
Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 74

Cloud Data Warehouse for

PostgreSQL

Best Practices

Product Documentation

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 74

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 74

Contents

Best Practices
Data Warehouse Table Development
Table Distribution Key Selection
Table Storage Format Selection
Table Partition Usage
Extension Usage
Cold Data Backup
Statistics and Space Maintenance

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 74

Best Practices
Data Warehouse Table Development
Last updated：2024-02-02 15:36:51

Tables in CDWPG are similar to those in other relational databases. The difference is that the rows of a CDWPG table
are distributed on different segments as determined by the distribution policy of the table.

Creating common table

The CREATE TABLE command is used to create a table. The following can be defined during table creation:

Table column and data type
Table constraint definition
Table distribution definition
Table storage format
Table partition definition

Use the CREATE TABLE command to create a table in the following format:

https://www.tencentcloud.com/document/product/1138/45120
https://www.tencentcloud.com/document/product/1138/47248
https://www.tencentcloud.com/document/product/1138/47249
https://www.tencentcloud.com/document/product/1138/45025

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 74

CREATE TABLE table_name (

[{ column_name data_type [DEFAULT default_expr] -- Table column definition

 [column_constraint [...] -- Column constraint definitio

]

 | table_constraint -- Table constraint definition

])

 [WITH (storage_parameter=value [, ...]) -- Table storage format defini

 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY] -- Table distribut

 [partition clause] -- Table partition definition

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 74

Example:

The table creation statement in the following example creates a table with trans_id as the distribution key and sets
 RANGE partitioning based on date.

CREATE TABLE sales (

 trans_id int,

 date date,

 amount decimal(9,2),

 region text)

 DISTRIBUTED BY (trans_id)

 PARTITION BY RANGE(date)

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 74

 (start (date '2018-01-01') inclusive

 end (date '2019-01-01') exclusive every (interval '1 month'),

 default partition outlying_dates);

Creating Temporary Table

A temporary table stores temporary intermediate results and is deleted automatically at the end of the session or
selectively at the end of the current transaction. The command to create a temporary table is as follows:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 74

CREATE TEMPORARY TABLE table_name(…)

 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]

Description: The temporary table behavior at the end of a transaction block can be controlled by ON COMMIT in

the above statement.
PRESERVE ROWS: The data will be retained at the end of the transaction. This is the default behavior.
DELETE ROWS: All rows in the temporary table will be deleted at the end of each transaction block.
DROP: The temporary table will be dropped at the end of the current transaction block.

Example:

Create a temporary table and drop it at the end of the transaction.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 74

CREATE TEMPORARY TABLE temp_foo (a int, b text) ON COMMIT DROP;

Table Constraint Definition

You can define constraints on columns and tables to restrict the data, but there are some limitations:

Columns referenced by a check constraint can only be in the same table.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 74

Unique and primary key constraints must contain the distribution key column. They are not supported for append-
optimized and column-oriented tables.
Foreign key constraints are allowed to be invalid in CDWPG.

The actual commands to use constraints are as follows:

UNIQUE (column_name [, ...])

 | PRIMARY KEY (column_name [, ...])

 | CHECK (expression)

Check constraint

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 74

A check constraint specifies that the values in the column must satisfy a Boolean expression; for example:

CREATE TABLE products

 (product_no integer,

 name text,

 price numeric CHECK (price > 0));

Not-null constraint

A not-null constraint specifies that columns cannot have null values; for example:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 74

CREATE TABLE products

 (product_no integer NOT NULL,

 name text NOT NULL,

 price numeric);

Unique constraint

A unique constraint ensures that the data contained in a column or a group of columns is unique for all rows in a table.

A table containing a unique constraint must be hash distributed, and the constraint column must contain the
distribution key column; for example:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 74

CREATE TABLE products

 (product_no integer UNIQUE,

 name text,

 price numeric)

 DISTRIBUTED BY (product_no);

Note:
 Primary key constraints are supported only for row-oriented heap tables but not append-only tables.

Primary key constraint

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 74

A primary key constraint is a combination of a unique constraint and a not-null constraint. A table containing a primary
key constraint must be hash distributed, and the constraint column must contain the distribution key column. If the
table has a primary key, this column (or group of columns) will be selected as the distribution key for the table by

default; for example:

CREATE TABLE products

 (product_no integer PRIMARY KEY,

 name text,

 price numeric)

 DISTRIBUTED BY (product_no);

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 74

Note:
 Primary key constraints are supported only for row-oriented heap tables but not append-only tables.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 74

Table Distribution Key Selection
Last updated：2024-02-02 15:36:51

This document describes how to select a distribution key in CDWPG.

