
Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 58

Cloud Application Rendering

Getting Started

Product Documentation

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 58

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 58

Contents

Getting Started
Basic Technical Concepts
User Guides
Technical Integration

Starting an Application
Closing the Application
Queue Feature
Data Channel
Heartbeat Connection
Application Reconnection
Adaptive Resolution
Enabling Mic
Enabling Camera
Mouse/Keyboard/Touch Interactive Processing

Integration Demo

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 58

Getting Started
Basic Technical Concepts
Last updated：2024-01-26 11:54:09

What is Cloud Application Rendering (CAR)

Cloud Application Rendering is a PaaS product with features like
Application self-upload and update,
Concurrency (Virtual Machine) self-management,

Automatic concurrency scheduling based on global end-user location for optimal proximity,
Ultra-low latency audio and video streaming,
JavaScript, iOS, and Android SDK
and so on.
It runs your developed EXE/APK applications on cloud concurrencies, allowing end-users to experience them through

web pages without downloading. The provided terminal SDKs transmit audio and video results to end users' devices
and send real-time user operations back to the concurrencies. To integrate CAR, you only need to ensure that the
application can run normally in a Windows Server 2019 / 2022 or Android environment, without using any special
plugins, making cloudification easy.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 58

CAR has three basic concepts: application, project, and concurrency.
Application: Your developed application. Upload it to the console to run it in the cloud concurrency.

Project: Group concurrencies through projects and associate them with applications. Create different projects for an
application to meet various testing and deployment scenarios without repeatedly uploading the application.
Concurrency: The only billing item for CAR. One concurrency equals one virtualized cloud instance, including virtual
computing resources such as CPU, bandwidth, disk, and GPU, used to run your application in the cloud.

Note：

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 58

For more information on concurrency configuration and specifications, please refer to Billing.
At present, only PC desktop applications (.exe) can be uploaded through the console, and only x86
concurrency (Windows Server 2019/2022 system) is available. If you want to deploy a .apk application and use

ARM concurrency (Android system), please contact your Tencent Cloud sales representative.

TencentCloud API

TencentCloud API: TencentCloud API 3.0 is the basis of Tencent Cloud open ecosystem and boasts strengths such
as ease of automation and remote call, high compatibility, and low system requirements. It enables you to quickly
manipulate Tencent Cloud products with only a small amount of code, and improves the efficiency for frequently called
features. You can also combine different TencentCloud APIs to implement more advanced features. For more

information on TencentCloud API 3.0, see Introduction.
Access key: An access key is a TencentCloud API key, which is a security credential used for authentication when
you access TencentCloud APIs. It consists of a SecretId and SecretKey . If you don't have an API key yet,

you need to create one in Manage API Key; otherwise, you cannot call TencentCloud APIs. You can get the access
key on the Manage API Key page in the console.

Running Environment

Cloud software environment of a CAR concurrency instance

Deployment prerequisites: The uploaded application will run in the purchased concurrency instance. The

installation package of the application must support portable deployment and installation; that is, application
operations don't rely on modifications of the registry or other system configurations.
System limits: PowerShell and CMD services on Windows cannot be called.
Port limits: Port listening is not supported because the public IP provided by the service is not fixed. Subnet
broadcasting is not supported. If you have such needs, we recommend that you use the public network for

communication.
Network conditions: The service does not prevent external access from your application.

CAR service environment

Network conditions: The network of CAR relies on UDP data reception and sending, so you need to open UDP port
60000-60100 to all source IPs on the client. If there are no special security concerns, we recommend you open all
UDP ports.

If Wi-Fi or your company intranet cannot access CAR service, you can try testing it on a 4G network. If CAR service
can be accessed on a 4G network, it indicates that there may be network restrictions on the Wi-Fi or company
intranet.

https://www.tencentcloud.com/document/product/1158/49606
https://www.tencentcloud.com/products/api
https://www.tencentcloud.com/document/product/1080/38759
https://console.tencentcloud.com/cam/capi

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 58

Service Integration Capabilities

CAR provides the ability to quickly launch applications without development. You can configure a standardized front-
end page through the console and launch it for use. As a frontend/backend integrated PaaS product, CAR also
provides backend APIs and various client SDKs. You can use our integration demo to build your own business

backend services and business client programs to meet your unique needs.

Business backend:
You need to set up your own backend service and connect to the backend TencentCloud APIs provided by CAR to

perform operations such as requesting a concurrency and creating a session.
We provide a backend demo for reference to help you set up your own backend. For detailed directions on
how to deploy the demo, see Getting Started. For the detailed sequence diagram and how to integrate features such
as data channel, adaptive resolution, and enabling the mic, see Technical Integration.
Deploying your own backend is a necessary step for using CAR services:
For the security of your assets and services, the SecretId and SecretKey of your Tencent Cloud account

(which can be obtained on the Manage API Key page in the console) that are needed in order to access the CAR

https://www.tencentcloud.com/document/product/1158/55099
https://www.tencentcloud.com/document/product/1158/49646
https://www.tencentcloud.com/document/product/1158/49958
https://github.com/tencentyun/car-server-demo/blob/master/README.en.md
https://www.tencentcloud.com/document/product/1158/49612#ba976522-716f-4529-8161-6d99b57f101c
https://www.tencentcloud.com/document/product/1158/49613
https://console.tencentcloud.com/cam/capi

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 58

TencentCloud API service must be processed on your backend service. In addition, management of user sessions
and other features such as user queue must be implemented on your backend service.
Business client:

CAR provides SDKs for JavaScript, Android, and iOS. You need to set up your own client program and connect to
these SDKs so that Android, iOS, and web end users can access your cloud-rendered services.
We provide the demo for JavaScript, demo for Android and demo for iOS for reference to help you set up
your own client service. For detailed directions on how to deploy the demos, see Getting Started. The SDK
provides many APIs, and you can customize your development based on the demos and SDK API documentation.

https://github.com/tencentyun/cloudgame-js-sdk/tree/master/samples/car
https://github.com/tencentyun/cloudgame-android-sdk/tree/master/TcrSdk/Demo
https://github.com/tencentyun/cloudgame-ios-sdk/tree/master/Demo
https://www.tencentcloud.com/document/product/1158/49612#ba976522-716f-4529-8161-6d99b57f101c

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 58

User Guides
Last updated：2024-01-26 11:54:09

What is Cloud Application Rendering (CAR)

Cloud Application Rendering is a PaaS product with features like
Application self-upload and update,
Concurrency (Virtual Machine) self-management,

Automatic concurrency scheduling based on global end-user location for optimal proximity,
Ultra-low latency audio and video streaming,
JavaScript, iOS, and Android SDK
and so on.
It runs your developed EXE/APK applications on cloud concurrencies, allowing end-users to experience them through

web pages without downloading. The provided terminal SDKs transmit audio and video results to end users' devices
and send real-time user operations back to the concurrencies. To integrate CAR, you only need to ensure that the
application can run normally in a Windows Server 2019 / 2022 or Android environment, without using any special
plugins, making cloudification easy.

