
Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 70

Data Lake Compute

Practical Tutorial

Product Documentation

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 70

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 70

Contents

Practical Tutorial
DLC Native Table

DLC Source Table Core Capabilities
DLC Source Table Operation Configuration
DLC Source Table Lake Ingestion Practice
DLC Source Table FAQs

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 70

Practical Tutorial
DLC Native Table
DLC Source Table Core Capabilities
Last updated：2024-07-31 17:34:28

Overview

The DLC Native Table (Iceberg) is a user-friendly table format with high performance based on the Iceberg lake
format. It simplifies operations, making it easy for users to perform comprehensive data exploration and build
applications like Lakehouse. When using DLC Native Table (Iceberg) for the first time, users should follow these five

main steps:
1. Enable DLC managed storage.
2. Purchase the engine.
3. Create the database and table. Choose to create either an append or upsert table based on your use case, and
include optimization parameters.

4. Configure data optimization. Select a dedicated optimization engine and configure optimization options based on
the table type.
5. Import data into the DLC Native Table. DLC supports various data writing methods, such as insert into, merge into,
and upsert, as well as multiple import methods, including Spark, Presto, Flink, InLong, and Oceanus.

Iceberg Principle Parsing

The DLC Native Table (Iceberg) uses the Iceberg table format for its underlying storage. In addition to being
compatible with the open-source Iceberg capabilities, it enhances performance through separation of storage and

computation and improves usability.
 The Iceberg table format manages user data by dividing it into data files and metadata files.
Data layer: It consists of a series of data files that store user table data. These data files support Parquet, Avro, and
ORC formats, with Parquet being the default format in DLC.
Due to Iceberg's snapshot mechanism, data is not immediately deleted from storage when a user deletes it. Instead, a

new delete file is written to record the deleted data. Depending on the use case, delete files are categorized into
position delete files and equality delete files.
Position delete files record the information of specific rows that have been deleted within a data file.
Equality delete files record the deletion of specific key values and are typically used in upsert scenarios. Delete file is
also a type of data file.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 70

Metadata layer: It consists of a series of manifest files, manifest lists, and metadata files. Manifest files contain
metadata for a series of data files, such as file paths, write times, min-max values, and statistics.
A manifest list is composed of manifest files, typically containing the manifest files for a single snapshot.

Metadata files are in JSON format and contain information about a series of manifest list files as well as table
metadata, such as table schema, partitions, and all snapshots. Whenever the table status changes, a new metadata
file is generated to replace the existing one, with the Iceberg kernel ensuring atomicity for this process.

Use Cases for Native Tables

DLC Native Table (Iceberg) is the recommended format for DLC Lakehouse. It supports two main use cases: Append
tables and Upsert tables. Append tables use the V1 format, while Upsert tables use the V2 format.

Append tables: These tables support only Append, Overwrite, and Merge Into write modes.
Upsert tables: Compared to Append tables, these tables also support the Upsert write mode.
The use cases and characteristics of native tables are described in the table below.

Table Type Use Cases and Recommendations Characteristics

Native Table
(Iceberg)

1. Users have needs for scenarios requiring real-
time data writing, including append, merge into,
and upsert operations. It is not limited to real-time
writing using InLong, Oceanus, or self-managed
Flink setups.
2. Storage-related Ops that users do not want to
manage directly can be left to DLC managed
storage.
3. When users prefer do not want to handle the Ops
of the Iceberg table format themselves, they can let
DLC manage optimization and Ops.
4. Users who want to leverage DLC's automatic
data optimization capabilities can continuously
optimize data.

1. Iceberg table format.
2. Managed storage must be
enabled before use.
3. Data is stored in DLC's
managed storage.
4. There is no need to specify
external or location information.
5. Enabling DLC intelligent data
optimization is supported.

 For better management and use of DLC Native Table (Iceberg), certain attributes need to be specified when you
create this type of table. The attributes are as follows. Users can specify these attribute values when creating a table
or modify the table's attribute values later. For detailed instructions, see DLC Native Table Operational Configuration.

Attribute Values Meaning Configuration Guide

format-version

 Iceberg table
version: Valid
values are 1 and
2, with a default of
1.

 If the user's write scenario includes upsert, this value
must be set to 2.

https://www.tencentcloud.com/document/product/1155/62029

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 70

write.upsert.enabled Whether to enable
upsert: The value
is true; if not set, it
will not be
enabled.

If the user's write scenario includes upsert, this must be
set to true.

write.update.mode Update Mode Set to merge-on-read (MOR) for MOR tables; the
default is copy-on-write (COW).

write.merge.mode Merge Mode Set to merge-on-read (MOR) for MOR tables; the
default is copy-on-write (COW).

write.parquet.bloom-filter-
enabled.column.{col}

Enable bloom: Set
to true to enable
it; it is disabled by
default.

In upsert scenarios, this must be enabled and
configured according to the primary keys from the
upstream data. If there are multiple primary keys in the
upstream, use up to the first two. Enabling this can
improve MOR query performance and small file
merging efficiency.

write.distribution-mode Write Mode

The recommended value is hash. When the value is
hash, data will be automatically repartitioned upon
writing. However, the drawback is that this may impact
write performance.

write.metadata.delete-after-
commit.enabled

Enable automatic
metadata file
cleanup.

It is strongly recommended to set this to true. With this
setting enabled, old metadata files will be automatically
cleaned up during snapshot creation to prevent the
buildup of excess metadata files.

write.metadata.previous-
versions-max

Set the default
quantity of
retained metadata
files.

The default value is 100. In certain special cases, users
can adjust this value as needed. This setting should be
used with write.metadata.delete-after-commit.enabled.

write.metadata.metrics.default Set the column
metrics mode.

The value must be set to full.

Core Capabilities of Native Tables

Managed Storage

DLC Native Table (Iceberg) uses a managed data storage mode. When using native tables (Iceberg), users must first
enable managed storage and import data into the storage space managed by DLC. By using DLC managed storage,
users will gain the following benefits.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 70

Enhanced Data Security: Iceberg table data is divided into metadata and data files. If any of these files are damaged,
it can cause exceptions for querying the entire table (unlike Hive, where only the corrupted file's data may be
inaccessible). Storing data in DLC can help prevent users from accidentally damaging files due to a lack of

understanding of Iceberg.
Performance: DLC managed storage uses CHDFS by default and offers significantly better performance compared to
standard COS.
Reduced Storage Ops: By using managed storage, users no longer need to set up and maintain Cloud Object Storage
themselves, and this can reduce the Ops burden associated with storage.

Data Optimization: With the managed storage mode of DLC Native Table (Iceberg), DLC provides continuous
optimization for the native tables.

