
Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 194

Application Performance

Management

Access Guide

Product Documentation

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 194

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 194

Contents

Access Guide
Accessing Go Application

Connecting Go Applications Using OpenTelemetry-Go (Recommended)
Connecting Go Applications Using SkyWalking-Go
Reporting over Jaeger Protocol

Reporting with Native Jaeger SDK
Reporting with Gin Jaeger Middleware
Reporting with go-redis Middleware
Reporting with gRPC-Jaeger Interceptor

Accessing Java Application
Automatic Connecting Java Application for the TKE Environment (Recommended)
Connecting via Tencent Cloud OpenTelemetry Java Agent Enhanced Edition (Recommended)
Reporting over SkyWalking Protocol

Accessing Python Application
Automatic Connecting Python Application for the TKE Environment (Recommended)
Connecting Python Applications Using OpenTelemetry-Python (Recommended)
Reporting over Jaeger Protocol

Accessing Node.js Application
Automatic Connecting Node.js Applications for TKE Environment (Recommended)
Connecting Node.js Applications Using the OpenTelemetry-JS Scheme (Recommended)
Reporting with Native Jaeger SDK

Accessing PHP Application
Connecting PHP Application via OpenTelemetry-PHP (Recommended)

Installing tencent-opentelemetry-operator
Upgrading Agent Version

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 194

Access Guide
Accessing Go Application
Connecting Go Applications Using
OpenTelemetry-Go (Recommended)
Last updated：2024-06-19 16:31:30

Note:
OpenTelemetry is a collection of tools, APIs, and SDKs for monitoring, generating, collecting, and exporting telemetry
data (metrics, logs, and traces) to help users analyze the performance and behaviors of the software. For more

information about OpenTelemetry, see the OpenTelemetry Official Website.
The OpenTelemetry community is active, with rapid technological changes, and widely compatible with mainstream
programming languages, components, and frameworks, making its link-tracing capability highly popular for cloud-
native microservices and container architectures.
This document will introduce how to connect Go applications with the community's OpenTelemetry-Go scheme.

OpenTelemetry-Go provides a series of APIs so that users can send performance data to the observability platform's
server. This document introduces how to connect Tencent Cloud APM based on OpenTelemetry Go through the most
common application behaviors, such as HTTP services and database access. For more uses of OpenTelemetry-Go,
see the Project Homepage.

Prerequisites

This scheme supports the officially supported versions of Go, currently 1.21 and 1.22. For lower versions, the
connection is theoretically possible, but the community does not maintain full compatibility. For specific information,

see the community's Compatibility Description.

Preliminary steps: Get the connect point and Token.

1. Log in to the TCOP console.
2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.
3. In the Data access drawer that pops up on the right, click the Go language.

4. On the Access Go application page, select the Region and Business System you want to connect.
5. Select Access protocol type as OpenTelemetry.

https://opentelemetry.io/
https://github.com/open-telemetry/opentelemetry-go
https://github.com/open-telemetry/opentelemetry-go?tab=readme-ov-file#compatibility
https://console.tencentcloud.com/monitor/apm/system

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 194

6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:
Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through

VPC connecting directly, you can avoid the security risks of public network communication and save on reporting
traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

Connecting Go Applications

Step 1: Introduce OpenTelemetry-related dependencies to implement the SDK initialization
logic.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 194

package main

import (

 "context"

 "errors"

 "go.opentelemetry.io/otel"

 "go.opentelemetry.io/otel/attribute"

 "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc"

 "go.opentelemetry.io/otel/propagation"

 "go.opentelemetry.io/otel/sdk/resource"

 "go.opentelemetry.io/otel/sdk/trace"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 194

 sdktrace "go.opentelemetry.io/otel/sdk/trace"

 "log"

)

func setupOTelSDK(ctx context.Context) (*trace.TracerProvider, error) {

 opts := []otlptracegrpc.Option{

 otlptracegrpc.WithEndpoint("<endpoint>"), // Replace <endpoint> with the repo

 otlptracegrpc.WithInsecure(),

 }

 exporter, err := otlptracegrpc.New(ctx, opts...)

 if err != nil {

 log.Fatal(err)

 }

 r, err := resource.New(ctx, []resource.Option{

 resource.WithAttributes(

 attribute.KeyValue{Key: "token", Value: "<token>"}, // Replace <token> wit

 attribute.KeyValue{Key: "service.name", Value: "<servceName>"}, // Replace

 attribute.KeyValue{Key: "host.name", Value: "<hostName>"}, // Replace <hos

),

 }...)

 if err != nil {

 log.Fatal(err)

 }

 tp := sdktrace.NewTracerProvider(

 sdktrace.WithSampler(sdktrace.AlwaysSample()),

 sdktrace.WithBatcher(exporter),

 sdktrace.WithResource(r),

)

 otel.SetTracerProvider(tp)

 otel.SetTextMapPropagator(propagation.NewCompositeTextMapPropagator(propagation.

 return tp, nil

}

The corresponding field descriptions are as follows, replace them according to actual conditions.
 <serviceName> : Application name. Multiple application processes connecting with the same serviceName are

displayed as multiple instances under the same application in APM. The application name can be up to 63 characters
and can only contain lowercase letters, digits, and the separator (-), and it must start with a lowercase letter and end
with a digit or lowercase letter.
 <token> : The business system Token obtained in the preliminary steps.

 <hostName> : The hostname of this instance, which is the unique identifier of the application instance. It can

usually be set to the IP address of the application instance.
 <endpoint> : The connect point obtained in the preliminary steps.

Step 2: SDK initialization and start the HTTP service.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 194

package main

import (

 "context"

 "errors"

 "fmt"

 "log"

 "net"

 "net/http"

 "os"

 "os/signal"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 194

 "time"

 "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"

)

func main() {

 if err := run(); err != nil {

 log.Fatalln(err)

 }

}

func run() (err error) {

 ctx, stop := signal.NotifyContext(context.Background(), os.Interrupt)

 defer stop()

 // Initialize SDK

 otelShutdown, err := setupOTelSDK(ctx)

 if err != nil {

 return

 }

 // Graceful shutdown

 defer func() {

 err = errors.Join(err, otelShutdown(context.Background()))

 }()

 // Start HTTP service

 srv := &http.Server{

 Addr: ":8080",

 BaseContext: func(_ net.Listener) context.Context { return ctx },

 ReadTimeout: time.Second,

 WriteTimeout: 10 * time.Second,

 Handler: newHTTPHandler(),

 }

 srvErr := make(chan error, 1)

 go func() {

 srvErr <- srv.ListenAndServe()

 }()

 select {

 case err = <-srvErr:

 return

 case <-ctx.Done():

 stop()

 }

 err = srv.Shutdown(context.Background())

 return

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 194

If implementing an HTTP service through frameworks like Gin, the Event Tracking method will differ. See the
community's Framework List for details on other frameworks's Event Tracking methods.

Step 3: Enhanced Event Tracking for HTTP APIs.

func newHTTPHandler() http.Handler {

 mux := http.NewServeMux()

 handleFunc := func(pattern string, handlerFunc func(http.ResponseWriter, *http.R

 // HTTP routes Event Tracking

https://opentelemetry.io/ecosystem/registry/?component=instrumentation&language=go

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 194

 handler := otelhttp.WithRouteTag(pattern, http.HandlerFunc(handlerFunc))

 mux.Handle(pattern, handler)

 }

 // Register APIs

 handleFunc("/simple", simpleIOHandler)

 // Enhanced Event Tracking for all APIs

 handler := otelhttp.NewHandler(mux, "/")

 return handler

}

func simpleIOHandler(w http.ResponseWriter, r *http.Request) {

 io.WriteString(w, "ok")

}

Connection Verification

After you start the Go application, access the corresponding API through port 8080, for example,

 https://localhost:8080/simple , the application reports HTTP request-related link data to APM. In normal

traffic cases, the connected applications will be displayed in APM > Application monitoring > Application list and the
connected application instances will be displayed in APM > Application monitoring > Application details >
Instance monitoring. Since there is a certain latency in the processing of observable data, if the application or
instance does not appear in the console after connecting, wait for about 30 seconds.

More Event Tracking Sample

Accessing Redis

Initialization

https://console.tencentcloud.com/monitor/apm/system

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 194

import (

	 "github.com/redis/go-redis/v9"

	 "github.com/redis/go-redis/extra/redisotel/v9"

)

var rdb *redis.Client

// InitRedis initializing Redis client.

func InitRedis() *redis.Client {

	 rdb := redis.NewClient(&redis.Options{

	 	 Addr: "127.0.0.1:6379",

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 194

	 	 Password: "", // no password

	 })

	 if err := redisotel.InstrumentTracing(rdb); err != nil {

	 	 panic(err)

	 }

	 if err := redisotel.InstrumentMetrics(rdb); err != nil {

	 	 panic(err)

	 }

	 return rdb

}

Data Access

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 194

func redisRequest(w http.ResponseWriter, r *http.Request) {

	 ctx := r.Context()

	 rdb := InitRedis()

	 val, err := rdb.Get(ctx, "foo").Result()

	 if err != nil {

	 	 log.Printf("redis err......")

	 	 panic(err)

	 }

	 fmt.Println("redis res: ", val)

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 194

Accessing MySQL

Initialization

import (

	 "gorm.io/driver/mysql"

	 "gorm.io/gorm"

	 "gorm.io/gorm/schema"

	 "gorm.io/plugin/opentelemetry/tracing"

)

var GormDB *gorm.DB

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 194

type TableDemo struct {

	 ID int gorm:"column:id"

	 Value string gorm:"column:value"

}

func InitGorm() {

	 var err error

	 dsn := "root:4T$er3deffYuD#9Q@tcp(127.0.0.1:3306)/db_demo?charset=utf8mb4&p

	 GormDB, err = gorm.Open(mysql.Open(dsn), &gorm.Config{

	 	 NamingStrategy: schema.NamingStrategy{

	 	 	 SingularTable: true, // Use singular table names.

	 	 },

	 })

	 if err != nil {

	 	 panic(err)

	 }

 // Add tracing reporting logic.

 //Fill in DBName based on actual conditions. In the APM topology diagram, ident

	 if err = GormDB.Use(tracing.NewPlugin(tracing.WithoutMetrics(),tracing.With

	 	 panic(err)

	 }

}

Data Access

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 194

func gormRequest(ctx context.Context) {

 var val string

 if err := gormclient.GormDB.WithContext(ctx).Model(&gormclient.TableDemo{}).Whe

 panic(err)

 }

 fmt.Println("MySQL query result: ", val)

}

Internal method Event Tracking and setting Span attributes.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 194

The following code demonstrates internal method Event Tracking by inserting an Internal type Span into the current
link context.

func internalSpanFunc(w http.ResponseWriter, r *http.Request) {

	 internalInvoke(r)

	 io.WriteString(w, "ok")

}

func internalInvoke(r *http.Request) {

 // Create an Internal Span.

	 _, span := tracer.Start(r.Context(), "internalInvoke")

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 194

	 defer span.End()

 // Business logic is omitted.

 // Set Span Attributes.

	 span.SetAttributes(attribute.KeyValue{

	 	 Key: "label-key-1",

	 	 Value: attribute.StringValue("label-value-1"),

	 })

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 194

Connecting Go Applications Using
SkyWalking-Go
Last updated：2024-06-19 16:31:30

SkyWalking Go is a performance monitoring scheme for Go applications provided by the SkyWalking community. It
allows Go applications to connect to APM without altering business code. For more information on SkyWalking Go,
see the Project Documentation. SkyWalking Go supports automatic Event Tracking for commonly used Go

dependency libraries and frameworks, including Gin, GORM, gRPC, etc. For other libraries and frameworks
supporting automatic Event Tracking, see the Complete List provided by the SkyWalking community.

