

import base64

if __name__ == '__main__':

sign_format = '%s\n%s\n%s\n%s\n%s\n%d\n%d\n%s'

url_format = '%s://ap-guangzhou.gateway.tencentdevices.com/device/register'

request_format = "{\"ProductId\":\"%s\",\"DeviceName\":\"%s\"}"

device_name = 'dev***'

product_id = 'JCZ****KXS'

product_secret = 'X42fPqw********94cY5sQ1Y'

request_text = request_format % (product_id, device_name)

request_hash = hashlib.sha256(request_text.encode("utf-8")).hexdigest()

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 101

nonce = random.randrange(2147483647)

timestamp = int(time.time())

sign_content = sign_format % (

"POST", "ap-guangzhou.gateway.tencentdevices.com",

"/device/register", "", "hmacsha256", timestamp,

nonce, request_hash)

print("\nsign_content: \n" + sign_content)

sign_base64 = base64.b64encode(hmac.new(product_secret.encode("utf-8"),

sign_content.encode("utf-8"), hashlib.sha256).digest())

print("sign_base64: " + str(sign_base64))

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 101

IoT Hub assigns a unique product ID to each created product. You can customize the Devicename to identify

devices and use the product ID + device ID + device certificate/key to authenticate devices. You need to select the
device authentication method when creating a product. During connection, a device needs to report the information of

the product, device, and corresponding key according to the specified method and can be connected to IoT Hub only
after successful authentication. As different users have different requirements for device resources and security levels,
IoT Hub provides multiple authentication schemes to meet the needs in different use cases.

IoT Hub provides the following three authentication schemes:

Certificate authentication (device-level): it assigns a certificate + private key to each device and uses asymmetric

encryption to authenticate the access. You need to burn different configuration information for each device.
Key authentication (device-level): it assigns a device key to each device and uses symmetric encryption to
authenticate the access. You need to burn different configuration information for each device.
Dynamic registration authentication (product-level): it assigns a unified key to all devices under the same product,
and a device gets a device certificate/key through a registration request for authentication. You can burn the same
configuration information for the same batch of devices.

The three schemes have their own pros and cons in terms of ease of use, security, and device resource requirement.
You can comprehensively evaluate them and choose the most appropriate one according to your own business
scenarios. They are as compared below:

Feature Certificate
Authentication

Key
Authentication

Dynamic Registration Authentication

Burned
device
information

 ProductId ,
 Devicename ,
device certificate,
and device
private key

 ProductId ,
 Devicename ,
and device key

 ProductId , Devicename , and
 ProductSecret

Whether
device
creation is
required

Yes Yes
Devices can be automatically created according to
the Devicename carried in the registration
request.

Security High Average Average

Device Authentication
Overview
Last updated：2021-08-20 16:27:32

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 101

Feature Certificate
Authentication

Key
Authentication

Dynamic Registration Authentication

Use limit

Up to 1 million
devices can be
created under
one product.

Up to 1 million
devices can be
created under
one product.

Up to 1 million devices can be created under one
product. You can customize the maximum number of
devices automatically created through registration
requests.

Device
resource
requirement

High, with TLS
support required Low Low, with only AES support required

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 101

Overview

The IoT Hub platform supports device-level key authentication. In this mode, you need to burn different configuration
firmware for each device. The platform will perform certificate authentication or key authentication according to your
selection. After successful authentication, devices can establish a connection with the platform for data

communication.

Flowchart

Device-level key authentication requires you to burn different firmware for each device. It incurs certain implementation
costs in production applications, but it has higher security and is thus recommended.

Directions

1. Log in to the IoT Hub console and create a product and a device as instructed in Device Connection Preparations.
2. Get the product information on the product details page and get the device name and device certificate/key on the

device details page.

Device-Level Key Authentication
Last updated：2021-09-08 14:37:14

https://console.tencentcloud.com/iotcloud
https://www.tencentcloud.com/document/product/1105/41476

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 101

Product information

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 101

Device information

3. Burn the device firmware in the following steps:

i. Download the device SDK.
ii. Implement the HAL layer functions in the SDK for reading and writing product and device information, including
 ProductID , Devicename , and device certificate or key. For more information, please see SDK for C

Connection Description.
iii. Develop the device firmware based on the SDK according to your actual business needs so as to implement

various features such as unique device ID reading, dynamic device registration, connection authentication,
communication, and OTA.

iv. In the production process, batch burn the developed and tested device firmware into the device.
4. The device uses the burned device-level certificate/key to establish a connection with the platform. After successful

authentication, it will be activated and connected. At this time, it can exchange data with the cloud to implement
business requirements.

https://www.tencentcloud.com/document/product/1105/41840
https://www.tencentcloud.com/document/product/1105/41842

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 101

Overview

The IoT Hub platform supports product-level key authentication. In this mode, you only need to enable dynamic device
registration and then burn the same configuration firmware (ProductID + ProductSecret) for all devices under the
same product. In this way, the devices can get device certificates or keys through registration requests and then

communicate with the platform.

Flowchart

Note：
If you want to use the dynamic registration feature, you need to manually enable dynamic registration for the
product on the product details page in the console.

Directions

Product-Level Key Authentication
Last updated：2021-08-23 14:28:02

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 101

1. Log in to the IoT Hub console and create a product as instructed in Device Connection Preparations.
2. Enable Dynamic Registration on the product details page, select whether to automatically create devices, and

set the maximum number of automatically created devices.

Note：
To prevent too many devices from being created in unpredictable situations (such as device firmware bugs
and product key theft), if you select automatic device creation, we recommend you set an appropriate device
quantity upper limit.

3. Create a device under the product (optional).

You can add devices to the device list in the console or create devices through TencentCloud API.

https://console.tencentcloud.com/iotcloud
https://www.tencentcloud.com/document/product/1105/41476

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 101

If you don't enable automatic device creation, IoT Hub will verify whether each requested device name has been
created in the cloud during device registration. We recommend you use a unique identifier that can be read by the
device as the Devicename , such as IMEI, SN, or MAC address, which facilitates the smooth completion of the

entire process.

iv. Burn the device firmware in the following steps:

1. Download the device SDK.
2. Implement the HAL layer functions in the SDK for reading and writing product and device information, including

 ProductID , ProductSecret , and Devicename , and enable the dynamic registration feature in the

SDK. For more information, please see SDK for C Connection Description.
3. Develop the device firmware based on the SDK according to your actual business needs so as to implement

various features such as unique device ID reading, dynamic device registration, connection authentication,
communication, and OTA.

4. In the production process, batch burn the developed and tested device firmware into the device.

v. After successful device registration, power-on, and connection, initiate a registration request to get the device
certificate or key.

vi. The device uses the obtained device-level certificate/key to establish a connection with the platform. After
successful authentication, it will be activated and connected. At this time, it can exchange data with the cloud to
implement business requirements.

https://www.tencentcloud.com/document/product/1105/41840
https://www.tencentcloud.com/document/product/1105/41842

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 101

Parameter Description

When a device is dynamically registered, it needs to carry ProductId and DeviceName to initiate an

 http/https request to the platform. The request API and parameters are as detailed below:

Requested URL:

 https://ap-guangzhou.gateway.tencentdevices.com/device/register

 http://ap-guangzhou.gateway.tencentdevices.com/device/register

Request method: POST

Request parameters

Parameter Required Type Description

ProductId Yes string Product ID

DeviceName Yes string Device name

Note：
The API only supports the application/json format.

Signature generation

Use the HMACSHA256 algorithm to sign the request message. For more information, please see Signature Algorithm.

Platform response parameters

Parameter Type Description

RequestId String Request ID

Len Int64 Length of the returned payload

Payload String Returned device registration information, which is encrypted and needs to be decrypted
and processed by the device itself

Dynamic Registration API Description
Last updated：2021-08-20 16:27:32

https://www.tencentcloud.com/document/product/1105/41501

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 101

Note：
The encryption process is to convert the raw payload in JSON format into a string, perform AES encryption on
it, and then perform Base64 encryption on it. The AES encryption algorithm is CBC mode, where the key length

is 128 bits, the first 16 bits of productSecret are taken, and the offset is the character "0" with a length of

16 bits.

Raw payload content description:

Key Value Description

encryptionType 1
Encryption type.

1: certificate authentication
2: key authentication

psk 1239466501 Device key. This parameter is available when the product authentication
type is key authentication.

clientCert - String format of device certificate file. This parameter is available when the
product authentication type is certificate authentication.

clientKey - String format of device private key file. This parameter is available when the
product authentication type is certificate authentication.

Sample Code

Request packet

POST https://ap-guangzhou.gateway.tencentdevices.com/device/register

Content-Type: application/json

Host: ap-guangzhou.gateway.tencentdevices.com

X-TC-Algorithm: HmacSha256

X-TC-Timestamp: 1551****65

X-TC-Nonce: 5456

X-TC-Signature: 2230eefd229f582d8b1b891af7107b91597****07d778ab3738f756258d7652c

{"ProductId":"ASJ****GX","DeviceName":"xyz"}

Response packet

{

"Response": {

"Len": 53,

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 101

Payload data parsing sample

Note：

The following data is for test only. When you use it formally, please ensure that your information is not leaked.

1. The raw payload content is:

s6FB3a1BA/YYbcmSE12XpeDVmQNDcf1QgVD141RRbmmAnFwQfp1ECAu5O016mCOvYlJJ6V59yM4OqQS

iWphfTg==

2. After Base64-decoding:

b3a141ddad4103f6186dc992135d97a5e0d599034371fd508150f5e354516e69809c5c107e9d440

80bb93b4d7a9823af625249e95e7dc8ce0ea904a25a985f4e

3. AES decryption:

Product key: hzvf5LF9S0isvBhDSauWMaIk

Data after decryption: {"encryptionType":2,"psk":"lDZ6Uqt+I9E0wW7rvDUs7Q=="}

"Payload": "031T01DWAoqFePDt71VuZXuLzkUzbIhGOnvMzpAFtNgOjagyFNHVSostNl9ztvhOuRx0

dMM/DMoWAXQCfL7jyA==",

"RequestId": "f4da4f1f-d72e-40f1-****-349fc0072ba0"

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 101

MQTT Protocol Description

Currently, IoT Hub supports MQTT standard protocol access (compatible with v3.1.1). For more information, please
see MQTT Version 3.1.1.

Differences from standard MQTT

1. PUB, SUB, PING, PONG, CONNECT, DISCONNECT, and UNSUB messages of MQTT are supported.

2. cleanSession is supported.

3. will and retain msg are not supported.

4. QoS 2 is not supported.

Security level of MQTT channel

TLSv1, TLSv1.1, and TLSv1.2 protocols are supported to establish secure connections, delivering a high security
level.