ACID Transactions

Writing of Iceberg allows deleting and inserting within a single operation and is not partially visible to users so that it
can offer atomic write operations.
Iceberg uses optimistic concurrency control to ensure that data writes do not cause inconsistencies. Users can only
see data that has been successfully committed in the read view.

Iceberg uses snapshot mechanisms and serializable isolation levels to ensure that reads and writes are isolated.
Iceberg ensures that transactions are durable; once a transaction is successfully committed, it is permanent.

Writing

The writing process follows optimistic concurrency control. Writers assume that the current table version will not
change before they commit their updates. They update, delete, or add data and create a new version of the metadata
file. When the current version is replaced with the new version, Iceberg verifies that the updates are based on the

current snapshot.
If not, it indicates a write conflict, meaning that another writer has already updated the current metadata. In this case,
the write operation must be updated again based on the current metadata version. The entire submission and
replacement process is ensured to be atomic by the metadata lock.

Reading

Reading and writing of Iceberg are independent processes. Readers can only see snapshots that have been

successfully committed. By accessing the version's metadata file, readers obtain snapshot information to read the
current table data. Since metadata files are not updated until write operations are complete, this ensures that data is
always read from completed operations and never from ongoing write operations.

Conflict Parameter Configuration

When write concurrency increases, DLC managed tables (Iceberg) may encounter write conflicts. To reduce the
frequency of conflicts, users can make reasonable adjustments to their businesses in the following ways.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 70

Go to the setting of the table structure for merging, such as partitioning, to reasonably plan the write scope of jobs.
This reduces the write time of tasks and, to some extent, lowers the probability of concurrent conflicts.
Merge jobs to a certain extent to reduce the level of write concurrency.

DLC also supports a series of conflict retry parameters and increases the success rate of retry operations to some
extent, thereby reducing the impact on business operations. The meanings of parameters and configuration guidance
are as follows.

Attribute values Default System
values

Meanings Configuration guide

commit.retry.num-
retries 4

Number of retries after a
submission failure

When retries occur, you can try
increasing the number of
attempts.

commit.retry.min-wait-
ms 100

Minimum time for waiting
before retrying, in
milliseconds

If conflicts are very frequent and
persist even after waiting for a
while, you can try to adjust this
value to increase the interval
between retries.

commit.retry.max-
wait-ms

60000（1
min）

Maximum time for waiting
before retrying, in
milliseconds

Adjust this value with
commit.retry.min-wait-ms.

commit.retry.total-
timeout-ms

1800000（30
min）

Timeout for the process of
submitting the entire retry

 -

Hidden Partitioning

DLC Native Table (Iceberg) hidden partitioning hides the partition information. Developers only need to specify the
partition policy when creating the table. Iceberg maintains the logical relationship between table fields and data files

according to this policy. During writing and querying, there is no need to be concerned about the partition layout.
Iceberg finds the partition information based on the partitioning policy and records it in the metadata during data
writing. When querying, it uses the metadata to filter out files that do not need to be scanned. The partition policies
provided by DLC Native Table (Iceberg) are shown in the table below.

Transformation
policy

Description Types of original fields Types after
transformation

identity No
transformation

All types

Being
consistent
with the
original type

bucket[N, col] Hash int, long, decimal, date, time, timestamp, timestamptz, int

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 70

bucketing string, uuid, fixed, binary

truncate[col] Fixed-length
truncation

int, long, decimal, string

Being
consistent
with the
original type

year
Extract year
information
from fields

date, timestamp, timestamptz int

month
Extract month
information
from fields

date, timestamp, timestamptz int

day
Extract day
information
from fields

date, timestamp, timestamptz int

hour
Extract hour
information
from fields

timestamp, timestamptz int

Process of Querying and Storing Metadata

DLC Native Table (Iceberg) allows you to call stored procedure statements to query information about various types of
tables, such as file merges and snapshot expiration. The table below provides some common query methods.

Scenes CALL statements Execution engine

Querying
history

select * from DataLakeCatalog . db . sample$history
DLC spark SQL
engine, presto
engine

Querying
snapshot

select * from DataLakeCatalog . db . sample$snapshots
DLC spark SQL
engine, presto
engine

Querying
data files

select * from DataLakeCatalog . db . sample$files
DLC spark SQL
engine, presto
engine

Querying
manifests

select * from DataLakeCatalog . db . sample$manifests
DLC spark SQL
engine, presto
engine

Querying select * from DataLakeCatalog . db . sample$partitions DLC spark SQL

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 70

partitions engine, presto
engine

Rollback of
the specific
snapshot

CALL DataLakeCatalog. system .rollback_to_snapshot('db.sample',
1)

DLC spark SQL
engine

Rolling back
to a specific
point in time

CALL DataLakeCatalog. system .rollback_to_timestamp('db.sample',
TIMESTAMP '2021-06-30 00:00:00.000')

DLC spark SQL
engine

Setting the
current
snapshot

CALL DataLakeCatalog. system .set_current_snapshot('db.sample',
1)

DLC spark SQL
engine

Merging files
CALL DataLakeCatalog. system .rewrite_data_files(table =>
'db.sample', strategy => 'sort', sort_order => 'id DESC NULLS
LAST,name ASC NULLS FIRST')

DLC spark SQL
engine

Expiration of
snapshots

CALL DataLakeCatalog. system .expire_snapshots('db.sample',
TIMESTAMP '2021-06-30 00:00:00.000', 100)

DLC spark SQL
engine

Removing
orphan files

CALL DataLakeCatalog. system .remove_orphan_files(table =>
'db.sample', dry_run => true)

DLC spark SQL
engine

Ewriting
metadata

CALL DataLakeCatalog. system .rewrite_manifests('db.sample') DLC spark SQL
engine

Data Optimization

Optimization Policies

DLC Native Table (Iceberg) provides optimization policies with inheritance capabilities, allowing users to configure
these policies on the data management, database, and data table. For detailed configuration instructions, see Enable
Data Optimization.
Policy for Optimizing the Configuration of the Data Management: All native tables (Iceberg) in all databases under this
data management will by default inherit and use the policy for optimizing the configuration of the data management.

Policy for Optimizing the Configuration of the Database: All native tables (Iceberg) within this database will by default
inherit and use the policy for optimizing the configuration of the database.
Policy for Optimizing the Configuration of the Data Table: This configuration only applies to the specified native table
(Iceberg).
 By using the above combination of configurations, users can implement customized optimization policies for specific

databases and tables or policies for disabling certain tables.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 70

DLC also provides advanced parameter configurations for optimization policies. If users are familiar with Iceberg, they
can customize advanced parameters based on their specific scenarios, as shown in the figure below.

