
TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 21

TDMQ for RocketMQ

Product Introduction

Product Documentation

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 21

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 21

Contents

Product Introduction
Overview
Architecture
Concepts
Strengths
Use Cases
Use Limits
Comparison with Apache RocketMQ

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 21

Product Introduction
Overview
Last updated：2023-03-01 10:33:06

TDMQ for RocketMQ is distributed message middleware developed by Tencent Cloud based on Apache RocketMQ.
It is fully compatible with all the components and principles of Apache RocketMQ and supports connection to open-
source RocketMQ clients without any modifications.

Featuring low latency, high performance, reliability, and scalability, and trillions of QPS, TDMQ for RocketMQ can add
async decoupling and peak shifting capabilities to distributed application systems. It also provides the capabilities
necessary to internet applications, such as massive message retention, high throughput, and reliable retry
mechanism.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 21

Architecture
Last updated：2023-04-14 16:50:11

This document describes the deployment architecture of TDMQ for RocketMQ to help you better understand its
architectural principles.

Deployment Architecture

The system deployment architecture of TDMQ for RocketMQ is shown in the following diagram:

The core concepts are as follows:
Producer cluster: Client-side application, which is responsible for producing and sending messages.

Consumer cluster: Client-side application, which is responsible for subscribing to and consuming messages.
Nameserver cluster: server-side application, which is responsible for address routing and broker heartbeat
registration.
Heartbeat registration: Nameserver acts as the registration center. Machines in each role must regularly report their
status to Nameserver. If a machine fails to report beyond the timeout period, Nameserver will consider it faulty and
unavailable and remove it from the available list.

Address routing: Each Nameserver stores the entire routing information of the Broker cluster and the queue
information used for client queries. Producers and consumers obtain the routing information of the entire Broker
cluster through Nameserver to deliver and consume messages.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 21

Broker cluster: Server application, which is responsible for receiving, storing, and delivering messages. It supports
primary-secondary multi-copy mode where the deployment of secondary nodes is optional. The actual high reliability
of data in the production environment on the public cloud directly depends on the three copies of the cloud disk.

Management cluster: Server application that is a visual management and control console. It is responsible for
operating the entire cluster, such as source data sending/receiving and management.

For the advantages of TDMQ for RocketMQ over self-built open-source Apache RocketMQ, see Comparison with
Apache RocketMQ.

https://www.tencentcloud.com/document/product/1113/51148

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 21

Concepts
Last updated：2023-10-19 10:38:05

This document lists the common concepts and their definitions in TDMQ for RocketMQ.

Message (Message)

A message is the physical carrier of information transmitted by the messaging system. It is the smallest unit of the
produced or consumed data. A producer encapsulates the load and extended attributes of business data into

messages and sends the messages to a TDMQ for RocketMQ broker. Then, the broker delivers the messages to the
consumer based on the relevant semantics.

Topic (Topic)

A topic is the collection of a type of messages. It is the basic unit for message subscription in TDMQ for RocketMQ.
Each topic contains several messages.

Message Tag (MessageTag)

Tags are used to categorize different types of messages in the same topic. Topic and tag are basically the first-level

and second-level classifications of messages, respectively.

Message Queue (MessageQueue)

A message queue (also known as a message partition) is a physical entity for message storage, and a topic can
contain multiple queues. Messages in a queue can only be consumed by one consumer rather than multiple
consumers in one consumer group.

Message Offset (MessageQueueOffset)

Messages are stored in multiple queues of a specified topic based on the order in which they arrive at the TDMQ for
RocketMQ broker. Each message has a unique coordinate of type Long in the queue, which is defined as the

message offset.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 21

Consumption Offset (ConsumerOffset)

A message is not removed from the queue immediately after it has been consumed by a consumer. TDMQ for
RocketMQ will record the offset of the last consumed message based on each consumer group. Such an offset is
defined as the consumption offset.

Message Index (MessageKey)

A message index is a message-oriented index property in TDMQ for RocketMQ. By setting the message index, you
can quickly find the corresponding message content.

Producer (Producer)

A producer in TDMQ for RocketMQ is a functional messaging entity that creates messages and sends them to the
broker. It is typically integrated into the business system to encapsulate data as messages and send them to the
broker.

Consumer (Consumer)

A consumer is an entity that receives and processes messages in TDMQ for RocketMQ. It is usually integrated into
the business system to obtain messages from TDMQ for RocketMQ brokers and convert the messages into
information that can be perceived and processed by business logic.