Before reading this document, make sure you understand the basic technical concepts of CAR.

https://www.tencentcloud.com/document/product/1158/49611

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 58

Sign up for a Tencent Cloud account and activate CAR

1. If you don't have a Tencent Cloud account yet, sign up for one first.
2. After applying to activate CAR, you can start using the CAR console.

CAR Integration

Before integration, we hope you can first understand the three basic concepts of CAR:

Application: Your developed application. Upload it to the console to run it in the cloud concurrency.
Project: Group concurrencies through projects and associate them with applications. Create different projects for an
application to meet various testing and deployment scenarios without repeatedly uploading the application.
Concurrency: The only billing item for CAR. One concurrency equals one virtualized cloud instance, including virtual
computing resources such as CPU, bandwidth, disk, and GPU, used to run your application in the cloud.

Note:
For more information on concurrency configuration and specifications, please refer to Billing.
At present, only PC desktop applications (.exe) can be uploaded through the console, and only x86
concurrency (Windows Server 2019/2022 system) is available. If you want to deploy a .apk application and use
ARM concurrency (Android system), please contact your Tencent Cloud sales representative.

In the console, it is recommended that you follow the sequence of (1) Creating an application, (2) Creating a
project & purchasing concurrency packs to obtain a project associated with a specific application and allocated
with available concurrency. Next, you can carry out a (3) Performance test on this project, experience the basic

https://www.tencentcloud.com/register?s_url=https%3A%2F%2Fcloud.tencent.com%2F
https://www.tencentcloud.com/apply/p/ombzi6237bn
https://www.tencentcloud.com/document/product/1158/49606

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 58

effect of your cloud application, and choose the most suitable concurrency scale. After completing the performance
test, you can (4) Launch the project. We support:
Quick Launch (no development required): Quickly generate a standardized front-end page through simple

configurations in the console.
By using the provided backend and client demo for integration, you can build your own backend services and client
programs to meet your unique business requirements.

Step 1. Create application

1. Upload an application:

1.1
Before
 you upload an application to CAR, we recommend that you first set the application to a borderless windowed
mode that can adapt the desktop resolution so that you can later use the adaptive resolution feature. This feature
can make the application display full-screen, adapt to the resolution of end-user devices, and have no black borders
on the screen.

This operation needs to be performed at the application layer, not in the console.
For some applications, you can adjust the display mode in the settings and upload the generated configuration file
along with the package to the console.

https://www.tencentcloud.com/document/product/1158/49606#2b64d0e7-f064-49a1-b832-bd87c81eca29
https://www.tencentcloud.com/document/product/1158/52155

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 58

You can also adjust the relevant display configurations during application development. For Unreal Engine, You can
add a blueprint as shown below to BeginPlay in Map . In Fullscreen Mode should be set to

 Windowed Fullscreen .

For the Unity application, refer to the following image for instructions on how to configure the fullscreen mode.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 58

Alternatively, you can add the application startup parameter -screen-fullscreen 1 . For Unity application

parameters, refer to the Unity documentation.

Note:
An application is not in the borderless windowed mode when displayed in fullscreen mode.
The Adaptive Resolution feature is achieved by modifying the "default resolution of cloud desktop". However, when

the application is in full-screen mode, the desktop resolution is controlled by the application. In this case, a crash may
occur when the desktop resolution is modified.
How do I differentiate between borderless windowed mode and fullscreen mode?
You can press Alt+Tab. Borderless windowed applications do not cause the monitor to flicker when the window is
switched, while fullscreen applications do cause the monitor to flicker.
1.2 Package the application as a ZIP, RAR, or 7z file. Go to the My Applications page in the CAR console, upload

the application, and wait for the application to be created.

https://docs.unity3d.com/2023.3/Documentation/Manual/PlayerCommandLineArguments.html
https://www.tencentcloud.com/document/product/1158/52155

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 58

Please use UTF-8 encoding for compression (recommended to use 7-Zip) to prevent garbled file or folder names after
decompression.

Cloud rendering supports three types of applications: Cloud 3D, Cloud XR, and Cloud APK.
Cloud 3D: Traditional 3D (non-AR/VR class) applications, operated generally with a keyboard and mouse, such as
virtual event applications and PC games. The application running on the cloud needs to be in the EXE format and can
be adapted to a variety of platforms such as web pages, mini-programs, Android/iOS applications, etc.
Cloud XR (beta): VR/AR/MR applications, generally operated with dual-hand controllers. The XR application running

on the cloud needs to be in the EXE format, and can be adapted to Pico/Oculus, mobile phones/tablets, PCs,
holographic terminals, and other platforms.
Cloud APK (beta): Applications in the APK format.
Note:
Cloud APK and Cloud XR are currently in beta, and self-upload is not currently supported. If you want to use, please
contact your Tencent Cloud sales rep.

2. Configure the application

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 58

Path of the main executable file: To avoid filling in errors that may cause the application to fail to start, it is
recommended that you wait for the application to be created and then click Browse to select the right path.

Application full-screen/adaptive resolution settings:
If you have adjusted the application to borderless fullscreen mode according to Step 1.1, set the Screen Capture

Mode to Capture the entire desktop .

If your application only has a not-fullscreen window mode and cannot be adjusted to borderless fullscreen mode, you
can use the Capture a window mode. You need to fill in the correct Window title and Class name

according to the instructions. If the window title isn't customized during development, the window title for `Demo.exe`
will be `Demo`. If your application is built by Unreal Engine, enter `UnrealWindow` for the Class name.

https://www.tencentcloud.com/document/product/1158/49612#fullscreen
https://www.tencentcloud.com/document/product/1158/50549

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 58

For detailed configuration instructions, see Application Configuration.

Step 2. Create a project and purchase concurrency packs:

Test Project and Free Concurrency Pack for New Users:
Before officially purchasing any concurrency pack, you can freely test the applications you uploaded using the Test
Project. Free resources are limited, so each test is restricted to 2 minutes. For more information, please refer to the
default Test Project and the free concurrency pack for new users.
1. If you wish to test other concurrency scales or purchase a concurrency pack for official use, please create a new

project.

https://www.tencentcloud.com/document/product/1158/49619
https://www.tencentcloud.com/document/product/1158/54581

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 58

Project type: Supports two types of projects: single-application and multi-application. Single-application type ensures
that the concurrency package under the project is only used by a single application, while the concurrency packs

under a multi-application project can be shared by multiple applications as a "resource pool". Click to view how to
achieve concurrency resource sharing through multi-application projects.
Concurrency scale: The concurrency scale under a project must be consistent. You can create multiple projects for
an application and specify different concurrency scales to test the rendering effects of different concurrency scales. It
is recommended to start testing from L scales to avoid problems such as stuttering caused by insufficient concurrency

performance. For specific configurations of different concurrency scales, please refer to Billing.
Advanced project settings: Projects allow customization of parameters such as frame rate, bit rate range, default
cloud desktop resolution, application startup parameters, prelaunch feature, and so on. You can adjust them

https://www.tencentcloud.com/document/product/1158/54578
https://www.tencentcloud.com/document/product/1158/49606

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 58

according to your needs. For details, please refer to the advanced project settings instructions.
2. Purchase the specified concurrency packs for the project and proceed to the next step.