Demo Applications

With the following demo codes, you can start the simplest HTTP service:

https://skywalking.apache.org/docs/skywalking-go/latest/readme/
https://skywalking.apache.org/docs/skywalking-go/latest/en/agent/support-plugins/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 194

package main

import (

	 "net/http"

)

func main() {

	 http.HandleFunc("/hello", func(writer http.ResponseWriter, request *http.Re

	 	 writer.Write([]byte("Hello World from skywalking-go-agent"))

	 })

	 err := http.ListenAndServe(":8080", nil)

	 if err != nil {

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 194

	 	 panic(err)

	 }

}

Preliminary steps: Get the connect point and Token.

1. Log in to the TCOP console.
2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.
3. In the Data access drawer that pops up on the right, click the Go language.

4. On the Access Go application page, select the Region and Business System you want to connect.
5. Choose the Access protocol type as SkyWalking.
6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:
Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through

VPC connecting directly, you can avoid the security risks of public network communication and save on reporting
traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

Connecting Go Applications

Step 1. Download the Agent.

Go to the SkyWalking Download Page, in the Go Agent section, click Distribution to download the tar format of the

Agent packet, with the file name suffix as tgz .

After the packet is extracted, you obtain the binary files under the bin directory. Choose the binary file that matches

your operating system as the Agent file. For example, in the Linux system, the Agent file is skywalking-go-

agent-0.4.0-linux-amd64 .

Step 2: Install the Agent.

SkyWalking Go provides 2 methods to install the Agent, you can choose either method:

Agent Injection Method

If you do not need to customize Event Tracking in the code, you can choose the Agent injection method. Execute the

command as follows:

https://console.tencentcloud.com/monitor/apm/system
https://skywalking.apache.org/downloads/#GoAgent

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 194

/path/to/agent -inject /path/to/your/project [-all]

Here, /path/to/agent is the Agent file obtained in step 1, /path/to/your/project is the Go project root

directory.

Code Dependency Method

Run the following command to obtain the required dependencies:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 194

go get github.com/apache/skywalking-go

Include the dependency in main:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 194

import _ "github.com/apache/skywalking-go"

Step 3: Modify the configuration for connecting APM.

Obtain the configuration file template from the community's default configuration file, and save it as a text file, which

can be named config.yaml .

Modify the configuration file, at least the following 3 items need to be configured:

https://github.com/apache/skywalking-go/blob/main/tools/go-agent/config/agent.default.yaml

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 194

agent:

 service_name: "<serviceName>" # Replace <serviceName> with the application name.

reporter:

 grpc:

 backend_service: "<endpoint>" # Replace <endpoint> with the reporting address.

 authentication: "<token>" # Replace <token> with the business system Token.

The corresponding field descriptions are as follows:
 <serviceName> : Application name. Multiple application processes connecting with the same serviceName are

displayed as multiple instances under the same application in APM. The application name can be up to 63 characters

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 194

and can only contain lowercase letters, digits, and the separator (-), and it must start with a lowercase letter and end
with a digit or lowercase letter.
 <token> : The business system Token obtained in the preliminary steps.

 <endpoint> : The connect point obtained in the preliminary steps.

Step 4: Compile projects based on SkyWalking-Go.

When you compile the Go project, add the following parameters:

-toolexec="/path/to/agent" -config /path/to/config.yaml -a

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 194

Where, /path/to/agent is the Agent file obtained in step 1, /path/to/config.yaml is the configuration

file obtained in step 3.
Assuming the compiled output is named test, the complete command is:

go build -toolexec='/path/to/agent -config /path/to/config.yaml' -a -o test .

Connection Verification

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 194

After you start the Go application, access the corresponding API through port 8080, for example,
 https://localhost:8080/hello , the application reports the HTTP request-related link data to APM. In

normal traffic cases, the connected application will displayed in APM > Application monitoring > Application list and

the connected application instances will be displayed in APM > Application monitoring > App details > Instance
monitoring. Since there is a certain latency in the processing of observable data, if the application or instance does
not appear in the console after connecting, wait for about 30 seconds.

Custom Link Event Tracking

When automatic Event Tracking does not meet your needs, or you need to add business layer instrumentation, see
the community's Tracing API Documentation and add custom link instrumentation in the code.

https://console.tencentcloud.com/monitor/apm/system
https://skywalking.apache.org/docs/skywalking-go/latest/en/development-and-contribution/development-guide/#tracing-api

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 194

Reporting over Jaeger Protocol
Reporting with Native Jaeger SDK
Last updated：2023-12-25 15:59:08

This document describes how to report the data of a Go application with the native Jaeger SDK.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Go language and the native Jaeger SDK data collection method.

Then, get the endpoint and token in the step of access method selection.

Step 2. Install the Jaeger agent

1. Download the Jaeger agent.
2. Run the following command to start the agent:

https://console.tencentcloud.com/apm
https://github.com/jaegertracing/jaeger/releases/tag/v1.22.0

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 194

nohup ./jaeger-agent --reporter.grpc.host-port={{endpoint}} --agent.tags=token={{to

Note:

For Jaeger agent v1.15.0 and earlier, replace --agent.tags in the startup command with --jaeger.tags .

Step 3. Report data

Report data through the native Jaeger SDK:
1. Due to the need to simulate HTTP requests on the client, import the opentracing-contrib/go-

stdlib/nethttp dependency.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 194

Dependency path: github.com/opentracing-contrib/go-stdlib/nethttp

Version requirement: ≥ dv1.0.0

2. Configure Jaeger and create a trace object. Below is a sample:

cfg := &jaegerConfig.Configuration{

 ServiceName: ginClientName, // Call trace of the target service. Enter the serv

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 194

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Construct a span and put it in the context. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 194

span := tracer.StartSpan("CallDemoServer") // Construct a span

ctx := opentracing.ContextWithSpan(context.Background(), span) // Put the span refe

4. Construct a request with the tracer. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 194

// Construct an HTTP request

req, err := http.NewRequest(

 http.MethodGet,

 fmt.Sprintf("http://localhost%s/ping", ginPort),

 nil,

)

req = req.WithContext(ctx)

// Construct a request with the tracer

req, ht := nethttp.TraceRequest(tracer, req)

5. Send an HTTP request and get the returned result.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 194

httpClient := &http.Client{Transport: &nethttp.Transport{}} // Initialize the HTTP

res, err := httpClient.Do(req)

// ... Error judgment is omitted.

body, err := ioutil.ReadAll(res.Body)

// ... Error judgment is omitted.

log.Printf(" %s recevice: %s\\n", clientServerName, string(body))

The complete code is as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 194

// Copyright © 2019-2020 Tencent Co., Ltd.

// This file is part of tencent project.

// Do not copy, cite, or distribute without the express

// permission from Cloud Monitor group.

package gindemo

import (

 "context"

 "fmt"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 194

 "github.com/opentracing-contrib/go-stdlib/nethttp"

 "github.com/opentracing/opentracing-go"

 "github.com/opentracing/opentracing-go/ext"

 opentracingLog "github.com/opentracing/opentracing-go/log"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "io/ioutil"

 "log"

 "net/http"

)

const (

 // Service name, which is the unique identifier of the service and the basis fo

 ginClientName = "demo-gin-client"

 ginPort = ":8080"

 endPoint = "xxxxx:6831" // Local agent address

 token = "abc"

)

// The Gin client under StartClient is also a standard HTTP client.

func StartClient() {

 cfg := &jaegerConfig.Configuration{

 ServiceName: ginClientName, // Call trace of the target service. Enter the

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 defer closer.Close()

 if err != nil {

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 // Construct a span and put it in the context

 span := tracer.StartSpan("CallDemoServer")

 ctx := opentracing.ContextWithSpan(context.Background(), span)

 defer span.Finish()

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 194

 // Construct an HTTP request

 req, err := http.NewRequest(

 http.MethodGet,

 fmt.Sprintf("http://localhost%s/ping", ginPort),

 nil,

)

 if err != nil {

 HandlerError(span, err)

 return

 }

 // Construct a request with a tracer

 req = req.WithContext(ctx)

 req, ht := nethttp.TraceRequest(tracer, req)

 defer ht.Finish()

 // Initialize the HTTP client

 httpClient := &http.Client{Transport: &nethttp.Transport{}}

 // Send the request

 res, err := httpClient.Do(req)

 if err != nil {

 HandlerError(span, err)

 return

 }

 defer res.Body.Close()

 body, err := ioutil.ReadAll(res.Body)

 if err != nil {

 HandlerError(span, err)

 return

 }

 log.Printf(" %s recevice: %s\\n", ginClientName, string(body))

}

// HandlerError handle error to span.

func HandlerError(span opentracing.Span, err error) {

 span.SetTag(string(ext.Error), true)

 span.LogKV(opentracingLog.Error(err))

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 194

Reporting with Gin Jaeger Middleware
Last updated：2023-12-25 16:00:03

This document describes how to report the data of a Go application with the Gin Jaeger middleware.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Go language and the Gin Jaeger data collection method.

Then, get the endpoint and token in the step of access method selection.

Step 2. Install the Jaeger agent

1. Download the Jaeger agent.
2. Run the following command to start the agent:

https://console.tencentcloud.com/apm
https://github.com/jaegertracing/jaeger/releases/tag/v1.22.0

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 194

nohup ./jaeger-agent --reporter.grpc.host-port={{collectorRPCHostPort}} --agent.tag

Step 3. Select the reporting type to report application data

Select the reporting type to report the data of a Go application through the Gin Jaeger middleware:

Server

1. Import the instrumentation dependency opentracing-contrib/go-gin on the server.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 194

Dependency path: github.com/opentracing-contrib/go-gin

Version requirement: ≥ v0.0.0-20201220185307-1dd2273433a4

2. Configure Jaeger and create a trace object. Below is a sample:

cfg := &jaegerConfig.Configuration{

 ServiceName: ginServerName, // Call trace of the target service. Enter the serv

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 194

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Configure the middleware.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 194

r := gin.Default()

// Pass in the tracer

r.Use(ginhttp.Middleware(tracer))

Note:
The official default OperationName is HTTP + HttpMethod. We recommend you use HTTP + HttpMethod + URL to
analyze the specific API as follows. URL should be the parameter name rather than the specific parameter value.

For example, /user/{id} is correct, while /user/1 is incorrect.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 194

r.Use(ginhttp.Middleware(tracer, ginhttp.OperationNameFunc(func(r *http.Request) st

 return fmt.Sprintf("testtestheling HTTP %s %s", r.Method, r.URL.String())

 })))

The complete code is as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 194

// Copyright © 2019-2020 Tencent Co., Ltd.

// This file is part of tencent project.

// Do not copy, cite, or distribute without the express

// permission from Cloud Monitor group.

package gindemo

import (

 "fmt"

 "github.com/gin-gonic/gin"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 194

 "github.com/opentracing-contrib/go-gin/ginhttp"

 "github.com/opentracing/opentracing-go"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "net/http"

)

// Service name, which is the unique identifier of the service and the basis for se

const ginServerName = "demo-gin-server"

// StartServer

func StartServer() {

 // Initialize Jaeger to get the tracer

 cfg := &jaegerConfig.Configuration{

 ServiceName: ginServerName, // Call trace of the target service. Enter the

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 if err != nil {

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 defer closer.Close()

 r := gin.Default()

 // Note that the official default OperationName is HTTP + HttpMethod.

 // We recommend you use HTTP + HttpMethod + URL to analyze the specific API as

 // Note: For RESTful APIs, URL should be the parameter name rather than the spe

 r.Use(ginhttp.Middleware(tracer, ginhttp.OperationNameFunc(func(r *http.Request

 return fmt.Sprintf("HTTP %s %s", r.Method, r.URL.String())

 })))

 r.GET("/ping", func(c *gin.Context) {

 c.JSON(200, gin.H{

 "message": "pong",

 })

 })

 r.Run() // Listen on 0.0.0.0:8080

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 194

}

Client

1. Due to the need to simulate HTTP requests on the client, import the opentracing-contrib/go-

stdlib/nethttp dependency.