Topic specification

By default, after a product is created, all devices under it will have the permissions of the following topic classes:

1. ${productId}/${deviceName}/control for subscribing

2. ${productId}/${deviceName}/event for publishing

3. ${productId}/${deviceName}/data for subscribing and publishing

4. $shadow/operation/${productId}/${deviceName} for publishing. It is distinguished by the internal

type of the packet (update or get , corresponding to updating or pulling the device shadow document).

5. $shadow/operation/result/${productId}/${deviceName} for subscribing. It is distinguished by the

internal type of the packet (update , get , or delta). update and get correspond to updating and

pulling the device shadow document respectively. After you modify the device shadow document through the
RESTful API, the server will publish messages through this topic, whose type will be delta at this time.

6. $ota/report/${productID}/${deviceName} for publishing, through which the device reports the

version number and the download/upgrade progress to the cloud.

Device Connection Protocol
MQTT-Based Device Connection
MQTT-Based Device Connection over TCP
Last updated：2021-08-20 16:34:00

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 101

7. $ota/update/${productID}/${deviceName} for subscribing, through which the device receives the

upgrade message from the cloud.

MQTT Connection

The MQTT protocol supports connection to the IoT Hub platform through two methods: device certificate and key

signature. You can choose a method according to your own business scenario. The connection parameters are as
follows:

Connection
Authentication
Method

Connection Domain Name and Port Connect Message Parameter

Certificate

MQTT server connection address. For devices in the
Guangzhou region, enter
 ${productId}.iotcloud.tencentdevices.com ,
where ${productId} is a variable parameter, and you
need to enter the product ID automatically generated when
you create the product, such as
 1A17RZR3XX.iotcloud.tencentdevices.com .
Port: 8883

KeepAlive: the time to keep the
If IoT Hub does not receive the cl
 KeepAlive value, it will disco

ClientId: ${productId}${d
the product ID and device name.

UserName:
 ${productId}${deviceNam

For more information, please see
connecting key-authenticated dev

PassWord: password, which c

Key The MQTT server connection address is the same as that
for certificate authentication. Port: 1883

KeepAlive: the time to keep the
ClientId: ${productId}${d
UserName:

 ${productId}${deviceNam

For more information, please see
connecting key-authenticated dev

PassWord: password. For mor
in the "Guide to connecting key-a

Note：
The PassWord field will not be verified when a certificate-authenticated device is connected, so you can

enter any value for it during certificate authentication.

Guide to connecting certificate-authenticated device

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 101

IoT Hub uses TLS encryption to ensure the security of devices when transferring data. When a certificate-
authenticated device is connected, after getting the certificate, key, and CA certificate files of the device, set the
values of KeepAlive , ClientId , UserName , PassWord , etc. (this step is not required for devices

connected through the Tencent Cloud device SDK, as the SDK can automatically generate the parameters based on
the device information). Then, the device uploads the authentication files to the URL (connection domain name and
port) corresponding to certificate authentication, and sends an MqttConnect message after successful

authentication to complete the TCP-based MQTT connection.

Guide to connecting key-authenticated device

IoT Hub supports HMACSHA256 and HMACSHA1 algorithms to generate digest signatures based on device keys.

The process of connecting to IoT Hub through signature is as follows:

1. Log in to the IoT Hub console. You can create products, add devices, and get device keys in the console.
2. Generate the username field according to the requirements of IoT Hub in the following format:

The format of the `username` field is as follows:

${productId}${deviceName};${sdkappid};${connid};${expiry}

Note: `${}` indicates a variable and is not a concatenating symbol.

The descriptions of each field are as follows:
productId: product ID
deviceName: device name

sdkappid: fixed at 12010126

connid: a random string
expiry: signature validity period, which is a UTF-8 string of the number of seconds since 00:00:00 UTC on
January 1, 1970.

3. Base64-decode the device key to get the raw key raw_key .

4. Use the raw_key generated in step 3 to generate a digest string for the username with the HMACSHA1 or

HMACSHA256 algorithm, which is referred to as a token.
5. Generate the password field according to the requirements of IoT Hub in the following format:

The format of the `password` field is as follows:

${token};hmac signature algorithm

Enter the digest algorithm used in step 3 in the `hmac signature algorithm` fie

ld. Valid values include `hmacsha256` and `hmacsha1`.

As a comparison, the code samples for generating signatures in Python, Java, Node.js, JavaScript, and C are as
follows:

The code in Python is as follows:

https://console.tencentcloud.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 101

Save the above code in `IotHmac.py` and run the following command. Here, replace `YOUR_PRODUCTID`,
`YOUR_DEVICENAME`, and `YOUR_PSK` with the product ID, device name, and device key of the device you

actually created.

#!/usr/bin/python

-*- coding: UTF-8 -*-

import base64

import hashlib

import hmac

import random

import string

import time

import sys

Generate a random string of the specified length

def RandomConnid(length):

return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in ra

nge(length))

Generate the parameters required for connection to IoT Hub

def IotHmac(productID, devicename, devicePsk):

1. Generate `connid` as a random string to facilitate troubleshooting on the b

ackend

connid = RandomConnid(5)

2. Generate the expiration time of the signature, which is a UTF-8 string of t

he number of seconds since 00:00:00 UTC on January 1, 1970

expiry = int(time.time()) + 60 * 60

3. Generate the `clientid` part of MQTT in the format of `${productid}${device

name}`

clientid = "{}{}".format(productID, devicename)

4. Generate the `username` part of MQTT in the format of `${clientid};${sdkapp

id};${connid};${expiry}`

username = "{};12010126;{};{}".format(clientid, connid, expiry)

5. Sign the `username` to generate a token

secret_key = devicePsk.encode('utf-8') # convert to bytes

data_to_sign = username.encode('utf-8') # convert to bytes

secret_key = base64.b64decode(secret_key) # this is still bytes

token = hmac.new(secret_key, data_to_sign, digestmod=hashlib.sha256).hexdigest()

6. Generate the `password` field according to the rules of IoT Hub platform

password = "{};{}".format(token, "hmacsha256")

return {

"clientid" : clientid,

"username" : username,

"password" : password

}

if __name__ == '__main__':

print(IotHmac(sys.argv[1], sys.argv[2], sys.argv[3]))

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 101

python3 IotHmac.py "YOUR_PRODUCTID" "YOUR_DEVICENAME" "YOUR_PSK"

The code in Java is as follows:

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.*;

public class IotHmac {

public static void main(String[] args) throws Exception {

System.out.println(IotHmac("YOUR_PRODUCTID","YOUR_DEVICENAME","YOUR_PSK"));

}

public static Map<string, string=""> IotHmac(String productID, String devicenam

e, String

devicePsk) throws Exception {

final Base64.Decoder decoder = Base64.getDecoder();

//1. Generate `connid` as a random string to facilitate troubleshooting on the b

ackend

String connid = HMACSHA256.getRandomString2(5);

//2. Generate the expiration time of the signature, which is a UTF-8 string of t

he number of seconds since 00:00:00 UTC on January 1, 1970

Long expiry = Calendar.getInstance().getTimeInMillis()/1000 +600;

//3. Generate the `clientid` part of MQTT in the format of `${productid}${device

name}`

String clientid = productID+devicename;

//4. Generate the `username` part of MQTT in the format of `${clientid};${sdkapp

id};${connid};${expiry}`

String username = clientid+";"+"12010126;"+connid+";"+expiry;

//5. Sign the `username` to generate a token. Then, generate the `password` fiel

d according to the rules of IoT Hub platform

String password = HMACSHA256.getSignature(username.getBytes(), decoder.decode(de

vicePsk)) + ";hmacsha256";

Map<string,string> map = new HashMap<>();

map.put("clientid",clientid);

map.put("username",username);

map.put("password",password);

return map;

}

public static class HMACSHA256 {

private static final String HMAC_SHA256 = "HmacSHA256";

/**

* Generate the signature data

*

* @param data The data to be encrypted

* @param key The key used for encryption

* @return The generated hexadecimal string

*/

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 101

public static String getSignature(byte[] data, byte[] key) {

try {

SecretKeySpec signingKey = new SecretKeySpec(key, HMAC_SHA256);

Mac mac = Mac.getInstance(HMAC_SHA256);

mac.init(signingKey);

byte[] rawHmac = mac.doFinal(data);

return bytesToHexString(rawHmac);

}catch (Exception e) {

e.printStackTrace();

}

return null;

}

/**

* Convert the `byte[]` array into a hexadecimal string

*

* @param bytes The byte array to be converted

* @return Converted result

*/

private static String bytesToHexString(byte[] bytes) {

StringBuilder sb = new StringBuilder();

for (int i = 0; i < bytes.length; i++) {

String hex = Integer.toHexString(0xFF & bytes[i]);

if (hex.length() == 1) {

sb.append('0');

}

sb.append(hex);

}

return sb.toString();

}

public static String getRandomString2(int length) {

Random random = new Random();

StringBuffer sb = new StringBuffer();

for (int i = 0; i < length; i++) {

int number = random.nextInt(3);

long result = 0;

switch (number) {

case 0:

result = Math.round(Math.random() * 25 + 65);

sb.append(String.valueOf((char) result));

break;

case 1:

result = Math.round(Math.random() * 25 + 97);

sb.append(String.valueOf((char) result));

break;

case 2:

sb.append(String.valueOf(new Random().nextInt(10)));

break;

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 101

The code in Node.js and JavaScript is as follows:

}

}

return sb.toString();

}

}

}

// The following is the way to import the node. If a browser is used, use the co

rresponding way to import the `crypto-js` library

const crypto = require('crypto-js')

// Function for generating random numbers

const randomString = (len) => {

　　len = len || 32;

　　var chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';

　　var maxPos = chars.length;

　　var pwd = '';

　　for (let i = 0; i < len; i++) {

　　　　pwd += chars.charAt(Math.floor(Math.random() * maxPos));

　　}

　　return pwd;

}

// The product ID, device name, and device key are required

const productId = 'YOUR_PRODUCTID';

const deviceName = 'YOUR_DEVICENAME';

const devicePsk = 'YOUR_PSK';

// 1. Generate `connid` as a random string to facilitate troubleshooting on the

backend

const connid = randomString(5);

// 2. Generate the expiration time of the signature, which is a UTF-8 string of

the number of seconds since 00:00:00 UTC on January 1, 1970

const expiry = Math.round(new Date().getTime() / 1000) + 3600 * 24;

// 3. Generate the `clientid` part of MQTT in the format of `${productid}${devic

ename}`

const clientId = productId + deviceName;