DLC has set default values for advanced parameters. DLC will try to merge files to a size of 128 MB. The snapshot

expiration time is 2 days. Five expired snapshots will be saved, and the snapshot expiration and orphan file cleanup
tasks run every 600 minutes and 1440 minutes respectively.
For upsert write scenarios, DLC also provides default merge thresholds. These parameters are managed by DLC, and
small file merging is triggered if new data written within a span of over 5 minutes meets any of the specified conditions,
as shown in the table.

Parameter Meaning Value

AddDataFileSize Number of newly written data files 20

AddDeleteFileSize Amount of newly written Delete file data 20

AddPositionDeletes Number of newly written Position Delete
records

1000

AddEqualityDeletes Number of newly written Equality Delete
records

1000

Optimization Engine

DLC data optimization is performed by executing stored procedures, so a data engine is required to run these
procedures. Currently, DLC supports using the Spark SQL engine as the optimization engine. When it is being used,
please note the following points:
The Spark SQL engine for data optimization should be used separately from the business engine, and this can
prevent data optimization tasks and business tasks from competing for resources and leading to significant queuing

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 70

and business disruptions.
For production scenarios, it is recommended to allocate at least 64 CU for optimization resources. For special tables
with fewer than 10 tables and individual table data exceeding 2 GB, it is advised to enable auto scaling of resources to

handle sudden traffic spikes. Additionally, using a monthly subscription cluster is recommended to prevent
optimization task failures due to unavailability of clusters when tasks are submitted.

Parameter Definitions

Settings for optimizing parameters for databases and tables are on their database and table attributes. Users can
specify these data optimization parameters when creating databases and tables (DLC Native Table provides a visual
interface for configuring data optimization during creation). Additionally, users can modify data optimization

parameters using the ALTER DATABASE/TABLE commands. For detailed instructions, see DLC Native Table
Operation Configuration..

Attribute value Meaning Default value Value Description

smart-optimizer.inherit

Whether to
inherit the
upper level
policy

default none: Do not inherit it; default: Inherit
it

smart-optimizer.written.enable
Whether to
enable write
optimization

disable
disable: No; enable: Yes. It is not
enabled by default.

smart-
optimizer.written.advance.compact-
enable

(Optional)
Advanced
write
optimization
parameter:
whether to
enable
small file
merging

enable disable: No; enable: Yes.

smart-
optimizer.written.advance.delete-
enable

(Optional)
Advanced
write
optimization
parameter:
whether to
enable data
cleanup

enable disable: No; enable: Yes.

smart-
optimizer.written.advance.min-

(Optional)
Minimum

5 When the number of files under a
table or partition exceeds this

https://www.tencentcloud.com/document/product/1155/62029

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 70

input-files number of
files for
merging

minimum number, the platform will
automatically check them and start
file optimization merging. File
optimization merge can significantly
improve analysis and query
performance. A larger minimum file
number increases resource load,
while a smaller one allows for more
flexible execution and more frequent
tasks. A value of 5 is recommended.

smart-
optimizer.written.advance.target-
file-size-bytes

(Optional)
Target size
after
merging

134217728
(128 MB)

 During file optimization merging, files
will be merged to this target size as
much as possible. The
recommended value is 128 MB.

smart-
optimizer.written.advance.before-
days

(Optional)
Snapshot
expiration
time (in
days)

2

When the existence time of a
snapshot exceeds this value, the
platform will mark the snapshot as
expired. The longer the snapshot
expiration time, the slower the
snapshot cleanup and more storage
space will be occupied.

smart-
optimizer.written.advance.retain-
last

(Optional)
Quantity of
expired
snapshots
to retain

5

If the number of expired snapshots is
bigger than that of those to be saved,
the redundant expired snapshots will
be cleaned up. The more expired
snapshots are saved, the more
storage space is used. A value of 5 is
recommended.

smart-
optimizer.written.advance.expired-
snapshots-interval-min

(Optional)
Snapshot
expiration
execution
cycle

600（10
hours）

The platform periodically scans and
expires snapshots. A shorter
execution cycle makes snapshot
expiration more responsive but may
consume more resources.

smart-
optimizer.written.advance.remove-
orphan-interval-min

(Optional)
Execution
cycle for
removing
orphan files

1440（24
hours）

The platform periodically scans and
cleans up orphan files. A shorter
execution cycle makes orphan file
cleanup more responsive but may
consume more resources.

Optimization Types

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 70

Currently, DLC provides two types of optimization: write optimization and data cleanup. Write optimization merges
small files written by users into larger files to improve query efficiency. Data cleanup removes storage space occupied
by historical expired snapshots, saving storage costs.

Write Optimization
Small File Merging: Merges small files written from the business side into larger files to improve file query efficiency;
processes and merges deleted files and data files to enhance MOR query efficiency.
Data cleanup
Snapshot expiration: Delete expired snapshot information to free up storage space occupied by historical data.

Remove orphan files: Delete orphan files to free up storage space occupied by invalid files.
Depending on the user's usage scenario, there are certain differences among optimization types, as shown below.

Optimization
types

Recommended scenes for enabling

Write
optimization

Upsert write scenarios: It must be enabled.
Merge into write scenarios: It must be enabled.
Append write scenarios: It can be enabled as needed.

Data
cleanup

Upsert write scenarios: It must be enabled.
Merge into write scenarios: It must be enabled.
Append write scenarios: It is recommended to enable it and configure a reasonable time for
deletion upon expiration based on advanced parameters and the need for rolling back historical
data.

DLC's write optimization not only merges small files but also allows for manual index creation. Users need to provide
the fields and rules for the index, after which DLC will generate the corresponding stored procedure execution
statements to complete the index creation. This can be done concurrently with small file merging in upsert scenarios,
so that index creation is completed when small file merging is done, greatly improving index creation efficiency.

This feature is currently in the testing phase. If you need to use it, please Contact Us for configuration.

Optimization Tasks

DLC optimization tasks are triggered in two ways: by time and by events.

Time Triggering

Time triggers are based on the execution schedule of advanced optimization parameters. They periodically check if
optimization is needed, and if the conditions for the corresponding governance item are met, a governance task is
generated. The current minimum cycle for time triggers is 60 minutes, typically used for snapshot cleanup and orphan

file removal.
Time triggers are still effective for tasks of optimizing small file merging, with a default trigger cycle of 60 minutes.
For V1 tables (requires activation of the backend), small file merging is triggered every 60 minutes.

https://console.tencentcloud.com/workorder/category

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 70

 For V2 tables; to prevent slow table writes and not meeting EventTriggering conditions for a long time, the V2 time
trigger will start merging small files providing that it is more than 1 hour later since the last merging of small files.
If snapshot expiration or orphan file removal tasks fail or time out, they will be re-executed in the next check cycle

which will start every 60 minutes.