Dependency path: github.com/opentracing-contrib/go-stdlib/nethttp

Version requirement: ≥ v1.0.0

2. Configure Jaeger and create a trace object. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 194

cfg := &jaegerConfig.Configuration{

 ServiceName: ginClientName, // Call trace of the target service. Enter the serv

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Construct a span and put it in the context. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 194

span := tracer.StartSpan("CallDemoServer") // Construct a span

ctx := opentracing.ContextWithSpan(context.Background(), span) // Put the span refe

4. Construct a request with the tracer. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 194

// Construct an HTTP request

req, err := http.NewRequest(

 http.MethodGet,

 fmt.Sprintf("http://localhost%s/ping", ginPort),

 nil,

)

req = req.WithContext(ctx)

// Construct a request with the tracer

req, ht := nethttp.TraceRequest(tracer, req)

5. Send an HTTP request and get the returned result.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 194

httpClient := &http.Client{Transport: &nethttp.Transport{}} // Initialize the HTTP

res, err := httpClient.Do(req)

// ... Error judgment is omitted.

body, err := ioutil.ReadAll(res.Body)

// ... Error judgment is omitted.

log.Printf(" %s recevice: %s\\n", clientServerName, string(body))

The complete code is as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 194

// Copyright © 2019-2020 Tencent Co., Ltd.

// This file is part of tencent project.

// Do not copy, cite, or distribute without the express

// permission from Cloud Monitor group.

package gindemo

import (

 "context"

 "fmt"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 194

 "github.com/opentracing-contrib/go-stdlib/nethttp"

 "github.com/opentracing/opentracing-go"

 "github.com/opentracing/opentracing-go/ext"

 opentracingLog "github.com/opentracing/opentracing-go/log"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "io/ioutil"

 "log"

 "net/http"

)

const (

 // Service name, which is the unique identifier of the service and the basis fo

 ginClientName = "demo-gin-client"

 ginPort = ":8080"

 endPoint = "xxxxx:6831" // Local agent address

 token = "abc"

)

// The Gin client under StartClient is also a standard HTTP client.

func StartClient() {

 cfg := &jaegerConfig.Configuration{

 ServiceName: ginClientName, // Call trace of the target service. Enter the

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 defer closer.Close()

 if err != nil {

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 // Construct a span and put it in the context

 span := tracer.StartSpan("CallDemoServer")

 ctx := opentracing.ContextWithSpan(context.Background(), span)

 defer span.Finish()

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 194

 // Construct an HTTP request

 req, err := http.NewRequest(

 http.MethodGet,

 fmt.Sprintf("http://localhost%s/ping", ginPort),

 nil,

)

 if err != nil {

 HandlerError(span, err)

 return

 }

 // Construct a request with a tracer

 req = req.WithContext(ctx)

 req, ht := nethttp.TraceRequest(tracer, req)

 defer ht.Finish()

 // Initialize the HTTP client

 httpClient := &http.Client{Transport: &nethttp.Transport{}}

 // Send the request

 res, err := httpClient.Do(req)

 if err != nil {

 HandlerError(span, err)

 return

 }

 defer res.Body.Close()

 body, err := ioutil.ReadAll(res.Body)

 if err != nil {

 HandlerError(span, err)

 return

 }

 log.Printf(" %s recevice: %s\\n", ginClientName, string(body))

}

// HandlerError handle error to span.

func HandlerError(span opentracing.Span, err error) {

 span.SetTag(string(ext.Error), true)

 span.LogKV(opentracingLog.Error(err))

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 194

Reporting with go-redis Middleware
Last updated：2023-12-25 16:00:35

This document describes how to report the data of a Go application with the go-redis middleware.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Go language and the go-redis data collection method.

Then, get the endpoint and token in the step of access method selection.

Step 2. Install the Jaeger agent

1. Download the Jaeger agent.
2. Run the following command to start the agent:

https://console.tencentcloud.com/apm
https://github.com/jaegertracing/jaeger/releases/tag/v1.22.0

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 194

nohup ./jaeger-agent --reporter.grpc.host-port={{collectorRPCHostPort}} --agent.tag

Step 3. Select the reporting type to report application data

Select the reporting type to report the data of a Go application through the go-redis middleware:

Client

1. Import the instrumentation dependency opentracing-contrib/goredis .

Dependency path: github.com/opentracing-contrib/goredis

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 194

Version requirement: ≥ v0.0.0-20190807091203-90a2649c5f87

2. Configure Jaeger, create a trace object, and set GlobalTracer. Below is a sample:

cfg := &jaegerConfig.Configuration{

 ServiceName: clientServerName, // Call trace of the target service. Enter the s

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

 LogSpans: true,

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 194

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Initialize the Redis connection. Below is a sample:

func InitRedisConnector() error {

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 194

 redisClient = redis.NewUniversalClient(&redis.UniversalOptions{

 Addrs: []string{redisAddress},

 Password: redisPassword,

 DB: 0,

 })

 if err := redisClient.Ping().Err(); err != nil {

 log.Println("redisClient.Ping() error:", err.Error())

 return err

 }

 return nil

}

4. Get the Redis connection. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 194

func GetRedisDBConnector(ctx context.Context) redis.UniversalClient {

 client := apmgoredis.Wrap(redisClient).WithContext(ctx)

 return client

}

The complete code is as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 194

package main

import (

 "context"

 "fmt"

 "github.com/go-redis/redis"

 apmgoredis "github.com/opentracing-contrib/goredis"

 "github.com/opentracing/opentracing-go"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "log"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 194

 "time"

)

const (

 redisAddress = "127.0.0.1:6379"

 redisPassword = ""

 clientServerName = "redis-client-demo"

 testKey = "redis-demo-key"

 endPoint = "xxxxx:6831" // HTTP reporting address

 token = "abc"

)

func main() {

 cfg := &jaegerConfig.Configuration{

 ServiceName: clientServerName, // Call trace of the target service. Enter t

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 opentracing.SetGlobalTracer(tracer)

 defer closer.Close()

 if err != nil {

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 InitRedisConnector()

 redisClient := GetRedisDBConnector(context.Background())

 redisClient.Set(testKey, "redis-client-demo", time.Duration(1000)*time.Second)

 redisClient.Get(testKey)

}

var (

 redisClient redis.UniversalClient

)

func GetRedisDBConnector(ctx context.Context) redis.UniversalClient {

 client := apmgoredis.Wrap(redisClient).WithContext(ctx)

 return client

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 194

}

func InitRedisConnector() error {

 redisClient = redis.NewUniversalClient(&redis.UniversalOptions{

 Addrs: []string{redisAddress},

 Password: redisPassword,

 DB: 0,

 })

 if err := redisClient.Ping().Err(); err != nil {

 log.Println("redisClient.Ping() error:", err.Error())

 return err

 }

 return nil

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 194

Reporting with gRPC-Jaeger Interceptor
Last updated：2023-12-25 16:00:53

This document describes how to report the data of a Go application with the gRPC-Jaeger interceptor.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Go language and the gRPC-Jaeger data collection method.

Then, get the endpoint and token in the step of access method selection.

Step 2. Install the Jaeger agent

1. Download the Jaeger agent.
2. Run the following command to start the agent:

https://console.tencentcloud.com/apm
https://github.com/jaegertracing/jaeger/releases/tag/v1.22.0

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 194

nohup ./jaeger-agent --reporter.grpc.host-port={{collectorRPCHostPort}} --agent.tag

Step 3. Select the reporting type to report application data

Select the reporting type to report the data of a Go application through the gRPC-Jaeger interceptor:

Server

1. Import the instrumentation dependency opentracing-contrib/go-grpc on the server.

Dependency path: github.com/opentracing-contrib/go-grpc

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 194

Version requirement: ≥ v0.0.0-20210225150812-73cb765af46e

2. Configure Jaeger and create a trace object. Below is a sample:

cfg := &jaegerConfig.Configuration{

 ServiceName: grpcServerName, // Call trace of the target service. Enter the ser

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

 LogSpans: true,

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 194

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Configure the interceptor.

s := grpc.NewServer(grpc.UnaryInterceptor(otgrpc.OpenTracingServerInterceptor(trace

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 194

4. Start the server service.

// Register our service with the gRPC server

pb.RegisterHelloTraceServer(s, &server{})

if err := s.Serve(lis); err != nil {

 log.Fatalf("failed to serve: %v", err)

}

The complete code is as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 194

// Copyright © 2019-2020 Tencent Co., Ltd.

// This file is part of tencent project.

// Do not copy, cite, or distribute without the express

// permission from Cloud Monitor group.

package grpcdemo

import (

 "context"

 "fmt"

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 194

 "github.com/opentracing/opentracing-go"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "log"

 "net"

 "github.com/opentracing-contrib/go-grpc"

 "google.golang.org/grpc"

)

const (

 // Service name, which is the unique identifier of the service and the basis fo

 grpcServerName = "demo-grpc-server"

 serverPort = ":9090"

)

// server is used to implement proto.HelloTraceServer.

type server struct {

 UnimplementedHelloTraceServer

}

// SayHello implements proto.HelloTraceServer

func (s *server) SayHello(ctx context.Context, in *TraceRequest) (*TraceResponse, e

 log.Printf("Received: %v", in.GetName())

 return &TraceResponse{Message: "Hello " + in.GetName()}, nil

}

// StartServer

func StartServer() {

 cfg := &jaegerConfig.Configuration{

 ServiceName: grpcServerName, // Call trace of the target service. Enter the

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 defer closer.Close()

 if err != nil {

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 194

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 lis, err := net.Listen("tcp", serverPort)

 if err != nil {

 log.Fatalf("failed to listen: %v", err)

 }

 s := grpc.NewServer(grpc.UnaryInterceptor(otgrpc.OpenTracingServerInterceptor(t

 // Register our service with the gRPC server

 RegisterHelloTraceServer(s, &server{})

 if err := s.Serve(lis); err != nil {

 log.Fatalf("failed to serve: %v", err)

 }

}

Client

1. Due to the need to simulate HTTP requests on the client, import the opentracing-contrib/go-

stdlib/nethttp dependency.

Dependency path: github.com/opentracing-contrib/go-stdlib/nethttp

Version requirement: ≥ v1.0.0

2. Configure Jaeger and create a trace object.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 194

cfg := &jaegerConfig.Configuration{

 ServiceName: grpcClientName, // Call trace of the target service. Enter the ser

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See sec

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports tra

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 194

 Tags: []opentracing.Tag{ // Set the tag, where information such as token

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

}

tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) // Get

3. Establish a connection to configure the interceptor.

// Establish a connection to the server to configure the interceptor

conn, err := grpc.Dial(serverAddress, grpc.WithInsecure(), grpc.WithBlock(),

 grpc.WithUnaryInterceptor(otgrpc.OpenTracingClientInterceptor(tracer)))

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 194

4. Make a gRPC call to check whether the access is successful.

The complete code is as follows:

// Copyright © 2019-2020 Tencent Co., Ltd.

// This file is part of tencent project.

