
Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 71

Data Lake Compute

Development Guide

Product Documentation

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 71

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 71

Contents

Development Guide
SparkJar Job Development Guide
PySpark Job Development Guide
Query Performance Optimization Guide
UDF Function Development Guide
Materialized View

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 71

Development Guide
SparkJar Job Development Guide
Last updated：2024-08-15 17:54:48

Use Cases

DLC is fully compatible with open-source Apache Spark, allowing users to write business programs for reading,
writing, and analyzing data on the DLC platform. This example demonstrates how to write Java code to read and write
data on COS and perform detailed operations such as creating databases and tables, and reading and writing tables

on DLC, helping users complete job development on DLC.

Environment Preparation

Dependencies: JDK1.8 Maven IntelliJ IDEA

Development Process

Development Flowchart

The development flowchart for DLC Spark JAR jobs is as follows:

Creating Resource

The first time you run a job on DLC, you need to create Spark job computing resources. For example, create a Spark
job resource named "dlc-demo".

1. Log in to the Data Lake Compute DLC Console. Select your service region, and click Data Engine in the navigation
menu.
2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.
3. In Cluster Configuration > Calculation Engine Type, select Spark Job Engine.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 71

In Information Configuration > Resource Name, enter "dlc-demo". For detailed instructions on creating resources,
see Purchasing Private Data Engine.

4. Click Activate Now and confirm the resource configuration information.

5. After confirming the information is correct, click Submit to complete the resource configuration.

https://www.tencentcloud.com/document/product/1155/48682?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 71

Uploading Data to COS

Create a bucket named "dlc-demo" and upload the people.json file to use as an example for reading and writing data
from COS. The content of the people.json file is as follows:

{"name":"Michael"}

{"name":"Andy", "age":30}

{"name":"Justin", "age":3}

{"name":"WangHua", "age":19}

{"name":"ZhangSan", "age":10}

{"name":"LiSi", "age":33}

{"name":"ZhaoWu", "age":37}

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 71

{"name":"MengXiao", "age":68}

{"name":"KaiDa", "age":89}

1. Log in to the Cloud Object Storage (COS) console and click Bucket List in the left navigation menu.
2. Create a bucket: Click Create Bucket in the upper left corner, enter "dlc-demo" for the name, and click Next to
complete the configuration.
3. Upload files: Click File List > Upload File, select the local "people.json" file, and upload it to the "dlc-demo-
1305424723" bucket (-1305424723 is a randomly generated string by the platform when creating the bucket), then

click Upload to complete the file upload. For detailed instructions on creating a new bucket, see Create Bucket.

Creating a Maven Project

1. Create a new Maven project named "demo" through IntelliJ IDEA.
2. Add dependencies: Add the following dependencies to the pom.xml file:

https://console.tencentcloud.com/cos
https://www.tencentcloud.com/document/product/436/13309?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 71

<dependency>

 <groupId>org.apache.spark</groupId>

 <artifactId>spark-core_2.12</artifactId>

 <version>3.2.1</version>

 <scope>provided</scope>

</dependency>

<dependency>

 <groupId>org.apache.spark</groupId>

 <artifactId>spark-sql_2.12</artifactId>

 <version>3.2.1</version>

 <scope>provided</scope>

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 71

</dependency>

Writing Codes

The code features include reading and writing data from COS, as well as creating databases and tables, querying
data, and writing data in DLC.

1. Example code for reading and writing data from COS:

package com.tencent.dlc;

import org.apache.spark.sql.Dataset;

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 71

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SaveMode;

import org.apache.spark.sql.SparkSession;

public class CosService {

 public static void main(String[] args)

 {

 //1. Create SparkSession

 SparkSession spark = SparkSession

 .builder()

 .appName("Operate data on cos")

 .config("spark.some.config.option", "some-value")

 .getOrCreate();

 //2. Read the json file from COS to generate a data set, supporting various

 String readPath = "cosn://dlc-demo-1305424723/people.json";

 Dataset<Row> readData = spark.read().json(readPath);

 //3. Perform business computations on the data set to generate result data,

 readData.createOrReplaceTempView("people");

 Dataset<Row> result = spark.sql("SELECT * FROM people where age > 3");

 //4. Save the result data back to COS

 String writePath = "cosn://dlc-demo-1305424723/people_output";

 //Supports writing various file types such as json, csv, parquet, orc, text

 result.write().mode(SaveMode.Append).json(writePath);

 spark.read().json(writePath).show();

 //5. Close the session

 spark.stop();

 }

}

2. Create databases, tables, query data, and write data on DLC:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 71

package com.tencent.dlc;

import org.apache.spark.sql.SparkSession;

public class DbService {

 public static void main(String[] args) {

 //1. Initialize SparkSession

 SparkSession spark = SparkSession

 .builder()