Group (Group)

Groups include producer groups and consumer groups.
Producer group: It is the collection of the same type of producers that send the same type of messages with the same
sending logic. If a producer sends transactional messages and crashes afterward, the broker will contact other

producer instances in the producer group to commit or cancel the transaction.
Consumer group: It is the collection of the same type of consumers that consume the same type of messages with the
same consumption logic. It can ensure load balancing and fault tolerance in the message consumption process.
Consumer instances in a consumer group must subscribe to the same topics.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 21

Message Type (MessageType)

Messages are classified by message transmission characteristic for message type management and security
verification. TDMQ for RocketMQ has four message types: general message, sequential message, transactional
message, and scheduled/delayed message.

General Message

The general message is a basic message type. After the produced general messages are delivered to a specified
topic, they will be consumed by consumers that subscribe to this topic. A topic with general messages is sequence-
insensitive. Therefore, you can use multiple topic partitions to improve message production and consumption
efficiency. This approach performs best when dealing with high throughput.

Sequential Message

In TDMQ for RocketMQ, the sequential message is an advanced message type. Sequential messages in a specified

topic are published and consumed in a First In First Out (FIFO) manner, that is, the first produced messages are first
consumed.

Retry Letter Queue

A retry letter queue is designed to ensure that messages are consumed normally. When a message is consumed for
the first time by a consumer but is not acknowledged, it will be placed in the retry letter queue and will be retried there
until the maximum number of retries is reached. It will then be delivered to the dead letter queue.
In actual scenarios, messages may not be processed promptly due to temporary issues such as network jitter and

service restart. The retry mechanism of the retry letter queue can be a good solution in this case.

Dead Letter Queue

A dead letter queue is a special type of message queue used to centrally process messages that cannot be consumed
normally. If a message cannot be consumed after a specified number of retries in the retry letter queue, TDMQ will
determine that the message cannot be consumed under the current situation and deliver it to the dead letter queue.
In actual scenarios, messages may not be consumed due to service downtime or network disconnection. In this case,

they will not be discarded immediately; instead, they will be persistently stored in the dead letter queue. After fixing the
problem, you can create a consumer to subscribe to the dead letter queue to process such messages.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 21

Clustering Consumption

Clustering consumption: If the clustering consumption mode is used, each message only needs to be processed by
any of the consumers in the cluster. This mode is suitable for scenarios where each message only needs to be
processed once.

Broadcasting Consumption

Broadcasting consumption: If the broadcasting consumption mode is used, each message will be pushed to all
registered consumers in the cluster to ensure that the message is consumed by each consumer at least once. This
mode is suitable for scenarios where each message needs to be processed by each consumer in the cluster.

Message Filtering

A consumer can filter messages by subscribing to specified message tags to ensure that it only receives the filtered
messages. The whole filtering process is completed in the TDMQ for RocketMQ broker.

Consumption Offset Reset

Resetting the consumption offset means resetting a consumer group's consumption offset for subscribed topics within
the persistent message storage period based on the time axis. After the offset is reset, the consumers will receive the
messages that the producer sends to the TDMQ for RocketMQ broker after the set time point.

Message Trace

The message trace records the entire lifecycle of a message from the time it is sent by the producer to the time it is
received and processed by the consumer. With this feature, you can track the entire trace of a message, starting from
its production by a producer, its storage and distribution within the TDMQ for RocketMQ broker, and finally its

consumption by one or more consumers. This helps you troubleshoot any problems that may occur during message
processing.

Message Heap

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 21

Message heap occurs in scenarios where the producer has sent messages to the TDMQ for RocketMQ broker but the
consumer fails to normally consume all these messages promptly due to its consumption capability limit. In this case,
the unconsumed messages will be heaped in the broker. The message heap data is collected once every minute. After

the message retention period (3 days by default) elapses, the unconsumed messages will no longer be heaped in the
broker because they have been deleted by the broker.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 21

Strengths
Last updated：2024-01-18 09:45:29

Open-Source Version Compatibility

TDMQ for RocketMQ is compatible with open-source RocketMQ 4.3.0 and later. It supports access from open-source
clients in Java, C, C++, Go, and other programming languages.

Resource Isolation

TDMQ for RocketMQ offers a multi-level resource structure that allows for both namespace-based virtual isolation and

cluster-level physical isolation, making it simple for you to enable namespace-level permission verification to
distinguish clients in different environments.