// Do not copy, cite, or distribute without the express

// permission from Cloud Monitor group.

package grpcdemo

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 194

import (

 "context"

 "fmt"

 "github.com/opentracing-contrib/go-grpc"

 "github.com/opentracing/opentracing-go"

 "github.com/uber/jaeger-client-go"

 jaegerConfig "github.com/uber/jaeger-client-go/config"

 "google.golang.org/grpc"

 "log"

 "time"

)

const (

 // Service name, which is the unique identifier of the service and the basis fo

 grpcClientName = "demo-grpc-client"

 defaultName = "TAW Tracing"

 serverAddress = "localhost:9090"

 endPoint = "xxxxx:6831" // Local agent address

 token = "abc"

)

// StartClient

func StartClient() {

 cfg := &jaegerConfig.Configuration{

 ServiceName: grpcClientName, // Call trace of the target service. Enter the

 Sampler: &jaegerConfig.SamplerConfig{ // Sampling policy configuration. See

 Type: "const",

 Param: 1,

 },

 Reporter: &jaegerConfig.ReporterConfig{ // Configure how the client reports

 LogSpans: true,

 LocalAgentHostPort: endPoint,

 },

 // Token configuration

 Tags: []opentracing.Tag{ // Set the tag, where information such as token ca

 opentracing.Tag{Key: "token", Value: token}, // Set the token

 },

 }

 tracer, closer, err := cfg.NewTracer(jaegerConfig.Logger(jaeger.StdLogger)) //

 defer closer.Close()

 if err != nil {

 panic(fmt.Sprintf("ERROR: fail init Jaeger: %v\\n", err))

 }

 // Establish a connection to the server to configure the interceptor

 conn, err := grpc.Dial(serverAddress, grpc.WithInsecure(), grpc.WithBlock(),

 grpc.WithUnaryInterceptor(otgrpc.OpenTracingClientInterceptor(tracer)))

 if err != nil {

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 194

 log.Fatalf("did not connect: %v", err)

 }

 defer conn.Close()

 //

 c := NewHelloTraceClient(conn)

 ctx, cancel := context.WithTimeout(context.Background(), time.Second)

 defer cancel()

 // Make an RPC call

 r, err := c.SayHello(ctx, &TraceRequest{Name: defaultName})

 if err != nil {

 log.Fatalf("could not greet: %v", err)

 }

 log.Printf("RPC Client receive: %s", r.GetMessage())

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 194

Accessing Java Application
Automatic Connecting Java Application for the
TKE Environment (Recommended)
Last updated：2024-06-19 16:31:30

For Java Applications deployed on TKE, APM offers an automatic connection scheme, enabling agent automatic
injection after the application is deployed to TKE, facilitating quick connecting.
Java applications that are automatically connected in the TKE environment will be automatically injected with the

Tencent Cloud OpenTelemetry Java Agent Enhanced Edition (TencentCloud-OTel Java Agent). The Tencent Cloud
OpenTelemetry Java Agent Enhanced Edition is based on the secondary development of OpenTelemetry-java-
instrumentation from the open-source community, adhering to the Apache License 2.0 protocol. The OpenTelemetry
License is cited within the agent packet. Building upon the open-source agent, the Tencent Cloud OpenTelemetry
Java Agent Enhanced Edition has improved significantly in Event Tracking density, advanced diagnosis, performance

protection, and enterprise-level capabilities.

Prerequisites

See Supported Java Versions and Frameworks by the OTel Java Agent Enhanced Edition to ensure that the Java
version and application server are within the supported range by the agent. For the dependency libraries and
frameworks supported by automatic tracing, data reporting can be completed upon successful connection without
modifying the code. In addition, the Tencent Cloud OpenTelemetry Java Agent Enhanced Edition adheres to the
OpenTelemetry protocol standard. if automatic Event Tracking does not meet your scenario, or you need to add

business layer Event Tracking, use OpenTelemetry API for Custom Metrics Definition.

Step 1: Install Operator.

Install Operator in the TKE cluster, it's recommended to install Operator with one click on the APM console, for details
see installing tencent-opentelemetry-operator.

Step 2: Add annotation to workload.

1. Log in to TKE console.
2. Click Cluster to enter the corresponding TKE cluster.

3. In Workload, you can find the application that needs to connect APM, click More, then click Edit YAML.
4. Apply the following content in the Pod annotation, then click Complete to finish the connection.

https://www.tencentcloud.com/document/product/1166/60818#77e9ca5d-bf64-432d-951b-c3130d3ddd10
https://www.tencentcloud.com/document/product/1166/51711#5757041e-c08e-4cd0-bb9a-ee438105530b
https://www.tencentcloud.com/document/product/1166/60816#
https://console.tencentcloud.com/tke2/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 194

cloud.tencent.com/inject-java: "true"

cloud.tencent.com/otel-service-name: my-app # Application name. Processes of conne

The application name can be up to 63 characters and can only contain lowercase le

Note that this content needs to be added to spec.template.metadata.annotations , affecting the Pod's

annotation, not the workload's annotation. You can see the following code snippet:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 194

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: my-app

 name: my-app

 namespace: default

spec:

 selector:

 matchLabels:

 k8s-app: my-app

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 194

 template:

 metadata:

 labels:

 k8s-app: my-app

 annotations:

 cloud.tencent.com/inject-java: "true" # Add it here.

 cloud.tencent.com/otel-service-name: my-app

 spec:

 containers:

 image: my-app:0.1

 name: my-app

Connection Verification

After annotations are added to the workload, based on different publish policies, you can trigger a restart of the
application pod. The newly launched pod will automatically inject the agent and connect to the APM server to report

monitoring data, with the reported business system being the default business system of the Operator. In normal traffic
cases, the connected application will displayed in APM > Application monitoring > Application list and the connected
application instances will be displayed in APM > Application Monitoring > App details > Instance monitoring.
Since there is a certain latency in the processing of observable data, if the application or instance does not appear in
the console after connecting, wait for about 30 seconds.

Custom Event Tracking

When automatic instrumentation does not meet your scenario, or you need to add business layer instrumentation, see
Custom Event Tracking and use the OpenTelemetry API to add custom instrumentation.

More Connection Configuration Items (Optional)

At the Workload level, you can add more annotations to adjust the connect behaviors:

Configuration Item Description

cloud.tencent.com/apm-
token

Specify the Token for the APM business system. If this configuration item is not
added, the Operator's configuration is used (corresponding to the Operator's
 env.APM_TOKEN field).

cloud.tencent.com/java-
instr-version

Specify the Java agent version. If this configuration item is not added, the
configuration of the Operator is used (corresponding to the Operator's

 env.JAVA_INSTR_VERSION field). The value can be latest (default) or
a specific version number. For a list of specific version numbers, see Agent
Version Information. It is not recommended to fill in this field unless necessary.

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application
https://www.tencentcloud.com/document/product/1166/51711#5757041e-c08e-4cd0-bb9a-ee438105530b
https://www.tencentcloud.com/document/product/1166/60819#

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 194

Connecting via Tencent Cloud OpenTelemetry
Java Agent Enhanced Edition
(Recommended)
Last updated：2024-06-19 16:31:30

Tencent Cloud OpenTelemetry Java Agent Enhanced Edition is based on the OpenTelemetry-java-instrumentation
from the open-source community and developed further under the Apache License 2.0 protocol. It includes a
reference to the OpenTelemetry License within the agent packet. Building on the open source agent, the Tencent

Cloud OpenTelemetry Java Agent Enhanced Edition has significantly improved in Event Tracking density, advanced
diagnosis, performance protection, and enterprise-level capabilities.
Note:
OpenTelemetry is a collection of tools, APIs, and SDKs for monitoring, generating, collecting, and exporting telemetry
data (metrics, logs, and traces) to help users analyze the performance and behavior of the software. For more

information about OpenTelemetry, see the OpenTelemetry official website.
The OpenTelemetry community is active, with rapid technological changes, and widely compatible with mainstream
programming languages, components, and frameworks, making its link-tracing capability highly popular for cloud-
native microservices and container architectures.
This document will guide you on how to connect Java applications with the Tencent Cloud OpenTelemetry Agent
Enhanced Edition using related operations.

Prerequisites

See Supported Java Versions and Frameworks by OTel Java Agent Enhanced Edition to ensure that your Java
version and application server are within the supported range of the agent. For dependency libraries and frameworks
supported by automatic Event Tracking, data reporting can be completed upon successful connection without
modifying the code. In addition, the Tencent Cloud OpenTelemetry Java Agent Enhanced Edition complies with the
OpenTelemetry protocol standards. If automatic Event Tracking does not meet your scenario, or you need to add

business layer Event Tracking, see Custom Event Tracking and use the OpenTelemetry API for custom Event
Tracking.

Step 1. Get the connect point and Token.

1. Log in to the TCOP console.

https://opentelemetry.io/
https://www.tencentcloud.com/document/product/1166/60818#
https://www.tencentcloud.com/document/product/1166/51711#5757041e-c08e-4cd0-bb9a-ee438105530b
https://console.tencentcloud.com/monitor/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 194

2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.
3. In the Data Access drawer that appears on the right, click Java language.

4. On the Access Java application page, select the region and business system you want to connect.
5. Select Access protocol type as OpenTelemetry.
6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:
Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through

VPC connecting directly, you can avoid the security risks of public network communication and save on reporting
traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

Step 2: Download the agent.

Go to Agent Version Information to download the agent, it is recommended to download the latest version, named
 opentelemetry-javaagent.jar .

Step 3: Modify the reporting parameters.

Connecting Java applications requires the following 3 JVM startup parameters:

https://www.tencentcloud.com/document/product/1166/60819#

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 194

-javaagent:<javaagent>

-Dotel.resource.attributes=service.name=<serviceName>,token=<token>

-Dotel.exporter.otlp.endpoint=<endpoint>

When you execute the Java command, ensure these 3 JVM startup parameters are placed before the -jar . For

applications that cannot directly specify JVM startup parameters, the system parameter -

Dotel.resource.attributes can be replaced with the environment variable

 OTEL_RESOURCE_ATTRIBUTES , and the system parameter -Dotel.exporter.otlp.endpoint can be

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 194

replaced with the environment variable OTEL_EXPORTER_OTLP_ENDPOINT . The corresponding fields are

explained as follows:
 <javaagent> : the local file path of the agent.

 <serviceName> : Application name. Processes of connecting using the same application name are displayed as

multiple instances under the same application in APM. For Spring Cloud or Dubbo applications, the application name
usually matches the service name. It can be up to 63 characters and can only contain lowercase letters, digits, and the
separator (-), and it must start with a lowercase letter and end with a digit or lowercase letter.
 <token> : the business system Token obtained in step 1.

 <endpoint> : the connect point obtained in step 1.

The following content uses the agent path /path/to/opentelemetry-javaagent.jar , the application name

 myService , the business system Token myToken, and the connect point http://pl-demo.ap-

guangzhou.apm.tencentcs.com:4317 as examples to introduce the complete start-up scripts for different

environments:
JAR File or Spring Boot

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 194

java -javaagent:/path/to/opentelemetry-javaagent.jar \\

-Dotel.resource.attributes=service.name=myService,token=myToken\\

-Dotel.exporter.otlp.endpoint=http://pl-demo.ap-guangzhou.apm.tencentcs.com:4317 \\

-jar SpringCloudApplication.jar

Linux Tomcat 7/Tomcat 8

Add the following content to the {TOMCAT_HOME}/bin/setenv.sh configuration file:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 194

CATALINA_OPTS="$CATALINA_OPTS -javaagent:/path/to/opentelemetry-javaagent.jar"

export OTEL_RESOURCE_ATTRIBUTES=service.name=myService,token=myToken

export OTEL_EXPORTER_OTLP_ENDPOINT=http://pl-demo.ap-guangzhou.apm.tencentcs.com:43

If your Tomcat does not have a setenv.sh configuration file, see the Tomcat official documentation to initialize a
setenv.sh configuration file, or use another method to add Java start-up parameters and environment variables.
Jetty

Add the following content in the <jetty_home\\>/bin/jetty.sh start-up script:

https://tomcat.apache.org/tomcat-9.0-doc/RUNNING.txt

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 194

JAVA_OPTIONS="$JAVA_OPTIONS -javaagent:/path/to/opentelemetry-javaagent.jar"

export OTEL_RESOURCE_ATTRIBUTES=service.name=myService,token=myToken

export OTEL_EXPORTER_OTLP_ENDPOINT=http://pl-demo.ap-guangzhou.apm.tencentcs.com:43

IDEA
When you debug Java applications locally in IDEA, you can configure VM options in the Run Configuration, with
parameters as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 90
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 91
of 194

-javaagent:"/path/to/opentelemetry-javaagent.jar"

-Dotel.resource.attributes=service.name=myService,token=myToken

-Dotel.exporter.otlp.endpoint=http://pl-demo.ap-guangzhou.apm.tencentcs.com:4317

In this case, ensure network connectivity between the local environment and the connect point. Usually, the public
network connect point address can be used for reporting.
Other application servers

See the corresponding configuration standards to mount the agent, and add Java start-up parameters or environment
variables.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 92
of 194

Connection Verification

After the 3 connect steps are completed, start the Java application. The application will mount the agent and connect
to the APM server to report monitoring data. In normal traffic cases, the connected applications will be displayed in the
console APM > Application monitoring > Application list , and the connected application instances will be displayed in

the console Application details > Instance monitoring. Due to the delay in processing observable data, if the
application or instance is not found in the console after connecting, wait for about 30 seconds.