Table Distribution Policy Selection

CDWPG supports three methods of data distribution among nodes: hash, random, and replicated.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 74

CREATE TABLE <table_name> (...) [DISTRIBUTED BY (<column> [,..]) | DISTRIBUTED R

The CREATE TABLE statement supports the following three distribution policy clauses:

 DISTRIBUTED BY (column, [...]) specifies to distribute data rows among nodes (segments) according

to the hash value of the distribution column. The same value will be always hashed to the same segment. Choosing a
unique distribution key (such as the primary key) will ensure a more even data distribution. Hash distribution is the
default distribution policy for tables, and if the DISTRIBUTED clause is not provided when the table is created, the

primary key or the first eligible column of the table will be used as the distribution key. If there are no eligible columns

in the table, the distribution policy will degrade to random distribution.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 74

 DISTRIBUTED RANDOMLY specifies to distribute data evenly among nodes (segments) in a circular manner.

Unlike in the hash distribution policy, data rows with the same value are not necessarily located on the same segment.
Although random distribution ensures an even data distribution, it is only recommended when the table doesn't have a

suitable discretely distributed data column that can be used as the hash distribution column.
 DISTRIBUTED REPLICATED specifies to distribute data in a replicated manner; that is, each node (segment) has

all the data in the table. In this distribution policy, data is evenly distributed as each segment stores the same data
rows. When large tables are joined with small tables, specifying a sufficiently small table as replicated may also
improve the performance.

Below are examples:

The table creation statement in this example creates a hash-distributed table, where data is distributed to segments
according to the hash value of the distribution key.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 74

CREATE TABLE products (name varchar(40),

 prod_id integer,

 supplier_id integer)

 DISTRIBUTED BY (prod_id);

The table creation statement in this example creates a randomly distributed table, where data is circularly placed into

each segment. If the table doesn't have a suitable discretely distributed data column that can be used as the hash
distribution column, the random distribution policy can be used.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 74

CREATE TABLE random_stuff (things text,

 doodads text,

 etc text)

 DISTRIBUTED RANDOMLY;

The table creation statement in this example creates a replicated distributed table, where each segment stores all the

data of the table.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 74

CREATE TABLE replicated_stuff (things text,

 doodads text,

 etc text)

 DISTRIBUTED REPLICATED;

For simple queries by distribution key, including UPDATE and DELETE statements, CDWPG has the feature of

pruning segments by distribution key. For example, if the products table uses prod_id as the distribution

key, the following query will only be sent to segments that satisfy prod_id=101 for execution, which greatly

improves the SQL execution performance:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 74

select * from products where prod_id = 101;

Table Distribution Key Selection

Reasonably planning the distribution key is critical to the performance of table queries. Pay attention to the following

principles:
Don't use replicated tables, as they can easily lead to query degradation, which results in slower queries.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 74

Select one or multiple columns with an even data distribution. If the values of the selected distribution column are not
evenly distributed, data skew may occur, and some segments may store a lot of data (high query load), in which case,
more time will be spent on such segments. Therefore, you should not select data of bool or datetime type as the

distribution key.
Select a column that often requires joins as the distribution key. This can implement the collocated join calculation
as shown in Figure 1; that is, when the join key and the distribution key are the same, the join can be completed inside
the segment. Otherwise, the table needs to be redistributed (redistribution motion) to implement the redistributed
join as shown in Figure 2, or some small tables can be broadcast (broadcast motion) to implement the broadcast

join as shown in Figure 3. The last two methods have a high network overhead.
Select a query condition column that appears frequently as the distribution key, so that it is possible to prune
segments by distribution key.
If no distribution key is specified, the table's primary key will be used as the distribution key by default, and if the table
doesn't have a primary key, the first column will be used as the distribution key.
A distribution key can be defined as one or more columns; for example:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 74

create table t1(c1 int, c2 int) distributed by (c1,c2);

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 74

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 74

Table Distribution Key Limits

Primary and unique keys must contain a distribution key; for example:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 74

create table t1(c1 int, c2 int, primary key (c1)) distributed by (c2);

will fail to create.

