
Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 11

Application Performance

Management

Best Practices

Product Documentation

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 11

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 11

Contents

Best Practices
Configuring Client Sampling with Jaeger
Configuring Java Application Data Collection with SkyWalking

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 11

Best Practices
Configuring Client Sampling with Jaeger
Last updated：2023-12-25 15:52:41

﻿This document describes how to configure client sampling with Jaeger.

Overview

When the number of access requests is high, reporting all trace data may greatly increase APM fees. In this case,
data sampling is often used.

Note:
In sampling, certain data is sampled from all the collected trace data for analysis, which reduces the span volume and
trace storage fees.

Sampling

Take a simple call relationship as an example: A > B > C (service A calls service B that calls service C). If service A
doesn't receive any tracing information when called, its Jaeger library will create a trace, assign a trace ID, and decide

whether to save the trace based on the sampling configuration. Both the sampling configuration decision and request
will be sent to services B and C; therefore, you only need to configure sampling for service A.

Directions

Sampling policy

The Jaeger client supports four sampling policies as follows:
Constant (sampler.type=const): It samples either all or none traces when the sample rate is 1 or 0 .

Probabilistic (sampler.type=probabilistic): It makes a random sampling decision with the probability in the range
of 0–1. For example, 0.5 indicates to sample 50% traces.

Rate Limiting (sampler.type=ratelimiting): It uses a rate limiter to ensure that traces are sampled with a certain
constant rate. For example, sampler.param = 2.0 indicates to sample requests with the rate of two traces per

second.
Remote (sampler.type=remote): It is the default policy. It resembles probabilistic as the sampling

probability but allows for dynamically getting the sample rate settings from the Jaeger agent. To minimize costs,

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 11

Jaeger adopts the 0.1% sampling policy, i.e., sampling 1 in 1,000 traces.

Java sample

1. Add the Jaeger library to the dependencies.

<dependency>

 <groupId>io.jaegertracing</groupId>

 <artifactId>jaeger-client</artifactId>

 <version>0.32.0</version>

</dependency>

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 11

2. Below is the sample code:

import io.jaegertracing.Configuration;

import io.jaegertracing.Configuration.ReporterConfiguration;

import io.jaegertracing.Configuration.SamplerConfiguration;

import io.jaegertracing.internal.JaegerTracer;

import io.jaegertracing.internal.samplers.ConstSampler;

import io.opentracing.Span;

import io.opentracing.util.GlobalTracer;

...

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 11

SamplerConfiguration samplerConfig = SamplerConfiguration.fromEnv()

 .withType(ConstSampler.TYPE)

 .withParam(1);

ReporterConfiguration reporterConfig = ReporterConfiguration.fromEnv()

 .withLogSpans(true);

Configuration config = new Configuration("helloWorld")

 .withSampler(samplerConfig)

 .withReporter(reporterConfig);

GlobalTracer.register(config.getTracer());

...

Span parent = GlobalTracer.get().buildSpan("hello").start();

try (Scope scope = GlobalTracer.get().scopeManager()

 .activate(parent)) {

 Span child = GlobalTracer.get().buildSpan("world")

 .asChildOf(parent).start();

 try (Scope scope = GlobalTracer.get().scopeManager()

 .activate(child)) {

 }

}

Go sample

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 11

import (

 "github.com/opentracing/opentracing-go"

 "github.com/uber/jaeger-client-go"

 "github.com/uber/jaeger-client-go/config"

)

...

func main() {

 ...

 cfg := config.Configuration{

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 11

 Sampler: &config.SamplerConfig{

 Type: "const",

 Param: 1,

 },

 Reporter: &config.ReporterConfig{

 LogSpans: true,

 BufferFlushInterval: 1 * time.Second,

 },

 }

 tracer, closer, err := cfg.New(

 "your_service_name",

 config.Logger(jaeger.StdLogger),

)

 opentracing.SetGlobalTracer(tracer)

 defer closer.Close()

 someFunction()

 ...

}

...

func someFunction() {

 parent := opentracing.GlobalTracer().StartSpan("hello")

 defer parent.Finish()

 child := opentracing.GlobalTracer().StartSpan(

 "world", opentracing.ChildOf(parent.Context()))

 defer child.Finish()

}

Note:
For more samples, see Client Library Features.

https://www.jaegertracing.io/docs/1.27/client-features

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 11

Configuring Java Application Data Collection
with SkyWalking
Last updated：2023-12-25 15:58:14

﻿This document describes how to configure Java application data collection with SkyWalking.

Overview

When the number of access requests is high, reporting all trace data may greatly increase APM fees. In this case,
data sampling is often used.

Note:
In sampling, certain data is sampled from all the collected trace data for analysis, which reduces the span volume and
trace storage fees.

Prerequisites

You have reported the data of the Java application over the SkyWalking protocol.

Directions

1. Open the agent/config/agent.config file and find the

 agent.sample_n_per_3_secs=${SW_AGENT_SAMPLE:-1} configuration item.

2. Modify the sample rate. agent.sample_n_per_3_secs indicates the volume of trace data

(TraceSegment) that can be collected every three seconds. If it is negative or 0 , all traces are collected,

which is the default option.
Example:

To collect 1,500 TraceSegments in three seconds, set as follows:

https://www.tencentcloud.com/document/product/1166/51667

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 11

agent.sample_n_per_3_secs=${SW_AGENT_SAMPLE:1500}