Custom Event Tracking (Optional)

When automatic Event Tracking does not meet your scenario, or you need to add business layer Event Tracking, you
can see the following content and use the OpenTelemetry API to add custom Event Tracking. This document only
showcases the most basic way of custom Event Tracking, and the OpenTelemetry community provides more flexible

ways of custom Event Tracking. For specific usage, you can see the OpenTelemetry official documentation.

Introducing OpenTelemetry API Dependencies

https://console.tencentcloud.com/monitor/apm/system
https://opentelemetry.io/docs/instrumentation/java/manual/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 93
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 94
of 194

<dependencies>

 <!-- Other dependencies -->

 <dependency>

 <groupId>io.opentelemetry</groupId>

 <artifactId>opentelemetry-api</artifactId>

 </dependency>

</dependencies>

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>io.opentelemetry</groupId>

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 95
of 194

 <artifactId>opentelemetry-bom</artifactId>

 <version>1.9.0</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

Obtaining Tracer

In the code where Event Tracking needs to be implemented, the Tracer object can be obtained with the following
code:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 96
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 97
of 194

import io.opentelemetry.api.GlobalOpenTelemetry;

import io.opentelemetry.api.OpenTelemetry;

import io.opentelemetry.api.trace.Tracer;

public class AcquireTracerDemo {

 public void acquireTracer() {

 // The scope is used for defining the Event Tracking range. In most cases,

 String scope = this.getClass().getName();

 OpenTelemetry openTelemetry = GlobalOpenTelemetry.get();

 Tracer tracer = openTelemetry.getTracer(scope);

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 98
of 194

 }

}

Performing Event Tracking for Business Methods

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 99
of 194

import io.opentelemetry.api.trace.Span;

import io.opentelemetry.api.trace.StatusCode;

import io.opentelemetry.api.trace.Tracer;

import io.opentelemetry.context.Scope;

// The Trace object can be obtained within business methods or passed into the busi

public void doTask(Tracer tracer) {

 // Create a Span.

 Span span = tracer.spanBuilder("doTask").startSpan();

 // Add some Attributes to the Span.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 100
of 194

 span.setAttribute("RequestId", "5fc92ff1-8ca8-45f4-8013-24b4b5257666");

 // Set this Span as the current Span

 try (Scope scope = span.makeCurrent()) {

 doSubTask1();

 doSubTask2();

 } catch (Throwable t) {

 // Handle the exception. The exception information will be recorded in the

 span.recordException(t);

 span.setStatus(StatusCode.ERROR);

 throw t;

 } finally {

 // End the Span

 span.end();

 }

}

Viewing the Results of Custom Event Tracking

In APM > call query, find the related call chain, and click the Span ID to enter the End-to-End Details page, where

you can find the newly added Span through custom Event Tracking.

Custom Instance Name (Optional)

When multiple application processes connect APM using the same application name, they are displayed in APM as
multiple instances under the same application. In most scenarios, the IP address can serve as a unique identifier for
the application instance. However, if there are duplicate IP addresses in the system, other unique identifiers need to
be used to define the instance name. For example, if the application in the system is launched directly through Docker,

without being deployed on Kubernetes, there might be cases of duplicate container IP addresses. Users can set the
instance name in the form of host IP + container IP .

See the following script and add the host.name field to the JVM startup parameters required for connecting APM

with -Dotel.resource.attributes .

https://console.tencentcloud.com/monitor/apm/span

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 101
of 194

-Dotel.resource.attributes=service.name=my_service,token=my_demo_token,host.name=10

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 102
of 194

Reporting over SkyWalking Protocol
Last updated：2023-12-25 16:02:06

This document describes how to report the data of a Java application over the SkyWalking protocol.

Prerequisites

Download SkyWalking 8.5.0 or later and place the extracted agent folder to a directory accessible to the Java
process.

Plugins are in the /plugins directory. Put a new plugin in this directory during the startup phase to enable it, or

remove it from this directory to disable it. Log files are output to the /logs directory by default.

Access Steps

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Java language and the SkyWalking data collection method.

Then, get the endpoint and token in the step of access method selection.

Step 2. Download Skywalking

If you have already used SkyWalking, skip this step.
Otherwise, download the latest version as instructed in Prerequisites.

https://archive.apache.org/dist/skywalking/8.5.0/
https://console.tencentcloud.com/apm
http://skywalking.apache.org/downloads/?spm=a2c4g.11186623.2.12.65355968AbUoDc

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 103
of 194

Step 3. Configure parameters and names

Open the agent/config/agent.config file to configure the endpoint, token, and custom service name.

collector.backend_service=<endpoint>

agent.authentication=<Token>

agent.service_name=<reporting service name>

Note:
After modifying agent.config , remove the # before configuration items; otherwise, the changed information

will not take effect.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 104
of 194

Step 4. Specify the plugin path

Select an appropriate method based on the runtime environment of your application to specify the path of the
SkyWalking agent.
Linux Tomcat 7/Tomcat 8

Add the following to the first line in tomcat/bin/catalina.sh :

CATALINA_OPTS="$CATALINA_OPTS -javaagent:<skywalking-agent-path>"; export CATALINA_

JAR file or Spring Boot

Add the -javaagent parameter to the startup command line of the application with the following content:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 105
of 194

java -javaagent:<skywalking-agent-path> -jar yourApp.jar

Step 5. Restart the application

After completing the above deployment steps, restart the application as instructed in Install javaagent FAQs.

https://github.com/apache/skywalking/blob/v8.2.0/docs/en/setup/service-agent/java-agent/README.md#install-javaagent-faqs

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 106
of 194

Accessing Python Application
Automatic Connecting Python Application for
the TKE Environment (Recommended)
Last updated：2024-06-19 16:31:30

For Python applications deployed on TKE, APM offers automatic connection schemes, enabling automatic agent
injection after the application is deployed to TKE, facilitating quick connection.
Automatic connecting Python applications for the TKE environment will use the community OpenTelemetry-Python

scheme for agent injection. For more information on OpenTelemetry-Python, see the community OpenTelemetry-
Python project.

Prerequisites

See Supported Components and Frameworks by the OpenTelemetry-Python Scheme to ensure that your Python
versions, dependency libraries, and frameworks are within the supported range of the agent. For dependency libraries
and frameworks supported by automatic instrumentation, data reporting is completed upon successful connection

without the need to modify the code. If automatic Event Tracking does not meet your scenario, or you need to add
business layer tracing, use the OpenTelemetry API for Custom Event Tracking.

Step 1: Install Operator.

Install Operator in the TKE cluster, it's recommended to install Operator with one click on the APM console, for details
see installing tencent-opentelemetry-operator.

Step 2: Add annotation to workload.

1. Log in to TKE console.
2. Click Cluster to enter the corresponding TKE cluster.

3. In Workload, locate the application that needs to connect with APM, click More, then click Edit YAML.
4. In the Pod annotation where the application is located, add the following content, then click Complete to finish the
connection.

https://github.com/open-telemetry/opentelemetry-python
https://www.tencentcloud.com/document/product/1166/60818#8651b168-95a0-451b-9ab0-f063a7beda1c
https://www.tencentcloud.com/document/product/1166/60613#28fedbe2-716b-4155-9183-a5dbe1062592
https://www.tencentcloud.com/document/product/1166/60816#
https://console.tencentcloud.com/tke2/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 107
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 108
of 194

cloud.tencent.com/inject-python: "true"

cloud.tencent.com/otel-service-name: my-app # Application name, processes that con

The application name can be up to 63 characters and can only contain lowercase le

Note that this content needs to be added to spec.template.metadata.annotations , affecting the Pod's

annotation, not the workload's annotation. You can see the following code snippet:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 109
of 194

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: my-app

 name: my-app

 namespace: default

spec:

 selector:

 matchLabels:

 k8s-app: my-app

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 110
of 194

 template:

 metadata:

 labels:

 k8s-app: my-app

 annotations:

 cloud.tencent.com/inject-python: "true" # Add it here.

 cloud.tencent.com/otel-service-name: my-app

 spec:

 containers:

 image: my-app:0.1

 name: my-app

Connection Verification

After an annotation is added to the workload, depending on the published policy, you can trigger the restart of the
application Pod. The newly started Pod will automatically inject an agent and connect to the APM server to report

monitoring data. The reported business system is the default business system of the Operator. In normal traffic cases,
the connected applications will be displayed in APM > Application monitoring > Application list , and the connected
application instances will be displayed in APM > Application monitoring > App details > Instance monitoring. Since
there is a certain latency in the processing of observable data, if the applications or instances are not found in the
console after connecting, wait about 30 seconds.

Django Application Precautions

If your application uses the Django framework, pay attention to the following points before connecting:
1. It is recommended to deploy the service using uWSGI. For deployment methods, see through uWSGI Hosting
Django Application. Starting directly through the python command may cause reporting failures.
2. The introduction of OpenTelemetry-Python may result in Django applications no longer using the default
configuration file. It is necessary to re-specify the configuration file through environment variables:

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application
https://docs.djangoproject.com/en/5.0/howto/deployment/wsgi/uwsgi/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 111
of 194

export DJANGO_SETTINGS_MODULE=mysite.settings

Or add environment variables through a YAML file:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 112
of 194

env:

- name: DJANGO_SETTINGS_MODULE

 value: mysite.settings

More Connection Configuration Items (Optional)

At the Workload level, you can add more annotations to adjust the connect behaviors:

Configuration Item Description

cloud.tencent.com/apm- Specify the Token for the APM business system. If this configuration item is not

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 113
of 194

token added, the Operator's configuration is used (corresponding to the Operator's
 env.APM_TOKEN field).

cloud.tencent.com/python-
instr-version

Specify the Python agent version. If this configuration item is not added, the
Operator's configuration is used (corresponding to the Operator's

 env.PYTHON_INSTR_VERSION field). The value can be latest
(default) or a specific version number. For a list of specific version numbers, see
Agent Version Information. It is not recommended to fill in this field unless
necessary.

https://www.tencentcloud.com/document/product/1166/60819#

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 114
of 194

Connecting Python Applications Using
OpenTelemetry-Python (Recommended)
Last updated：2024-06-19 16:31:30

Note:
OpenTelemetry is a collection of tools, APIs, and SDKs for monitoring, generating, collecting, and exporting telemetry
data (metrics, logs, and traces) to help users analyze the performance and behavior of the software. For more

information about OpenTelemetry, see the OpenTelemetry official website.
The OpenTelemetry community is active, with rapid technological changes, and widely compatible with mainstream
programming languages, components, and frameworks, making its link-tracing capability highly popular for cloud-
native microservices and container architectures.
This document will introduce how to connect Python applications using the OpenTelemetry-Python scheme provided

by the community.
The OpenTelemetry-Python scheme provides automatic Event Tracking for commonly used dependency libraries and
frameworks in the Python ecosystem, including Flask, Django, FastAPI, MySQL Connector, etc., enabling link
information reporting without needing to modify the code. For other dependency libraries and frameworks that support
automatic Event Tracking, see the complete list provided by the OpenTelemetry community.

Prerequisites

This scheme supports Python 3.6 and above.

Demo

Required dependencies are as follows:

https://opentelemetry.io/
https://opentelemetry.io/ecosystem/registry/?language=python&component=instrumentation

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 115
of 194

pip install flask

pip install mysql-connector-python

pip install redis

pip install requests

The demo code app.py provides 3 HTTP APIs through the Flask framework. Set up the corresponding MySQL and

Redis services yourself or directly purchase Cloud Services.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 116
of 194

from flask import Flask

import requests

import time

import mysql.connector

import redis

backend_addr = 'https://example.com/'

app = Flask(__name__)

Accessing External Site

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 117
of 194

@app.route('/')

def index():

 start = time.time()

 r = requests.get(backend_addr)

 return r

Accessing Database

@app.route('/mysql')

def func_rdb():

 cnx = mysql.connector.connect(host='127.0.0.1', database="<DB-NAME>", user='<DB

 cursor = cnx.cursor()

 val = "null"

 cursor.execute("select value from table_demo where id=1;")

 val = cursor.fetchone()[0]

 cursor.close()

 cnx.close()

 return "rdb res:" + val

Accessing Redis

@app.route("/redis")

def func_kvop():

 client = redis.StrictRedis(host="localhost", port=6379)

 val = "null"

 val = client.get('foo').decode("utf8")

 return "kv res:" + val

app.run(host='0.0.0.0', port=8080)

Preliminary steps: Get the connect point and Token.