EventTriggering

EventTriggering occurs in the scenarios where table upsert is written. The DLC data optimization service backend
monitors the upsert writes to user tables, and when certain conditions are met, it triggers governance tasks.
EventTriggering is used in small file merging scenarios, especially for real-time Flink upsert writes, as fast data writes
frequently generate small file merge tasks.

For example, if the data file threshold is 20 and the deletes file threshold is 20, 20 files or 20 deletes files will be
written. Meanwhile, if the minimum interval between the same task types is 5 minutes (by default), the merging of
small files will be triggered.

Lifecycle

The lifecycle of a DLC Native Table refers to the time from the last update of the table (partition) data. If there is no
change after the specified time, the table (partition) will be automatically possessed. When the lifecycle of a DLC
metadata table is executed, it only generates new snapshots to overwrite expired data instead of immediately

removing the data from storage. The actual removal of data from storage depends on metadata table data cleanup
(snapshot expiration and orphan file removal). Therefore, the lifecycle needs to be used in conjunction with data
cleanup.
Note:
The lifecycle feature is offering test invitations. If you need activate it, please Contact Us.

 When a partition is removed by the lifecycle, it is logically removed from the current snapshot. However, the removed
files are not immediately deleted from the storage system. They will only be deleted from the storage system when the
snapshot expires.

Parameter Definitions

Database and table lifecycle parameters are set on their database and table attributes. Users can carry lifecycle
parameters when creating databases and tables (DLC Native Table provides a visual interface for configuring

lifecycle). Users can also modify lifecycle parameters using the ALTER DATABASE/TABLE command. For detailed
instructions, see DLC Native Table Operation Configuration.

Attribute Values Meaning Default
Values

Value description

smart-
optimizer.lifecycle.enable

Enable Lifecycle disable disable: No; enable: Yes. It is not enabled by
default.

smart- Lifecycle execution 30 It can take effect when smart-

https://console.tencentcloud.com/workorder/category

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 70

optimizer.lifecycle.expiration cycle, unit: day optimizer.lifecycle.enable is set to enable,
and it must be greater than 1.

Integrating WeData to Manage Native Table Lifecycle

 If user partition tables are partitioned by day, such as partition values yyyy-MM-dd or yyyyMMdd, WeData can be
used to manage the data lifecycle.

Data Import

DLC Native Table (Iceberg) supports multiple data import methods. According to different data sources, see the
following methods for importing data.

Data location Import recommendation

Data on the user's own COS bucket Establish an external table in DLC, then import data using Insert
into/overwrite.

Data is on user's local system (or
other executors).

Users need to upload data to their own COS buckets, then establish an
external table in DLC and import data using insert into/overwrite.

Data is on user's MySQL.
Users can import data using Flink/InLong/Oceanus. For detailed data
lake operations, see DLC native tables (Iceberg) Lake Ingestion
Practice.

Data is on user's self-built hive. Users establish a Land Bond Hive data management, then import data
using insert into/overwrite.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 70

DLC Source Table Operation Configuration
Last updated：2024-07-31 17:34:44

Overview

When using DLC Native Table (Iceberg), users can follow the process below to create native tables and complete the
necessary configurations.

Step I: Enabling Managed Storage

Note:
Managed storage must be enabled by a DLC administrator.
Enabling managed storage requires operations in the console. For details, see Managed Storage Configuration. If you

use a metadata acceleration bucket, pay attention to permission configurations. For details, see Binding of Metadata
Acceleration Bucket. Note that shared engines cannot access metadata acceleration buckets.

Step II: Creating the DLC Native Table

There are two ways to create native tables.
1. Create a visual table through the console interface.
2. Create a table using SQL.
Note:

 A database must be created before a DLC Native Table is created.

Creating Tables through the Console Interface

DLC provides a data management module for table creation. For detailed operations, see Data Management.

https://www.tencentcloud.com/document/product/1155/62006
https://www.tencentcloud.com/document/product/1155/62007
https://www.tencentcloud.com/document/product/1155/61990

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 70

Creating Tables through SQL

When creating tables through SQL, users write their own CREATE TABLE SQL statements. For DLC Native Table
(Iceberg) creation, table descriptions, locations, and table formats do not need to be specified. However, some
advanced parameters need to be included depending on the use case, and those parameters are added through

TBLPROPERTIES.
If parameters were not included when you created the table or if certain attributes need to be modified, use the alter
table set tblproperties command. After the alter table command is executed, restart the upstream import tasks to
complete the attribute modification or addition.
Typical table creation statements for Append and Upsert scenarios are shown as follows. Users can adjust these

statements based on their actual needs.

Append Scenario Table Creation

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 70

 CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`append_case` (`id` int, `n

 PARTITIONED BY (`pt`)

 TBLPROPERTIES (

 'format-version' = '1',

 'write.upsert.enabled' = 'false',

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 70

Upsert Scenario Table Creation

For Upsert scenario table creation, specify the version as 2, and set the write.upsert.enabled attribute to true, and

configure bloom filters according to upsert key-values. If users have multiple primary keys, generally use the first two
key-values for bloom filter configuration. If the upsert table is not partitioned and updates frequently with large data
volumes, consider doing bucketing by primary key for distribution.
Examples for both partitioned and non-partitioned tables are provided as follows.

// Partitioned table

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 70

CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`upsert_case` (`id` int, `na

PARTITIONED BY (bucket(4, `id`))

TBLPROPERTIES (

 'format-version' = '2',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id',

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 70

// Non-partitioned table

CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`upsert_case` (`id` int, `na

TBLPROPERTIES (

 'format-version' = '2',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id',

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 70

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

Modifying Table Attributes

If related attribute values were not included when the user created the table, use the alter table to modify, add, or
remove attribute values, as shown below. Any changes to table attribute values can be made this way. Note that the

Iceberg format-version field cannot be modified. Additionally, if the table already has real-time imports from
InLong/Oceanus/Flink, you need to restart the upstream import businesses after modifications.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 70

// Modify conflict retry attempts to 10

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('commit.ret

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 70

// Cancel bloom filter setting for the name field

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` UNSET TBLPROPERTIES('write.pa

Step III: Data Optimization and Lifecycle Configuration

Data optimization and lifecycle configuration can be done in two ways.
1. Through the console interface for visual configuration

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 70

2. Through SQL for configuration

Through the Console Interface for Configuration

DLC provides a data management module for configuration. For detailed operations, see Enable data optimization.

Through SQL for Configuration

DLC defines detailed attributes for managing data optimization and lifecycle. You can flexibly configure data

management and lifecycle based on business characteristics. For detailed data optimization and lifecycle
configuration values, see Enable data optimization.