Step 3. Start a test:

https://www.tencentcloud.com/document/product/1158/49622#697e5237-39c0-4777-b9c4-3b81935623eb

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 58

Click Test to generate a test link and password. Open the test link to test the basic effect of operating your cloud
application.

You can open the "Debug" tool (shortcut key Ctrl+~) in the toolbar of the test page and pay attention to the

following data to choose the most suitable concurrency scale:

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 58

FPS (frames per second): The frame rate should be maintained at 30 or above under normal circumstances. If the
FPS suddenly drops when entering certain specific scenes or performing specific operations, it may be due to a

sudden increase in GPU computing power consumption that the current concurrency scale cannot handle, resulting in
dropped frames. It is recommended that you try a higher concurrency scale.
RTT (round-trip time): If the RTT is higher than 100ms, there may be noticeable delays. It is recommended that you
first check if there is any network jitter and try accessing it using a 4G/5G network. If the concurrency region is too far
from your physical location, it will also cause high RTT.

Region (concurrency region): The area where the concurrency is located. If you purchase concurrency in multiple
regions under a project, we will automatically schedule the nearest idle concurrency based on the end user's IP
address. For example, if there are concurrencies in both Singapore and North America regions under a project, users
in North America will connect to the concurrency in North America, while users in Southeast Asia will connect to the
concurrency in Singapore.
InstanceType (concurrency scale): There are three concurrency scales: S, M, and L which are suitable for small,

medium, and large applications, respectively. For detailed configurations, please refer to Billing. If your application
requires high computing power but uses a lower concurrency scale, it may cause high CPU/GPU usage and result in
stuttering, crashing, and other issues.

https://www.tencentcloud.com/document/product/1158/49612#a261e0a6-001c-4d13-8846-52a6a88f777a
https://www.tencentcloud.com/document/product/1158/49606

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 58

CpuUsage (CPU usage): If you find that the FPS data is dropping, check if there is 90-100% CPU usage. If so, it
means that the concurrency scale is insufficient to handle the workload. Please try a higher concurrency scale.
GpuUsage (GPU usage): L=load, M=memory, E=encoder, D=decoder. Pay attention to the value of L (load). If you

find that the FPS data is dropping, check if L appears with a value of 90-100%. If so, it means that the concurrency
scale is insufficient to handle the workload. Please try a higher concurrency scale.
RequestId: If you encounter any problems/questions, please try to keep the connection and contact us, providing the
RequestId.
Common issues encountered during testing:

A message is displayed indicating that there are no idle concurrencies:
Check whether there are any idle concurrencies under the project. When a user exits the application, it takes about
one minute for the concurrency to be automatically cleared. Only then will the concurrency become idle so that a new
user can connect to it.
The application cannot start / black screen:
If the cloud rendering service is stuck on loading and cannot be accessed, you can try testing it on a 4G network to

see if the Wi-Fi or company intranet is restricting UDP. The cloud rendering service relies on UDP data transmission
and reception, and it is necessary to open UDP port 60000-60100 to all source IPs on the client. If there are no special
security concerns, we recommend you open all UDP ports.
If the message "Startup failed, please check the startup path configuration" is displayed, check if the main executable
path of the application is correctly filled in.

If the application uses the Capture a window mode, check whether the window title and class name are correctly
entered. If they are configured incorrectly, a black screen will occur.
The application starts slowly:
Generally, the prelaunch feature is used to load an application in advance so the application will already be running
when a user connects to it. Because multi-application projects do not support prelaunch, the applications under those

projects take a longer time to start.
For a single-application project, you can enable prelaunch so that the application will be loaded in seconds when the
user connects to it.
When a user exits the application, the concurrency they were connected to will be repossessed, cleared, and reset,
and when the concurrency becomes idle, the application will be prelaunched again. If the next user enters the
application just when the concurrency becomes idle, the application may have not been completely prelaunched.

The RTT data is abnormal: We recommend that you first check for local network jitter. You can try accessing over a
4G/5G network. If the concurrency region is too far from your physical location, it will also cause high RTT. In this
case, you may want to consider purchasing concurrency in a region closer to your physical location.
The application is slow or stuttering: This may be because your application has high requirements for computing
power but the concurrency scale is low (such as S). We recommend you try a higher concurrency scale.

Prompt "Cloud rendering has been disconnected": If you are using your company's Wi-Fi network, it is
recommended to check whether the network meets the CAR service environment, that is, the UDP ports have been

https://www.tencentcloud.com/document/product/1158/50549
https://www.tencentcloud.com/document/product/1158/49611#.E4.BA.91.E6.B8.B2.E6.9F.93.E6.9C.8D.E5.8A.A1.E7.8E.AF.E5.A2.83

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 58

opened. At the same time, you can also check if there are any jitter issues with your local network and try accessing
the link again via 4G/5G mobile networks.
If your problem still persists, contact us for assistance. For more FAQs, see Cloud Application FAQs.

Step 4. Launch project

After completing the test, you have determined the most suitable concurrency specification for your application and
would like to create a client that can be officially provided to the end users. At this point, you can choose from the
following two methods:

Method one. Quick Launch (no development required)

CAR supports standardized configuration of pages, allowing zero development to generate links for your project and
application. For detailed operation steps, please refer to the quick launch guide.

Method two. Integrate CAR PaaS

To implement specific requirements and guarantee the optimal user experience, you might want to develop and set up
your own backend service and client program and connect to CAR PaaS's APIs and SDKs for JavaScript, Android,
and iOS. We provide demos for reference to help you quickly set up and deploy your own backend service and client
program.

https://www.tencentcloud.com/document/product/1158/49638
https://www.tencentcloud.com/document/product/1158/55099
https://www.tencentcloud.com/document/product/1158/49958
https://www.tencentcloud.com/document/product/1158/49646

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 58

1. Deploy the backend demo:
Deploy the backend demo locally or on any server as instructed here. The demo is lightweight and has no special
requirements for server configuration.