1. Log in to the TCOP console.
2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.

3. In the Data access drawer frame that pops up on the right, click the Python language.
4. On the Access Python application page, select the region and Business System you want to connect.
5. Select Access protocol type as OpenTelemetry.
6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:

Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through
VPC connecting directly, you can avoid the security risks of public network communication and save on reporting
traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

https://console.tencentcloud.com/monitor/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 118
of 194

Connecting Python Applications

Step 1: Install the required dependency packets.

pip install opentelemetry-instrumentation-redis

pip install opentelemetry-instrumentation-mysql

pip install opentelemetry-distro opentelemetry-exporter-otlp

opentelemetry-bootstrap -a install

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 119
of 194

Step 2: Add runtime parameters.

Start the Python application with the following command:

opentelemetry-instrument \\

--traces_exporter otlp_proto_grpc \\

--metrics_exporter none \\

--service_name <serviceName> \\

--resource_attributes token=<token>,host.name=<hostName> \\

--exporter_otlp_endpoint <endpoint> \\

python3 app.py

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 120
of 194

The corresponding field descriptions are as follows:
 <serviceName> : Application name. Multiple application processes connecting with the same serviceName are

displayed as multiple instances under the same application in APM. The application name can be up to 63 characters

and can only contain lowercase letters, digits, and the separator (-), and it must start with a lowercase letter and end
with a digit or lowercase letter.
 <token> : The business system Token obtained in the preliminary steps.

 <hostName> : The hostname of this instance, which is the unique identifier of the application instance. It can

usually be set to the IP address of the application instance.

 <endpoint> : The connect point obtained in the preliminary steps.

The content below uses myService as the application name, myToken as the Business System Token,

 192.168.0.10 as the hostname, and https://pl-demo.ap-guangzhou.apm.tencentcs.com:4317

as the connect point example, the complete startup command is:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 121
of 194

opentelemetry-instrument \\

--traces_exporter otlp_proto_grpc \\

--metrics_exporter none \\

--service_name myService \\

--resource_attributes token=myToken,host.name=192.168.0.10 \\

--exporter_otlp_endpoint https://pl-demo.ap-guangzhou.apm.tencentcs.com:4317/ \\

python3 app.py

Connection Verification

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 122
of 194

After the Python application starts, access the corresponding API through port 8080, for example,
 https://localhost:8080/ . If there is normal traffic, the connected application is displayed in APM >

Application monitoring > Application list, and the connected application instance will be displayed in APM >

Application monitoring > Application details > Instance monitoring. Since there is a certain delay in the processing
of observable data, if the application or instance is not found on the console after connection, wait for about 30
seconds.

Django Application Precautions

If your application uses the Django framework, before you connect it through the OpenTelemetry-Python scheme, pay
attention to the following items:

1. It is recommended to deploy the service using uWSGI. For deployment methods, see through uWSGI Hosting
Django Application. Starting directly through the python command may cause reporting failures.
2. The introduction of OpenTelemetry-Python may result in Django applications no longer using the default
configuration file. It is necessary to re-specify the configuration file through environment variables:

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application
https://docs.djangoproject.com/en/5.0/howto/deployment/wsgi/uwsgi/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 123
of 194

export DJANGO_SETTINGS_MODULE=mysite.settings

Custom Event Tracking (Optional)

When automatic Event Tracking does not meet your scenario, or you need to add business layer Event Tracking, you

can see the content below and use the OpenTelemetry API to add custom Event Tracking. This document only shows
the most basic custom Event Tracking method. The OpenTelemetry community offers more flexible custom Event
Tracking. For specific methods of use, you can see the Python Custom Event Tracking Documentation provided by
the OpenTelemetry community.

https://opentelemetry.io/docs/languages/python/instrumentation/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 124
of 194

from opentelemetry import trace

import requests

backend_addr = 'https://example.com/'

app = Flask(__name__)

@app.route('/')

def index():

 r = requests.get(backend_addr) # For external requests initiated by requests.get

 slow() # Call a custom function

 return r

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 125
of 194

def slow():

 tracer = trace.get_tracer(__name__)

 # Custom functions are not within the automatic Event Tracking range of OpenTel

 with tracer.start_as_current_span("child_span")

 time.sleep(5)

 return

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 126
of 194

Reporting over Jaeger Protocol
Last updated：2023-12-25 16:02:37

﻿This document describes how to report the data of a Python application over the Jaeger protocol.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Python language and Jaeger data collection method. Then, get the endpoint and token in the step of

access method selection.

Step 2. Install the Jaeger agent

1. Download the Jaeger agent.
2. Run the following command to start the agent:

https://console.tencentcloud.com/apm
https://github.com/jaegertracing/jaeger/releases/tag/v1.22.0

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 127
of 194

nohup ./jaeger-agent --reporter.grpc.host-port={{endpoint}} --jaeger.tags=token={{t

Step 3. Report data through Jaeger

1. Run the following command to install the jaeger_client package.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 128
of 194

pip install jaeger_client

2. Create the following Python file and tracer object to trace all requests.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 129
of 194

from jaeger_client import Config

import time

from os import getenv

Configure the address of the Jaeger agent, which is the localhost by default.

JAEGER_HOST = getenv('JAEGER_HOST', 'localhost')

SERVICE_NAME = getenv('JAEGER_HOST', 'my_service_test')

def build_your_span(tracer):

 with tracer.start_span('yourTestSpan') as span:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 130
of 194

 span.log_kv({'event': 'test your message', 'life': 42})

 span.set_tag("span.kind", "server")

 return span

def build_your_tracer():

 my_config = Config(

 config={

 'sampler': {

 'type': 'const',

 'param': 1,

 },

 'local_agent': {

 'reporting_host': JAEGER_HOST,

 'reporting_port': 6831,

 },

 'logging': True,

 },

 service_name=SERVICE_NAME,

 validate=True

)

 tracer = my_config.initialize_tracer()

 return tracer

if __name__ == "__main__":

 tracer = build_your_tracer()

 span = build_your_span(tracer)

 time.sleep(2)

 tracer.close()

Note:
Currently, Jaeger supports frameworks such as Flask, Django, and gRPC for data reporting. For more information,

see the following documents:
jaeger-client-python
3rd-Party OpenTracing API Contributions

https://github.com/jaegertracing/jaeger-client-python
https://github.com/opentracing-contrib?q=python&type=&language=&sort=

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 131
of 194

Accessing Node.js Application
Automatic Connecting Node.js Applications
for TKE Environment (Recommended)
Last updated：2024-06-19 16:31:30

For Node.js applications deployed on TKE, APM provides an automatic connect scheme. This allows for the
automatic injection of agents after the application is deployed to TKE, facilitating quick connection.
TKE environment automatically connected Node.js applications will use the community OpenTelemetry-JavaScript

scheme for agent injection. For more information about OpenTelemetry-JavaScript, see the community
OpenTelemetry-Javascript project.

Prerequisites

See OpenTelemetry-JavaScript scheme supported components and frameworks to ensure that the Node.js version,
dependency libraries, and frameworks are within the supported range of the agent. For dependency libraries and
frameworks supported by automatic Event Tracking, data reporting can be completed after a successful connection

without modifying the code. If automatic Event Tracking does not meet your needs, or you need to add business layer
instrumentation, use OpenTelemetry API for custom metrics.

Step 1: Install Operator.

Install Operator in the TKE cluster, it's recommended to install Operator with one click on the APM console, for details
see installing tencent-opentelemetry-operator.

Step 2: Add annotation to workload.

1. Log in to TKE console.
2. Click Cluster to enter the corresponding TKE cluster.

3. In Workload, you can find the application that needs to connect APM, click More, then click Edit YAML.
4. Apply the following content in the Pod annotation, then click Complete to finish the connection.

https://github.com/open-telemetry/opentelemetry-js
https://www.tencentcloud.com/document/product/1166/60818#059e1ef3-4ab6-4c66-a7f0-20bf640400f0
https://www.tencentcloud.com/document/product/1166/60615#28fedbe2-716b-4155-9183-a5dbe1062592
https://www.tencentcloud.com/document/product/1166/60816#
https://console.tencentcloud.com/tke2/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 132
of 194

cloud.tencent.com/inject-nodejs: "true"

cloud.tencent.com/otel-service-name: my-app # Application name, processes that con

The application name can be up to 63 characters and can only contain lowercase le

Note that this content needs to be added to spec.template.metadata.annotations , affecting the Pod's

annotation, not the workload's annotation. You can see the following code snippet:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 133
of 194

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: my-app

 name: my-app

 namespace: default

spec:

 selector:

 matchLabels:

 k8s-app: my-app

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 134
of 194

 template:

 metadata:

 labels:

 k8s-app: my-app

 annotations:

 cloud.tencent.com/inject-nodejs: "true" # Add here

 cloud.tencent.com/otel-service-name: my-app

 spec:

 containers:

 image: my-app:0.1

 name: my-app

Connection Verification

After an annotation is added to the workload, based on different publish policies, it triggers the restart of the
application Pod. The newly started Pod will automatically inject an agent and connect to the APM server to report

monitoring data, with the business system reported being the default for Operator. Under normal traffic conditions, the
connected applications will be displayed in APM > Application monitoring > Application list , and the connected
application instances will be displayed in APM > Application monitoring > App details > Instance monitoring. Due to
a certain delay in processing observable data, if the application or instance is not found in the console immediately
after connection, wait for about 30 seconds.

More Connection Configuration Items (Optional)

At the Workload level, you can add more annotations to adjust the connect behaviors:

Configuration Item Description

cloud.tencent.com/apm-token
Specify the Token for the APM business system. If this configuration item is
not added, the configuration of the Operator is used (corresponding to the
Operator's env.APM_TOKEN field).

cloud.tencent.com/nodejs-instr-
version

Specify the Node.js agent version. If this configuration item is not added, the
Operator's configuration is used (corresponding to the
Operator'snull env.NODEJS_INSTR_VERSION field). The values can be
 latest (default) or a specific version number. For a list of specific
version numbers, see Agent Version Information. It is not recommended to fill
in this field unless necessary.

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application
https://www.tencentcloud.com/document/product/1166/60819#

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 135
of 194

Connecting Node.js Applications Using the
OpenTelemetry-JS Scheme (Recommended)
Last updated：2024-06-19 16:31:30

Note:
OpenTelemetry is a collection of tools, APIs, and SDKs for monitoring, generating, collecting, and exporting telemetry
data (metrics, logs, and traces) to help users analyze the performance and behavior of the software. For more

information about OpenTelemetry, see the OpenTelemetry official website.
The OpenTelemetry community is active, with rapid technological changes, and widely compatible with mainstream
programming languages, components, and frameworks, making its link-tracing capability highly popular for cloud-
native microservices and container architectures.
This document will introduce how to connect Node.js applications using the OpenTelemetry-JS scheme through

related operations.
The OpenTelemetry-JS scheme provides automatic Event Tracking for common Node.js modules and frameworks,
including Express, mysql, gRPC, etc., enabling link information reporting without needing to modify the code. For other
modules and frameworks that support automatic Event Tracking, see the complete list provided by the
OpenTelemetry community.