// 4. Generate the `username` part of MQTT in the format of `${clientid};${sdkap

pid};${connid};${expiry}`

const userName = `${clientId};12010126;${connid};${expiry}`;

//5. Sign the `username` to generate a token. Then, generate the `password` fiel

d according to the rules of IoT Hub platform

const rawKey = crypto.enc.Base64.parse(devicePsk); // Base64-decode the device k

ey

const token = crypto.HmacSHA256(userName, rawKey);

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 101

The code in C is as follows:

Note：
For more information on the code in C, please see here.

const password = token.toString(crypto.enc.Hex) + ";hmacsha256";

console.log(`userName:${userName}\npassword:${password}`);

#include "limits.h"

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include "HAL_Platform.h"

#include "utils_base64.h"

#include "utils_hmac.h"

/* Max size of base64 encoded PSK = 64, after decode: 64/4*3 = 48*/

#define DECODE_PSK_LENGTH 48

/* MAX valid time when connect to MQTT server. 0: always valid */

/* Use this only if the device has accurate UTC time. Otherwise, set to 0 */

#define MAX_ACCESS_EXPIRE_TIMEOUT (0)

/* Max size of conn Id */

#define MAX_CONN_ID_LEN (6)

/* IoT C-SDK APPID */

#define QCLOUD_IOT_DEVICE_SDK_APPID "21****06"

#define QCLOUD_IOT_DEVICE_SDK_APPID_LEN (sizeof(QCLOUD_IOT_DEVICE_SDK_APPID) -

1)

static void HexDump(char *pData, uint16_t len)

{

int i;

for (i = 0; i < len; i++) {

HAL_Printf("0x%02.2x ", (unsigned char)pData[i]);

}

HAL_Printf("\n");

}

static void get_next_conn_id(char *conn_id)

https://github.com/tencentyun/qcloud_iot_mqtt_sign

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 101

{

int i;

srand((unsigned)HAL_GetTimeMs());

for (i = 0; i < MAX_CONN_ID_LEN - 1; i++) {

int flag = rand() % 3;

switch (flag) {

case 0:

conn_id[i] = (rand() % 26) + 'a';

break;

case 1:

conn_id[i] = (rand() % 26) + 'A';

break;

case 2:

conn_id[i] = (rand() % 10) + '0';

break;

}

}

conn_id[MAX_CONN_ID_LEN - 1] = '\0';

}

int main(int argc, char **argv)

{

char *product_id = NULL;

char *device_name = NULL;

char *device_secret = NULL;

char *username = NULL;

int username_len = 0;

char conn_id[MAX_CONN_ID_LEN];

char password[51] = {0};

char username_sign[41] = {0};

char psk_base64decode[DECODE_PSK_LENGTH];

size_t psk_base64decode_len = 0;

long cur_timestamp = 0;

if (argc != 4) {

HAL_Printf("please ./qcloud-mqtt-sign product_id device_name device_secret\r\n")

;

return -1;

}

product_id = argv[1];

device_name = argv[2];

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 101

6. Finally, enter the parameters generated above in the corresponding MQTT connect message.

device_secret = argv[3];

/* first device_secret base64 decode */

qcloud_iot_utils_base64decode((unsigned char *)psk_base64decode, DECODE_PSK_LENG

TH, &psk_base64decode_len,

(unsigned char *)device_secret, strlen(device_secret));

HAL_Printf("device_secret base64 decode:");

HexDump(psk_base64decode, psk_base64decode_len);

/* second create mqtt username

* [productdevicename;appid;randomconnid;timestamp] */

cur_timestamp = HAL_Timer_current_sec() + MAX_ACCESS_EXPIRE_TIMEOUT / 1000;

if (cur_timestamp <= 0 || MAX_ACCESS_EXPIRE_TIMEOUT <= 0) {

cur_timestamp = LONG_MAX;

}

// 20 for timestampe length & delimiter

username_len = strlen(product_id) + strlen(device_name) + QCLOUD_IOT_DEVICE_SDK_

APPID_LEN + MAX_CONN_ID_LEN + 20;

username = (char *)HAL_Malloc(username_len);

if (username == NULL) {

HAL_Printf("malloc username failed!\r\n");

return -1;

}

get_next_conn_id(conn_id);

HAL_Snprintf(username, username_len, "%s%s;%s;%s;%ld", product_id, device_name,

QCLOUD_IOT_DEVICE_SDK_APPID,

conn_id, cur_timestamp);

/* third use psk_base64decode hamc_sha1 calc mqtt username sign crate mqtt

* password */

utils_hmac_sha1(username, strlen(username), username_sign, psk_base64decode, psk

_base64decode_len);

HAL_Printf("username sign: %s\r\n", username_sign);

HAL_Snprintf(password, 51, "%s;hmacsha1", username_sign);

HAL_Printf("Client ID: %s%s\r\n", product_id, device_name);

HAL_Printf("username : %s\r\n", username);

HAL_Printf("password : %s\r\n", password);

HAL_Free(username);

return 0;

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 101

7. Enter the clientid value in the clientid field of the MQTT protocol.

8. Enter the username value in the username field of the MQTT protocol.

9. Enter the password value in the password field of the MQTT protocol and send a MqttConnect

message to the domain name and port of key authentication to connect to IoT Hub.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 101

MQTT-WebSocket Overview

The IoT Hub platform supports MQTT communication based on WebSocket, so that devices can use the MQTT
protocol for message transfer on the basis of the WebSocket protocol. In this way, browser-based applications can
implement data communication with the platform and devices connected to the platform. In addition, WebSocket uses

ports 443/80, which means that messages can pass through most firewalls during transfer.

MQTT-WebSocket Connection

As both the MQTT-WebSocket and MQTT-TCP protocols ultimately transfer messages based on MQTT, they have
the same parameters for MQTT connection. The main difference lies in the protocol and port of the MQTT connection
to the platform. Key-authenticated devices use WS for connection, while certificate-authenticated devices use WSS,
i.e., WS+TLS.

Guide to connecting certificate-authenticated device

1. Download files such as the certificate and device private key.
2. Connect to the domain name. For devices in the Guangzhou region, connect to ${ProductId}.ap-

guangzhou.iothub.tencentdevices.com:443 , where ${ProductId} is the product ID.

3. Set the MQTT connection parameters:

The connection parameter settings are the same as those for MQTT-TCP connection. For more information, please
see the MQTT connection section in MQTT-Based Device Connection over TCP.

UserName:${productid}${devicename};${sdkappid};${connid};${expiry}

PassWord: password (you can set any value)

ClientId:${ProductId}${DeviceName}

KeepAlive: time to keep the connection alive. Value range: 0–900s

Guide to connecting key-authenticated device

1. Get the device key.
2. Connect to the domain name. For devices in the Guangzhou region, connect to ${ProductId}.ap-

guangzhou.iothub.tencentdevices.com:80 , where ${ProductId} is the product ID.

MQTT-Based Device Connection over
WebSocket
Last updated：2021-08-20 16:35:35

https://www.tencentcloud.com/document/product/1105/41824

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 101

3. Set the MQTT connection parameters:

The connection parameter settings are the same as those for MQTT-TCP connection. For more information, please
see the "Guide to connecting key-authenticated device" section in MQTT-Based Device Connection over TCP.

UserName:${productid}${devicename};${sdkappid};${connid};${expiry}

PassWord:${token};hmac signature algorithm

ClientId:${ProductId}${DeviceName}

KeepAlive: time to keep the connection alive. Value range: 0–900s

https://www.tencentcloud.com/document/product/1105/41824

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 101

IoT Hub supports the MQTT v3.1.1 protocol and supports the quality of service levels of QoS 0 and QoS 1 (but not
QoS 2). Using an MQTT persistent session can save the subscription status of devices and subscribed messages
that devices have not received. When a device goes offline and goes online again, it can restore the previous session

to receive subscribed messages sent when it was offline.

Creating MQTT Persistent Session on Device

When a device is connected to IoT Hub, the CleanSession flag in the variable header part of the Connect

message can be set to 0. IoT Hub will determine the session status of the device according to the ClientId when

the device is connected. If there is no session currently, it will create a persistent session. If there is an existing
session, it will communicate with the device based on the session process.

IoT Hub Response Description

After the device sends a Connect message, IoT Hub will return a Connack message, in which the connection

confirmation flag SessionPresent indicates whether IoT Hub includes the session status corresponding to the

 ClientId when the device is connected. If SessionPresent is 0, no persistent session is created, and the

device needs to establish the session status again. If SessionPresent is 1, a persistent session has been

created.

After the device is successfully connected, if it enters an existing persistent session, IoT Hub will send the stored

QoS 1 messages and unacknowledged QoS 1 messages to the device.
After the device is successfully connected, if a new persistent session is created, IoT Hub will save the subscription
status of the device and store the QoS 1 (excluding QoS 0) messages that the device has subscribed to when it is
offline. When it goes online again, IoT Hub will send the stored QoS 1 messages and unacknowledged QoS 1
messages to it.

Note：

IoT Hub sends the stored QoS 1 messages sequentially at 500 ms intervals.
Only QoS 1 messages can be stored in a persistent session. Up to 150 messages can be stored for a
maximum of 24 hours for each device.

MQTT Persistent Session
Last updated：2021-08-20 16:37:46

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 101

Closing MQTT Persistent Session

The MQTT persistent session can be closed in the following two ways:

When connecting the device to IoT Hub, set the CleanSession flag in the variable header part of the

 Connect message to 1.

When the device is disconnected for more than 24 hours, the persistent session will be closed automatically.

Note：
Device disconnections include disconnection caused by the device sending the disconnect message and

disconnection caused by the device communication timeout.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 101

Currently, IoT Hub supports connection over the standard CoAP protocol. For more information, please see RFC
7252.

Differences from Standard CoAP

1. Currently, only message reporting is supported, i.e., reporting SDK messages to IoT Hub.

2. The POST method is supported, while GET/PUT/DELETE methods are not.

Security Level of CoAP Channel

1. DTLS protocol is supported to establish a secure connection.
2. Asymmetric encryption is supported.

Connection Parameters

1. Server address. For devices in the Guangzhou region, enter
 ${ProductId}.iotcloud.tencentdevices.com . Here, ${ProductId} is a variable parameter, and

you should replace it with the product ID automatically generated when you create the product.
2. The connection port is 5684.

URI Specification

The CoAP message is sent to the URI in the format of /${productId}/${deviceName}/xxx , where

 productId is the product ID registered in the console, and deviceName is the name of the device under the

 productId .