Deploying your own backend is a necessary step for using CAR services:
For the security of your assets and services, the SecretId and SecretKey of your Tencent Cloud account

(which can be obtained on the Manage API Key page in the console) that are needed in order to access the CAR
TencentCloud API service must be processed on your backend service. In addition, management of user sessions
and other features such as user queue must be implemented on your backend service. For more information, see

Basic logic of the business backend and client.
2. Deploy the client demo:
Taking the demo for JavaScript as an example,
2.1 Download TCGSDK to C or D drive on the local PC or the Downloads folder on Mac and keep the path of the

folder such as c:/cloudgame-js-sdk .

2.2 Download the demo HTML file.

2.3 Replace the following paths/parameters in the demo. For more information, see Tutorial: Cloud Application
Rendering web demo:

Paths/parameters that need to be
replaced

Note

 src="path/to/tcg-sdk"
TCGSDK path, for example:
 src="./cloudgame-js-sdk/dist/tcg-sdk/index.js"

 url =

'http://xxxx/StartProject'

Replace xxxx with the URL of the business backend demo such as
 url = 'http://192.168.0.1:3000/StartProject'

 ProjectId: 'cap-12345'

 ApplicationId: 'app-

12345'

 UserId: 'user-id'

 ProjectId : The ID of the project created in the console, prefixed
with "cap-".
 ApplicationId : The ID of the application created in the console,
 UserId : The unique ID of the end user currently connected to CAR,
which is customized by you and is not understood by CAR. It can be

https://github.com/tencentyun/car-server-demo
https://console.tencentcloud.com/cam/capi
https://www.tencentcloud.com/document/product/1158/49612#.E6.AD.A5.E9.AA.A45.EF.BC.9A.E9.A6.96.E6.AC.A1.E6.8B.89.E8.B5.B7.E5.BA.94.E7.94.A8.E4.BA.91.E6.B8.B2.E6.9F.93.E6.9C.8D.E5.8A.A1
https://github.com/tencentyun/cloudgame-js-sdk
https://github.com/tencentyun/cloudgame-js-sdk/tree/master/samples/car
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/tutorial-01-cloud-application_EN-US.html

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 58

randomly generated with the timestamp and should be kept unchanged
during user reconnection.

2.4 For mobile operations, CAR provides the Joystick plugin to map WASD/up, down, left, and right arrow keys.
2.5 We recommend that you integrate the user queue system to improve the user experience when the number of
users requesting your application becomes greater than the maximum number of concurrencies. The queue logic

involves the frontend and backend. For the frontend code, see Queue. The signature logic can be added based on
your business needs. For the backend implementation, see Queue Feature.
3. Test, debug, and launch your application:
After correctly performing the operations in the console and successfully deploying your backend and client services,
you can open the demo HTML file in Chrome (recommended). The rendered application image will be displayed after

being loaded successfully, and you can then interact with the application with the mouse/WASD.
You can perform more custom development based on the demo. If you encounter any problems during the testing
process, contact us and provide the RequestId.
Relevant guides:
Technical Integration: Contains detailed directions on implementing the queue feature, data channel, heartbeat
connection, adaptive resolution, enabling the mic, etc.

JavaScript SDK Documentation: Contains the demos for JavaScript and detailed documentation of the rich TCGSDK
APIs, making it easier for you to perform custom development.
Android SDK Documentation: Contains detailed documentation of the SDK for Android as well as three demo projects
and an APK for trial purposes.
iOS SDK Documentation: Contains detailed documentation of the SDK for iOS and a simple demo for integrating the

SDK.

Appendix

Basic logic of the business backend and client

1. The client initializes the CAR SDK:
No matter which type of client you use, you can get ClientSession after the SDK is initialized successfully.

 ClientSession will be used by the business server to get ServerSession subsequently. The specific

initialization and acquisition methods for each client type are as detailed below:

SDK for JavaScript: The business client calls the TCGSDK.init(params) API to perform initialization. After
initialization, the client calls the TCGSDK.getClientSession() function to get its ClientSession .

SDK for Android: Call the TcrSdk.getInstance().init(context, null, callback) API to perform initialization. After
initialization, the client gets its ClientSession in the TcrSession.Observer#onEvent callback.

2. The backend service reserves a concurrency:
Your backend service calls the CAR API ApplyConcurrent() to reserve a concurrency and proceeds to the next step

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs/Joystick.html
https://github.com/tencentyun/cloudgame-js-sdk/tree/master/samples/queue
https://www.tencentcloud.com/document/product/1158/49615
https://www.tencentcloud.com/document/product/1158/49633#.E5.A6.82.E4.BD.95.E6.9F.A5.E7.9C.8B-requestid.3F
https://www.tencentcloud.com/document/product/1158/49613
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/index.html
https://github.com/tencentyun/cloudgame-android-sdk/blob/master/TcrSdk/README_EN-US.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/README_EN-US.md
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#init
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#getClientSession
https://tencentyun.github.io/cloudgame-android-sdk/tcrsdk/3.3.1/com/tencent/tcr/sdk/api/TcrSdk.html#init-Context-java.lang.String-com.tencent.tcr.sdk.api.AsyncCallback-
https://tencentyun.github.io/cloudgame-android-sdk/tcrsdk/3.3.1/com/tencent/tcr/sdk/api/TcrSession.Observer.html#onEvent-com.tencent.tcr.sdk.api.TcrSession.Event-java.lang.Object-
https://www.tencentcloud.com/document/product/1158/49969

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 58

after receiving the success callback.
3. The backend service gets ServerSession :

Your backend service calls the CAR API CreateSession(ClientSession) to get ServerSession in the success

callback and return it to the client.
4. Start CAR:
The call method to start CAR after ServerSession is received varies slightly for SDKs for different client types.

See the following guides based on your specific client type:
SDK for JavaScript: The client calls the TCGSDK.start(ServerSession) function to start CAR.

SDK for Android: The client calls the TcrSession.start(serverSession,callback) function to start CAR.

https://www.tencentcloud.com/document/product/1158/49968
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start
https://tencentyun.github.io/cloudgame-android-sdk/tcrsdk/3.3.1/com/tencent/tcr/sdk/api/TcrSession.html#start-java.lang.String-

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 58

Technical Integration
Starting an Application
Last updated：2024-01-26 11:54:09

This section describes how to start a cloud application.

Sequence diagram

Parameter description

Role Description

CAR SDK CAR client SDKs include SDK for JavaScript, SDK for Android, and SDK for iOS. This
section takes the JavaScript SDK as an example.

https://www.tencentcloud.com/document/product/1158/53502
https://www.tencentcloud.com/document/product/1158/49628
https://www.tencentcloud.com/document/product/1158/49629

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 58

Business client The platform you provide for your users. You can see Step 3 in Getting Started and for
reference when setting up your business client.