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 71

 .appName("Operate DB Example")

 .getOrCreate();

 //2. Create a database

 String dbName = " `DataLakeCatalog`.`dlc_db_test` ";

 String dbSql = "CREATE DATABASE IF NOT EXISTS" + dbName + " COMMENT 'demo t

 spark.sql(dbSql);

 //3. Create an internal table

 String tableName = "`test`";

 String tableSql = "CREATE TABLE IF NOT EXISTS " + dbName + "." + tableName

 + "(`id` int,`name` string, `age` int)";

 spark.sql(tableSql);

 //4. Write data

 spark.sql("INSERT INTO " + dbName + "." + tableName + "VALUES (1,'Andy',12)

 //5. Query data

 spark.sql(" SELECT * FROM " + dbName + "." + tableName).show();

 //6. Create an external table

 String extTableName = "`ext_test`";

 spark.sql(

 "CREATE EXTERNAL TABLE IF NOT EXISTS " + dbName + "." + extTableNam

 + " (`id` int, `name` string, `age` int) "

 + "ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerD

 + "STORED AS TEXTFILE LOCATION 'cosn://dlc-demo-1305424723/

 //7. Write data to the external table

 spark.sql("INSERT INTO " + dbName + "." + extTableName + "VALUES (1,'LiLy',

 //8. Query data from the external table

 spark.sql(" SELECT * FROM " + dbName + "." + extTableName).show();

 //9. Close the session

 spark.stop();

 }

}

When you create an external table, follow the steps to upload data to COS and first create a corresponding folder
named after the table in the bucket to store the table files.

Debugging, Compiling Codes, and Packaging Them as JAR Files

Compile and packet the demo project through IntelliJ IDEA to generate the JAR packet demo-1.0-SNAPSHOT.jar in
the project's target folder.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 71

Uploading JAR Files to COS

Log in to the COS console and follow the steps in Uploading Data to COS to upload demo-1.0-SNAPSHOT.jar to
COS.

Creating a Spark Jar Data Job

Before creating a data job, you need to configure CAM role arn to ensure the data job can securely access the data.

For details on configuring CAM role arn, see Configuring Data Access Policy. If you have already configured a data
policy, the policy name might be: qcs::cam::uin/100018379117:roleName/dlc-demo.
1. Log in to the Data Lake Compute DLC Console. Select your service region, and click Data Jobs in the navigation
menu.
2. Click Create Job in the upper left corner to enter the creation page.

3. On the job configuration page, configure the job running parameters as follows:

Configuration
Parameter

Note

Job Name Custom Spark Jar job name, for example: cosn-demo.

Job Type Select Batch Processing Type

Data Engine Select the dlc-demo computing engine created in the Create Resource step.

Program Packet Select COS, and choose the JAR file demo-1.0-SNAPSHOT.jar uploaded in the
Upload JAR file to COS step.

Main Class
Fill in according to the program code, such as:
For reading and writing data from COS, fill in: com.tencent.dlc.CosService
For creating databases and tables on DLC, fill in: com.tencent.dlc.DbService.

CAM role arn Select the policy created in the previous step,
qcs::cam::uin/100018379117:roleName/dlc-demo.

Keep other parameter values as default.

https://console.tencentcloud.com/cos
https://www.tencentcloud.com/document/product/1155/49494?lang=en
https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 71

4. Click Save and you can see the created job on the Spark Job page.

Running and Viewing Job Results

1. Running the Job: On the Spark Job page, find the newly created job and click Run to run the job.
2. Viewing Job Running Results: You can view the job running logs and results.

Viewing Job Running Logs

1. Click Job Name >Tasks history to view the task's running status.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 71

2. Click Task ID > Run Log to view the job running logs.

Viewing Job Running Results

1. If you run the example of reading and writing data from COS, you should check the COS Console for writing results.

2. For jobs that create tables and databases on DLC, check the DLC Data Exploration page to view the created

databases and tables.

https://console.tencentcloud.com/cos

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 71

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 71

PySpark Job Development Guide
Last updated：2024-07-31 18:02:53

Scenarios

Data Lake Compute supports the execution of programs written in Python. This example demonstrates the detailed
operations of reading and writing data on Cloud Object Storage (COS), creating libraries and tables on Data Lake
Compute, and reading and writing tables, assisting users in job development on Data Lake Compute.

Environment Preparation

Dependencies: PyCharm or other Python programming development tools.