Distribution Key Reasonableness Analysis

An inappropriate distribution key will cause data inconsistency in the table. You can run the following statement to
check the data distribution:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 74

create table t1(c1 int, c2 int) distributed by (c1);

select gp_segment_id,count(1) from t1 group by 1 order by 2 desc;

 gp_segment_id | count

---------------+--------

 0 | 1000

 1 | 68

(2 rows)

When you find that the difference between segments is too large, you can modify the distribution key to make the data
more even.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 74

ALTER TABLE <table_name> SET WITH (REORGANIZE=true)

DISTRIBUTED BY (<distribution columns>);

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 74

Table Storage Format Selection
Last updated：2024-02-02 15:36:51

This document describes how to select a storage format in CDWPG.

Storage Format Overview

Greenplum (GP) stores data in heap or AO (AORO or AOCO) tables:
Heap table: It is inherited from PostgreSQL and is currently the default storage format of GP. It only supports row-

oriented storage.
AO table: AO table was originally designed to only support APPEND (i.e., INSERT), so it was called append-only.

It has been optimized since v4.3 and now supports UPDATE and DELETE , so it has been renamed append-

optimized. AO supports both row-oriented (AORO) and column-oriented (AOCO) storage.

Heap Table

Heap table is inherited from PostgreSQL and uses MVCC for consistency. If you don't specify any storage format

when creating a table, GP will use the heap table format.

A heap table supports partitioned table and row storage but not column storage or compression. It should be noted
that when processing UPDATE and DELETE operations, the heap table does not actually delete data; instead, it

relies on version information to block old data. Therefore, if your table has a large number of UPDATE or DELETE

operations, the physical space used by the table will keep increasing. In this case, you need to use VACUUM to clear

old data.

A heap tables doesn't support logical incremental backup, so if you want to take a snapshot of the heap table, you
need to export the full data each time.
Table creation statement:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 74

CREATE TABLE heap(

 a int,

 b varchar(32)

) DISTRIBUTED BY (a);

Best practices

For small tables such as dimension tables in the data warehouse or those containing fewer than one million data

records, heap tables are recommended.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 74

In OLTP scenarios where many UPDATE and DELETE operations exist and queries are mostly point queries with

indexes, heap tables are recommended.

AO Table

AO table is designed to be used as large fact table in the data warehouse. It supports row storage (not

recommended), column storage, and data compression.

An AO table is very different from a heap table in both the logical and physical table structures. For example, the heap
table mentioned above uses MVCC to control the visibility of data after UPDATE and DELETE operations, while

the AO table uses an additional bitmap table to indicate what data is visible in the AO table.

For an AO table with a large number of UPDATE and DELETE operations, you also need to use VACUUM for

maintenance. However, in the AO table, VACUUM needs to reset the bitmap and compress the physical file, so it is

usually slower than in a heap table.

AOCO

An AOCO table organizes data in columns and supports column-level compression.

The table creation statement is as follows, with the partitioning feature added:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 74

CREATE TABLE aoco(

 a int ENCODING (compresstype=zlib, compresslevel=5),

 b int ENCODING (compresstype=none),

 c varchar(32) ENCODING (compresstype=RLE_TYPE, blocksize=32768),

 d varchar(32),

 fdate date

)

WITH (appendonly=true, orientation=column, compresstype=zlib, compresslevel=6, bloc

DISTRIBUTED BY (a)

PARTITION BY RANGE(fdate)

(

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 74

 PARTITION pn START ('2018-11-01'::date) END ('2018-11-10'::date) EVERY ('1 day'

 DEFAULT PARTITION pdefault

);

Compression

Compression is mainly used for column-oriented tables or append-write (appendonly=true) row-oriented tables.

The following two types of compression are available:
Table-level compression.
Column-level compression, where you can apply different compression algorithms to different columns.