By default, after a product is created, all devices under it will have the permissions of the following topic classes:

1. ${productId}/${deviceName}/event for publishing

2. ${productId}/${deviceName}/control for subscribing

3. ${productId}/${deviceName}/data for publishing and subscribing

CoAP-Based Device Connection
Last updated：2021-08-20 16:39:09

https://tools.ietf.org/html/rfc7252

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 101

In other words, the URI corresponds to the MQTT topic.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 101

Parameter Description

When a device reports a message, it needs to carry ProductId , DeviceName , and TopicName to initiate

an http/https request to the platform. The request API and parameters are as detailed below:

Requested URL:

 https://ap-guangzhou.gateway.tencentdevices.com/device/publish

 http://ap-guangzhou.gateway.tencentdevices.com/device/publish

Request method: POST

Request parameters

Parameter Required Type Description

ProductId Yes String Product ID

DeviceName Yes String Device name

TopicName Yes String Name of the topic for publishing the message

Payload Yes String Content of the published message

PayloadEncoding No String
Encoding for the published message. Currently, only Base64-
encoding is supported. If this parameter is left empty, the original
message content will be sent.

Qos Yes Integer Message QoS level

Note：
The API only supports the application/json format.

Signature generation

There are two types of signatures for request messages. Key authentication uses the HMACSHA256 algorithm, and
certificate authentication uses the RSA_SHA256 algorithm. For more information, please see Signature Algorithm.

HTTP-Based Device Connection
Last updated：2021-08-20 16:40:25

https://www.tencentcloud.com/document/product/1105/41501

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 101

Platform response parameters

Parameter Type Description

RequestId String Request ID

Sample Code

Request packet

POST https://ap-guangzhou.gateway.tencentdevices.com/device/publish

Content-Type: application/json

Host: ap-guangzhou.gateway.tencentdevices.com

X-TC-Algorithm: HmacSha256

X-TC-Timestamp: 155****065

X-TC-Nonce: 5456

X-TC-Signature: 2230eefd229f582d8b1b891af7107b915972407****78ab3738f756258d7652c

{"DeviceName":"AAAAAA","Payload":"123","ProductId":"G8N****AHB","Qos":1,"TopicNam

e":"G8N****AHB/AAAAAA/data"}

Response packet

{

"Response": {

"RequestId": "f4da4f1f-d72e-40f1-****-349fc0072ba0"

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 101

Currently, IoT Hub can be connected from the following regions:

Chinese Site International Site

Chinese mainland Chinese mainland

East US (Virginia) East US (Virginia)

Central Europe (Frankfurt) Central Europe (Frankfurt)

Southeast Asia (Bangkok) Southeast Asia (Bangkok)

Domains for MQTT Connection

When connecting a device, you can use one of the following server domains based on your needs:

Region Domain

Chinese mainland ${productid}.iotcloud.tencentdevices.com

East US (Virginia) ${productid}.us-east.iotcloud.tencentdevices.com

Central Europe (Frankfurt) ${productid}.europe.iothub.tencentdevices.com

Southeast Asia (Bangkok) ${productid}.ap-bangkok.iothub.tencentdevices.com

Domains for CoAP Connection

When connecting a device, you can use one of the following server domains based on your needs:

Region Domain

Chinese mainland ${productid}.iotcloud.tencentdevices.com

East US (Virginia) ${productid}.us-east.iotcloud.tencentdevices.com

Central Europe (Frankfurt) ${productid}.europe.iothub.tencentdevices.com

Device Connection Regions
Last updated：2022-02-22 11:37:44

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 101

Region Domain

Southeast Asia (Bangkok) ${productid}.ap-bangkok.iothub.tencentdevices.com

Domains for HTTP Connection

When connecting a device, you can use one of the following server domains based on your needs:

Region Domain

Chinese mainland ap-guangzhou.gateway.tencentdevices.com

East US (Virginia)） us-east.gateway.tencentdevices.com

Central Europe (Frankfurt) europe.gateway.tencentdevices.com

Southeast Asia (Bangkok) ap-bangkok.gateway.tencentdevices.com

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 101

Device Classification

The IoT Hub platform divides devices into the following two categories (i.e., node categories) according to their
functionality:

General device: this device category is further divided into two types: devices that have the ability to connect to

the platform, and devices that can connect to the platform through gateway devices.
Gateway device: this category of device can directly connect to the platform and can accept subdevices for them
to join the LAN.

Overview

Devices that don't have direct access to the Ethernet can be connected to the network of the local gateway device first
and then connected to the IoT Hub platform through the communication feature of the gateway device. For the

subdevices that join or leave the LAN, the gateway device can bind or unbind them on the platform and report the
topological relationships with them, so as to implement the real-time monitoring of all devices in the LAN by the
platform.

Connection Method

Gateway devices can be connected to the IoT Hub platform in the same way as general devices. For more
information, please see Device Connection. After a gateway device is connected, it can connect/disconnect
subdevices in the same LAN to/from the platform and manage the topological relationships between them.

Subdevices can be connected to the platform through a gateway device after successful authentication in the
following two ways:

Device-level key authentication

The gateway device gets the device certificate or key of the subdevice, generates the subdevice binding signature
string, reports it to the platform, and completes the identity verification on behalf of the subdevice.

Product-level key authentication

The gateway device gets the ProductKey (product key) of the subdevice, generates a signature, and sends a

Gateway Subdevice
Feature Overview
Last updated：2021-09-08 14:41:50

https://www.tencentcloud.com/document/product/1105/41842

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 101

dynamic registration request to the platform. After successful authentication, the platform will return the
 DeviceCert or DeviceSecret of the subdevice, based on which the gateway will generate the subdevice

binding signature string and report it to the platform. Then, after successful verification, the subdevice can be

connected.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 101

Feature overview

A gateway device can bind and unbind subdevices under it through data communication with the cloud. To implement
this feature, the following two topics will be used:

Data upstream topic (for publishing): $gateway/operation/${productid}/${devicename}

Data downstream topic (for subscribing):
 $gateway/operation/result/${productid}/${devicename}

Binding device

The gateway device can request to add its topological relationship with the subdevice through the data upstream topic
so as to bind the subdevice. After the request succeeds, the platform will return the binding information of the
subdevice through the data downstream topic.

Data format of the subdevice binding request:

Request parameter description:

Parameter Type Description

type String Gateway message type. For subdevice binding, the value is bind

payload.devices Array List of subdevices to be bound

Topological Relationship Management
Last updated：2021-08-31 11:08:57

{

"type": "bind",

"payload": {

"devices": [

{

"product_id": "CFCS****G7",

"device_name": "****ev",

"signature": "signature",

"random": 121213,

"timestamp": 1589786839,

"signmethod": "hmacsha256",

"authtype": "psk"

}

]

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 101

Parameter Type Description

product_id String Subdevice product ID

device_name String Subdevice name

signature String

Signature string for subdevice binding. Signature algorithm:

1. Concatenate the product ID, device name, random number, and timestamp into the
string to sign:
 text=${product_id}${device_name};${random};${expiration_time

2. Use the PSK of the device or the SHA1 digest of the certificate to sign: sign =
hmac_sha1(device_secret, text)

random Int Random number

timestamp Int Timestamp in seconds

signmethod String Signature algorithm. hmacsha1 and hmacsha256 are supported

authtype String
Signature type.

psk: uses device PSK to sign
certificate: uses device public key certificate to sign

Data format of the subdevice binding response:

Response parameter description:

Parameter Type Description

type String Gateway message type. For subdevice binding, the value is bind

payload.devices Array List of subdevices to be bound

{

"type": "bind",

"payload": {

"devices": [

{

"product_id": "CFCS****G7",

"device_name": "****ev",

"result": -1

}

]

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 101

Parameter Type Description

product_id String Subdevice product ID

device_name String Subdevice name

result Int Subdevice binding result. For specific error codes, please see the table below

Unbinding device

The gateway device can request to unbind its topological relationship with the subdevice through the data upstream
topic. After the request succeeds, the platform will return the unbinding information of the subdevice through the data
downstream topic.

Data format of the subdevice unbinding request:

Request parameter description:

Parameter Type Description

type String Gateway message type. For subdevice unbinding, the value is unbind

payload.devices Array List of subdevices to be unbound

product_id String Subdevice product ID

device_name String Subdevice name

Data format of the subdevice unbinding response:

{

"type": "unbind",

"payload": {

"devices": [

{

"product_id": "CFCS****G7",

"device_name": "****ev"

}

]

}

}

{

"type": "bind",

"payload": {

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 101

Response parameter description:

Parameter Type Description

type String Gateway message type. For subdevice unbinding, the value is unbind

payload.devices Array List of subdevices to be unbound

product_id String Subdevice product ID

device_name String Subdevice name

result Int Subdevice binding result. For more information, please see Error codes

Querying topological relationship

The gateway device can upstream a request to query the topological relationship of the subdevice through this topic.

Data upstream topic: $gateway/operation/${productid}/${devicename}

Data downstream topic: $gateway/operation/result/${productid}/${devicename}

Data format of the subdevice topological relationship query request:

Request parameter description:

Parameter Type Description

type String
Gateway message type. For subdevice query, the value is
 describe_sub_devices

Data format of the subdevice topological relationship query response:

"devices": [

{

"product_id": "CFCS****G7",

"device_name": "****ev",

"result": -1

}

]

}

}

{

"type": "describe_sub_devices"

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 101

Response parameter description:

Parameter Type Description

type String
Gateway message type. For subdevice query, the value is
 describe_sub_devices

payload.devices Array List of subdevices bound to the gateway

product_id String Subdevice product ID

device_name String Subdevice name

Changing topological relationship

The gateway device can subscribe to the topological relationship changes of the subdevice on the platform through
this topic.

Data downstream topic: $gateway/operation/result/${productid}/${devicename}

{

"type": "describe_sub_devices",

"payload": {

"devices": [

{

"product_id": "XKFA****LX",

"device_name": "2OGDy7Ws8mG****YUe"

},

{

"product_id": "XKFA****LX",

"device_name": "5gcEHg3Yuvm****2p8"

},

{

"product_id": "XKFA****LX",

"device_name": "hmIjq0gEFcf****F5X"

},

{

"product_id": "XKFA****LX",

"device_name": "x9pVpmdRmET****mkM"

},

{

"product_id": "XKFA****LX",

"device_name": "zmHv6o6n4G3****Bgh"

}

]

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 101

When the subdevice is bound or unbound, the gateway will receive the change in the topological relationship of the
subdevice. The data format is as follows:

Request parameter description:

Parameter Type Description

type String
Gateway message type. For topological relationship change, the value is
 change

status Int
Topological relationship change status.