Development Process

Development Flowchart

The development process for Data Lake Compute Spark JAR jobs is as follows:

 Resource Creation

For the first time running a job on Data Lake Compute, you need to create new Spark job compute resources, for

instance, creating a Spark job resource named "dlc-demo".
1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Engine in the
navigation menu.
2. Click Create Resource in the upper left corner to enter the resource configuration purchase page.
3. In the Cluster Configuration > Calculation Engine Type option, select Spark as the job engine.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 71

Fill in "dlc-demo" for Information Configuration > Resource Name. For a detailed introduction to creating new
resources, please refer to Purchasing a Dedicated Data Engine.

https://www.tencentcloud.com/document/product/1155/48682?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 71

4. Click Activate Now to confirm the resource configuration information.
5. Upon verifying that the information is accurate, click Submit to complete the resource configuration.

Uploading Data to COS

Create a bucket named "dlc-demo" and upload the file people.json for the example of reading and writing data from
COS. The content of the people.json file is as follows:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 71

{"name":"Michael"}

{"name":"Andy", "age":30}

{"name":"Justin", "age":3}

{"name":"WangHua", "age":19}

{"name":"ZhangSan", "age":10}

{"name":"LiSi", "age":33}

{"name":"ZhaoWu", "age":37}

{"name":"MengXiao", "age":68}

{"name":"KaiDa", "age":89}

1. Log in to the Cloud Object Storage (COS) console and click on Bucket List in the left navigation menu.

https://console.tencentcloud.com/cos

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 71

2. Creating a Bucket:
Click Create Bucket in the upper left corner, fill in the name field with "dlc-dmo", and click Next to complete the
configuration.

3. Upload File:
Click on File List > Upload File, select the local "people.json" file to upload to the "dlc-demo-1305424723" bucket
(-1305424723 is a random string generated by the platform when creating the bucket), click Upload to complete the
file upload. For details on creating a new bucket, please refer to Create Bucket.

Creating a Python Project

Create a new project named "demo" using PyCharm.

Writing Code

1. Create a new cos.py file, write code with the functionality to read and write data from COS, create libraries and
tables on DLC, query data, and write data.

https://www.tencentcloud.com/document/product/436/13309?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 71

import sys

from pyspark.sql import SparkSession

from pyspark.sql import Row

if __name__ == "__main__":

 spark = SparkSession \\

 .builder \\

 .appName("Operate data on cos")\\

 .getOrCreate()

 # 1. Read data from COS, supporting various file types such as JSON, CSV, Parqu

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 71

 read_path = "cosn://dlc-demo-1305424723/people.json"

 peopleDF = spark.read.json(read_path)

 # 2. Operate on the data

 peopleDF.createOrReplaceTempView("people")

 data_src = spark.sql("SELECT * FROM people WHERE age BETWEEN 13 AND 19")

 data_src.show()

 # 3. Writing Data

 write_path = "cosn://dlc-demo-1305424723/people_output"

 data_src.write.csv(path=write_path, header=True, sep=",", mode='overwrite')

 spark.stop()

2. Create a new db.py file, write code, the functions of which include creating libraries, tables, querying data, and
writing data on Data Lake Compute.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 71

from os.path import abspath

from pyspark.sql import SparkSession

if __name__ == "__main__":

 spark = SparkSession \\

 .builder \\

 .appName("Operate DB Example") \\

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 71

 .getOrCreate()

 # 1. Create a Database

 spark.sql("CREATE DATABASE IF NOT EXISTS DataLakeCatalog.dlc_db_test_py COMMENT

 # 2. Create Internal Table

 spark.sql("CREATE TABLE IF NOT EXISTS DataLakeCatalog.dlc_db_test_py.test(id in

 # 3. Writing Internal Data

 spark.sql("INSERT INTO DataLakeCatalog.dlc_db_test_py.test VALUES (1,'Andy',12)

 # 4. Inspect Internal Data

 spark.sql("SELECT * FROM DataLakeCatalog.dlc_db_test_py.test ").show()

 # 5. Create External Table

 spark.sql("CREATE EXTERNAL TABLE IF NOT EXISTS DataLakeCatalog.dlc_db_test_py.e

 # 6. Write external data

 spark.sql("INSERT INTO DataLakeCatalog.dlc_db_test_py.ext_test VALUES (1,'Andy'

 # 7. Inspect External Data

 spark.sql("SELECT * FROM DataLakeCatalog.dlc_db_test_py.ext_test ").show()

 spark.stop()

When creating an external table, you can follow the steps to upload data to COS and first create a corresponding

table name folder in the bucket to save the table files.

Debugging

Ensure PyCharm debugging is free of syntax errors.

Upload PY Files to COS

Log in to the COS console and follow the steps in the previous section Upload data to COS to upload cos.py and
db.py to COS.