Currently, CDWPG supports zstd, zlib, and rle_type compression algorithms.
Examples:

Create a column-oriented table using level-5 zlib compression:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 74

CREATE TABLE foo (a int, b text)

 WITH (appendonly=true, orientation=column, compresstype=zlib, compresslevel=5);

Create a column-oriented table using level-5 zstd compression:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 74

CREATE TABLE foo (a int, b text)

 WITH (appendonly=true, orientation=column, compresstype=zstd, compresslevel=5);

Best practices

AOCO is typically used for fact tables in the data warehouse. Such tables have many fields and large data volumes
and are mainly used in OLAP scenarios, where only some fields in the tables are read and aggregated when queried,
with no SELECT * FROM involved.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 74

As AOCO is generally used for large tables, compression and partitioning are often used together to reduce the actual
storage capacity and improve the performance.
In general, you can select the zlib compression algorithm at level 4 or 5; however, be sure to use the rle_type algorithm

for fields with many repeated values.
Do not make the blocksize too large, especially for partitioned tables. GP maintains a buffer for each field in each
partition, so if the blocksize is too large, the memory usage will be very high. The default value of 32768 is suitable in
most cases.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 74

Table Partition Usage
Last updated：2024-02-02 15:36:51

This document describes how to use table partitioning in CDWPG.

Partitioned Table Overview

Partitioned tables are small tables imperceptibly divided from a large table, indicating that you can manipulate the
large table without caring about which small table the data actually falls into. CDWPG applies the same table

partitioning principle as PostgreSQL, both of which implement table inheritance and constraints.

Below is a sample partitioned table:

Partitioned Table Use Cases

You can consider the following aspects to determine whether to use a partitioned table:
Whether the table data volume is large enough: Partitioning can be used for fact tables with tens to hundreds of
millions of data records. There is no absolute criterion for the data volume, and the decision is usually made based on

experience and whether you are satisfied with the current performance.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 74

Whether the table has suitable partition fields: If the data volume is large enough, you need to look for suitable
fields that can be used for partitioning. Ideally, you can use time dimensions such as day and month if present.
Whether the data in the table has a lifecycle: The data in the data warehouse will not be stored forever and

generally has a lifecycle, such as data in the past year. This involves the management of legacy data. If there is a
partitioned table, it will be easy to delete legacy data or archive it to a cheaper storage medium such as COS.
Whether the query statement contains partition fields: If a table is partitioned, but none queries contain partition
fields, the performance will be lowered rather than improved, because all partitioned tables will be scanned for all
queries.

Creating Partitioned Table

Range partition
List partition
A combination of both types
Range partition example:

https://www.tencentcloud.com/product/cos

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 74

CREATE TABLE test_range_partition

(

 uid int,

 fdate character varying(32)

)

PARTITION BY RANGE(fdate)

(

 PARTITION p1 START ('2018-11-01') INCLUSIVE END ('2018-11-02') EXCLUSIVE,

 PARTITION p2 START ('2018-11-02') INCLUSIVE END ('2018-11-03') EXCLUSIVE,

 DEFAULT PARTITION pdefault

);

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 74

The above example creates a table by day. If the time span is large, the table creation statement will be very long and

inconvenient to write. In this case, you can use the following syntax:

CREATE TABLE test_range_partition_every_1

(

 uid int,

 fdate date

)

partition by range (fdate)

(

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 74

 PARTITION pn START ('2018-11-01'::date) END ('2018-12-01'::date) EVERY ('1 day'

 DEFAULT PARTITION pdefault

);

List partition example:

CREATE TABLE test_list_partition

(

 uid int,

 gender char(1)

)

PARTITION BY LIST (gender)

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 74

(

 PARTITION girls VALUES ('F'),

 PARTITION boys VALUES ('M'),

 DEFAULT PARTITION pdefault

);

Managing Partitioned Table

Just like a common table, a partitioned table supports many operations as listed below, among others:

Clearing partition

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 74

ALTER TABLE test_range_partition TRUNCATE PARTITION p1;

Dropping partition

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 74

ALTER TABLE test_range_partition DROP PARTITION p1;

Note:

 DROP PARTITION is followed by the partition name, not the partitioned table name. There is a difference between

the two. If the partitioned table is created by using the EVERY syntax, you need to query the name of the particular

partition through the pg_partitions table.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 74

ALTER TABLE test_range_partition ADD PARTITION p3 START ('2018-11-03') INCLUSIVE EN

Note:

 If the partitioned table contains the DEFAULT partition, the following error will occur: ERROR: cannot add

RANGE partition "p3" to relation "test_range_partition" with DEFAULT partition

"pdefault" . You can see Rolling Partition for solution.

Rolling Partition

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 74

In tables partitioned by time, partitions usually keep rolling forward. For example, if a table is partitioned by day to save
data in the past ten days, the partition created ten days ago will be deleted every day, and a new partition will be
created to store the latest data.