Rich Message Types

TDMQ for RocketMQ supports multiple message types such as general, sequential, delayed, and transactional
messages. It also supports message retry and the dead letter mechanism, fully meeting the requirements in various
business scenarios.

High Performance

A single TDMQ for RocketMQ server can sustain a production/consumption throughput of up to 10,000 messages.
With the distributed architecture and stateless services, the cluster can be scaled horizontally to increase the cluster
throughput.

Observability

TDMQ for RocketMQ supports various monitoring metrics in the console where message traces can be displayed. It
also provides alarming capabilities and all the TencentCloud APIs you may need to integrate with your self-service
Ops systems.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 21

Use Cases
Last updated：2023-09-12 16:02:09

TDMQ for RocketMQ is a distributed message middleware based on Apache RocketMQ. It is applied to message
communication between distributed systems or components. It has the characteristics of massive message heap, low
latency, high throughput, high reliability, and strong transaction consistency, which meets the requirements of async

decoupling, peak shifting, sequential sending and receiving, distributed transaction consistency, and log sync.

Async Decoupling

The transaction engine is the core system of Tencent billing. The data of each transaction order needs to be monitored
by dozens of downstream business systems, including inventory system, warehousing system, promotion system, and
points system. Such systems use different message processing logic, making it impossible for a single system to
adapt to all associated business. In this case, TDMQ for RocketMQ can decouple the coupling between multiple

business systems to reduce the impact between systems and improve the response speed and robustness of core
business.

Peak Shifting

Companies hold promotional campaigns such as new product launch and festival red packet grabbing from time to
time, which often cause temporary traffic spikes and pose huge challenges to each backend application system. In this
case, TDMQ for RocketMQ can withstand spikes in traffic. It heaps up messages during peak periods and consumes

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 21

them in the downstream during off-peak periods, which balances the processing capacities of upstream and
downstream systems and improve system availability.

Subscription Notifications

TDMQ for RocketMQ provides scheduled and delayed messages to can meet the ecommerce subscription

notification scenarios.
Scheduled message: After a message is sent to the server, the business may want the consumer to receive it at a
later time point rather than immediately. This type of message is called "scheduled message".
Delayed message: After a message is sent to the server, the business may want the consumer to receive it after a
period of time rather than immediately. This type of message is called "delayed message".

For details about scheduled and delayed messages, see Scheduled Message and Delayed Message.

https://www.tencentcloud.com/document/product/1113/43108

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 21

Consistency of Distributed Transactions

TDMQ for RocketMQ provides distributed transactional messages to loosely couple applications. Reliable
transmission and multi-replica technology can ensure that messages are not lost, and the At-Least-Once feature
ensures eventual data consistency.

As a producer, the payment system forms a transaction with the message queue to ensure the consistency of local
transactions and message sending.
Downstream business systems (bills, notifications, others) work as consumers to process in parallel.
Messages support reliable retries to ensure eventual data consistency.
The transaction messages of TDMQ for RocketMQ can be used to process transactions, which can greatly improve

processing efficiency and performance. A billing system often has a long transaction linkage with a significant chance
of error or timeout. TDMQ's automated repush and abundant message retention features can be used to provide
transaction compensation, and the eventual consistency of payment tips notifications and transaction pushes can also
be achieved through TDMQ for RocketMQ.
For details about transactional messages, see Transactional Message.

https://www.tencentcloud.com/document/product/1113/53729

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 21

Sequential Message Sending/Receiving

Sequential message is an advanced message type provided by TDMQ for RocketMQ. For a specified topic,
messages are published and consumed in strict accordance with the principle of First-In-First-Out (FIFO), that is,
messages sent first are consumed first, and messages sent later are consumed later. Sequential messages are often

used in the following business scenarios:
Order creation: In some ecommerce systems, an order's creation, payment, refund, and logistics messages must be
produced or consumed in strict sequence, otherwise the order status will be messed up during consumption, which
will affect the normal operation of the business. Therefore, the messages of this order must be produced and
consumed in a certain sequence in the client and message queue. At the same time, the messages are sequentially

dependent, and the processing of the next message must be dependent on the processing result of the preceding
message.
Log sync: In the scenario of sequential event processing or real-time incremental data sync, sequential messages
can also play a greater role. For example, it is necessary to ensure that database operations are in sequence when
MySQL binlogs are synced.
Financial scenarios: In some matchmaking transaction scenarios like certain securities transactions, the first bidder

is given priority in the case of the same biding price, so it is necessary to produce and consume sequential messages
in a FIFO manner.
For details about sequential messages, see Sequential Message.