Create a New Spark Jar Data Job

Before creating a data job, you need to complete the data access policy configuration to ensure that the data job can
safely access the data. For details on configuring the data access policy, please refer to Configuring Data Access

https://console.tencentcloud.com/cos
https://www.tencentcloud.com/document/product/1155/49494?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 71

Policy. If the data policy name has been configured as: qcs::cam::uin/100018379117:roleName/dlc-demo
1. Log in to the Data Lake Compute DLC Console, select the service region, and click on Data Jobs in the navigation
menu.

2. Click the Create Job button in the upper left corner to enter the creation page.
3. On the job configuration page, set the job running parameters as detailed below:

Parameter
Configuration

Note

Job name Specify a custom Spark job name, for instance: cosn_py

Job type Select Batch Processing Type

Data engine Select the dlc-demo compute engine created in the Create Resource step.

Application
Package

Select COS, and in the step of uploading a py file to COS, upload the py file:
To read and write data from COS, select: cosn://dlc-demo-1305424723/cos.py
To create a library, table, etc. on Data Lake Compute, select: cosn://dlc-demo-
1305424723/db.py

CAM role arn Select the policy created in the previous step:
qcs::cam::uin/100018379117:roleName/dlc-demo

Retain the default values of other parameters.

https://www.tencentcloud.com/document/product/1155/49494?lang=en
https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 71

4. Click Save to view the created job on the Spark Job page.

Execute and View Job Results

1. Run the job: On the Spark Job page, locate the newly created job and click Run to execute the job.

2. Viewing Job Execution Results: You can view the job execution logs and results.

Viewing Job Execution Logs

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 71

1. Click Job Name >Tasks history to view the task execution status:

2. Click Task ID > Run Log to view the job execution log.

View Job Execution Results

1. To run the example of reading and writing data from COS, go to the COS console to view the data write results.

2. To create tables and libraries on Data Lake Compute, navigate to the Data Exploration page on Data Lake Compute

to view the creation of libraries and tables.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 71

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 71

Query Performance Optimization Guide
Last updated：2024-07-31 18:03:07

Foreword

To enhance task execution efficiency, the DLC engine employs numerous optimization measures during computation,
such as Data Governance, Iceberg indexing, Cache, etc. Proper use can not only reduce unnecessary scan costs but
can even increase efficiency by several times or even dozens of times. Below, some optimization ideas are provided at

different levels.

Optimize SQL Statements

Scenario: The SQL statement itself is unreasonable, leading to poor execution efficiency.

Optimize JOIN Statements

When a query involves JOINs with multiple tables, the Presto engine prioritizes completing the JOIN operation for the
table on the right side of the query. Generally, completing the JOIN for the smaller table first, then joining the result set
with the larger table, leads to higher execution efficiency. Therefore, the order of JOINs directly affects the query's

performance. DLC Presto automatically collects statistics for inner tables and uses CBO to reorder the tables in the
query.
For outer tables, users can usually collect statistics through the analyze statement or manually specify the order of
JOINs. If manual specification is needed, please order the tables by size, placing the smaller table on the right and the
larger table on the left, as in tables A > B > C, for example: select * from A Join B Join C. It is important to note that
this does not guarantee increased efficiency in all scenarios, as it actually depends on the size of the data set resulting

from the JOIN.

Optimize GROUP BY Statements

Arranging the order of fields in the GROUP BY statement can improve performance to a certain extent. Please sort the
aggregation fields by cardinality from highest to lowest, for example:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 71

// Efficient approach

SELECT id,gender,COUNT(*) FROM table_name GROUP BY id, gender;

// Inefficient approach

SELECT id,gender,COUNT(*) FROM table_name GROUP BY gender, id;

Another optimization method is to use numbers to replace the specific grouping fields as much as possible. These

numbers represent the positions of the column names following the SELECT keyword, for example, the above SQL
can be replaced as follows:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 71

SELECT id,gender,COUNT(*) FROM table_name GROUP BY 1, 2;

Use Approximate Aggregate Functions

For query scenarios that can tolerate a small amount of error, using these approximate aggregate functions can

significantly improve query performance.
For example, Presto can use the APPROX_DISTINCT() function instead of COUNT(distinct x), and the
corresponding function in Spark is APPROX_COUNT_DISTINCT. The drawback of this approach is that approximate
aggregate functions have an error margin of about 2.3%.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 71

Use REGEXP_LIKE instead of multiple LIKE statements

When there are multiple LIKE statements in SQL, you can often use regular expressions to replace multiple LIKEs,
which can significantly improve execution efficiency. For example:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 71

SELECT COUNT(*) FROM table_name WHERE field_name LIKE '%guangzhou%' OR LIKE '%beiji

Can be optimized to:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 71

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 71

SELECT COUNT(*) FROM table_name WHERE regexp_like(field_name, 'guangzhou|beijing|ch

Data Governance

Data Governance Use cases

Scenario: Real-time writing. Flink CDC real-time writing usually adopts the upsert method, which generates a large

number of small files during the writing process. When small files accumulate to a certain extent, it can cause data

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 71

queries to slow down, or even result in timeout failures.
You can check the number of table files and snapshot information in the following way.