If there is a default partition, you can use partition split.

ALTER TABLE test_range_partition SPLIT DEFAULT PARTITION START ('2018-11-03') INCLU

In this way, the new partition is added, while the default partition is retained. Then, the replacement of the old and new
partitions can be completed when the old partition is deleted.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 74

Exchanging Partition

Exchanging partition is to exchange a common table with a partitioned table. This feature is very useful in tiered data
storage.

For example, if you need to set partitions according to different COS directories, you can use partition exchanging to

implement this, so that less queried historical data in a large table can be placed in COS. The syntax is as follows:

ALTER TABLE {table_name} EXCHANGE PARTITION {partition_name|FOR (RANK(number))|FOR

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 74

Querying partition

System tables or views related to partitions are as follows:

pg_partition

pg_partition_columns

pg_partition_encoding

pg_partition_rule

pg_partition_templates

pg_partitions

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 74

Viewing partition information

t2=# select * from pg_partitions where partitiontablename = 'test_range_partition_1

-[RECORD 1]------------+---

schemaname | public

tablename | test_range_partition

partitionschemaname | public

partitiontablename | test_range_partition_1_prt_p1

partitionname | p1

parentpartitiontablename |

parentpartitionname |

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 74

partitiontype | range

partitionlevel | 0

partitionrank | 1

partitionposition | 2

partitionlistvalues |

partitionrangestart | '2018-11-01'::character varying(32)

partitionstartinclusive | t

partitionrangeend | '2018-11-02'::character varying(32)

partitionendinclusive | f

partitioneveryclause |

partitionisdefault | f

partitionboundary | PARTITION p1 START ('2018-11-01'::character varying(32))

parenttablespace | pg_default

partitiontablespace | pg_default

Viewing partition definition

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 74

t2=# select pg_get_partition_def('test_range_partition'::regclass,true);

-[RECORD 1]--------+---

pg_get_partition_def | PARTITION BY RANGE(fdate)

 | (

 | PARTITION p1 START ('2018-11-01'::character varyin

 | PARTITION p2 START ('2018-11-03'::character varyin

 | DEFAULT PARTITION pdefault

 |)

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 74

Best Practices for Partitioned Table

Partition granularity

Range partitioned tables usually involves granularity selection, such as partitioning by day, week, or month. The finer
the granularity, the less data per table, but the more the partitioned tables, and vice versa.

There is no absolute criterion for the number of partitioned tables. Generally, 100 is a high number in this regard.

If there are too many partitioned tables, various problems will occur; for example, the query optimizer will be slower to
generate execution plans, and many maintenance tasks will also become slower, such as vacuuming, segment
recovering, cluster scaling, and disk usage checking.

Query statement

In order to take full advantage of table partitioning, it is better to include a partition condition in a query statement. The
ultimate goal is to scan as few partitioned tables as possible.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 74

Extension Usage
Last updated：2024-02-02 15:36:51

Background

CDWPG is based on the massively parallel processing (MPP) cluster architecture of PostgreSQL, so it is compatible
with certain extensions in the PostgreSQL ecosystem. This document lists such extensions and how to use them. If
you need to use other extensions, contact us.

Extension List

postgis: v2.5.2, a spatial database extension as detailed in geospatial.
hll: v2.14, a HyperLogLog algorithm extension as detailed in postgresql-hll.
roaringbitmap: v0.2.66, a compressed bitmap algorithm extension as detailed in gpdb-roaringbitmap.
orafce: v3.7, an Oracle function compatibility extension as detailed in orafce.
pgcrypto: v1.1, an encryption extension as detailed in pgcrypto.

fuzzystrmatch: v1.0, an extension used to determine similarities and distance between strings as detailed in
fuzzystrmatch.

Directions

CDWPG does not create the above extensions by default. You can create or delete extensions as needed with the
following syntax:

https://www.tencentcloud.com/contact-us
https://github.com/greenplum-db/geospatial
https://github.com/citusdata/postgresql-hll
https://github.com/zeromax007/gpdb-roaringbitmap
https://github.com/orafce/orafce
https://www.postgresql.org/docs/9.4/pgcrypto.html
https://www.postgresql.org/docs/9.4/fuzzystrmatch.html

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 74

CREATE EXTENSION {extension name};

DROP EXTENSION {extension name}

Note:
The scope of extensions is the database, which means that within each database where an extension is needed, you
need to first run the CREATE statement.