Business backend Your backend service that can be deployed on any server. You can see Step 3 in
Getting Started for reference when setting up your backend.

CAR backend Tencent Cloud APIs provided by CAR.

Cloud application The application you uploaded.

Directions

1. The business client calls the TCGSDK.init() API to perform initialization. After initialization, the client calls the
TCGSDK.getClientSession() API to get its ClientSession .

2. The business client requests the business backend to start the application based on parameters passed in such as
 UserId and ClientSession . Here, UserId is the unique user identifier customized by the business and

should remain unchanged during user queuing and application reconnection.
Note:
A concurrency can be used by only one UserId at a time. If you use the same UserId to send requests,

concurrency contention may occur. The CAR backend sends the currently connected concurrency to the device
sending the latest request, and the previous device will be disconnected and display a black screen.
3. The business backend calls the [ApplyConcurrent()]

(https://cloud.tencent.com/document/product/1547/72827) API through the Real-Time Cloud

Rendering API to apply to reserve a concurrency. If there are no available concurrencies or an error is returned, go
back to Step 2 to send a request again.
4. The business backend calls the CreateSession() API to create a session and returns ServerSession to the

business client.

5. The business client calls the TCGSDK.start() API to start the cloud application. After the application connection, the
SDK will trigger the onConnectSuccess() callback. We recommend you call the data channel creation API and

APIs for other features after this callback.

https://www.tencentcloud.com/document/product/1158/49612#clientDemoDeploy
https://www.tencentcloud.com/document/product/1158/49612#backendDemoDeploy
https://www.tencentcloud.com/document/product/1158/49958
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#init
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#getClientSession
https://www.tencentcloud.com/document/product/1158/49968
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 58

Closing the Application
Last updated：2024-01-26 11:54:09

Closing the Application

This section describes how to close the application. We recommend you release concurrencies promptly when the
application is closed, so that the concurrencies can be made available to other users more quickly.

Sequence diagram

Directions

1. The business client actively requests the business backend to close the application.
2. The business backend calls the DestroySession API to terminate the session and close the cloud application
actively. Then, the business client disconnects from the cloud application.

https://www.tencentcloud.com/document/product/1158/49967

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 58

Queue Feature
Last updated：2024-01-26 11:54:09

This section describes how to integrate the user queue system. We recommend you integrate the user queue system
to improve the user experience when the number of users requesting your application becomes greater than the max
number of concurrencies.

Sequence diagram

Directions

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 58

1. The business client calls the TCGSDK.init() API to perform initialization. After initialization, the client calls the
TCGSDK.getClientSession() API to get its ClientSession .

2. The business client requests the business backend to start the application based on parameters passed in such as

 UserId and ClientSession . Here, UserId is the unique user identifier customized by the business and

should remain unchanged during user queuing and application reconnection.
The business backend needs to perform the following operations based on the current queuing status:

If the queue isn't empty, add the user to the queue and return the current queue ranking information. The business

client regularly initiates requests after receiving the queue information and repeats step 2 until the application is
started successfully.
If the queue is empty or the user ranks the first, proceed to step 3.
3.
The business backend calls the ApplyConcurrent() API to reserve a CAR concurrency and performs the following
steps based on the returned result:

If there are no idle concurrencies or another error is returned, add the user to the queue, return the current queue
ranking information, and go back to step 2 to initiate a request again.
If the concurrency is obtained successfully, proceed to step 4.
4.

The business backend calls the CreateSession() API to create a session and returns ServerSession to the

business client.

5. The business client calls the TCGSDK.start() API to start the cloud application. After the application connection, the
SDK will trigger the onConnectSuccess() callback. We recommend you call the data channel creation API and

APIs for other features after this callback.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#init
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#getClientSession
https://www.tencentcloud.com/document/product/1158/49615#2
https://www.tencentcloud.com/document/product/1158/49615#3
https://www.tencentcloud.com/document/product/1158/49969
https://www.tencentcloud.com/document/product/1158/49615#2
https://www.tencentcloud.com/document/product/1158/49615#4
https://www.tencentcloud.com/document/product/1158/49968
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 58

Data Channel
Last updated：2024-01-26 11:54:09

This document describes how to use a data channel to establish communication between the business client and a
cloud application and transfer startup parameters, commands, messages, or other data.

Sequence diagram

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 58

Directions

1. Create a UDP service for the cloud business application to listen for a local UDP port (recommended port range:
10000–20000 for localhost 127.0.0.1) and wait to receive UDP packets.

2. The business client calls the TCGSDK.start() API to start the cloud application. After the application connection, the

 onConnectSuccess() callback is triggered. We recommend you create a data channel for the business client

after this callback.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 33 of 58

3. The business client calls the TCGSDK.createCustomDataChannel() API to create a passthrough channel. The
target port parameter in the API must be the port listened for by the cloud application in step 1. If the data channel fails
to be created, repeat this step until it is created successfully.

4. After the data channel is created successfully, the business client can call sendMessage() to send a data

packet customized by the business. The UDP
service of the cloud application receives the request and parses the UDP source address.

5. The cloud application sends a custom data packet to the UDP source address obtained in step 4. The data packet

will then be returned through the created data channel. The business client can process the returned packet in the
 onMessage() callback API.

Sample code

Business client (JavaScript SDK example)
Cloud application (C/C++ example)

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#createCustomDataChannel
https://www.tencentcloud.com/document/product/1158/51428#.E6.AD.A5.E9.AA.A4.E8.AF.B4.E6.98.8E3
https://www.tencentcloud.com/document/product/1158/51428#4

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 34 of 58

let timer = null;

const { sendMessage, code } = await TCGSDK.createCustomDataChannel({

 destPort: xxxx, // The recommended port range of destPort is 10000–20000.

 onMessage: (res) => {

 console.log('CustomDataChannel onMessage', res);

 // The receipt of this callback indicates that the cloud application has been s

 // clearInterval(timer);

 },

});

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 35 of 58

// The code value 0 indicates successful establishment of a data channel between th

if (code === 0) {

 // Send custom data.

 sendMessage('test');

}

if (code === 1 || code === -1) {

 // Retry upon failed creation.

 // timer = setInterval(() => {

 // sendMessage('test');

 // }, 5000);

} else {

 // Contemplate re-establishing the data channel.