Configuring the Database

The data optimization and lifecycle of the database can be adjusted through DBPROPERTIES, as shown below.

https://www.tencentcloud.com/document/product/1155/61988
https://www.tencentcloud.com/document/product/1155/61988

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 70

// Enable write optimization for the my_database table and do not inherit the data

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 70

// Set my_database to inherit the data management policy.

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 70

// Disable lifecycle for the my_database table and do not inherit the data manageme

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

Configuring the Data Table

Data optimization and lifecycle for data tables are configured through TBLPROPERTIES, as shown below.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 70

// Disable write optimization for the upsert_cast table and do not inherit the data

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 70

// Set the upsert_cast table to inherit the database policy.

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 70

// Enable lifecycle for the upsert_cast table, set the lifecycle duration to 7 days

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

Step IV: Data Ingestion into Native Table

DLC Native Table supports multiple data ingestion methods. Depending on your data source, see DLC Native Table
Lake Ingestion Practice.

https://www.tencentcloud.com/document/product/1155/62030

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 70

Step V: Viewing Data Optimization Tasks

You can view data governance tasks in the DLC console under the Data Operation and Maintenance menu by
navigating to the Historical Tasks page. You can query tasks using keywords such as CALL, Auto, database name,
and table name.

Note:
To view system data optimization tasks, users need the permissions of DLC administrators.
Tasks with IDs starting with "Auto" are automatically generated data optimization tasks. As shown in the table below.

You can also click View Details to check the basic information and results of running the tasks.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 70

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 70

DLC Source Table Lake Ingestion Practice
Last updated：2024-07-31 17:34:58

Use Cases

CDC (Change Data Capture) is an abbreviation for change data capture. It allows incremental changes in the source
database to be synchronized in near real-time to other databases or applications. DLC supports using CDC
technology to synchronize incremental changes from the source database to native DLC tables, completing the data

lake ingestion.

Prerequisites

DLC must be properly enabled, user permissions configured, and managed storage activated.
DLC database must be correctly created.
DLC database data optimization must be properly configured. For detailed configuration, see Enable data
optimization.

Ingesting Data into the Lake with InLong

DataInLong can be used to synchronize source data to DLC.

Ingesting Stream Computing Data into the Lake with Oceanus

Source data can be synchronized to DLC via Oceanus.

Ingesting Data into the Lake with Self-Managed Flink

Flink can be used to synchronize source data to DLC. This example demonstrates how to synchronize data from a
source Kafka to DLC, completing the data lake ingestion.

Environment Preparation

Required clusters: Kafka 2.4.x, Flink 1.15.x, and Hadoop 3.x.
It is recommended to purchase EMR clusters for Kafka and Flink.

https://www.tencentcloud.com/document/product/1155/61988#

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 70

Overall Operation Process

For detailed steps, see the diagram below:

Step 1: Upload Required Jars: Upload the necessary Kafka, DLC connector Jar files, and Hadoop dependency Jars
for synchronization.
Step 2: Create Kafka Topic: Create a Kafka topic for production and consumption.
Step 3: Create Target Table in DLC: Create a new target table in DLC data management.

Step 4: Submit Task: Submit the synchronization task in the Flink cluster.
Step 5: Send Message Data and Check Sync Results: Send message data through the Kafka cluster and check the
synchronization results on the DLC.

Step 1: Uploading Required Jars

1. Download required Jars.
 It is recommended to upload the required Jars that match the version of Flink you are using. For example, if you are
using Flink 1.15.x, download the flink-sql-connect-kafka-1.15.x.jar. See the attachments for the relevant files.

 Kafka-related dependencies: flink-sql-connect-kafka-1.15.4.jar
 DLC-related dependencies: sort-connector-iceberg-dlc-1.6.0.jar
 Hadoop 3.x related dependencies: api-util-1.0.0-M20.jar, guava-27.0-jre.jar, hadoop-mapreduce-client-core-
3.2.2.jar.
2. Log in to the Flink cluster and upload the prepared Jar files to the flink/ib directory.

Step 2: Creating a Kafka Topic

 Log in to Kafka Manager, click on default cluster, then click on Topic > Create.
Topic name: For this example, enter kafka_dlc
Number of partitions: 1
Number of replicas: 1

https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/flink-sql-connector-kafka-1.15.4.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/sort-connector-iceberg-dlc-1.6.0.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/api-util-1.0.0-M20.5.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/guava-27.0-jre.2.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/hadoop-mapreduce-client-core-3.2.2.4.jar

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 70

Alternatively, log in to the Kafka cluster instance and use the following command in the kafka/bin directory to create
the Topic.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 70

./kafka-topics.sh --bootstrap-server ip:port --create --topic kafka-dlc

Step 3: Creating a New Target Table in DLC

For details on creating a new target table, see DLC Native Table Operation Configuration.

Step 4: Submitting the Task

There are two ways to synchronize data, i.e. using Flink: Flink SQL Write Mode and Flink Stream API. Both
synchronization methods will be introduced below.

https://www.tencentcloud.com/document/product/1155/62029#

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 70

Before submitting the task, you need to create a directory to save checkpoint data. Use the following command to
create the data management.
Create the hdfs /flink/checkpoints directory:

hadoop fs -mkdir /flink

hadoop fs -mkdir /flink/checkpoints

Flink SQL Synchronization Mode

1. Create a new Maven project named "flink-demo" in IntelliJ IDEA.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 70

2. Add the necessary dependencies in pom. For details on the dependencies, see Complete Sample Code Reference
> Example 1.
3. Java synchronization code: The core code is shown in the steps below. For detailed code, see Complete Sample

Code Reference > Example 2.
Create execution environment and configure checkpoint:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

env.setParallelism(1);

env.enableCheckpointing(60000);

env.getCheckpointConfig().setCheckpointStorage("hdfs:///flink/checkpoints");

https://www.tencentcloud.com/document/product/1155/62030#Example1
https://www.tencentcloud.com/document/product/1155/62030#Example2

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 70

env.getCheckpointConfig().setCheckpointTimeout(60000);

env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.Externaliz

 Execute Source SQL:

 tEnv.executeSql(sourceSql);

Execute Synchronization SQL:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 70

 tEnv.executeSql(sql)

4. Use IntelliJ IDEA to compile and package the flink-demo project. The JAR file flink-demo-1.0-SNAPSHOT.jar will

be generated in the project's target folder.
5. Log in to one of the instances in the Flink cluster and upload flink-demo-1.0-SNAPSHOT.jar to the /data/jars/
directory (create the directory if it does not exist).
6. Log in to one of the instances in the Flink cluster and execute the following command in the flink/bin directory to
submit the synchronization task.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 70

./flink run --class com.tencent.dlc.iceberg.flink.AppendIceberg /data/jars/flink-d