0: unbound
1: bound

payload.devices Array List of subdevices bound to the gateway

product_id String Subdevice product ID

device_name String Subdevice name

Data format of the gateway response:

Response parameter description:

Parameter Type Description

type String Gateway message type. For topological relationship change, the value is change

{

"type": "change",

"payload": {

"status": 0, // 0: unbound, 1: bound

"devices": [

{

"product_id": "CFCS****G7",

"device_name": "****ev",

}

]

}

}

{

"type": "change",

"result": 0

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 101

Parameter Type Description

result Int Gateway response processing result

Error codes

Error Code Description

0 Success

-1 The gateway device is not bound to the subdevice

-2 System error. Subdevice connection or disconnection failed

801 Request parameter error

802 The device name is invalid, or the device does not exist

803 Signature verification failed

804 The signature algorithm is not supported

805 The signature request has expired

806 This device has already been bound

807 Non-general devices cannot be bound

808 Forbidden operation

809 Duplicate binding

810 Unsupported subdevice

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 101

Feature Overview

A gateway device can connect and disconnect subdevices under it through the data communication with the cloud.
This feature uses the same topics as those used in gateway subdevice topology management:

Data upstream topic (for publishing): $gateway/operation/${productid}/${devicename}

Data downstream topic (for subscribing):
 $gateway/operation/result/${productid}/${devicename}

Proxied subdevice connection

The gateway device can connect the subdevice to the platform through the data upstream topic. After the request
succeeds, the platform will return the connection information of the subdevice through the data downstream topic.

Data format of the proxied subdevice connection request:

{

"type": "online",

"payload": {

"devices": [

{

"product_id": "CFCSQ5EAG7",

"device_name": "onlinedev00"

}

]

}

}

Data format of the proxied subdevice connection response:

{

"type": "online",

"payload": {

"devices": [

{

"product_id": "CFCSQ5EAG7",

"device_name": "onlinedev00",

"result":0

}

Proxied Subdevice Connection and
Disconnection
Last updated：2021-09-18 17:05:23

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 101

]

}

}

Request parameter description:

Parameter Type Description

type String
Gateway message type. For proxied subdevice connection, the value is
 online

payload.devices Array List of subdevices to be connected

product_id String Subdevice product ID

device_name String Subdevice name

Response parameter description:

Parameter Type Description

type String
Gateway message type. For proxied subdevice connection, the value is
 online

payload.devices Array List of subdevices to be connected

product_id String Subdevice product ID

device_name String Subdevice name

result Int Subdevice connection result. For specific error codes, please see the table below

Proxied subdevice disconnection

The gateway device can disconnect the subdevice from the platform through the data upstream topic. After the
request succeeds, the platform will return the disconnection success information of the subdevice through the data

downstream topic.

Data format of the proxied subdevice disconnection request:

{

"type": "offline",

"payload": {

"devices": [

{

"product_id": "CFCSQ5EAG7",

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 101

"device_name": "offlinedev00"

}

]

}

}

Data format of the proxied subdevice disconnection response:

{

"type": "offline",

"payload": {

"devices": [

{

"product_id": "CFCSQ5EAG7",

"device_name": "offlinedev00",

"result":-1

}

]

}

}

Request parameter description:

Parameter Type Description

type String
Gateway message type. For proxied subdevice disconnection, the value is
 offline

payload.devices Array List of proxied subdevices to be disconnected

product_id String Subdevice product ID

device_name String Subdevice name

Response parameter description:

Parameter Type Description

type String
Gateway message type. For proxied subdevice disconnection, the value is
 offline

payload.devices Array List of proxied subdevices to be disconnected

product_id String Subdevice product ID

device_name String Subdevice name

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 101

Parameter Type Description

result Int Subdevice disconnection result. For specific error codes, please see the table
below

Error codes

Error Code Description

0 Success

-1 The gateway device is not bound to the subdevice

-2 System error. Subdevice connection or disconnection failed

801 Request parameter error

802 The device name is invalid, or the device does not exist

810 Unsupported subdevice

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 101

Overview

A gateway device can publish and subscribe to messages on behalf of subdevices under it through data
communication with the cloud.

Prerequisites

Before publishing and subscribing to messages, please connect gateway devices and subdevices as instructed in

Gateway Product Connection and Proxied Subdevice Connection and Disconnection.

Publishing and Subscribing to Messages

Gateway devices can use the topic permissions of subdevices and send/receive messages on behalf of subdevices.

Proxied Subdevice Publishing and
Subscribing
Last updated：2021-10-25 10:43:58

https://www.tencentcloud.com/document/product/1105/41477
https://www.tencentcloud.com/document/product/1105/41829

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 101

Overview

When a subdevice under a gateway has new features available or vulnerabilities that need to be fixed, firmware
update can be quickly performed for it through the device firmware update service.

How It Works

During the firmware update process, the gateway needs to use the following two topics to communicate with the cloud

on behalf of the subdevice:

Below is the sample code:

$ota/report/${productID}/${deviceName}

This topic is used to publish (upstream) messages, through which the device repor

ts the version number and the download/update progress to the cloud.

$ota/update/${productID}/${deviceName}

This topic is used to subscribe to (downstream) messages, through which the devic

e receives the update message from the cloud.

Process

Subdevice Firmware Update
Last updated：2021-09-10 10:41:36

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 101

Taking MQTT as an example, the update process of the subdevice is as follows:

Note：
For the specific directions of firmware update, please see Device Firmware Update.

https://www.tencentcloud.com/document/product/1105/41507

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 101

Feature Overview

The IoT Hub platform provides a broadcast communication topic. The server can publish a broadcast message by
calling the broadcast communication API, which can be received by online devices that have subscribed to the
broadcast topic under the same product.

Broadcast Topic

The broadcast communication topic is $broadcast/rxd/${ProductId}/${DeviceName} , where

 ${ProductId} and ${DeviceName}` represent the specific product ID and device name.

Broadcast Communication Sample

The sample completes device connection through the device-side C-SDK on Linux and calls APIs together with
Tencent Cloud API Explorer. The specific steps are as follows:

Creating device in console

Scenario description

Message Communication
Broadcast Communication
Last updated：2021-10-26 15:24:20

https://www.tencentcloud.com/document/product/1105/41840
https://console.tencentcloud.com/api/explorer?Product=iotcloud&Version=2018-06-14&Action=PublishBroadcastMessage&SignVersion=

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 101

If you have multiple air conditioner devices connected to the IoT Hub platform, then the server can send the same
instruction to all of them for turning off.
The server calls the PublishBroadcastMessage API and specifies the ProductId and the Payload of the

broadcast message. Then, all online devices that have subscribed to the broadcast topic under the product will
receive the broadcast message with the Payload .

Creating product and device

Create an air conditioner product and airConditioner1 , airConditioner2 , and other devices as

instructed in Device Interconnection.

Compiling and running demo (with key-authenticated device as example)

1. Compile the SDK

Modify CMakeLists.txt to ensure that the following options exist:

set(BUILD_TYPE "release")

set(COMPILE_TOOLS "gcc")

set(PLATFORM "linux")

set(FEATURE_MQTT_COMM_ENABLED ON)

set(FEATURE_BROADCAST_ENABLED ON)

set(FEATURE_AUTH_MODE "KEY")

set(FEATURE_AUTH_WITH_NOTLS OFF)

set(FEATURE_DEBUG_DEV_INFO_USED OFF)

Run the following script for compilation:

./cmake_build.sh

The demo output broadcast_sample is in the output/release/bin folder.

2. Enter the device information

Enter the information of the airConditioner1 device created above in a JSON file

 aircond_device_info1.json :

{

"auth_mode":"KEY",

"productId":"KL4J2****8",

"deviceName":"airConditioner1",

"key_deviceinfo":{

"deviceSecret":"zOZXUaycuwlePt****8dBA=="

}

}

https://www.tencentcloud.com/zh/document/product/1105/42335

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 101

Enter the information of the airConditioner2 device in another JSON file

 aircond_device_info2.json :

{

"auth_mode":"KEY",

"productId":"KL4J2****8",

"deviceName":"airConditioner2",

"key_deviceinfo":{

"deviceSecret":"+IiVNsyKRh0AW****IE07A=="

}

}

Enter the information of other devices in corresponding JSON files in turn.

3. Run the broadcast_sample demo

As this scenario involves multiple demos running simultaneously, you can open multiple terminals to run the
 broadcast_sample demo, and you will see that all the demos subscribe to the

 $broadcast/rxd/${productID}/${deviceName} topic and are in the waiting status.

The output of the airConditioner1 device is as follows:

./broadcast_sample -c ./aircond_device_info1.json -l 100

INF|2020-08-03 22:50:28|qcloud_iot_device.c|iot_device_info_set(50): SDK_Ver: 3.2

.0, Product_ID: KL4J2****8, Device_Name: airConditioner1

DBG|2020-08-03 22:50:28|HAL_TLS_mbedtls.c|HAL_TLS_Connect(200): Setting up the SS

L/TLS structure...

DBG|2020-08-03 22:50:28|HAL_TLS_mbedtls.c|HAL_TLS_Connect(242): Performing the SS

L/TLS handshake...

DBG|2020-08-03 22:50:28|HAL_TLS_mbedtls.c|HAL_TLS_Connect(243): Connecting to /KL

4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 22:50:28|HAL_TLS_mbedtls.c|HAL_TLS_Connect(265): connected with /K

L4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 22:50:28|mqtt_client.c|IOT_MQTT_Construct(113): mqtt connect with

id: 9**** success

INF|2020-08-03 22:50:28|broadcast_sample.c|main(197): Cloud Device Construct Succ

ess

DBG|2020-08-03 22:50:28|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(142): t

opicName=$broadcast/rxd/KL4J2****8/airConditioner1|packet_id=*****

INF|2020-08-03 22:50:28|broadcast_sample.c|_mqtt_event_handler(49): subscribe suc

cess, packet-id=*****

DBG|2020-08-03 22:50:28|broadcast.c|_broadcast_event_callback(37): broadcast topi

c subscribe success

The output of the airConditioner2 device is as follows:

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 101

./broadcast_sample -c ./aircond_device_info2.json -l 100

INF|2020-08-03 22:51:24|qcloud_iot_device.c|iot_device_info_set(50): SDK_Ver: 3.2

.0, Product_ID: KL4J2****8, Device_Name: airConditioner2

DBG|2020-08-03 22:51:24|HAL_TLS_mbedtls.c|HAL_TLS_Connect(200): Setting up the SS

L/TLS structure...

DBG|2020-08-03 22:51:24|HAL_TLS_mbedtls.c|HAL_TLS_Connect(242): Performing the SS

L/TLS handshake...