To see the extensions currently installed in the database and their versions, use the following syntax:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 74

test_db=> \\dx

 List of installed extensions

 Name | Version | Schema | Descript

ion

---------+---------+------------+--

 hll | 2.14 | public | Type for storing hyperloglog data

 orafce | 3.7 | public | Functions and operators that emulate a subset of

functions and packages from the Oracle RDBMS

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

(3 rows)

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 74

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 74

Cold Data Backup
Last updated：2024-02-02 15:36:51

This document describes how to back up data regularly.

Background

Although CDWPG has a master-standby data storage architecture, some scenarios require cold backup for all
important data, such as when data is abnormally deleted. As automatic cold backup is not supported by CDWPG at

the moment, manual operation is required. In CDWPG, COS is used as the storage medium for data backup. For
related operations on COS data, see Importing and Exporting COS Data at High Speed with External Table.

Impact

Note that backing up data as instructed in this document may have the following impact on the cluster:
1. Script execution will increase the cluster load, especially the overheads at the network layer. Therefore, we
recommend you evaluate the backup time and perform it during off-peak hours of your business.

2. A COS extension will be created in each database during script execution.
3. A COS external table will be created for each table that needs to be backed up during script execution and deleted
after the backup is completed.

Issues

Note that you may encounter the following issues when backing up data as instructed in this document:

Error Message Solution

 ERROR: permission denied for external

protocol cos

 GRANT ALL ON PROTOCOL cos TO

{backup_user}

 ERROR: permission denied for schema

{schame_name}

 GRANT ALL ON SCHEMA {schame_name} to

{backup_user}

 ERROR: permission denied for relation

{table_name}

 GRANT SELECT ON {table_name} to

{backup_user}

https://www.tencentcloud.com/document/product/1138/45032

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 74

Directions

You can use the following shell script to back up all data in the CDWPG cluster and scale the cluster as needed

to complete regular cold backups with crontab. You can also download and use backup_cdw_v101.sh.
Note:

Deleting a writable external table will not delete the corresponding data in COS.
We recommend you back up data during off-peak hours of your system, as the backup process may increase the
system load.
The backup duration depends on the data volume and cluster specification. Simply put, the more the cluster nodes,
the faster the backup.

https://packagedown-online-1256722404.cos.ap-guangzhou.myqcloud.com/tool/backup_cdw_v101.sh

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 74

#!/bin/bash

set -e

CDWPG connection parameters that need to be entered

PWD='' # Required

HOST='' # Required

USER='' # Required

DEFAULT_DB='postgres'

Backup parameters that need to be entered

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 74

SECRET_ID='' # Required

SECRET_KEY='' # Required

COS_URL='' # Required, such as `test-1301111111.cos.ap-guangzhou.myqcloud.com`

COMPRESS_TYPE='gzip' # Whether the files in COS are in compressed format. Valid val

echo -e "\\n`date "+%Y%m%d %H:%M:%S"` backup task start\\n"

Step 1. Get the list of databases

db_list=`PGPASSWORD=${PWD} psql -t -h ${HOST} -p 5436 -d ${DEFAULT_DB} -U ${USER} -

Step 2. Traverse the databases that need to be backed up

for db in $db_list

do

 # `template0`, `template1`, and `gpperfmon` are templates and system database a

 if ["$db" = "template0" -o $db = "template1" -o $db = "gpperfmon"];then

 continue

 fi

 echo -e "\\n**"

 echo -e "backup database:{$db} start"

 db_start=`date +%s`

 # Step 3. Get the current date

 # Use the date as part of the COS path to distinguish between data backed up on

 cur_date=`date +%Y%m%d`	

 # Step 4. Get the list of tables that need to be backed up

 # External, virtual, temporary, and replicated tables (not supported currently)

 table_list=`PGPASSWORD=${PWD} psql -t -h ${HOST} -p 5436 -d ${db} -U ${USER} -c

 # Step 5. Create a COS extension

 PGPASSWORD=${PWD} psql -h ${HOST} -p 5436 -d ${db} -U ${USER} -c "CREATE EXTEN

 # Step 6. Traverse the list and perform backups in sequence

 for table in $table_list

 do

 sleep 1

 table_start=`date +%s`

 echo -e "backup ${table} start"