Flink Stream API Synchronization Mode

1. Create a new Maven project named "flink-demo" in IntelliJ IDEA.

2. Add the necessary dependencies in pom: Complete sample code reference > Example 3.
3. Java synchronization code: The core code is shown in the steps below. For detailed code, see Complete sample
code reference > Example 4.
 Create the execution environment StreamTableEnvironment and configure checkpoint:

https://www.tencentcloud.com/document/product/1155/62030#Example3
https://www.tencentcloud.com/document/product/1155/62030#Example4

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 70

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

env.setParallelism(1);

env.enableCheckpointing(60000);

env.getCheckpointConfig().setCheckpointStorage("hdfs:///data/checkpoints");

env.getCheckpointConfig().setCheckpointTimeout(60000);

env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.Externaliz

Get the Kafka input stream:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 70

KafkaToDLC dlcSink = new KafkaToDLC();

DataStream<RowData> dataStreamSource = dlcSink.buildInputStream(env);

 Configure Sink:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 70

FlinkSink.forRowData(dataStreamSource)

 .table(table)

 .tableLoader(tableLoader)

 .equalityFieldColumns(equalityColumns)

 .metric(params.get(INLONG_METRIC.key()), params.get(INLONG_AUDIT.key()))

 .action(actionsProvider)

 .tableOptions(Configuration.fromMap(options))

 // It is false by default, which appends data. If it is set to be true, t

 .overwrite(false)

 .append();

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 70

 Execute Synchronization SQL:

env.execute("DataStream Api Write Data To Iceberg");

4. Use IntelliJ IDEA to compile and package the flink-demo project. The JAR packet, flink-demo-1.0-SNAPSHOT.jar,
will be generated in the project's target folder.
5. Log in to one of the instances in the Flink cluster and upload flink-demo-1.0-SNAPSHOT.jar to the /data/jars/
directory (create the directory if it does not exist).
6. Log in to one of the instances in the Flink cluster and execute the following command in the flink/bin directory to

submit the task.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 70

./flink run --class com.tencent.dlc.iceberg.flink.AppendIceberg /data/jars/flink-d

Step 5: Send Message Data and Query Synchronization Results

1. Log in to the Kafka cluster instance, navigate to the kafka/bin directory, and use the following command to send

message data.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 70

./kafka-console-producer.sh --broker-list 122.152.227.141:9092 --topic kafka-dlc

The data information is as follows:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 70

{"id":1,"name":"Zhangsan","age":18}

{"id":2,"name":"Lisi","age":19}

{"id":3,"name":"Wangwu","age":20}

{"id":4,"name":"Lily","age":21}

{"id":5,"name":"Lucy","age":22}

{"id":6,"name":"Huahua","age":23}

{"id":7,"name":"Wawa","age":24}

{"id":8,"name":"Mei","age":25}

{"id":9,"name":"Joi","age":26}

{"id":10,"name":"Qi","age":27}

{"id":11,"name":"Ky","age":28}

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 70

{"id":12,"name":"Mark","age":29}

2. Query synchronization results
Open the Flink Dashboard, and click on Running Job > Run Job > Checkpoint > Overview to view the Job

synchronization results.

3. Log in to the DLC Console, click on Data Exploration to query the target table data.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 70

Complete Sample Code Reference Example

Note:
Data marked with “****” in the examples should be replaced with actual data used during development.

Example 1

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 70

 <properties>

 <flink.version>1.15.4</flink.version>

 <cos.lakefs.plugin.version>1.0</cos.lakefs.plugin.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 70

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-clients</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka</artifactId>

 <version>${flink.version}</version>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-table-planner_2.12</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-json</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>com.qcloud.cos</groupId>

 <artifactId>lakefs-cloud-plugin</artifactId>

 <version>${cos.lakefs.plugin.version}</version>

 <exclusions>

 <exclusion>

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 70

 <groupId>com.tencentcloudapi</groupId>

 <artifactId>tencentcloud-sdk-java</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 </dependencies>

Example 2

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 70

public class AppendIceberg {

 public static void main(String[] args) {

 // Create execution environment and configure the checkpoint

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnv

 env.setParallelism(1);

 env.enableCheckpointing(60000);

 env.getCheckpointConfig().setCheckpointStorage("hdfs:///flink/checkpoints")

 env.getCheckpointConfig().setCheckpointTimeout(60000);

 env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

 env.getCheckpointConfig()

 .enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpo

 EnvironmentSettings settings = EnvironmentSettings

 .newInstance()

 .inStreamingMode()

 .build();

 StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);

 // Create the input table

 String sourceSql = "CREATE TABLE tb_kafka_sr (\\n"

 + " id INT, \\n"

 + " name STRING, \\n"

 + " age INT \\n"

 + ") WITH (\\n"

 + " 'connector' = 'kafka', \\n"

 + " 'topic' = 'kafka_dlc', \\n"

 + " 'properties.bootstrap.servers' = '10.0.126.***:9092', \\n" //

 + " 'properties.group.id' = 'test-group', \\n"

 + " 'scan.startup.mode' = 'earliest-offset', \\n" // start from t

 + " 'format' = 'json' \\n"

 + ");";

 tEnv.executeSql(sourceSql);

 // Create the output table

 String sinkSql = "CREATE TABLE tb_dlc_sk (\\n"

 + " id INT PRIMARY KEY NOT ENFORCED, \\n"

 + " name STRING,\\n"

 + " age INT\\n"

 + ") WITH (\\n"

 + " 'qcloud.dlc.managed.account.uid' = '1000***79117',\\n" //User

 + " 'qcloud.dlc.secret-id' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt'

 + " 'qcloud.dlc.region' = 'ap-***',\\n" // Database and table regi

 + " 'qcloud.dlc.user.appid' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt

 + " 'qcloud.dlc.secret-key' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP',\

 + " 'connector' = 'iceberg-inlong', \\n"

 + " 'catalog-database' = 'test_***', \\n" // Target database

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 70

 + " 'catalog-table' = 'kafka_dlc', \\n" // Target data table

 + " 'default-database' = 'test_***', \\n" //Default database

 + " 'catalog-name' = 'HYBRIS', \\n"

 + " 'catalog-impl' = 'org.apache.inlong.sort.iceberg.catalog.hybri

 + " 'uri' = 'dlc.tencentcloudapi.com', \\n"

 + " 'fs.cosn.credentials.provider' = 'org.apache.hadoop.fs.auth.Dl

 + " 'qcloud.dlc.endpoint' = 'dlc.tencentcloudapi.com', \\n"

 + " 'fs.lakefs.impl' = 'org.apache.hadoop.fs.CosFileSystem', \\n"

 + " 'fs.cosn.impl' = 'org.apache.hadoop.fs.CosFileSystem', \\n"

 + " 'fs.cosn.userinfo.region' = 'ap-guangzhou', \\n" // Region inf

 + " 'fs.cosn.userinfo.secretId' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8l