DBG|2020-08-03 22:51:24|HAL_TLS_mbedtls.c|HAL_TLS_Connect(243): Connecting to /KL

4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 22:51:24|HAL_TLS_mbedtls.c|HAL_TLS_Connect(265): connected with /K

L4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 22:51:25|mqtt_client.c|IOT_MQTT_Construct(113): mqtt connect with

id: f**** success

INF|2020-08-03 22:51:25|broadcast_sample.c|main(197): Cloud Device Construct Succ

ess

DBG|2020-08-03 22:51:25|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(142): t

opicName=$broadcast/rxd/KL4J2****8/airConditioner2|packet_id=*****

INF|2020-08-03 22:51:25|broadcast_sample.c|_mqtt_event_handler(49): subscribe suc

cess, packet-id=******

DBG|2020-08-03 22:51:25|broadcast.c|_broadcast_event_callback(37): broadcast topi

c subscribe success

4. Call TencentCloud API PublishBroadcastMessage to send a broadcast message

Go to API Explorer, enter the personal key and device parameter information, select Online Call, and send the
request.

5. Observe the message reception of the air conditioners

Observe the printout of the airConditioner1 device, and you can see that the message sent by the server has

been received.

DBG|2020-08-03 22:55:32|broadcast.c|_broadcast_message_cb(25): topic=$broadcast/r

xd/KL4J2****8/airConditioner1

INF|2020-08-03 22:55:32|broadcast.c|_broadcast_message_cb(26): len=6, topic_msg=c

losed

INF|2020-08-03 22:55:32|broadcast_sample.c|_broadcast_message_handler(134): broad

cast message=closed

Observe the printout of the airConditioner2 device, and you can see that the message sent by the server has

also been received.

DBG|2020-08-03 22:55:32|broadcast.c|_broadcast_message_cb(25): topic=$broadcast/r

xd/KL4J2****8/airConditioner2

INF|2020-08-03 22:55:32|broadcast.c|_broadcast_message_cb(26): len=6, topic_msg=c

https://console.tencentcloud.com/api/explorer?Product=iotcloud&Version=2018-06-14&Action=PublishBroadcastMessage&SignVersion=

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 101

losed

INF|2020-08-03 22:55:32|broadcast_sample.c|_broadcast_message_handler(134): broad

cast message=closed

6. Turn off air conditioner devices

The devices that have received the instruction will parse the instruction for processing.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 101

Feature Overview

Because of the async communication mode of the MQTT protocol based on the publish/subscribe pattern, after the
server controls a device, it cannot synchronously get the result returned by the device. To solve this problem, IoT Hub
uses the Revert RPC (RRPC) technology to implement a sync communication mechanism.

How Communication Works

Communication topics

The subscription message topic $rrpc/rxd/${productID}/${deviceName}/+ is used to subscribe to

RRPC request messages sent by the cloud (downstream).
The request message topic $rrpc/rxd/${productID}/${deviceName}/${processID} is used for the

cloud to publish (downstream) RRPC request messages.
The response message topic $rrpc/txd/${productID}/${deviceName}/${processID} is used to

publish (upstream) RRPC response messages.

Note：

 ${productID} : product ID

 ${deviceName} : device name

 ${processID} : unique message ID generated by the server to identify different RRPC messages. The

corresponding RRPC request message can be found through the processID carried in the RRPC

response message.

Communication process

1. The device subscribes to the RRPC subscription message topic.
2. The server publishes an RRPC request message by calling the PublishRRPCMessage API.
3. After receiving the message, the device extracts the processID distributed by the cloud in the request

message topic, sets it as the processID of the response message topic, and publishes a return message of the

device to the response message topic.

RRPC Communication
Last updated：2021-10-27 14:56:33

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 101

4. After IoT Hub receives the return message from the device, it matches the message according to the
 processID and sends the return message to the server.

Note：

RRPC requests time out in 4s, that is, if the device doesn't respond within 4s, the request will be considered
to have timed out.

The flowchart is as follows:

RRPC communication sample

The sample completes device connection through the device-side C-SDK on Linux and calls APIs together with
Tencent Cloud API Explorer. The specific steps are as follows:

https://www.tencentcloud.com/document/product/1105/41840

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 101

Creating device in console

Creating product and device

Create an air conditioner product and an airConditioner1 device as instructed in Device Interconnection.

Compiling and running demo (with key-authenticated device as example)

1. Compile the SDK

Modify CMakeLists.txt and make sure that the following options exist:

set(BUILD_TYPE "release")

set(COMPILE_TOOLS "gcc")

set(PLATFORM "linux")

set(FEATURE_MQTT_COMM_ENABLED ON)

set(FEATURE_RRPC_ENABLED ON)

set(FEATURE_AUTH_MODE "KEY")

set(FEATURE_AUTH_WITH_NOTLS OFF)

set(FEATURE_DEBUG_DEV_INFO_USED OFF)

Run the following script for compilation:

./cmake_build.sh

The demo output rrpc_sample is in the output/release/bin folder.

2. Enter the device information

Enter the information of the airConditioner1 device created above in the JSON file

 aircond_device_info1.json .

{

"auth_mode":"KEY",

"productId":"KL4J2****8",

"deviceName":"airConditioner1",

"key_deviceinfo":{

"deviceSecret":"zOZXUaycuwleP****78dBA=="

}

}

3. Run the rrpc_sample demo

You can see that the airConditioner1 device has subscribed to the RRPC message and then entered the

waiting status.

https://www.tencentcloud.com/zh/document/product/1105/42335

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 101

./rrpc_sample -c ./aircond_device_info1.json -l 1000

INF|2020-08-03 23:57:55|qcloud_iot_device.c|iot_device_info_set(50): SDK_Ver: 3.2

.0, Product_ID: KL4J2****8, Device_Name: airConditioner1

DBG|2020-08-03 23:57:55|HAL_TLS_mbedtls.c|HAL_TLS_Connect(200): Setting up the SS

L/TLS structure...

DBG|2020-08-03 23:57:55|HAL_TLS_mbedtls.c|HAL_TLS_Connect(242): Performing the SS

L/TLS handshake...

DBG|2020-08-03 23:57:55|HAL_TLS_mbedtls.c|HAL_TLS_Connect(243): Connecting to /KL

4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 23:57:55|HAL_TLS_mbedtls.c|HAL_TLS_Connect(265): connected with /K

L4J2****8.iotcloud.tencentdevices.com/8883...

INF|2020-08-03 23:57:56|mqtt_client.c|IOT_MQTT_Construct(113): mqtt connect with

id: 2**** success

INF|2020-08-03 23:57:56|rrpc_sample.c|main(206): Cloud Device Construct Success

DBG|2020-08-03 23:57:56|mqtt_client_subscribe.c|qcloud_iot_mqtt_subscribe(142): t

opicName=$rrpc/rxd/KL4J2****8/airConditioner1/+|packet_id=****

INF|2020-08-03 23:57:56|rrpc_sample.c|_mqtt_event_handler(49): subscribe success,

packet-id=*****

DBG|2020-08-03 23:57:56|rrpc_client.c|_rrpc_event_callback(104): rrpc topic subsc

ribe success

4. Call TencentCloud API PublishRRPCMessage to send an RRPC request message

Go to API Explorer, enter the personal key and device parameter information, select Online Call, and send the
request.

5. Observe the RRPC request message

Observe the printout of the airConditioner1 device, and you can see that the RRPC request message has

been received, and the processID is ***.

DBG|2020-08-04 00:07:36|rrpc_client.c|_rrpc_message_cb(85): topic=$rrpc/rxd/KL4J2

****8/airConditioner1/***

INF|2020-08-04 00:07:36|rrpc_client.c|_rrpc_message_cb(86): len=6, topic_msg=clos

ed

INF|2020-08-04 00:07:36|rrpc_client.c|_rrpc_get_process_id(76): len=3, process id

=***

INF|2020-08-04 00:07:36|rrpc_sample.c|_rrpc_message_handler(137): rrpc message=cl

osed

6. Observe the RRPC response message

Observe the printout of the airConditioner1 device, and you can see that the RRPC request message has

been processed, the RRPC response message has been replied, and the processID is ***.

https://console.tencentcloud.com/api/explorer?Product=iotcloud&Version=2018-06-14&Action=PublishRRPCMessage&SignVersion=

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 101

DBG|2020-08-04 00:07:36|mqtt_client_publish.c|qcloud_iot_mqtt_publish(340): publi

sh packetID=0|topicName=$rrpc/txd/KL4J2****8/airConditioner1/***|payload=ok

7. Observe the server response result

Observe the response result of the server, and you can see that the RRPC response message has been received.
 MessageId is ***, and Payload is **** after being Base64-encoded , which is the same as the actual

response message of the client after being Base64-encoded . At this point, it can be confirmed that the response

message has been received.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 101

A device shadow document is a file of status and configuration data cached by the server for a device, which is stored
as JSON text and consists of the following parts:

state

reported

This is the status reported by the device itself. The device can write data to this part of the document to report its new
status, and the application can read this part to get the status of the device.

desired

This is the desired status of the device. The application writes data to this part of the document through the HTTP
RESTful API to update the device status. The device SDK syncs the shadow data to the device by registering relevant
attributes and callback through the device shadow service.

metadata

This is the metadata information of the device shadow, including the last updated time of each attribute in the
 state section.

Device Shadow
Device Shadow Details
Last updated：2021-08-20 16:27:33

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 101

version

This is the version number of the device shadow document, which is increased each time the document is updated.
The version number is maintained by Tencent Cloud on the backend, ensuring that the data of the device is consistent
with that of the device shadow.

timestamp

This is the last updated time of the device shadow document. Below is a sample document:

{

"state": {

"reported": {

"attr_name1": "value1"

},

"desired": {

"attr_name2": "value2"

}

},

"metadata": {

"reported": {

"attr_name1": {

"timestamp": 123456789

}

},

"desired": {

"attr_name2": {

"timestamp": 123456789

}

}

},

"version": 1,

"timestamp": 123456789

}

Blank part

Below is a sample device shadow document that is blank:

{

"state":{},

"metadata":{},

"version":0

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 101

Only when the device shadow document has the desired status will there be a desired part, and the

 reported part can be empty; for example:

{

"state": {

"desired": {

"attr_name2": "value2"

}

},

"metadata": {

"desired": {

"attr_name2": {

"timestamp": 123456789

}

}

},

"version": 1,

"timestamp": 123456789

}

After the device status is successfully updated, the latest status needs to be reported, and the desired part needs

to be removed from the document. To remove this part, you need to set it to null ; for example:

{

"state": {

"reported": {

"attr_name1": "new_value1",

"attr_name2": "new_value2"

},

"desired": null

},

"version": 1

}

Array

The device shadow document supports arrays. Only an entire array but not an element in the array can be updated,

and none of the elements can be null.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 101

Device Shadow Topic

A device shadow acts as an intermediary, allowing the device and your application to view and update the device
status. Communication between the device, application, and device shadow is implemented through two special
topics:

 $shadow/operation/${productId}/${deviceName} is used to publish (upstream) messages, through

which GET/UPDATE operations can be implemented on device shadow data.