 # Here, a name suffix must be added in the format of `{schema}.{table}`

 backup_table="${table}_cdw_backup_cos"

 # Step 7. Create COS backup tables

 PGPASSWORD=${PWD} psql -h ${HOST} -p 5436 -d ${db} -U ${USER} -c "CREATE W

 # Step 8. Import the data of original tables to backup tables

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 74

 PGPASSWORD=${PWD} psql -h ${HOST} -p 5436 -d ${db} -U ${USER} -c "INSERT I

 # Step 9. Delete the backup external tables

 # Note: Deleting an external table will not delete the corresponding data i

 PGPASSWORD=${PWD} psql -h ${HOST} -p 5436 -d ${db} -U ${USER} -c "DROP EXT

 table_end=`date +%s`

 echo -e "backup ${table} done, cost $[table_end - table_start]s\\n"

 done

 db_end=`date +%s`

 echo -e "backup database:{$db} done, cost $[db_end - db_start]s"

 echo -e "**\\n"

done

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 74

Statistics and Space Maintenance
Last updated：2024-02-02 15:36:51

Background

Cluster statistics are critical to the use of clusters, and CDWPG's query optimizer is based on the dynamically
calculated cost to determine how to make selections. How is the cost calculated? Usually, the calculation is based on
the cost model and statistics. The cost model reasonableness and statistics accuracy will affect the effectiveness of

query optimization.
The utilization of cluster tablespaces also affects the query cost. When a table has UPDATE operations (including

 INSERT VALUES , UPDATE , DELETE , ALTER TABLE , and ADD COLUMN), it will leave garbage data

that is no longer used in the system table and the updated table, causing system performance degradation and taking
up a lot of disk space. Therefore, you need to regularly monitor the data bloat of the table.

The following details the regular monitoring and maintenance of statistics and data bloat.

Statistics Collection

 ANALYZE collects table statistics in a database and stores the results in the pg_statistic system directory.

The query planner uses such statistics to help determine the most efficient execution plan for a query. The statistics
contain various information such as the amount of data and indexes in the table. A good query plan is based on
accurate table statistics.

 ANALYZE description

 ANALYZE is a command provided by Greenplum to collect statistics and supports column, table, and database

granularities as shown below:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 74

CREATE TABLE foo (id int NOT NULL, bar text NOT NULL) DISTRIBUTED BY (id); // Creat

ANALYZE foo(bar); // Collect statistics of the `bar` column only

ANALYZE foo; // Collect statistics of the `foo` table

ANALYZE; // Collect statistics of all tables in the current database. You need to h

Use limits of ANALYZE

 ANALYZE will put a SHARE UPDATE EXCLUSIVE lock on the target table, which will conflict with DDL

statements.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 74

 ANALYZE speed

 ANALYZE is a sampling statistical algorithm that usually does not scan all data in a table, but still consumes some

time and computing resources for large tables.

Time to use ANALYZE

As mentioned above, ANALYZE locks tables and consumes system resources, so it is important to run it at the right

time and as little as possible. We recommend you run ANALYZE in the following four scenarios.

After data is batch loaded; for example, after data is imported to a newly created table.
After an index is created.
After INSERT , UPDATE , and DELETE operations are performed on a large amount of data.

After VACUUM FULL is executed.

Analyzing partitioned table

As long as you keep the default value and do not modify the system parameter
 optimizer_analyze_root_partition , there is no difference in manipulating a partitioned table. Just run

 ANALYZE on the root table, and the system will automatically collect the statistics of partitioned tables on all leaf

nodes.
If the number of partitioned tables is high, running ANALYZE on the root table can be time-consuming. Partitioned

tables are usually time-dimensional, and historical partitioned tables are not modified; therefore, we recommend you

run ANALYZE separately in partitions where data changes.

Data Bloat

The Greenplum database's heap table uses PostgreSQL's multiple version concurrency control (MVCC) storage
implementation. The database will logically delete a deleted or updated row, but an invisible image of that row will
remain in the table. As more operations are performed, the table will have more and more invisible data, which will
take up a lot of storage space, thereby causing a serious performance degradation in table operations. Additionally,

the data bloat can occupy a lot of space, which needs to be regularly fixed.