}

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 36 of 58

int main() {

 int udp_socket_fd = socket(AF_INET, SOCK_DGRAM, 0);

 if (udp_socket_fd == -1) {

 printf("socket failed!\\n");

 return -1;

 }

 // Set the destination IP address.

 struct sockaddr_in bind_addr = { 0 };

 bind_addr.sin_family = AF_INET;

 bind_addr.sin_port = htons(xxxx); // The recommended port range in htons(xxxx)

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 37 of 58

 bind_addr.sin_addr.s_addr = inet_addr("0.0.0.0"); // Bind the IP

 // Bind the port.

 int ret = bind(udp_socket_fd, (struct sockaddr *)&bind_addr, sizeof(bind_addr))

 if (ret < 0) {

 perror("bind fail:");

 close(udp_socket_fd);

 return -1;

 }

 // Start to wait for a client message.

 struct sockaddr_in upstream_addr = { 0 }; // Address used to store the CAR pr

 int len = sizeof(upstream_addr);

 char buf[1024] = { 0 }; // Receive buffer.

 while (true) {

 ret = recvfrom(udp_socket_fd, buf, sizeof(buf), 0, (struct sockaddr *)&upst

 if (ret == -1) {

 break;

 }

 // buf is the message "test" sent by the frontend.

 // upstream_addr can be subsequently used to send messages to the frontend.

 const char* response = "response";

 sendto(udp_socket_fd, response, strlen(response), 0, (struct sockaddr *)&up

 }

 return 0;

}

FAQs

The data channel is successfully created, the business frontend successfully sends data,
but the response from the cloud application is not received. What should I do?

A successful call to the TCGSDK.createCustomDataChannel() API indicates that a data channel has been
successfully established between the business frontend and the cloud. However, it is possible that the cloud
application may not be fully initiated at this time. The business frontend can send custom data via timeout, interval,
polling, etc., to ensure that the cloud application normally receives the custom data sent by the business frontend once
it is successfully initiated. As long as the data channel is successfully created, data can be sent successfully by

default.
If you confirm that the cloud application data is received in the onMessage callback, you can cancel the polling and

then send the data normally.

What types of data can be sent and received?

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#createCustomDataChannel

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 38 of 58

The sendMessage() API supports data types such as string and ArrayBuffer.

Is there any limit on the size of a data packet to be transferred?

There is no limit on the size of a data packet to be transferred. However, it must be noted that the UDP packet can be
of up to 64 KB and it is suggested that the packet size be kept less than MTU 1500. If the packet size is too large, it is

recommended to use packet splitting for the transmission, as too much upstream data could potentially cause
congestion and affect the user experience.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 39 of 58

Heartbeat Connection
Last updated：2024-01-26 11:54:09

Heartbeat Connection

This section describes how to maintain a heartbeat connection between the client and the backend. The heartbeat
can be used to detect whether the user is still connected and used to collect and manage data such as user
connection duration. In this way, if the user exits due to an error, the backend can more quickly repossess the

concurrency the user was occupying, and make it available to other users.

Sequence diagram

Directions

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 40 of 58

1. The client regularly sends heartbeat messages to the backend. The backend maintains the user connectivity based
on the heartbeat messages.
2. The backend regularly checks whether the user is still connected. If the user heartbeat times out, the backend will

call the DestroySession() API to terminate the session and close the application, and the client will disconnect from the
application.

https://www.tencentcloud.com/document/product/1158/49967

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 41 of 58

Application Reconnection
Last updated：2024-01-26 11:54:09

Application Reconnection

This section describes how to reconnect to an application. If a user directly closes the client but doesn't actively call
the application close feature, APIs for applying for a concurrency and creating a session can be called again to
reconnect to the application.

Sequence diagram

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 42 of 58

Directions

1. After the client is closed, it will disconnect from the cloud application. If the backend doesn't actively call the API to
close the application, the concurrency will wait for 90 seconds by default, so that there is time to reconnect.

2. After the client is opened again, it will pass in the same UserId to request the backend to start the application. If

the UserId values are different, it cannot reconnect the user to the application.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 43 of 58

3. The backend calls the ApplyConcurrent() API to apply to reserve the concurrent and perform the following steps
based on the concurrency’s status:
If the user's last connected concurrency hasn't been repossessed, the last concurrency will be returned.

If the user's last connected concurrency has already been repossessed, a new concurrency will be returned.
4. The backend calls the CreateSession() API to create a session and returns ServerSession to the client to

restart the application.

https://www.tencentcloud.com/document/product/1158/49969
https://www.tencentcloud.com/document/product/1158/49968

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 44 of 58

Adaptive Resolution
Last updated：2024-01-26 11:54:09

This document describes how to support adaptive resolution for cloud applications. This feature can be used to make
an application adapt to different client resolutions and achieve a fullscreen display without black bars.

Sequence diagram

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 45 of 58

Directions

Recommended method

1. Prerequisites:
1.1 Before you upload an application to CAR, we recommend you first set the application to borderless
windowed fullscreen mode and enable adaptive resolution.

Note:
This operation must be done by adjusting settings within the application.

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 46 of 58

For applications built with Unreal Engine, you can add the blueprint below to your Map's BeginPlay to enable adaptive
desktop resolution. Make sure In Fullscreen Mode is configured as Windowed Fullscreen .

The applications built with Unity can be configured to borderless windowed fullscreen mode as shown below.

It can also be configured by adding the application startup parameter -screen-fullscreen 1 . For detailed

parameters of Unity applications, see here.

For some applications, the display mode can be adjusted in the application settings. After adjusting the settings, you
can update the application version in the console.

https://docs.unity3d.com/2023.3/Documentation/Manual/PlayerCommandLineArguments.html

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 47 of 58

An application is NOT in the borderless windowed mode when displayed in the exclusive fullscreen
mode. In CAR, adaptive resolution is achieved by modifying the cloud desktop resolution. An application in
exclusive fullscreen mode has full control over the display resolution. In this case, a crash may occur when the display

resolution is modified.
How to differentiate between borderless windowed mode and exclusive fullscreen mode? Press Alt+Tab to
switch to a different window. Borderless windowed applications do not cause the display to flicker when the window is
switched, while exclusive fullscreen applications do cause the display to flicker.
1.2 In the CAR console, go to the application configuration and set the screen capture mode to Capture the entire

desktop.
2. The business client calls the TCGSDK.start() API to start the cloud application. After it connects to the application,
the onConnectSuccess() callback is triggered. We recommend you set the resolution for the client after this

callback.
3. The business client calls the TCGSDK.getPageSize() API or other methods to get the client resolution.
4. After getting the resolution, the client calls the TCGSDK.setRemoteDesktopResolution() API to set the cloud

resolution.
5. After the request to set the resolution is received in the cloud, the cloud desktop resolution is modified, and
the cloud application adapts to the resolution change.
6. The business client calls the onRemoteScreenResolutionChange() API to check whether the resolution

settings have taken effect.