SELECT COUNT(*) FROM [catalog_name.][db_name.]table_name$files;

SELECT COUNT(*) FROM [catalog_name.][db_name.]table_name$snapshots;

For example:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 71

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 71

SELECT COUNT(*) FROM `DataLakeCatalog`.`db1`.`tb1$files`;

SELECT COUNT(*) FROM `DataLakeCatalog`.`db1`.`tb1$snapshots`;

When the number of table files and snapshots is excessive, refer to the document Enable data optimization to activate
the data governance feature.

Data Governance Effectiveness

After enabling data governance, there was a significant improvement in query efficiency. For example, the table below
compares the query time before and after merging files. The experiment used a 16CU Presto, with a data volume of

https://www.tencentcloud.com/document/product/1155/61988#

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 71

14M, 2921 files, and an average of 0.6KB per file.

Executed Statement Merge Files
Number
of files

Number
of
records

Query time
consumption Effect

SELECT count(*)
FROM tb

No 2921
items

7895
entries

32s

93% faster speed
SELECT count(*)
FROM tb

Yes 1 item 7895
entries

2s

Partition

Partitioning enables the classification and storage of related data based on column values with different characteristics
such as time and region. This significantly reduces scan volume and improves query efficiency. For more details on

DLC external table partitioning, please refer to Quick Start with Partition Table. The table below shows a comparison
of query time consumption and scan volume between partitioned and unpartitioned states in a single table with a data
volume of 66.6GB, 1.4 billion data records, and an ORC data format. Within it, dt is a partition field containing

1,837 partitions.

Query
statement

Unpartitioned Partition Time
Consumption
Comparison

Scan
Volume
Comparison

Time
Consumption

Scan
Volume

Time
Consumption

Scan
Volume

SELECT
count(*) FROM
tb WHERE
dt='2001-01-08'

2.6s 235.9MB 480ms 16.5
KB

81% Faster Reduce by
99.9%

SELECT
count(*) FROM
tb WHERE
dt<'2022-01-08'
AND dt>'2001-
07-08'

3.8s 401.6MB 2.2s 2.8MB Faster by
42%

Reduce by
99.3%

As can be seen from the above table, partitioning can effectively reduce Query Latency and Scan Volume, but

Excessive partitioning may backfire. As shown in the table below.

Query
statement

Unpartitioned Partition Time
Consumption
Comparison

Scan Volume
Comparison

Time Scan Time Scan

https://www.tencentcloud.com/document/product/1155/48659?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 71

Consumption Volume Consumption Volume

SELECT
count(*)
FROM tb

4s 24MB 15s 34.5MB
Slower by
73% 30% More

It is recommended to filter partitions in your SQL statements using the WHERE keyword.

Cache

In today's trend of Distributed Computing and Compute-Storage Separation, accessing Metadata and Huge Data
through Network will be restricted by Network I/O. DLC significantly reduces Response Latency by defaulting to the
following Caching Technologies, without the need for your intervention.
Alluxio: is a Data Orchestration Technology. It provides a Cache, moving data from the Storage Layer to a location

closer to Data-Driven Applications, making it more accessible. Alluxio's Memory-First Hierarchical Architecture allows
data access to be several orders of magnitude faster than existing solutions.
RaptorX: is a Linker for Presto. It runs on top of storage like Presto, providing Sub-Second Latency. The goal is to
offer a Unified, Cost-Effective, Rapid, and Scalable solution for OLAP and Interactive Use Cases.
Result Cache: Caches the same repeated queries, greatly improving speed and efficiency

The DLC Presto engine by default supports Tiered Cache with RaptorX and Alluxio, effectively reducing latency in
similar task scenarios within a short period. Both Spark and Presto engines support Result Cache.
The following table shows TPCH benchmark data in a total data volume of 1TB Parquet files, using 16CU Presto for
this test. Since the test focuses on the caching feature, it primarily selects SQLs with significant IO consumption from
TPCH. The tables involved mainly include lineitem, orders, customer, etc. The SQLs involved are Q1, Q4, Q6, Q12,

Q14, Q15, Q17, Q19, and Q20. The horizontal axis represents the SQL statement, and the vertical axis represents
the running time (in seconds).