Data bloat monitoring

The gp_toolkit schema provides a gp_bloat_diag view that determines the table bloat by the ratio of the

actual number of pages to the expected number of pages. To use this view, make sure that the latest statistics are
collected for all tables in the database. Then, run the following SQL:

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 74

gpadmin=# SELECT * FROM gp_toolkit.gp_bloat_diag;

 bdirelid | bdinspname | bdirelname | bdirelpages | bdiexppages | bd

----------+------------+------------+-------------+-------------+------------------

 21488 | public | t1 | 97 | 1 | significant amoun

(1 row)

Here, bdirelpage is the actual number of pages and bdiexppages is the expected number of pages in the

 t1 table. A bloat ratio exceeding 4 will be recorded in the table, and there may also be a slight bloat even when no

ratio is recorded. You can also compare the space of tables at different times to determine whether data has bloated.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 74

Cleaning data bloat in table

The VACUUM <tablename> command adds expired rows to the shared free space map, so such space can be

reused. When VACUUM is run periodically on a table with frequent UPDATE operations, the space occupied by

expired rows can be reused quickly, easing table bloat. The cycle to run VACUUM is determined by the speed of

 UPDATE and DELETE on the table.

Note:
 VACUUM holds a SHARE UPDATE EXCLUSIVE lock as ANALYZE does and may interlock with DDL

operations.
When the table experiences a significant bloat, VACUUM can only slow down the process but not immediately

reclaim the space. Therefore, you need to run VACUUM FULL to immediately reclaim all the bloat space. However,

 VACUUM FULL will add ACCESS EXCLUSIVE to the manipulated table, during which all other DDL and DML

statements on the table will be locked. Proceed with caution when running VACUUM FULL as the operation may be

time-consuming for large tables.
Another way to address bloat is to redistribute data in the table:
1. Record the distribution key of the table.

2. Change the distribution policy of the table to random distribution.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 74

ALTER TABLE <tablename> SET WITH (REORGANIZE=false)

 DISTRIBUTED randomly;

3. Change the distribution policy back to the initial one.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 74

ALTER TABLE <table_name> SET WITH (REORGANIZE=true)

DISTRIBUTED BY (<original distribution columns>);

Handling index bloat

The VACUUM FULL command will only reclaim spaces from tables. To reclaim spaces from indexes, you need to

rebuild them with the REINDEX command.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 74

REINDEX TABLE <table_name> --- Rebuild all indexes in the table

REINDEX INDEX <index_name> --- Rebuild a specified index

Note:
Note that both REINDEX and VACUUM FULL will add ACCESS EXCLUSIVE .

Regular Cluster Maintenance

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 74

When using a cluster, you need to eliminate data bloat and maintain statistics regularly so that the cluster can deliver
an optimal performance.

Cleaning without table locking

As mentioned above, VACUUM <tablename> can mark reclaimable space without table locking and slow down

data bloat. Cleaning without locking the table will not affect data table reads/writes, but DDL statements cannot be
used, and some CPU and memory resources will be used.
Recommended frequency:
Once a day or at least twice a week if a large amount of data is updated in real time and many data records change
every day.

Once a week under normal circumstances or once a month if data is not updated frequently.
Use the following script to clean a table with a cron job.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 74

#!/bin/bash

export PGHOST=xxx.xxx.x.x

export PGPORT=5436

export PGUSER=test

export PGPASSWORD=test

db="test"

psql -d $db -e -c "VACUUM test_table;"

Full cleaning with table locking

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 74

If the data in a table is updated and deleted frequently, we recommend you plan a business pause window to run
 VACUUM FULL and REINDEX to reclaim all the bloat space in the table. Cleaning with table locking will put an

 ACCESS EXCLUSIVE lock on the manipulated table, during which you cannot perform any operations on the table.

1. Run VACUUM FULL <tablename> .

2. Run REINDEX TABLE <tablename> (you can skip this step for tables without indexes).

3. Run ANALYZE <tablename> .

Recommended frequency: Once a week or once a day if almost all data is updated daily.
Use the following script to regularly clean cluster tables, preferably during off hours in the early morning on the

weekend.

Cloud Data Warehouse for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 74

#!/bin/bash

export PGHOST=xxx.xxx.x.x

export PGPORT=5436

export PGUSER=test

export PGPASSWORD=test

db="test"

psql -d $db -e -c "VACUUM FULL test_table;"

psql -d $db -e -c "REINDEX TABLE test_table;"

psql -d $db -e -c "ANALYZE test_table;"