 + " 'fs.cosn.userinfo.secretKey' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNi

 + " 'service.endpoint' = 'dlc.tencentcloudapi.com', \\n"

 + " 'service.secret.id' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt', \

 + " 'service.secret.key' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP', \\n

 + " 'service.region' = 'ap-***', \\n" // Database and table regio

 + " 'user.appid' = '1305424723', \\n"

 + " 'request.identity.token' = '1000***79117', \\n"

 + " 'qcloud.dlc.jdbc.url'='jdbc:dlc:dlc.internal.tencentcloudapi.c

 + ");";

 tEnv.executeSql(sinkSql);

 // Execute computation and output results

 String sql = "insert into tb_dlc_sk select * from tb_kafka_sr";

 tEnv.executeSql(sql);

 }

}

Example 3

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 70

 <properties>

 <flink.version>1.15.4</flink.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>com.alibaba</groupId>

 <artifactId>fastjson</artifactId>

 <version>2.0.22</version>

 <scope>provided</scope>

 </dependency>

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 59 of 70

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-clients</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-table-planner_2.12</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-json</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.inlong</groupId>

 <artifactId>sort-connector-iceberg-dlc</artifactId>

 <version>1.6.0</version>

 <scope>system</scope>

 <systemPath>${project.basedir}/lib/sort-connector-iceberg-dlc-1.6.0.jar</syst

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 60 of 70

 </dependency>

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>${kafka-version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.7.25</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.25</version>

 </dependency>

 </dependencies>

Example 4

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 61 of 70

public class KafkaToDLC {

 public static void main(String[] args) throws Exception {

 final MultipleParameterTool params = MultipleParameterTool.fromArgs(args);

 final Map<String, String> options = setOptions();

 //1. Create the execution environment StreamTableEnvironment and configure

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnv

 env.setParallelism(1);

 env.enableCheckpointing(60000);

 env.getCheckpointConfig().setCheckpointStorage("hdfs:///data/checkpoints");

 env.getCheckpointConfig().setCheckpointTimeout(60000);

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 62 of 70

 env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

 env.getCheckpointConfig()

 .enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpo

 env.getConfig().setGlobalJobParameters(params);

 //2. Get input stream

 KafkaToDLC dlcSink = new KafkaToDLC();

 DataStream<RowData> dataStreamSource = dlcSink.buildInputStream(env);

 //3. Create Hadoop configuration and Catalog configuration

 CatalogLoader catalogLoader = FlinkDynamicTableFactory.createCatalogLoader(

 TableLoader tableLoader = TableLoader.fromCatalog(catalogLoader,

 TableIdentifier.of(params.get(CATALOG_DATABASE.key()), params.get(C

 tableLoader.open();

 Table table = tableLoader.loadTable();

 ActionsProvider actionsProvider = FlinkDynamicTableFactory.createActionLoad

 Thread.currentThread().getContextClassLoader(), options);

 //4. Create Schema

 Schema schema = Schema.newBuilder()

 .column("id", DataTypeUtils.toInternalDataType(new IntType(false)))

 .column("name", DataTypeUtils.toInternalDataType(new VarCharType())

 .column("age", DataTypeUtils.toInternalDataType(new DateType(false)

 .primaryKey("id")

 .build();

 List<String> equalityColumns = schema.getPrimaryKey().get().getColumnNames(

 //5. Configure Slink

 FlinkSink.forRowData(dataStreamSource)

 //This .table can be omitted; just specify the corresponding path f

 .table(table)

 .tableLoader(tableLoader)

 .equalityFieldColumns(equalityColumns)

 .metric(params.get(INLONG_METRIC.key()), params.get(INLONG_AUDIT.ke

 .action(actionsProvider)

 .tableOptions(Configuration.fromMap(options))

 //It is false by default, which appends data. If it is set to be tr

 .overwrite(false)

 .append();

 //6. Execute synchronization

 env.execute("DataStream Api Write Data To Iceberg");

 }

 private static Map<String, String> setOptions() {

 Map<String, String> options = new HashMap<>();

 options.put("qcloud.dlc.managed.account.uid", "1000***79117"); //User Uid

 options.put("qcloud.dlc.secret-id", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt");

 options.put("qcloud.dlc.region", "ap-***"); // Database and table region in

 options.put("qcloud.dlc.user.appid", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt")

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 63 of 70

 options.put("qcloud.dlc.secret-key", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP"); /

 options.put("connector", "iceberg-inlong");

 options.put("catalog-database", "test_***"); // Target database

 options.put("catalog-table", "kafka_dlc"); // Target data table

> options.put("default-database", "test_***"); //Default database

 options.put("catalog-name", "HYBRIS");

 options.put("catalog-impl", "org.apache.inlong.sort.iceberg.catalog.hybris.

 options.put("uri", "dlc.tencentcloudapi.com");

 options.put("fs.cosn.credentials.provider", "org.apache.hadoop.fs.auth.DlcC

 options.put("qcloud.dlc.endpoint", "dlc.tencentcloudapi.com");

 options.put("fs.lakefs.impl", "org.apache.hadoop.fs.CosFileSystem");

 options.put("fs.cosn.impl", "org.apache.hadoop.fs.CosFileSystem");

 options.put("fs.cosn.userinfo.region", "ap-guangzhou"); // Region informati

 options.put("fs.cosn.userinfo.secretId", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJ

 options.put("fs.cosn.userinfo.secretKey", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP

 options.put("service.endpoint", "dlc.tencentcloudapi.com");

 options.put("service.secret.id", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt"); //

 options.put("service.secret.key", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP"); // U

 options.put("service.region", "ap-***"); // Database and table region info

 options.put("user.appid", "1305***23");

 options.put("request.identity.token", "1000***79117");

 options.put("qcloud.dlc.jdbc.url",

 "jdbc:dlc:dlc.internal.tencentcloudapi.com?task_type,SparkSQLTask&d

 return options;

 }

 /**

 * Create the input stream

 *

 * @param env

 * @return

 */

 private DataStream<RowData> buildInputStream(StreamExecutionEnvironment env) {

 //1. Configure the execution environment

 EnvironmentSettings settings = EnvironmentSettings

 .newInstance()

 .inStreamingMode()

 .build();

 StreamTableEnvironment sTableEnv = StreamTableEnvironment.create(env, setti

 org.apache.flink.table.api.Table table = null;

 //2. Execute SQL to get the data input stream

 try {

 sTableEnv.executeSql(createTableSql()).print();

 table = sTableEnv.sqlQuery(transformSql());

 DataStream<Row> rowStream = sTableEnv.toChangelogStream(table);