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 71

It's important to note that the DLC Presto engine dynamically loads the cache based on Data Access Frequency.
Therefore, cache hits cannot be achieved during the engine's first task execution after startup, leading to initial

performance still being limited by network IO. However, this limitation is significantly mitigated as the Number of
executions increases. The table below shows a performance comparison of three queries in a presto 16cu cluster.

Query statement Query Time
Consumption

Data Scan Volume

SELECT * FROM table_name
WHERE udid='xxx';

First Query 3.2s 40.66MB

Second Query 2.5s 40.66MB

Third Query 1.6s 40.66MB

You can view the cache hit ratio of executed SQL tasks in the 'Data Exploration' feature of the DLC Console.

Index

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 71

Compared to external tables, the table creation method using internal tables + indexes will significantly reduce both
time and scan volume. For more detailed information about creating tables, please refer to Data Table Management.
After creating a table, build an index before inserting based on the business usage frequency, after WRITE

ORDERED BY for the indexed fields.

alter table `DataLakeCatalog`.`dbname`.`tablename` WRITE ORDERED BY udid;

The table below shows a comparison of query performance on external and internal tables (with indexes) in a presto
16cu cluster

Table Types Query Time Data Scan Volume

https://www.tencentcloud.com/document/product/1155/61992

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 71

Consumption

Exterior

First Query 16.5s 2.42GB

Second Query 15.3s 2.42GB

Third Query 14.3s 2.42GB

Inner Table (Index)

First Query 3.2s 40.66MB

Second Query 2.5s 40.66MB

Third Query 1.6s 40.66MB

It is evident from the table that, compared to external tables, the table creation method using inner tables + indexes
significantly reduces both time and scan volume. Moreover, due to cache acceleration, the execution time will also
decrease as the number of executions increases.

Synchronous Query and Asynchronous Query

DLC has undergone special optimization for BI scenarios. It can be set to synchronize mode or asynchronous mode
(supports only the Presto engine) by configuring the engine parameter dlc.query.execution.mode. The value

descriptions are as follows.
async (default): In this mode, tasks complete full query calculations, and the results are saved to COS before being
returned to the user, allowing users to download the query results after the query has completed.
sync: Under this mode, it is not necessary to perform full calculation. Once partial results are available, they are
directly returned to the user by the engine, without being saved to COS. Thus, users can achieve lower query latency
and reduced time consumption, but the results are only stored in the system for 30s. It is recommended to use this

mode when complete query results from COS are not needed, but lower query latency and time consumption are
desired, such as during the query exploration phase or for BI result presentation.
Configuration Method: After selecting the Data Engine, it supports parameter configuration for the data engine. After
selecting the data engine, click add in Advanced settings to configure.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 71

Resource Bottleneck

To assess whether resources have reached a bottleneck, DLC provides monitoring of engine resources such as CPU,
memory, cloud disks, and network. You can adjust resource specifications according to business scale. For
adjustments, refer to the Adjustment Configuration Fee Explanation. Steps to view engine resource usage are as

follows:
1. Open the Data Engine Tag page on the left.
2. Click the Monitoring button on the right side of the respective engine.
3. Navigate to TCOP, where you can see all monitoring metrics as shown below. For detailed operations and
monitoring metrics, refer to Data Engine Monitoring. You can also configure alarms for each metric. For a detailed

introduction, refer to Monitoring and Alarm Configuration.

https://www.tencentcloud.com/document/product/1155/48659?lang=en
https://www.tencentcloud.com/document/product/1155/62013

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 71

Other Factors

Adaptive Shuffle

To enhance stability, DLC by default enables Adaptive Shuffle, which supports regular shuffle with limited local disk
space while ensuring stability in scenarios of large shuffle and data skew. Advantages of Adaptive Shuffle include:

Cluster cold start

The DLC supports the automatic or manual suspension of a cluster. After the suspension, no charges are incurred.
Therefore, the message "Queuing" may be displayed when a task is executed for the first time after the cluster is
started, because resources are being pulled up during the cold start of the cluster. If you submit tasks frequently, it is

recommended to Purchase a package year/month cluster，which does not have a cold start and can quickly execute
tasks at any time.

https://www.tencentcloud.com/document/product/1155/48682?lang=en

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 71

UDF Function Development Guide
Last updated：2024-07-31 18:03:19

UDF Description

Users can write UDF functions, package them into JAR files, and then use them in query analysis by defining them as
functions in Data Lake Compute. Currently, DLC's UDFs are in HIVE format, inheriting from
org.apache.hadoop.hive.ql.exec.UDF and implementing the evaluate method.