Demo

The demo code main.js provides 3 HTTP APIs through Express. Set up the corresponding MySQL and Redis

services yourself or directly purchase Cloud Services.

https://opentelemetry.io/
https://github.com/open-telemetry/opentelemetry-js-contrib/tree/main/metapackages/auto-instrumentations-node#supported-instrumentations

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 136
of 194

"use strict";

const axios = require("axios").default;

const express = require("express");

const redis = require('./utils/redis');

const dbHelper = require("./utils/db");

const app = express();

app.get("/remoteInvoke", async (req, res) => {

 const result = await axios.get("http://cloud.tencent.com");

 return res.status(200).send(result.data);

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 137
of 194

});

app.get("/redis", async(req, res) => {

 let queryRes = await redis.getKey("foo")

 res.json({ code: 200, result: queryRes})

})

app.get("/mysql", async(req, res) => {

 let select = select * from table_demo;

 await dbHelper.query(select);

 res.json({ code: 200, result: "mysql op ended"})

})

app.use(express.json());

app.listen(8080, () => {

 console.log("Listening on http://localhost:8080");

});

Preliminary steps: Get the connect point and Token.

1. Log in to the TCOP console.
2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.
3. In the Data access drawer frame that pops up on the right, click Node language.
4. On the Access Node application page, select the region and business system you want to connect.

5. Select Access protocol type as OpenTelemetry.
6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:
Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through
VPC connecting directly, you can avoid the security risks of public network communication and save on reporting

traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

Connecting Node.js Applications

Step 1: Install the required dependency packets.

https://console.tencentcloud.com/monitor/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 138
of 194

npm install --save @opentelemetry/api

npm install --save @opentelemetry/auto-instrumentations-node

Step 2: Add runtime parameters.

Start the Node.js application with the following command:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 139
of 194

export OTEL_TRACES_EXPORTER="otlp"

export OTEL_RESOURCE_ATTRIBUTES='token=<token>,hostName=<hostName>'

export OTEL_EXPORTER_OTLP_PROTOCOL='grpc'

export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT="<endpoint>"

export OTEL_SERVICE_NAME="<serviceName>"

export NODE_OPTIONS="--require @opentelemetry/auto-instrumentations-node/register"

node main.js

The corresponding field descriptions are as follows:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 140
of 194

 <serviceName> : Application name. Multiple application processes connecting with the same serviceName are

displayed as multiple instances under the same application in APM. The application name can be up to 63 characters
and can only contain lowercase letters, digits, and the separator (-), and it must start with a lowercase letter and end

with a digit or lowercase letter.
 <token> : The business system Token obtained in the preliminary steps.

 <hostName> : The hostname of this instance, which is the unique identifier of the application instance. It can

usually be set to the IP address of the application instance.
 <endpoint> : The connect point obtained in the preliminary steps.

The following content uses myService as the application name, myToken as the business system Token,

 192.168.0.10 as the hostname, and http://pl-demo.ap-guangzhou.apm.tencentcs.com:4317 as

the example connect point. The complete start-up command is:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 141
of 194

export OTEL_TRACES_EXPORTER="otlp"

export OTEL_RESOURCE_ATTRIBUTES='token=myToken,hostName=192.168.0.10'

export OTEL_EXPORTER_OTLP_PROTOCOL='grpc'

export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT="http://pl-demo.ap-guangzhou.apm.tencentc

export OTEL_SERVICE_NAME="myService"

export NODE_OPTIONS="--require @opentelemetry/auto-instrumentations-node/register"

node main.js

Connection Verification

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 142
of 194

After the Node.js application is started, access the corresponding API through port 8080, for example,
 https://localhost:8080/ . In the case of normal traffic, APM > Application monitoring > Application List will

display the connected applications, and APM > Application monitoring > App details > Instance monitoring will

display the connected application instances. Since there is some latency in processing observable data, if the
application or instance is not found in the console after connecting, wait about 30 seconds.

Custom Event Tracking (Optional)

When automatic instrumentation does not meet your scenarios, or you need to add business layer instrumentation,
you can see the following content and use the OpenTelemetry API to add custom instrumentation. This document only
shows the most basic custom Event Tracking method. The OpenTelemetry community offers more flexible custom

instrumentation methods, and you can see the OpenTelemetry community-provided Javascript Custom Event
Tracking Documentation for specific methods.

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application
https://opentelemetry.io/docs/languages/js/instrumentation/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 143
of 194

const opentelemetry = require("@opentelemetry/api")

app.get("/attr", async(req, res) => {

 const tracer = opentelemetry.trace.getTracer(

 'my-service-tracer'

);

 tracer.startActiveSpan('new internal span', span => {

 span.addEvent("Acquiring lock", {

 'log.severity':'error',

 'log.message':'data node found',

 })

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 144
of 194

 span.addEvent("Got lock, doing work...", {

 'log.severity':'11111',

 'log.message':'2222222',

 'log.message1':'3333333',

 })

 span.addEvent("Unlocking")

 span.end();

 });

 res.json({ code: 200, msg: "success" });

})

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 145
of 194

Reporting with Native Jaeger SDK
Last updated：2023-12-25 16:03:23

This document describes how to report the data of a Node.js application with the native Jaeger SDK.

Directions

Step 1. Get the endpoint and token

Log in to the APM console, enter the Application monitoring > Application list page, click Access application,
and select the Node.js language and Jaeger data collection method. Then, get the endpoint and token in the step of

access method selection.

Step 2. Install dependencies

Install dependencies by using npm.

https://console.tencentcloud.com/apm

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 146
of 194

$ npm i jaeger-client

Step 3. Import the SDK and report data

1. Import the SDK. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 147
of 194

const initTracer = require('jaeger-client').initTracer;

// Jaeger configuration

const config = {

 serviceName: 'service-name', // Customizable service name

 sampler: {

 type: 'const',

 param: 1,

 },

 reporter: {

 logSpans: true,

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 148
of 194

 collectorEndpoint: 'http://ap-guangzhou.apm.tencentcs.com:14268/api/traces', /

 },

};

const options = {

 tags: {

 token: 'Vds************CrKck' // The requested token

 },

};

Note:
 Node.js uses API to directly report data, so there is no need to start the Jaeger agent. Select the endpoint of your
network environment and add the suffix /api/traces to form the actual endpoint.

2. Report data. Below is a sample:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 149
of 194

// Initialize the tracer instance object

const tracer = initTracer(config, options);

// Initialize the span instance object

const span = tracer.startSpan('spanStart');

// Mark the current service as the server

span.setTag('span.kind', 'server');

// Set one or more tags (optional)

span.setTag('tagName', 'tagValue');

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 150
of 194

// Set one or more events (optional)

span.log({ event: 'timestamp', value: Date.now() });

// Mark the end of the span

span.finish();

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 151
of 194

Accessing PHP Application
Connecting PHP Application via
OpenTelemetry-PHP (Recommended)
Last updated：2024-07-08 11:27:23

Note:
OpenTelemetry is a collection of tools, APIs, and SDKs for monitoring, generating, collecting, and exporting telemetry
data (metrics, logs, and traces) to help users analyze the performance and behavior of the software. For more

information about OpenTelemetry, see the OpenTelemetry official website.
The OpenTelemetry community is active, with rapid technological changes, and widely compatible with mainstream
programming languages, components, and frameworks, making its link-tracing capability highly popular for cloud-
native microservices and container architectures.
﻿This document introduces how to integrate PHP applications using the community's OpenTelemetry-PHP scheme

through relevant operations.
The OpenTelemetry-PHP scheme provides automatic event tracking for commonly used PHP dependency libraries
and frameworks, such as Slim, without modifying the code to report linkage information. For other dependency
libraries and frameworks that support automatic event tracking, see complete list provided by the OpenTelemetry
community.

Prerequisites

Install the following tools:

PECL﻿
composer﻿
Ensure that you can run the following commands in the shell:

https://opentelemetry.io/
https://opentelemetry.io/ecosystem/registry/?component=instrumentation&language=php
https://pecl.php.net/
https://getcomposer.org/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 152
of 194

php -v

composer -v

Automatic Integration

PHP 8.0+
For details on the list of frameworks supported by automatic event tracking, see OpenTelemetry official
documentation.

Manual Integration

https://opentelemetry.io/ecosystem/registry/?component=instrumentation&language=php

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 153
of 194

PHP 7.4+

Demo Application

The sample code index.php is an HTTP Server using PDO to connect to a MySQL database for database

operations. Set up the corresponding MySQL service yourself or purchase cloud services directly.

1. Initializing Application

mkdir <project-name> && cd <project-name>

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 154
of 194

composer init \\

 --no-interaction \\

 --stability beta \\

 --require slim/slim:"^4" \\

 --require slim/psr7:"^1"

composer update

2. Writing Business Code
Create an index.php file in the <project-name> directory and add the following content.

The following content will simulate a search operation using PDO to connect to MySQL with an HTTP Server API.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 155
of 194

<?php

use Psr\\Http\\Message\\ResponseInterface as Response;

use Psr\\Http\\Message\\ServerRequestInterface as Request;

use Slim\\Factory\\AppFactory;

require __DIR__ . '/vendor/autoload.php';

$app = AppFactory::create();

$app->get('/getID', function (Request $request, Response $response) {

 $dbms = 'mysql'; // Database type

 $host = 'localhost'; // Database hostname

 $dbName = 'Mydb'; // Database in use

 $user = 'root'; // Database connection username

 $pass = ''; // Corresponding password

 $dsn = "$dbms:host=$host;dbname=$dbName";

 try {

 $dbh = new PDO($dsn, $user, $pass); // Initialize a PDO object

 echo "Connection successful
";

 foreach ($dbh->query('SELECT id from userInfo') as $row) {

 $response->getBody()->write($row[0] . "
");

 }

 $dbh = null;

 } catch (PDOException $e) {

 die ("Error!: " . $e->getMessage() . "
");

 }

 return $response;

});

$app->run();

Preliminary steps: Get the access point and token.

1. Log in to the TCOP console.
2. In the left sidebar, select Application Performance Management > Application monitoring, and click

Application list > Access application.
3. In the Data Ingestion drawer that pops up on the right, click PHP language.
4. On the Integrate PHP Applications page, select the desired Region and Business System.

https://console.tencentcloud.com/monitor/apm/system

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 156
of 194

5. Select Access protocol type as OpenTelemetry.
6. Reporting method Choose your desired reporting method, and obtain your Access Point and Token.
Note:

Private network reporting: Using this reporting method, your service needs to run in the Tencent Cloud VPC. Through
VPC connecting directly, you can avoid the security risks of public network communication and save on reporting
traffic overhead.
Public network reporting: If your service is deployed locally or in non-Tencent Cloud VPC, you can report data in this
method. However, it involves security risks in public network communication and incurs reporting traffic fees.

Automatic Integration Scheme (Recommended)

Step 1: Build OpenTelemetry PHP extension.

Note:
If you have already built the OpenTelemetry PHP extension, you can skip this step.
1. Download the tools required to build the OpenTelemetry PHP extension:
macOS

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 157
of 194

brew install gcc make autoconf

Linux (apt)

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 158
of 194

sudo apt-get install gcc make autoconf

2. Build the OpenTelemetry PHP extension using PECL:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 159
of 194

pecl install opentelemetry

Note:

The last few lines of output upon successful build are as follows (paths may vary):

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 160
of 194

Build process completed successfully

Installing '/opt/homebrew/Cellar/php/8.2.8/pecl/2020829/opentelemetry.so'

install ok: channel://pecl.php.net/opentelemetry-1.0.3

Extension opentelemetry enabled in php.ini

3. Enable the OpenTelemetry PHP extension.

Note:
If Extension opentelemetry enabled in php.ini is output in the previous step, it is enabled. Skip this

step.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 161
of 194

Add the following contents to the php.ini file:

[opentelemetry]

extension=opentelemetry.so

 php.ini file locations may include:

OS PATH

Linux	 /etc/php.ini

/usr/bin/php5/bin/php.ini

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 162
of 194

/etc/php/php.ini

/etc/php5/apache2/php.ini

Mac OSX /private/etc/php.ini

Windows (with XAMPP installed) C:/xampp/php/php.ini

4. Verify that the build and enablement were successful.
Solution 1:

php -m | grep opentelemetry

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 163
of 194

Expected output:

opentelemetry

Solution 2:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 164
of 194

php --ri opentelemetry

Expected output:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 165
of 194

opentelemetry

opentelemetry support => enabled

extension version => 1.0.3

5. Add additional dependencies required for OpenTelemetry PHP automatic event tracking to the application.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 166
of 194

pecl install grpc # This step takes a long time to build.

composer require \\

 open-telemetry/sdk \\

 open-telemetry/exporter-otlp \\

 open-telemetry/transport-grpc \\

 php-http/guzzle7-adapter \\

 open-telemetry/opentelemetry-auto-slim \\

 open-telemetry/opentelemetry-auto-pdo

open-telemetry/sdk: OpenTelemetry PHP SDK.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 167
of 194

open-telemetry/exporter-otlp: Dependencies required for OpenTelemetry PHP OTLP protocol data reporting.
open-telemetry/opentelemetry-auto-slim: Automatic event tracking packet of OpenTelemetry PHP for Slim framework
implementation.

open-telemetry/opentelemetry-auto-pdo: Automatic event tracking packet of OpenTelemetry PHP for PHP DataObject
implementation.
Note:
The packets open-telemetry/opentelemetry-auto-slim and open-telemetry/opentelemetry-

auto-pdo are imported because the example demo uses the PDO and Slim frameworks. You can adjust according

to your specific business needs. If your business components require OpenTelemetry automatic event tracking, you
need to import the corresponding automatic event tracking packets into the project. For detailed import methods, see
OpenTelemetry official documentation.