Distributed Cache Sync

https://www.tencentcloud.com/document/product/1113/43109

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 21

During sales and promotions, there are a wide variety of products with frequent price changes. When users query item
prices multiple times, the cache server's network interface may be fully loaded, which makes page opening slower.
After the broadcast consumption mode of TDMQ for RocketMQ is adopted, a message will be consumed by all nodes

once, which is equivalent to syncing the price information to each server as needed in place of the cache.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 21

Use Limits
Last updated：2023-09-12 17:53:17

This document lists the limits of certain metrics and performance in TDMQ for RocketMQ. Be careful not to exceed the
limits during use so as to avoid exceptions.

Cluster

Limit Virtual Cluster Exclusive Cluster

Maximum number of clusters per
region

10 Unlimited

Cluster name length 3-64 characters 3-64 characters

Maximum TPS 4000 Above 4,000, subject to the node specification

Maximum bandwidth (production +
consumption) per cluster

40 Mbps Above 80 Mbps, subject to the node
specification

Namespace

Limit Virtual Cluster Exclusive Cluster

Maximum number of namespaces
per cluster

10 10

Namespace name length 3-32 characters 3-32 characters

Topic

Limit Virtual Cluster Exclusive Cluster

Maximum number of topics per
cluster

150 200-500, subject to the node specification

Topic name length 3-64 characters 3-64 characters

Maximum number of producers per
topic

1000 1000

Maximum number of consumers per
topic

500 500

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 21

Group

Limit Virtual Cluster Exclusive Cluster

Maximum number of groups per
cluster

1500 2000-5000, subject to the node specification

Group name length 3-64 characters 3-64 characters

Message

Limit Virtual Cluster Exclusive Cluster

Maximum message retention period 3 days 3 days

Maximum message delay 40 days 40 days

Message size 4 MB 4 MB

Consumption offset reset 3 days 3 days

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 21

Comparison with Apache RocketMQ
Last updated：2024-01-18 09:53:49

The performance comparison between TDMQ for RocketMQ and Apache RocketMQ is detailed below:

Feature
Type

Feature TDMQ for RocketMQ Apache RocketMQ

Basic
features

Scheduled
message

The scheduled time is accurate down
to the second and can be customized.

You can only specify the delay
level.

Visual
management

Visual management for clusters,
topics, and groups is supported. You
can view the details of subscriptions
and consumer status.

Visual management is
supported but is less user-
friendly. The console doesn’t
distinguish between topic types.

Availability

Elastic scaling

You don’t need to manually deploy,
configure, or scale up underlying
computing resources because
operations such as node registration
are automatically performed in a visual
manner. You can expand the number
of nodes horizontally, increase the disk
capacity, and upgrade the
configurations of a single node
vertically as needed at any time.

A self-built Ops team is
required, and operations are
performed in a less automatic
or visualized manner.

High reliability

With three data replicas, the server
can be automatically restarted in
seconds after the downtime, without
affecting the message capacity and
data.

Data can be replicated in sync
or async mode. You need to
design the deployment scheme
and related parameters. The
primary sync schemes won’t be
automatically used after the
failover.

Cross-AZ high-
availability
deployment

This feature is supported to avoid
losses caused by data center-level
failures.

This feature is supported, but it
is time-consuming for you to
design the deployment
schemes and parameters.

Observability Resource
dashboard

You can monitor core metrics at a fine
granularity and view production and
consumption details.

This feature is supported but
with fewer monitoring metrics.

TDMQ for RocketMQ

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 21

Alarming With the capabilities provided by Cloud
Monitor, alarms will be triggered in
case of message heap or delayed
message sending/receiving.

Not supported

Security
management
and control

Tenant
namespace
isolation

You can implement this feature in the
console in a visual manner.

This feature is not supported.
Namespaces cannot be truly
isolated due to bugs.

Root account
and sub-
account
management

Supports authorization between
Tencent Cloud CAM root accounts and
sub-accounts and between enterprise
accounts.

Not supported

Migration
tool

Tool for
migrating from
Apache
RocketMQ

You can easily migrate from Apache
RocketMQ to TDMQ for RocketMQ by
using scripts.

-