 DataStream<RowData> rowDataDataStream = rowStream.map(new MapFunction<R

 @Override

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 64 of 70

 public RowData map(Row rows) throws Exception {

 GenericRowData rowData = new GenericRowData(3);

 rowData.setField(0, rows.getField(0));

 rowData.setField(1, (String) rows.getField(1));

 rowData.setField(2, rows.getField(2));

 return rowData;

 }

 });

 return rowDataDataStream;

 } catch (Exception e) {

 throw new RuntimeException("kafka to dlc transform sql execute error.",

 }

 }

 private String createTableSql() {

 String tableSql = "CREATE TABLE tb_kafka_sr (\\n"

 + " id INT, \\n"

 + " name STRING, \\n"

 + " age INT \\n"

 + ") WITH (\\n"

 + " 'connector' = 'kafka', \\n"

 + " 'topic' = 'kafka_dlc', \\n"

 + " 'properties.bootstrap.servers' = '10.0.126.30:9092', \\n"

 + " 'properties.group.id' = 'test-group-10001', \\n"

 + " 'scan.startup.mode' = 'earliest-offset', \\n"

 + " 'format' = 'json' \\n"

 + ");";

 return tableSql;

 }

 private String transformSql() {

 String transformSQL = "select * from tb_kafka_sr";

 return transformSQL;

 }

}

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 65 of 70

DLC Source Table FAQs
Last updated：2024-07-31 17:35:14

Why Must Data Optimization Be Enabled for Upsert Write Scenarios in DLC Native Table
(Iceberg)?

1. DLC Native Table (Iceberg) uses the MOR (Merge On Read) table format. When Upsert writes occur upstream,
updates write a delete file marking a record as deleted and then add a new data file to the new modification record.
2. Without committing and merging, the job engine needs to merge the original data it has read, the delete file, and the

new data file when reading data to get the latest data. This will lead the job engine to consume significant resources
and time. Small file merging in data optimization reads and merges these files in advance, writing them into new data
files so that the job engine can directly read the latest files without needing to merge data files.
3. DLC metadata (Iceberg) uses a snapshot mechanism, and even if new snapshots are generated during the write,
historical snapshots are not cleaned up. The snapshot expiration capability of the data optimization can remove old

snapshots, freeing up storage space and preventing unused historical data from occupying storage space.

How to Handle Timeout in Data Optimization Tasks?

The system sets a default timeout for running data optimization tasks (2 hours by default) to prevent a task from
occupying resources for too long and hindering other tasks. When the timeout expires, the system cancels the
optimization task. According to different types of tasks, see the following handling procedures.
1. If small file merge tasks frequently time out, it indicates data accumulation and that current resources are insufficient
for merging. Temporarily expanding resources (or setting the table to use dedicated optimization resources) can

address the accumulated data, and then revert the settings.
2. If small file merge tasks occasionally time out, it may indicate insufficient optimization resources. Consider scaling-
out data resources to some extent and monitoring if there are timeouts in subsequent governance tasks of multiple
cycles. Occasional small file merge timeouts will not immediately impact query performance but may lead to
continuous timeouts and eventually affect query performance if the issue is not addressed timely. DLC enables

segmented submissions for small file merges by default, so parts of the finished task can still be submitted
successfully and are still effective.
3. If a snapshot expiration task times out, it occurs in two stages. In the first stage, the snapshot is removed from the
metadata, and this process usually does not time out. In the second stage, the data files associated with the removed
snapshot are deleted from storage. This stage requires individually comparing files to be deleted. There might be

timeouts if there are many files to be deleted. Timeouts for this type of task can be ignored. Files that were not deleted
due to the timeout will be treated as orphan files and will be cleaned up in subsequent orphaned file removal
processes.
4. If orphan file removal tasks time out, the handling of orphan files is similar to removing orphan files. As long as the
deleted files are still valid when scanned, the system will continue to scan and execute in subsequent cycles, as
orphan file removal is a periodic task. If a task times out, it will be retried in the next cycle.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 66 of 70

Why Does Iceberg Occasionally Read an Old Snapshot Shortly after Inserting Data?

1. Iceberg provides a default caching capability for the catalog, with a default duration of 30 seconds. In extreme
cases, if two queries for the same table occur very close together in time and are not executed in the same session,
there is a very low probability that the query will access the previous snapshot before the cache expires and updates

are fetched.
2. The Iceberg community recommends enabling this parameter. DLC also enabled it by default in earlier versions to
speed up task execution and reduce visits to metadata during queries. However, if two tasks have very close read and
write intervals, the described situation may occur in extreme cases.
3. In the latest versions of the DLC engine, this parameter is disabled by default. When it comes to the scenes users

may encounter, if users who purchased the engine before January 2024 need to ensure strong data consistency in
queries, they can manually disable this parameter by following the configuration method below to modify the engine
parameters:

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 67 of 70

"spark.sql.catalog.DataLakeCatalog.cache-enabled": "false"

"spark.sql.catalog.DataLakeCatalog.cache.expiration-interval-ms": "0"

Why Should DLC Native Table (Iceberg) Be Partitioned?

1. Data optimization jobs are first divided by partitions. If the native table (Iceberg) has no partitions, most small file
merges that involve modifying tables will only have a single job operate. Therefore, the merges cannot be parallel, and
this significantly reduces merge efficiency.

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 68 of 70

2. If the Table Has No Upstream Partition Fields, How Can It Be Partitioned? In this case, consider using Iceberg's
bucket partitioning. For detailed description, see DLC Native Table Core Capabilities.

How to Handle Write Conflicts in DLC Native Table (Iceberg)?

1. To ensure ACID compliance, Iceberg checks the current view for changes during commits. If changes are detected,

a conflict is assumed. Then, the commit operation is rolled back. The current view is merged, and the commit is
retried.
2. The system provides default retry counts and intervals for conflicts. If multiple commit attempts still result in
conflicts, the write operation fails. For default conflict parameters, see DLC Native Table Core Capabilities.
3. If conflicts occur, users can adjust the number and interval of retries. The following example sets the number of

conflict retries to 10. For more details on parameter meanings, see DLC Native Table Core Capabilities.

https://www.tencentcloud.com/document/product/1155/62028
https://www.tencentcloud.com/document/product/1155/62028
https://www.tencentcloud.com/document/product/1155/62028

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 69 of 70

// Set conflict retry count to 10

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('commit.ret

The DLC Native Table (Iceberg) has Been Deleted, But Why Is The Storage Space Capacity
Not Released?

When the DLC native table (Iceberg) is dropped, the metadata is deleted immediately, and the data is deleted
asynchronously. The data is first moved to the recycle bin directory, and the data is removed from the storage one day

Data Lake Compute

©2013-2022 Tencent Cloud. All rights reserved. Page 70 of 70

later.

