
TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 18

TDMQ for Apache Pulsar

Best Practices

Product Documentation

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 18

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 18

Contents

Best Practices
Transaction Reconciliation
Message Idempotency
Message Compression

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 18

Best Practices
Transaction Reconciliation
Last updated：2024-06-28 11:31:37

Scenario Description

Reconciliation is an auxiliary system required in all billing systems. No matter whether used as a primary or
secondary payment system, reconciliation is always necessary during or after payment to ensure billing accuracy.
TDMQ for Apache Pulsar can guarantee reconciliation timeliness without affecting the critical path of transactions.

Problems Encountered

1. System decoupling
A transaction involves many systems, which need to be decoupled so as not to affect each other.
2. Time difference of data arrival
There is a time difference of data arrival between systems, so it must be ensured that data arriving at different times
can be aggregated.

3. Data consistency
In order to eliminate exceptional reconciliation results, it must be ensured that data will never be lost.
4. Cross-region data transfer
Systems are deployed in different regions, so cross-region data transfer is involved.

Deployment Architecture Diagram

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 18

Problem Solving

TDMQ for Apache Pulsar can be used to solve the problems mentioned above.

1. System decoupling

Intuitively, to implement reconciliation between different systems, messages can be reported directly to the

reconciliation system for reconciliation processing. However, this causes some new problems; for example, many
existing and future systems need to be connected, which is time-consuming and intrusive to the system process in the
production environment. Obviously, such a design is very unreasonable. You can adopt TDMQ for Apache Pulsar and
connect different systems to it in a unified manner, so that failures in an individual system will not affect other services.

2. Time difference of data arrival

Reconciliation requires the aggregation of data from different systems. Under normal circumstances, the data arrival

times of different systems don't differ significantly, but the processes between systems are always sequential;
therefore, after the data is delayed for one system, to implement data aggregation, you need to control the data read
speed and thus prevent a large amount of data from simply waiting in the reconciliation system. The temporary
message storage feature of TDMQ for Apache Pulsar makes it possible that data sent at the same time arrives at
different systems generally at the same time.

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 18

3. Data consistency

TDMQ for Apache Pulsar provides highly consistent and reliable data storage to ensure that data will never get lost. In
addition, it features a high service availability and automatic failover.

4. Cross-region data transfer

TDMQ for Apache Pulsar offers two schemes to implement data replication between regions and serves as a real-time

data replication channel for the business layer.
For scenarios where critical data requires cross-region disaster recovery, TDMQ for Apache Pulsar supports cross-
region strong sync that distributes messages in different regions.
For scenarios with low requirements for data consistency, TDMQ for Apache Pulsar provides a cross-region async
replication scheme to achieve eventual data consistency in multiple regions.

The two cross-region sync schemes are compared as follows:

Cross-region Sync Scheme Production
Duration

Disaster Recovery
Performance

Storage Costs

Cross-region strong consistency High High Low

Cross-region eventual
consistency

Low Low High

By leveraging TDMQ for Apache Pulsar and real-time computing, you can upgrade daily transaction reconciliation to
real-time reconciliation, which allows you to check the transaction accuracy more quickly.

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 18

Message Idempotency
Last updated：2024-06-28 11:31:36

Idempotency is a key to the design of distributed systems. If idempotency is not taken into account, a message may
be consumed repeatedly in case of a business processing failure, which doesn't meet your business expectations. To
avoid such an exception, the consumer of a message queue needs to ensure the idempotency of the received

messages based on the unique business key.

What Is Message Idempotency

Definition

The consumption of a message is deemed idempotent if consuming the message multiple times yields the same result
as consuming it only once and the duplicate consumption of the same message doesn't have any negative impact on
the business system.

Scenario example

Take a bank's payment system as an example. After the consumer consumes a deduction message, the payment

system will deduct an amount (say, 1 USD in this example) for the order. If the consumer consumes that deduction
message again due to network instability or other reasons, yet only 1 USD is finally deducted and the user has only
one deduction record, then the deduction operation is valid because the amount hasn't been deducted multiple times.
In this scenario, the whole consumption process is idempotent.