 $shadow/operation/result/${productId}/${deviceName} is used to subscribe to (downstream)

messages, through which the shadow server sends responses and push messages.

Note：

The above topics are created by the system by default when the device is created and will be automatically
subscribed to within the device SDK.

Getting Shadow Status by Device

Device Shadow Data Flow
Last updated：2021-08-23 11:57:26

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 101

If the device wants to get the latest status of the device shadow, it needs to publish a GET message to the
 $shadow/operation/${productId}/${deviceName} topic. The SDK provides an API that sends the GET

message in a specific JSON string format:

{

"type": "get",

"clientToken": "clientToken"

}

Note：
 clientToken is the token used to uniquely identify the session, which is generated by the requester and

returned as is by the responder.

For example, an air conditioner device can send a GET message to

 $shadow/operation/ABC1234567/AirConditioner through the API provided by the SDK to get the latest

device parameters.

The device shadow server responds by sending a message to the
 $shadow/operation/result/${productId}/${deviceName} topic to return all data content of the device

shadow through the JSON data, and the SDK will notify the business layer through the corresponding callback
function.

The shadow server responds to the air conditioner device's GET request by sending the following data to
 $shadow/operation/result/ABC1234567/AirConditioner . Below is the sample code:

{

"type": "get",

"result": 0,

"timestamp": 1514967088,

"clientToken": "clientToken",

"payload": {

"state": {

"reported": {

"temperature": 27

},

"desired": {

"temperature": 25

},

"delta": {

"temperature": 25

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 101

},

"metadata": {

"reported": {

"temperature": {

"timestamp": 1514967066

}

},

"desired": {

"temperature": {

"timestamp": 1514967076

}

},

"delta": {

"temperature": {

"timestamp": 1514967076

}

}

},

"version": 1,

"timestamp": 1514967076

}

}

If there is a desired part in the device shadow document, the device shadow service will automatically generate

the corresponding delta part; otherwise, no content will be present in the desired and delta parts.

Note：
The device shadow service does not store the delta messages.

Updating Shadow by Device

The device tells the device shadow server its current status by sending an UPDATE message to the
 $shadow/operation/${productId}/${deviceName} topic. The SDK provides a corresponding API to

send UPDATE messages, and the business layer only needs to specify the content of the reported field. The

message content is in a specific JSON string format.

The air conditioner device sends an UPDATE message to
 $shadow/operation/ABC1234567/AirConditioner to report its current device status. Below is the sample

code:

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 101

{

"type": "update",

"state": {

"reported": {

"temperature": 27

}

},

"version": 1,

"clientToken": "clientToken"

}

When the device shadow server receives this message, it first determines whether the version in the message
matches the version stored on it, and if so, it will perform the device shadow update process.

The shadow server responds to the air conditioner device with a message. Below is the sample code:

{

"type": "update",

"result": 0,

"timestamp": 1514967066,

"clientToken": "clientToken",

"payload": {

"state": {

"reported": {

"temperature": 27

}

},

"metadata": {

"reported": {

"temperature": {

"timestamp": 1514967066

}

}

},

"version": 2,

"timestamp": 1514967066

}

}

If the version in the message does not match the version stored on the device shadow server, the device shadow
service will respond by sending the following message to
 $shadow/operation/result/ABC1234567/AirConditioner :

{

"type": "update",

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 101

"result": 5005,

"timestamp": 1514967066,

"clientToken": "clientToken",

"payload": {

"state": {

"reported": {

"temperature": 27,

"mode": "cool"

}

},

"metadata": {

"reported": {

"temperature": {

"timestamp": 1514967066

},

"mode": {

"timestamp": 1514967050

}

}

},

"version": 2,

"timestamp": 1514967066

}

}

At this point, the full content of the device shadow document will be returned in the payload.

Updating Shadow by Application

The application modifies the device shadow's desired field through the HTTP RESTful API.

The application modifies the air conditioner's operating parameters through the HTTP RESTful API. Below is the
sample code:

{

"type": "update",

"state": {

"desired": {

"temperature": 25

}

},

"version": 2,

"clientToken": "clientToken"

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 101

When the device shadow server receives this message, it first determines whether the version in the message
matches the version stored on it, and if so, it will perform the device shadow update process and respond to the
application with a JSON message through the HTTP RESTful API.

{

"type": "update",

"result": 0,

"timestamp": 1514967076,

"clientToken": "clientToken",

"payload": {

"state": {

"desired": {

"temperature": 25

}

},

"metadata": {

"desired": {

"temperature": {

"timestamp": 1514967076

}

}

},

"version": 3,

"timestamp": 1514967076

}

}

In addition, the shadow server sends a delta message to

 $shadow/operation/result/ABC1234567/AirConditioner .

{

"type": "delta",

"timestamp": 1514967076,

"payload": {

"state": {

"temperature": 25

},

"metadata": {

"temperature": {

"timestamp": 1514967076

}

},

"version": 3,

"timestamp": 1514967076

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 101

}

}

The SDK notifies the business layer that the message has been received through the corresponding callback function.

Responding to delta Message by Device

After the device receives the delta message, the business layer can empty the content of the desired field

and send it to the device shadow server by sending the message to the
 $shadow/operation/${productId}/${deviceName} topic, indicating that the device has responded to

this delta message.

For example, after the air conditioner adjusts the temperature, it will send a message to
 $shadow/operation/ABC1234567/AirConditioner :

{

"type": "update",

"state": {

"desired": null

},

"version": 3,

"clientToken": "clientToken"

}

The SDK provides a corresponding API to send the above message. When the device shadow server receives this
message, it clears the content of the desired field to prevent repeated sending due to the differences between the

parameter value in the reported field and that in the desired field.

After receiving the message, the shadow server sends a response message to
 $shadow/operation/result/${productId}/${deviceName} .

For example, after receiving the "desired":null message from the air conditioner, the shadow server will send

a device shadow update success message to

 $shadow/operation/result/ABC1234567/AirConditioner .

{

"type": "update",

"result": 0,

"timestamp": 1514967086,

"clientToken": "clientToken",

"payload": {

"state": {

"reported": {

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 101

"temperature": 25

},

"desired": null

},

"metadata": {

"reported": {

"temperature": {

"timestamp": 1514967086

}

},

"desired": {

"temperature": {

"timestamp": 1514967086

}

}

},

"version": 4,

"timestamp": 1514967086

}

}

If some fields reported by the device are null, the corresponding fields in the device shadow will be deleted. After the
update succeeds, the fields in the returned payload will contain only the content related to the updated fields.

If the version value carried during the device update is below that stored on the server, the data on the device is old. At

this time, the server will send a failure message, where the error code (the result field) will clearly tell the SDK

that the update failed and the reason is that the version is too low. In addition, the server will also send the latest
content in the payload to the device.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 101

Overview

Device firmware update is an important part of the IoT Hub service. When a device has new features available or
vulnerabilities that need to be fixed, firmware update can be quickly performed for it through the device firmware
update feature.

How It Works

During the firmware update process, the device needs to subscribe to the following two topics to communicate with
the cloud:

Below is a sample:

$ota/report/${productID}/${deviceName}

This topic is used to publish (upstream) messages, through which the device repor

ts the version number and the download/update progress to the cloud.

$ota/update/${productID}/${deviceName}

This topic is used to subscribe to (downstream) messages, through which the devic

e receives the update message from the cloud.

Device Firmware Upgrade
Last updated：2021-09-10 10:36:45

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 101

Process

Taking MQTT as an example, the update process of the device is as follows:

1. The device reports its current version number. It publishes a message in JSON format with the following content to

the $ota/report/${productID/${deviceName} topic over the MQTT protocol to report its version

number:

{

"type": "report_version",

"report":{

"version": "0.1"

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 101

// type: message type

// version: the reported version number

2. Log in to the IoT Hub console, upload the firmware, and update the specified device to the specified version.

3. After the firmware update operation is triggered, the device will receive a firmware update message with the
following content through the subscribed $ota/update/${productID}/${deviceName} topic:

{

"file_size": 708482,

"md5sum": "36eb5951179db14a63****a37a9322a2",

"type": "update_firmware",

"url": "https://ota-1255858890.cos.ap-guangzhou.myqcloud.com",

"version": "0.2"

}

// type: the message type is `update_firmware`

// version: updated version

// url: URL of the downloaded firmware

// md5asum: MD5 value of the firmware

// file_size: firmware size in bytes

4. After receiving the firmware update message, the device will download the firmware from the URL. During the
download process, the device SDK keeps reporting the download progress with the following content through the
 $ota/report/${productID}/${deviceName} topic:

{

"type": "report_progress",

"report":{

"progress":{

"state":"downloading",

"percent":"10",

"result_code":"0",

"result_msg":""

},

"version": "0.2"

}

}

// type: message type

// state: the status is "downloading"

// percent: the current download progress in percentages

https://console.tencentcloud.com/iotcloud

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 101

5. After downloading the firmware, the device needs to report an update start message with the following content
through the $ota/report/${productID}/${deviceName} topic:

{

"type": "report_progress",

"report":{

"progress":{

"state":"burning",

"result_code":"0",

"result_msg":""

},

"version": "0.2"

}

}

// type: message type

// state: the status is "burning"

6. After the device firmware update is completed, the device will report an update success message with the following
content to the $ota/report/${productID}/${deviceName} topic:

{

"type": "report_progress",

"report":{

"progress":{

"state":"done",

"result_code":"0",

"result_msg":""

},

"version": "0.2"

}

}

// type: message type

// state: the status is "completed"

In the process of downloading or updating the firmware, if a failure occurs, an update failure message with the

following content will be reported through the $ota/report/${productID}/${deviceName} topic:

{

"type": "report_progress",

"report":{

"progress":{

"state":"fail",

"result_code":"-1",

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 101

"result_msg":"time_out"

},

"version": "0.2"

}

}

// state: the status is "failed"

// result_code: error code. -1: download timed out; -2: the file does not exist;

-3: the signature expired; -4: MD5 mismatch; -5: firmware update failed

// result_msg: error message

Checkpoint Restart of OTA

IoT devices sometimes may be in weak network environments. In this case, the connection may be unstable, firmware
download may be interrupted, and if the firmware is downloaded from offset 0 every time, it may never complete.
Therefore, the checkpoint restart feature of firmware download is particularly necessary as detailed below:

Checkpoint restart refers to resuming file download or upload from where interrupted. To implement this feature, the
device needs to record the checkpoint where firmware download is interrupted as well as the MD5, file size, and

version information of the firmware.
In case of OTA interruption, the device will report its version number to the IoT Hub platform, and if the reported
version number is different from the target version number to be updated to, the platform will distribute a firmware
update message again, and the device will get the target firmware information and compare it with the locally
recorded interrupted firmware information. After determining that they are the same firmware, the device will restart

download from the checkpoint.