Adapting to different client resolutions if the application is only displayed in a non-fullscreen
window (not recommended)

https://www.tencentcloud.com/document/product/1158/49619
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#getPageSize
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#setRemoteDesktopResolution

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 48 of 58

If your application is only displayed in a non-fullscreen window and cannot be set to borderless windowed fullscreen
mode, you can go to the application configuration in the console to set the screen capture mode to Capture a
window. You need to fill in the correct application window title and class name as described in Using Window

Capturing Mode. If the window title is not specified during development, the window title after starting Demo.exe is
usually “Demo”; if your application is developed with Unreal Engine, the class name is usually “UnrealWindow”.
Next steps:
1. The business client calls the TCGSDK.start() API to start the cloud application. After it connects to the application,
the onConnectSuccess() callback is triggered. We recommend you set the resolution for the client after this

callback.
2. The business client calls the TCGSDK.getPageSize() API or other methods to get the client resolution.
3. The business client notifies the cloud application to modify the resolution through a data channel or by using a
custom method.
4. After the request to set the resolution is received in the cloud, the cloud desktop resolution is then modified.
(This requires support by the application)

5. Since the display resolution of the application changes, to avoid problems such as incomplete display, partial
screen unresponsiveness, and other issues caused by the application resolution exceeding the cloud desktop
resolution, make sure the cloud desktop resolution is always greater than the application resolution by using one of the
following methods:
Method 1: In the console, go to Project settings > Advanced settings and change the default cloud desktop

resolution to a sufficiently large size, such as 2500 x 2500.
Method 2: Synchronously call the TCGSDK.setRemoteDesktopResolution() API to modify the cloud desktop
resolution. The business client calls the onRemoteScreenResolutionChange() API to check whether the

resolution settings have taken effect.
Note:

The methods above are relatively complicated, and improper configuration may cause issues such as incomplete
screen display, partial screen unresponsiveness, and abnormal client screen resolution. Therefore, we recommend
you use the recommended method of setting the application to borderless windowed mode and enabling adaptive
resolution.

https://www.tencentcloud.com/document/product/1158/49619
https://www.tencentcloud.com/document/product/1158/50549
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#start
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#getPageSize
https://www.tencentcloud.com/document/product/1158/51428
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#setRemoteDesktopResolution
https://www.tencentcloud.com/document/product/1158/52155#f2a8e817-6714-4be9-a473-56a71b1761b6

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 49 of 58

Enabling Mic
Last updated：2024-01-26 11:54:09

This document describes how to enable the mic. If your business needs to play back audio through a mic, you can use
the SDK to enable the mic feature.

Sequence diagram

Directions

1. The cloud application can capture the audio of the system mic.

2. The business client calls the TCGSDK.init() API and sets the mic parameter to true to complete

initialization.
3. The business client must be granted the permission to access the mic.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#init

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 50 of 58

Note:
Taking a browser as an example, the system first needs to enable the mic permission of the browser. The browser
then needs to enable the mic permission of the accessed page, so that the business client can enable the mic

permission.
4. When the business client uses the mic, the data will be transferred to the cloud application through the SDK.
5. If the business needs to turn on/off the mic during connection, the business client can call TCGSDK.switchMic() to
do this.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#switchMic

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 51 of 58

Enabling Camera
Last updated：2024-01-26 11:54:09

This document describes how to enable the camera. If your business needs to play back video from a camera, you
can use the SDK to enable the camera feature.

Sequence diagram

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 52 of 58

Directions

1. The cloud application can capture the video image of the system camera.
2. The business client calls the TCGSDK.init() API and sets the camera parameter to true to complete

initialization.

3. The business client must be granted the permission to access the camera.
Note:
Taking a browser as an example, the system first needs to enable the camera permission of the browser. The browser
then needs to enable the camera permission of the accessed page, so that the business client can enable the camera
permission.

4. When the business client uses the camera, the data will be transferred to the cloud application through the SDK.
5. If the camera needs to be turned on/off during the connection, the business client can call TCGSDK.switchCamera()
to do this.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs/TCGSDK.html#init
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs/TCGSDK.html#switchCamera

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 53 of 58

Mouse/Keyboard/Touch Interactive
Processing
Last updated：2024-01-26 11:54:09

This section mainly introduces the methods for handling interactions with mouse, keyboard, and touch screen.

Mouse

The above figure shows the conversion flow of mouse messages in CAR interaction. From the above, the Application
is a self-service application uploaded by the business side in the console, which runs on the Windows system and
responds to mouse window messages from Windows. When the business side accesses the SDK to send mouse
messages, it needs to convert the messages from the platform where the SDK is running into mouse messages to
operate the application.

In general, the situations that each platform deals with are as follows:
On Android and iOS platforms, the touch messages from the system are converted to CAR mouse messages.
On Web pages, depending on the system on which the page is running, mouse messages are converted to CAR
messages when the Web page is running in a Windows/macOS browser, and touch messages are converted to CAR
messages when the Web page is running in an Android/iOS browser.
Among them, the conversion of touch messages to CAR mouse messages usually involves converting a single finger

click to a CAR mouse click, a single finger swipe to a CAR mouse move, and so on.
Therefore, the business side needs to be adapted according to the SDK used and the platform running. For more
details, please refer to the following:

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 54 of 58

Web page reference document: onTouchEvent，mouseMove，sendMouseEvent
Android App reference document: Android peripheral interaction processing
iOS App reference document: iOS peripheral interaction processing

Keyboard

The above figure shows the conversion flow of keyboard messages in CAR interaction. From the above, the
Application is a self-service application uploaded by the business side in the console, which runs on a Windows
system and responds to keyboard window messages from Windows. When the business side accesses the SDK to

send keyboard messages, it needs to convert the messages from the platform where the SDK is running into keyboard
messages to operate the application.
In general, the situations that each platform deals with are as follows:
On Android and iOS platforms, the system's touch messages or soft keyboard messages are converted to CAR
keyboard messages.
On Web pages, depending on the system on which the page is running, keyboard messages are converted to CAR

keyboard messages when the Web page is running in a Windows/macOS browser, and touch messages or soft
keyboard messages are converted to CAR keyboard messages when the Web page is running in an Android/iOS
browser.
Among them, the conversion of touch messages or soft keyboard messages to CAR messages usually involves
converting touch steering wheel operations to WASD messages of the CAR keyboard, converting soft keyboard

messages directly to CAR keystroke messages, and so on.
Therefore, the business side needs to be adapted according to the SDK used and the platform running. For more
details, please refer to the following:

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/InitConfig.html#onTouchEvent
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#mouseMove
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#sendMouseEvent
https://github.com/tencentyun/cloudgame-android-sdk/blob/master/TcrSdk/Doc/Peripheral_Interaction_Processing.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/Doc/Peripheral_Interaction_Processing.md

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 55 of 58

Web page reference document: sendKeyboardEvent，Joystick
Android App reference document: Android peripheral interaction processing
iOS App reference document: iOS peripheral interaction processing

Touch

The above figure shows the conversion flow of touch messages in the CAR interaction. From the above, the
Application is a self-service application uploaded by the business side in the console, which runs on the Windows
system and responds to touch window messages from Windows. When the business side accesses the SDK to send

touch messages, it needs to convert the messages from the platform where the SDK is running into touch messages
to operate the application.
In general, the situations that each platform deals with are as follows:
On Android and iOS platforms, the touch messages from the system are converted to CAR touch messages.
Converting touch messages to CAR touch messages when the web page is running in an Android/iOS browser only.
It is recommended that the business side can use the SDK to convert touch messages from their platform to CAR

touch messages only if the application supports Windows touch window message processing and the application tests
well on a physical Windows touch screen device.
Note：
It is not recommended to use the mouse-to-touch of UE or Unity engine to test whether the application software
handles the touch messages normaly, because the touch behavior will be abnormal on the touch screen device.