Use Cases

Message duplication caused by message sending

After a message is sent by a producer and is successfully received and persistently stored by the server, it will be
resent if the producer hasn’t received the server's acknowledgment. This happens when a client restart or momentary

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 18

network disconnection prevents the server and client from communicating. In this case, the same message will be
sent twice to the customer, but with different IDs.

Message duplication caused by message consumption

After a message is consumed by a consumer for related business, it will be consumed again if the consumer fails to

send the acknowledgment to the server due to network exception. In this case, the same message will be consumed
twice by the consumer, with the same ID.

Solutions
We can see from the above use cases that there are two message duplication scenarios:
The same message but with different IDs;
The same message with the same ID.

Therefore, we recommend that you use the unique business identifier instead of the message ID to implement
idempotency. For example, in the payment scenario, you can use the order ID to implement idempotency. After a
message is successfully consumed, the order ID of a business can be used to determine whether the business has
been processed.

Sample code

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 18

public static class Order {

 public String orderId;

 public String orderData;

}

Producer:

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 18

Producer<Order> producer = client.newProducer(Schema.AVRO(Order.class)).create();

producer.newMessage().value(new Order("orderid-12345678", "orderData")).send();

Consumer:

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 18

Consumer<Order> consumer = client.newConsumer(Schema.AVRO(Order.class)).subscribe()

Order order = consumer.receive().getValue();

String key = order.orderId;

After obtaining the unique business identifier orderId , deduplicate it.

Common Deduplication Methods

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 18

Deduplicating data in the database

You can filter duplicate data by adding a deduplication table or unique index in the database. This allows you to
ensure idempotency on the business side.
For example, if you need to write order flow messages to an order log table, you can use the order ID or the

modification timestamp as the unique index.
When the consumer consumes the same message multiple times, the order log table will be written each time, but only
the first time takes effect because of the unique index. This implements idempotency to ensure that the consumption
result is the same even in case of repeated consumption.

Setting the globally unique message/task ID

The call trace ID can also be set as a globally unique ID. The producer can add a unique ID to each message when

producing messages. The consumer can set a key (which corresponds to the unique ID) in the cache to identify the
consumed message. In this way, the consumer can determine whether the message has been consumed when
consuming messages.

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 18

Message Compression
Last updated：2024-06-28 11:31:37

Background
In Pulsar, a message of over 5 MB cannot be successfully sent. To send such a large message, you need to compress
it in the client first.

Processing Large Message in Pulsar
As the default size limit for a single message is 5 MB in Pulsar, the producer will fail to send a message exceeding this

limit. You can handle this in the following two ways:
Message chunking: Message chunking enables Pulsar to process large payload messages by splitting the message
into chunks at the producer side and aggregating chunked messages at the consumer side.
Message compression: The message size can be compressed by replacing the same character sequences in the
message data. Pulsar supports four compression algorithms: LZ4, ZLIB, ZSTD, and Snappy.

‌We recommend that you compress large messages before sending them.

Compression Algorithm Introduction and
Comparison

Introduction

LZ4
LZ4 is a lossless data compression algorithm that consumes a small amount of CPU. It features extremely fast
compression/decompression speed.
ZLIB
‌ZLIB is a common lossless data compression algorithm that can improve network transfer efficiency and network

capacity because it can effectively reduce the size of transferred data. As a variant of the Lempel-Ziv compression

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 18

algorithm, it can compress data to half the original size or even less. It can be used for data compression and
decompression.
ZSTD

‌ZSTD is a variant of the LZ77 compression algorithm and is based on Huffman coding. It is an effective compression
algorithm for different compression scenarios. Compared with other compression algorithms, it compresses data
faster and more efficiently because it features real-time encoding. It can guarantee a high compression ratio and high
compression speed at the same time.
Snappy

‌Snappy is a lossless compression algorithm based on LZ77. Its core principle lies in the replacement of the repetitive
character strings in a data stream with shorter codes to reduce the stream size.