The checkpoint restart process for OTA update is as follows:

Note：

Steps 3–6 may be performed multiple times in a weak network environment, and step 7 will be performed
only after they succeed.
After step 3 is performed, the device will receive the message that step 4 needs to be performed.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 101

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 90
of 101

Feature Overview

In device use cases, if system parameters need to be updated for devices, such as device IP, port number, and serial
port parameter, the remote configuration feature can be used to this end.

Feature Details

Remote device configuration supports two configuration update methods: active distribution by IoT Hub and active

request by device. For scenarios where all devices under the same product need to update their configurations, the
former can be used to distribute the configuration information to all devices through the remote configuration topic. For
scenarios where certain devices need to update their configurations, the latter can be used.

Remote configuration request topic: $config/operation/${productid}/${devicename}

Remote configuration subscription topic: $config/operation/result/${productid}/${devicename}

Note：

 ${productID} : product ID

 ${deviceName} : device name

Active distribution by IoT Hub

1. The device subscribes to the remote configuration topic.
2. On the configuration page in the IoT Hub console, enable remote configuration and enter the configuration

information in JSON format.

Remote Device Configuration
Last updated：2021-09-26 17:24:13

https://console.tencentcloud.com/iothub

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 91
of 101

3. Click Batch Distribute to distribute the configuration information to all devices under the product in batches
through the remote configuration subscription topic.

The format of the message distributed by the cloud through the remote configuration subscription topic is as
follows:

{"type":"push",

"result":0,

"payload":{yourConfigurationMessage}

}

Parameter description:

Parameter Type Description

type string
The value is `push` for active distribution by IoT Hub.

push: active distribution by IoT Hub
reply: active request by device

result int
Error code.

0: success
1001: the configuration is disabled

payload string Configuration information details

After the device successfully receives the configuration information distributed by IoT Hub, it will get the configuration
information by calling the callback function provided in the SDK and update the information into its system parameters.
The logic of updating configuration parameters in this part should be customized by yourself.

Active request by device

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 92
of 101

1. On the configuration page in the console, enable remote configuration and enter the configuration information in
JSON format.

2. The device subscribes to the remote configuration topic and sends a remote configuration request through the

topic.
3. After the cloud successfully receives the device's request for remote configuration information, it will send the

device configuration information on the configuration page to the device through the remote configuration
subscription topic.

The content of the configuration request message sent by the device is fixed as follows:

{"type":"get"}

Parameter description:

Parameter Type Description

type string The value is `get` for active request by device

The format of the message distributed by the cloud through the remote configuration subscription topic is as
follows:

{"type":"reply",

"result":0,

"payload":{yourConfigurationMessage}

}

Parameter description:

Parameter Type Description

type string

The value is `reply` for active request by device.
push: active distribution by IoT Hub
reply: active request by device

result int

Error code.
0: success
1001: the configuration is disabled

payload string Configuration information details

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 93
of 101

4. The steps after the device receives the data are the same as those of active distribution by the cloud.

Configuration information management

IoT Hub provides the configuration information management feature, and you can query the last five configuration
information records in the console. After you edit and save the configuration information again, the last configuration

information will be displayed in the configuration information record. You can view the number, update time, and
configuration content for easy management.

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 94
of 101

Feature Overview

The resource management feature is mainly used to transfer resources between devices and the platform. The
following two topics are required for this feature:

Data upstream topic (for publishing): $resource/up/service/${productid}/${devicename}

Data downstream topic (for subscribing): $resource/down/service/${productid}/${devicename}

Device Resource Upload

Step 1. Create a resource upload task on the device

1. The device sends a message in JSON format with the following content to
 $resource/up/service/${productid}/${devicename} to create a device resource upload task:

{

"type":"create_upload_task",

"size":100,

"name":"zxc",

"md5sum":"************",

}

2. After successful creation, the backend returns the resource upload URL through
 $resource/down/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"create_upload_task_rsp",

"size":100,

"name":"zxc",

"md5sum":"************",

"url":"https://iothub.cos.ap-guangzhou.myqcloud.com/********"

}

Resource Management
Last updated：2021-08-20 16:27:33

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 95
of 101

Step 2. Report the resource upload progress

1. Resource upload uses HTTP PUT requests, so the Base64-encoded MD5 value needs to be added to the header.
During the resource upload process, the device reports the resource upload progress through
 $resource/up/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"report_upload_progress",

"name":"zxc",

"progress":{

"state":"uploading",

"percent":89,

"result_code":0,

"result_msg":""

}

}

2. The response to progress reporting is sent to the device through
 $resource/down/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"report_upload_progress_rsp",

"result_code":0,

"result_msg":"ok"

}

Platform Resource Delivery

Step 1. Query the resource download URL

1. The device sends a message in JSON format with the following content through
 $resource/up/service/${productid}/${devicename} to query the download task:

{

"type":"get_download_task"

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 96
of 101

2. If there is a download task, the result will be delivered through
 $resource/down/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"get_download_task_rsp",

"size":372338,

"name":"AAAA",

"md5sum":"a567907174*****3bb9a2bb20716fd97",

"url":"https://iothub.cos.ap-guangzhou.myqcloud.com/********"

}

Step 2. Report the resource download progress

1. The resource download progress is reported through
 $resource/up/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"report_download_progress",

"name":"zxc",

"progress":{

"state":"downloading",

"percent":89,

"result_code":0,

"result_msg":""

}

}

2. The response to progress reporting is sent to the device through
 $resource/down/service/${productid}/${devicename} with a message in JSON format with the

following content:

{

"type":"report_download_progress_rsp",

"result_code":0,

"result_msg":"ok"

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 97
of 101

Feature Overview

The device log feature is mainly used for the platform to remotely view the device operation logs. The platform can ask
a device to report logs by sending a message. Log levels include ERROR, WARN, INFO, and DEBUG. The following
two topics are needed for this feature:

Data upstream topic (for publishing): $log/operation/${productid}/${devicename}

Data downstream topic (for subscribing): $log/operation/result/${productid}/${devicename}

Querying Log Level

1. The device sends a message in JSON format with the following content to the
 $log/operation/${productid}/${devicename} topic to query whether it should upload logs and the

required log level:

{

"type": "get_log_level",

"clientToken": "PPXLSKBUPZ-**"

}

2. The device actively queries whether it needs to report logs, or the platform remotely asks the device to enable log
reporting. Specifically, the backend sends a message in JSON format with the following content to require log
reporting and indicate the log level:

{

"type": "get_log_level",

"clientToken": "PPXLSKBUPZ-**",

"log_level": 4,

"result": 0,

"timestamp": 1619599073

}

//log_level: 0: do not report logs; 1: ERROR; 2: WARN; 3: INFO; 4: DEBUG

Device Log Reporting
Last updated：2021-08-20 16:27:33

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 98
of 101

Log Upload

Parameter description

When a device uploads logs, it needs to carry ProductId and DeviceName to initiate an http/https

request to the platform. The request API and parameters are as detailed below:

Requested URL:

 http://ap-guangzhou.gateway.tencentdevices.com/device/reportlog

 https://ap-guangzhou.gateway.tencentdevices.com/device/reportlog

Request method: POST

Request parameters

Parameter Required Type Description

ProductId Yes String Product ID

DeviceName Yes String Device name

Message Yes Array
Reported log content, which is a string array. The log level needs to be
added before each log entry. Currently, DBG, INF, ERR, and WRN are
supported

Note：
The API only supports the application/json format.

Signature generation

There are two types of signatures for request messages. Key authentication uses the HMACSHA256 algorithm, and
certificate authentication uses the RSA_SHA256 algorithm. For more information, please see Signature Algorithm.

Platform response parameters

Parameter Type Description

RequestId String Request ID

Sample Code

https://www.tencentcloud.com/document/product/1105/41501

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 99
of 101

Request packet

POST https://ap-guangzhou.gateway.tencentdevices.com/device/reportlog

Content-Type: application/json

Host: ap-guangzhou.gateway.tencentdevices.com

X-TC-Algorithm: HmacSha256

X-TC-Timestamp: 1551****65

X-TC-Nonce: 5456

X-TC-Signature: 2230eefd229f582d8b1b891af7107b91597240707d7****3738f756258d7652c

{"DeviceName":"AAAAAA","Message":["INFmqtt connect success."],"ProductId":"G8N9**

**HB"}

Response packet

{

"Response": {

"RequestId": "f4da4f1f-d72e-40f1-****-349fc0072ba0"

}

}

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 100
of 101

Feature Overview

The NTP feature is mainly used to solve the problem with resource-constrained devices where they don't have the
NTP service and thus have no accurate timestamps. The following two topics are required for this feature:

Request topic (for publishing): $sys/operation/${ProductId}/${DeviceName} .

Response topic (for subscribing): $sys/operation/result/${ProductId}/${DeviceName} .

How It Works

The IoT Hub platform draws on the principles of the NTP protocol and uses the platform itself as an NTP server. After
a device requests the platform, the platform will return the NTP time. After the device receives the response, it will
calculate the current accurate time based on the request time and receipt time.

Directions

1. The device sends a message in JSON format with the following content to

 $sys/operation/${ProductId}/${DeviceName} to request the platform for the NTP time and records

the request time deviceSendtime :

{

"type": "get",

"resource": [

"time"

]

}

2. The platform returns the NTP time through $sys/operation/result/${ProductId}/${DeviceName}

with a message in JSON format with the following content, and the device records the receipt time
 deviceRecvtime :

{

"type": "get",

"time": 1621562342,

NTP Service
Last updated：2021-08-20 17:04:12

IoT Hub

©2013-2022 Tencent Cloud. All rights reserved. Page 101
of 101

"ntptime1": 1621562342773,

"ntptime2": 1621562342773

}

3. The accurate time is calculated through the NTP time (${ntptime1} + ${ntptime2}) received by the device, receipt
time (${deviceRecvtime}), and request time (${deviceSendtime}) as follows:

Accurate time =(${ntptime1} + ${ntptime2} + ${deviceRecvtime} - ${deviceSendtime}) / 2