Example: Simple Array UDF Function.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 71

public class MyDiff extends UDF {

 public ArrayList<Integer> evaluate(ArrayList<Integer> input) {

 ArrayList<Integer> result = new ArrayList<Integer>();

 result.add(0, 0);

 for (int i = 1; i < input.size(); i++) {

 result.add(i, input.get(i) - input.get(i - 1));

 }

 return result;

 }

}

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 71

Reference for POM file:

<dependencies>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.7.16</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.hive</groupId>

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 71

 <artifactId>hive-exec</artifactId>

 <version>1.2.1</version>

 </dependency>

</dependencies>

Creating function

Note:
If you are creating a UDAF/UDTF function, you need to add the _udaf/_udtf suffix to the function name accordingly.

If you are familiar with SQL syntax, you can create a function by executing the CREATE FUNCTION syntax via Data
Exploration, or by using the visual interface. The process is as follows:
1. Log in to the Data Lake Compute Console and select the service region.
2. Enter Data Management through the left sidebar, select the database for the function you need to create. If you
need to create a new database, refer to Data Catalog and DMC.

3. Click Function to enter the function management page.
4. Click Create Function to proceed with creation.

https://console.tencentcloud.com/dlc
https://www.tencentcloud.com/document/product/1155/61991

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 71

UDF's application package can be uploaded locally or a COS path can be selected (requires COS-related
permissions), for instance, creating by selecting a COS path.

Function Class Name includes "Package Information" and "Function Execution Class Name".

Function Usage

1. Log in to the Data Lake Computing Console and select the service region.
2. Enter Data Exploration via the left navigation menu, select a Compute Engine, and then you can use SQL to invoke
the function.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 71

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 71

Materialized View
Last updated：2024-07-31 18:03:31

Note:
Currently, DLC materialized views only support the SparkSQL and Presto engines.
A Materialized View is a special object in a database, which is a pre-calculated and stored query result set.

Materialized views can provide fast query performance when dealing with large amounts of data and complex queries.
While materialized views improve query performance, they also introduce storage and compute costs. We recommend
using materialized views in the following scenarios:
Source table changes are infrequent
Compared to the source table, the fields and result quantity in the materialized view table are significantly reduced

DLC supports both regular materialized views and mapped materialized views. Below is an introduction and a
complete set of usage examples. The supported syntax list can be found in Materialized View Syntax.

Regular Materialized View

The basic usage process of a regular materialized view includes creation, refresh, and use.
The following is a complete process example based on the Presto Engine.

Data Preparations

Execute SQL to create a database table and insert data. The following statement creates a table named student .

https://www.tencentcloud.com/document/product/1155/61966

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 71

CREATE DATABASE IF NOT EXISTS mv_test3;

create table student(id int, name string, score int);

insert into student values (1,'zhangsan', 90);

insert into student values (2,'lisi', 100);

insert into student values (3,'wangwu', 80);

insert into student values (4,'zhaoliu', 30);

select * from student order by id;

Creating a Regular Materialized View

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 71

Use the CREATE MATERIALIZED VIEW statement to create a materialized view. Specify the name of the

materialized view and the query statement, and optionally specify the source table and condition of the query.
In the following example, a simple SELECT statement is used to select all scores from the table student and

perform a summation operation on them. Then, this summation result serves as the content of the materialized view
 mv_student_sum .

CREATE MATERIALIZED VIEW mv_student_sum AS (

 select sum(score) from student

);

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 71

Viewing Materialized View Details

Use the DESCRIBE MATERIALIZED VIEW statement to view the detailed information of the materialized view,

including the name, query statement, and refresh status, among others.

DESCRIBE MATERIALIZED VIEW mv_student_sum;

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 71

Manual Refresh of Materialized View

Use the REFRESH MATERIALIZED VIEW statement to manually refresh the data of the materialized view.

This demonstration is just for illustrative purposes; in most cases, you do not need to manually refresh the materialized

view. The view will automatically refresh if the SQL hits a source table that has changed.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 71

REFRESH MATERIALIZED VIEW mv_student_sum;

Viewing the Execute Task List of Materialized View

Use the SHOW MATERIALIZED VIEW JOBS statement to view the execute task list of the materialized view,

enabling you to understand the refresh history and status of the materialized view.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 71

SHOW MATERIALIZED VIEW JOBS IN mv_student_sum;

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 71

SQL Rewrite Execution

When querying data with the SELECT statement, it is expected to be automatically rewritten and hit the materialized
view. You can check if it was automatically rewritten to the materialized view through the statistics in the query results.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 71

select sum(score) from student;

Dropping Materialized View

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 71

DROP MATERIALIZED VIEW mv_student_sum;

Mapped Materialized View

Mapped Materialized View is a special type of materialized view that is associated with an existing table through

mapping. By using a mapped materialized view, you can associate the query results of the materialized view with the
data of an existing table, thereby optimizing the query performance of the existing table.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 71

Limit

Materialized views have the following restrictions compared to ordinary materialized views:
Mapped Materialized Views do not support refresh operations, meaning it's not possible to refresh the data of the
materialized view through the REFRESH MATERIALIZED VIEW statement. As a result, the data of the materialized

view can only remain consistent with that of the mapped table and cannot be automatically updated.
Mapped Materialized Views do not perform automatic SQL rewriting, meaning query statements are not automatically
converted to use the materialized view. It is necessary to manually specify the query statements that use the
materialized view.
When a Mapped Materialized View is deleted, only the association relationship with the mapped table is removed, not

the mapped table itself. The mapped table still exists and can continue to be used.