Comparison

Compression Algorithm Compression
Ratio

Compression Speed Decompression Speed

ZLIB 1.2.11 -1 2.743 110 MB/sec 400 MB/sec

LZ4 1.8.1 2.101 750 MB/sec 3,700 MB/sec

ZSTD 1.3.4-1 2.877 470 MB/sec 1,380 MB/sec

Snappy 1.1.4 2.091 530 MB/sec 1,800 MB/sec

Throughput: LZ4 > Snappy > ZSTD > ZLIB
Compression ratio: ZSTD > ZLIB > LZ4 > Snappy
Physical resource occupation: Snappy occupies the most network bandwidth while ZSTD occupies the least.

Compression Algorithm Test

Test result

Note:

The following test results are for reference only. The actual compression effect is subject to the specific message
content.

Message Message Compression Monitored Message Message

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 18

Size Algorithm Message Size Compression
Duration

Sending
Duration

5 MB
Random
message
body

LZ4 (threshold: 5
MB)

9.95 MB 31 ms 0.049 ms

ZLIB 7.26 MB 31 ms 0.038 ms

ZSTD 8.20 MB 31 ms 0.039 ms

Snappy
(threshold: 5 MB)

9.70 MB 33 ms 0.046 ms

6 MB
Random
message
body

ZLIB (threshold: 6
MB)

8.71 MB 35 ms 0.044 ms

ZSTD (threshold:
6 MB)

9.84 MB 35 ms 0.046 ms

20 MB
Same
message
body

LZ4 0.16 MB 41 ms 0.006 ms

ZLIB 0.20 MB 42 ms 0.006 ms

ZSTD 0.01 MB 42 ms 0.003 ms

Snappy 2.47 MB 41 ms 0.021 ms

40 MB
Same
message
body

LZ4 0.32 MB 123 ms 0.008 ms

ZLIB 0.39 MB 122 ms 0.008 ms

ZSTD 0.01 MB 124 ms 0.004 ms

Snappy 4.95 MB 123 ms 0.036 ms

80 MB
Same
message
body

LZ4 0.63 MB 241 ms 0.009 ms

ZLIB 0.39 MB 244 ms 0.01 ms

ZSTD 0.01 MB 243 ms 0.004 ms

Snappy
(threshold: 80 MB)

9.9 MB 243 ms 0.056 ms

160 MB
Same
message
body

LZ4 1.26 MB 484 ms 0.013 ms

ZLIB 1.56 MB 479 ms 0.016 ms

ZSTD 0.03 MB 481 ms 0.004 ms

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 18

320 MB Same
message
body

LZ4 2.5 MB 1,035 ms 0.03 ms

ZLIB 3.1 MB 1,008 ms 0.027 ms

ZSTD 0.03 MB 949 ms 0.004 ms

585 MB
Same
message
body

LZ4 4.59 MB 1,705 ms 0.027 ms

ZLIB 5.67 MB 1,733 ms 0.03 ms

ZSTD 0.11 MB 1,722 ms 0.006 ms

Summary:
For data streams with random message body (non-repetitive strings), the four compression algorithms show low
compression ratios. When the message is larger than 5 MB, none of the four algorithms can compress it to less than 5

MB.
For data streams with same message body (repetitive strings), all the compression algorithms show high compression
ratios. Especially, LZ4, ZLIB, and ZSTD can compress a message of 5–600 MB to less than 5 MB.

Message compression demo and test

For the demo, see tdmq-sdk-demo.‌

Test

Parameters called by the producer:

https://github.com/TencentCloud/tdmq-examples/tree/feature/big-message-test/tdmq-sdk-demo-1

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 18

java -jar tdmq-sdk-demo-1.0-SNAPSHOT-jar-with-dependencies.jar pulsar://xxxx:6650

eyJrZXlJZCI6ImRlZmF1bHRfa2V5SWQiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJzdXBlcnVzZXIifQ.dYc

pulsar-78ra8ownxb7d/BigMSGSpace/BigMSGTopic subname 1 500 0 1 20480 1 0

‌Parameters called by the consumer:

TDMQ for Apache Pulsar

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 18

java -jar tdmq-sdk-demo-1.0-SNAPSHOT-jar-with-dendencies.jar pulsar://xxxx:6650

eyJrZXlJZCI6ImRlZmF1bHRfa2V5SWQiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJzdXBlcnVzZXIifQ.dYc

pulsar-92d7w2mjwmv9/BigMessSpace/BigMessTopic subname 1 500 1