Therefore, the business side needs to be adapted according to the SDK used and the platform running. For more
details, please refer to the following:
Web page reference document: init.clientInteractMode，setClientInteractMode

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#sendKeyboardEvent
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/Joystick.html
https://github.com/tencentyun/cloudgame-android-sdk/blob/master/TcrSdk/Doc/Peripheral_Interaction_Processing.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/Doc/Peripheral_Interaction_Processing.md
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/InitConfig.html#clientInteractMode
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs_en/TCGSDK.html#setClientInteractMode

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 56 of 58

Android App reference document: Android peripheral interaction processing
iOS App reference document: iOS peripheral interaction processing

https://github.com/tencentyun/cloudgame-android-sdk/blob/master/TcrSdk/Doc/Peripheral_Interaction_Processing.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/Doc/Peripheral_Interaction_Processing.md

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 57 of 58

Integration Demo
Last updated：2024-01-26 11:54:09

CAR provides demos for JavaScript, Android, and iOS, as well as a backend demo. This document describes how to
quickly configure a demo to run a simple cloud application.

Step 1: Deploy the backend demo

Deploy the backend demo locally or on any server as instructed here. The demo is lightweight and has no special

requirements for server configuration.
The CAR backend demo demonstrates various features, including application startup and exits as well as user queue.
For more information on features and integration, see Technical Integration.
Deploying your own backend is a necessary step for using CAR services:
For the security of your assets and services, the SecretId and SecretKey of your Tencent Cloud account

(which can be obtained on the Manage API Key page in the console) that are needed in order to access the CAR
TencentCloud API service must be processed on your backend service. In addition, management of user sessions
and other features such as user queue must be implemented on your backend service. For more information, see
Basic logic of the business backend and client.

Step 2: Deploy the client demo

Demo for JavaScript

The CAR SDK for JavaScript supports various implementation scenarios, including PC and mobile web pages. This
document describes how to quickly set up, deploy, and run the demo for the web.

1. Download TCGSDK to C or D drive on the local PC or the Downloads folder on Mac and keep the path of the

folder such as c:/cloudgame-js-sdk .

2. Download the demo HTML file.
3. Replace the following paths/parameters in the demo. For more information, see CAR Demo:

Paths/parameters that need to be
replaced

Note

 src="path/to/tcg-sdk"
TCGSDK path, for example:
 src="./cloudgame-js-sdk/dist/tcg-sdk/index.js"

 url =

'http://xxxx/StartProject'

Replace xxxx with the URL of the business backend demo such as
 url = 'http://192.168.0.1:3000/StartProject'

https://github.com/tencentyun/car-server-demo
https://www.tencentcloud.com/document/product/1158/49613
https://console.tencentcloud.com/cam/capi
https://www.tencentcloud.com/document/product/1158/49612#.E6.AD.A5.E9.AA.A45.EF.BC.9A.E9.A6.96.E6.AC.A1.E6.8B.89.E8.B5.B7.E5.BA.94.E7.94.A8.E4.BA.91.E6.B8.B2.E6.9F.93.E6.9C.8D.E5.8A.A1
https://github.com/tencentyun/cloudgame-js-sdk
https://github.com/tencentyun/cloudgame-js-sdk/tree/master/samples/car
https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs/tutorial-01-cloud-application.html

Cloud Application Rendering

©2013-2022 Tencent Cloud. All rights reserved. Page 58 of 58

 ProjectId: 'project-id'

 UserId: 'user-id'

 ProjectId : The ID of the project created in the console.
 UserId : The unique ID of the end user currently connected to CAR,
which is customized by you and is not understood by CAR. It can be
randomly generated with the timestamp and should be kept unchanged
during user reconnection.

4. For mobile operations, CAR provides the Joystick plugin to map WASD/up, down, left, and right arrow keys.

5. We recommend that you integrate the user queue system to improve the user experience when the number of users
requesting your application becomes greater than the maximum number of concurrencies. The queue logic involves
the frontend and backend. For the frontend code, see Queue. The signature logic can be added based on your
business needs. For the backend implementation, see Queue Feature.
6. Test, debug, and launch your application:

After correctly performing the operations in the console and successfully deploying your backend and client services,
you can open the demo HTML file in Chrome (recommended). The rendered application image will be displayed after
being loaded successfully, and you can then interact with the application with the mouse/WASD.
You can perform more custom development based on the demo. If you encounter any problems during the testing
process, contact us and provide the RequestId.

Demo for Android

The demo for Android provides basic CAR capabilities, including simple samples, virtual keyboard, and usage of

some common APIs. Your own cloud application can be operated based on the features of the demo. You can quickly
configure the demo and run a cloud application as follows:
1. Download the demo project for Android here and import the project to the AndroidStudio tool.
2. Integrate the application as instructed here.

Demo for iOS

The demo for iOS provides samples of a virtual keyboard and some common APIs to help you quickly integrate the

SDK and start the CAR service. You can implement more features based on the demo to meet your specific needs.
You can quickly configure the demo and run a cloud application as follows:
1. Download the demo project for iOS here.
2. Integrate the application as instructed here.

https://ex.cloud-gaming.myqcloud.com/cloud_gaming_web/docs/Joystick.html
https://github.com/tencentyun/cloudgame-js-sdk/tree/master/samples/queue
https://www.tencentcloud.com/document/product/1158/49615
https://www.tencentcloud.com/document/product/1158/49633#.E5.A6.82.E4.BD.95.E6.9F.A5.E7.9C.8B-requestid.3F
https://github.com/tencentyun/cloudgame-android-sdk/tree/master/TcrSdk/Demo
https://github.com/tencentyun/cloudgame-android-sdk/blob/master/TcrSdk/Doc/Real-Time_Cloud_Rendering_SDK_Integration_Guide.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/Demo/README_EN-US.md
https://github.com/tencentyun/cloudgame-ios-sdk/blob/master/README_EN-US.md