Recommended scenarios

It is recommended to use Mapped Materialized Views in the following scenarios:
When there is already a large table with low query performance, query performance can be optimized through the use
of Mapped Materialized Views.
When it is necessary to keep the data of the materialized view consistent with that of an existing table, and there is no
need for automatic refresh of the materialized view, Mapped Materialized Views can be used.

Iceberg type of source table

When an Iceberg table is the source table, a complete example is as follows:

Creating a Mapped Materialized View based on CTAS

The mapped materialized view needs to maintain consistent naming with the table to be mapped. The following
example first creates a table based on CTAS for the creation of the Mapping MV. The data preparation can refer to the
section on data preparation in the complete example of an ordinary materialized view.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 71

CREATE TABLE link_mv_student AS (

 select sum(score) from student

);

--Create Mapped Materialized View: Use the CREATE MATERIALIZED VIEW statement to cr

--When creating the materialized view, use the WITH META LINK clause and specify th

CREATE MATERIALIZED VIEW link_mv_student WITH META LINK AS (

 select sum(score) from student

);

View Mapping Materialized View

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 71

Using the DESCRIBE MATERIALIZED VIEW statement, you can view the detailed information of the mapped
materialized view, including the name, query statement, and refresh status, among others.

DESCRIBE MATERIALIZED VIEW link_mv_student;

SHOW MATERIALIZED VIEW JOBS IN link_mv_student;

Mapped Materialized Views do not support refresh operations

Mapped Materialized Views do not support REFRESH operations, meaning it's not possible to refresh the data of the
materialized view through the REFRESH MATERIALIZED VIEW statement. As a result, the data of the materialized

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 71

view can only remain consistent with that of the mapping table and cannot be automatically updated.

SQL Rewriting

Mapped Materialized Views do not automatically perform SQL rewriting of query statements.
Executing select sum(score) from student; will not hit the mapped materialized view.

SQL rewriting based on the mapped materialized view can be specified by using the Hint or TaskConf parameters.

--Manually Specify the SQL to be rewritten

select /*+ OPTIONS('eos.sql.materializedView.enableRewrite'='true') */

sum(score) from student;

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 71

Delete mapped materialized view

Use the DROP MATERIALIZED VIEW statement to delete the mapped materialized view. After deleting the mapped
materialized view, only the association with the mapping table will be deleted, the mapping table itself will still exist.

DROP MATERIALIZED VIEW link_mv_student;

DESCRIBE link_mv_student; --The source table still exists

Hive type source table

When the Hive table is the source table, a complete example is as follows:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 71

Prepare to initialize data

First, you need to prepare the initial data and create a Hive base table. Use the CREATE EXTERNAL TABLE
statement to create a Hive base table, and manually insert data via the INSERT statement.

CREATE EXTERNAL TABLE student_2(id int, name string, score int)

LOCATION 'cosn://guangzhou-test-1305424723/mv_test4/student_2';

insert into student_2 values (1,'zhangsan', 90);

insert into student_2 values (2,'lisi', 100);

insert into student_2 values (3,'wangwu', 80);

insert into student_2 values (4,'zhaoliu', 30);

select * from student_2;

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 71

Create a mapped Hive external table

Use the CREATE EXTERNAL TABLE statement to create a mapped Hive external table.

CREATE EXTERNAL TABLE link_mv_student_hive (

sum_score BIGINT

) LOCATION 'cosn://guangzhou-test-1305424723/mv_test4/link_mv_student_hive';

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 71

To insert data into the mapping table, use the INSERT OVERWRITE statement to insert the query results into the
mapping table, ensuring the data in the mapping table is consistent with the data in the Hive base table.

--Insert data into the mapping table

INSERT OVERWRITE link_mv_student_hive

select sum(score) from student;

Create a mapped materialized view based on the Hive external table

Use the CREATE MATERIALIZED VIEW statement to create a mapped materialized view. When creating a

materialized view, use the WITH META LINK clause and specify the name of the above Hive external table for

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 71

association.

CREATE MATERIALIZED VIEW link_mv_student_hive WITH META LINK AS (

 select sum(score) from student_2

);