Step 2: Run the application.

1. Execute the following command:

https://opentelemetry.io/ecosystem/registry/?component=instrumentation&language=php

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 168
of 194

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 169
of 194

env OTEL_PHP_AUTOLOAD_ENABLED=true \\

 OTEL_TRACES_EXPORTER=otlp \\

 OTEL_METRICS_EXPORTER=none \\

 OTEL_LOGS_EXPORTER=none \\

 OTEL_EXPORTER_OTLP_PROTOCOL=grpc \\

 OTEL_EXPORTER_OTLP_ENDPOINT=<endpoint> \\ # Replace with the access point obtained

 OTEL_RESOURCE_ATTRIBUTES="service.name=<service-name>,token=<token>" \\ # Replace

 OTEL_PROPAGATORS=baggage,tracecontext \\

 php -S localhost:8080

2. Visit the following link in the browser:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 170
of 194

http://localhost:8080/getID

 Each time you visit this page, OpenTelemetry will automatically create a Trace and report the linkage data to APM.

Connection Verification

After starting the PHP application, visit the corresponding interface via port 8080, for example,
 https://localhost:8080/getID . If there is normal traffic, the integrated application will be displayed in APM

> Application monitoring > Application list, and the integrated application instances will be displayed in APM >
Application monitoring > Application details > Instance monitoring. Since there is a certain delay in processing

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 171
of 194

observable data, if the application or instance is not found in the console after integration, please wait about 30
seconds.

Custom Event Tracking (Optional)

PHP Custom Tracing Documentation.' style="color:#000000;font-size:12px;"> When automatic event tracking does

not meet your scenarios, or you need to add business layer event tracking, you can refer to the following content to
use the OpenTelemetry PHP SDK to add custom event tracking. This document only demonstrates the most basic
custom event tracking method. The OpenTelemetry community provides more flexible custom event tracking
methods, and specific usage methods can be found in the OpenTelemetry community's PHP Custom Tracing
Documentation.

https://opentelemetry.io/docs/languages/php/instrumentation/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 172
of 194

<?php

use OpenTelemetry\\API\\Globals; // Required packet

require __DIR__ . '/vendor/autoload.php';

function wait(): void

{

 // Obtain the currently configured providers through the Globals packet.

 $tracerProvider = Globals::tracerProvider();

 $tracer = $tracerProvider->getTracer(

 'instrumentation-scope-name', //name (required)

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 173
of 194

 'instrumentation-scope-version', //version

 'http://example.com/my-schema', //schema url

 ['foo' => 'bar'] //attributes

);

 // Custom Event Tracking

 $span = $tracer->spanBuilder("wait")->startSpan();

 // Business code.null sleep(5);null

 // Custom event tracking ends.

 $span->end();

}

wait();

Manual Connection Scheme

If your PHP application version cannot meet 8.0+ but can meet 7.4+, you can choose manual event tracking to report.

This document only demonstrates the most basic manual event tracking method. The OpenTelemetry community
provides more flexible manual event tracking methods, and specific usage methods can be found in the
OpenTelemetry community's PHP Manual Integration Documentation.

Import the dependencies needed for the OpenTelemetry PHP SDK and OpenTelemetry
gRPC Explorer.

1. Download the PHP HTTP Client Library to report linkage data.

https://opentelemetry.io/docs/languages/php/instrumentation/

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 174
of 194

composer require guzzlehttp/guzzle

2. Download the OpenTelemetry PHP SDK.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 175
of 194

composer require \\

 open-telemetry/sdk \\

 open-telemetry/exporter-otlp

3. Download the dependencies needed to report data using gRPC.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 176
of 194

pecl install grpc # Skip this step if gRPC has already been downloaded.

composer require open-telemetry/transport-grpc

Create an OpenTelemetry initialization tool.

Create the opentelemetry_util.php file in the directory where the index.php file is located and add the

following code to the file:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 177
of 194

<?php

// Includes setting application name, Trace export method, Trace reporting access p

use OpenTelemetry\\API\\Globals;

use OpenTelemetry\\API\\Trace\\Propagation\\TraceContextPropagator;

use OpenTelemetry\\Contrib\\Otlp\\SpanExporter;

use OpenTelemetry\\SDK\\Common\\Attribute\\Attributes;

use OpenTelemetry\\SDK\\Common\\Export\\Stream\\StreamTransportFactory;

use OpenTelemetry\\SDK\\Resource\\ResourceInfo;

use OpenTelemetry\\SDK\\Resource\\ResourceInfoFactory;

use OpenTelemetry\\SDK\\Sdk;

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 178
of 194

use OpenTelemetry\\SDK\\Trace\\Sampler\\AlwaysOnSampler;

use OpenTelemetry\\SDK\\Trace\\Sampler\\ParentBased;

use OpenTelemetry\\SDK\\Trace\\SpanProcessor\\SimpleSpanProcessor;

use OpenTelemetry\\SDK\\Trace\\SpanProcessor\\BatchSpanProcessorBuilder;

use OpenTelemetry\\SDK\\Trace\\TracerProvider;

use OpenTelemetry\\SemConv\\ResourceAttributes;

use OpenTelemetry\\Contrib\\Grpc\\GrpcTransportFactory;

use OpenTelemetry\\Contrib\\Otlp\\OtlpUtil;

use OpenTelemetry\\API\\Signals;

// OpenTelemetry initialization configuration (OpenTelemetry initialization configu

function initOpenTelemetry()

{

 // 1. Set OpenTelemetry resource information.

 $resource = ResourceInfoFactory::emptyResource()->merge(ResourceInfo::create(Attr

 ResourceAttributes::SERVICE_NAME => '<your-service-name>', // Application name, r

 ResourceAttributes::HOST_NAME => '<your-host-name>' // hostname, optional.

 'token' => '<your-token>' // Replace with the token obtained in step 1.

])));

 // 2. Create a SpanExplorer to output spans to the console.

 // $spanExporter = new SpanExporter(

 // (new StreamTransportFactory())->create('php://stdout', 'application/json')

 //);

 // 2. Create a SpanExplorer to report spans via gRPC.

 $transport = (new GrpcTransportFactory())->create('<grpc-endpoint>' . OtlpUtil::m

 $spanExporter = new SpanExporter($transport);

 // 3. Create a global TraceProvider to create a tracer.

 $tracerProvider = TracerProvider::builder()

 ->addSpanProcessor(

 (new BatchSpanProcessorBuilder($spanExporter))->build()

)

 ->setResource($resource)

 ->setSampler(new ParentBased(new AlwaysOnSampler()))

 ->build();

 Sdk::builder()

 ->setTracerProvider($tracerProvider)

 ->setPropagator(TraceContextPropagator::getInstance())

 ->setAutoShutdown(true) // Automatically shut down the tracerProvider after the P

 ->buildAndRegisterGlobal(); // Add the tracerProvider to the global.

}

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 179
of 194

?>

Modify the application code and create spans using the OpenTelemetry API.

1. Import the required packets in the index.php file:

<?php

use OpenTelemetry\\API\\Globals;

use OpenTelemetry\\API\\Trace\\StatusCode;

use OpenTelemetry\\API\\Trace\\SpanKind;

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 180
of 194

use OpenTelemetry\\SDK\\Common\\Attribute\\Attributes;

use OpenTelemetry\\SDK\\Trace\\TracerProvider;

use Psr\\Http\\Message\\ResponseInterface as Response;

use Psr\\Http\\Message\\ServerRequestInterface as Request;

use Slim\\Factory\\AppFactory;

require __DIR__ . '/opentelemetry_util.php';

2. Call the initOpenTelemetry method to complete initialization. OpenTelemetry initialization configuration

needs to be done when the PHP application initializes:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 181
of 194

// OpenTelemetry initialization, including setting the application name, trace expo

initOpenTelemetry();

3. Create a span in the rolldice API.

/**

 * 1. API feature: Simulate rolling a dice, returning a random integer between 1 an

 * Demonstrate how to create a span, set attributes, events, and events with attrib

 */

$app->get('/rolldice', function (Request $request, Response $response) {

 // Obtain tracer.

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 182
of 194

 $tracer = \\OpenTelemetry\\API\\Globals::tracerProvider()->getTracer('my-tracer');

 // Create span; set span kind; default is KIND_INTERNAL if not set.

 $span = $tracer->spanBuilder("/rolldice")->setSpanKind(SpanKind::KIND_SERVER)->sta

 // Set attributes for span.

 $span->setAttribute("http.method", "GET");

 // Set events for span.

 $span->addEvent("Init");

 // Set events with attributes.

 $eventAttributes = Attributes::create([

 "key1" => "value",

 "key2" => 3.14159,

]);

 // Business code.

 $result = random_int(1,6);

 $response->getBody()->write(strval($result));

 $span->addEvent("End");

 // Terminate span.

 $span->end();

 return $response;

});

4. Create nested span.
Create a rolltwodices API to simulate rolling two dice, returning two random positive integers between 1 and 6.

The following code demonstrates how to create nested spans:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 183
of 194

$app->get('/rolltwodices', function (Request $request, Response $response) {

 // Obtain tracer.

 $tracer = \\OpenTelemetry\\API\\Globals::tracerProvider()->getTracer('my-tracer');

 // Create span.

 $parentSpan = $tracer->spanBuilder("/rolltwodices/parent")->setSpanKind(SpanKind::

 $scope = $parentSpan->activate();

 $value1 = random_int(1,6);

 $childSpan = $tracer->spanBuilder("/rolltwodices/parent/child")->startSpan();

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 184
of 194

 // Business code.

 $value2 = random_int(1,6);

 $result = "dice1: " . $value1 . ", dice2: " . $value2;

 // Terminate span.

 $childSpan->end();

 $parentSpan->end();

 $scope->detach();

 $response->getBody()->write(strval($result));

 return $response;

});

5. Use span to record exceptions that occur in the code.
Create an error API to simulate an API exception. The following code demonstrates how to use span to record

the status when an exception occurs in the code:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 185
of 194

$app->get('/error', function (Request $request, Response $response) {

 // Obtain tracer.

 $tracer = \\OpenTelemetry\\API\\Globals::tracerProvider()->getTracer('my-tracer');

 // Create span.

 $span3 = $tracer->spanBuilder("/error")->setSpanKind(SpanKind::KIND_SERVER)->start

 try {

 // Simulate code exception.

 throw new \\Exception('exception!');

 } catch (\\Throwable $t) {

 // Set span status to error.

 $span3->setStatus(\\OpenTelemetry\\API\\Trace\\StatusCode::STATUS_ERROR, "expcetio

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 186
of 194

 // Record exception stack track.

 $span3->recordException($t, ['exception.escaped' => true]);

 } finally {

 $span3->end();

 $response->getBody()->write("error");

 return $response;

 }

});

Run the application.

1. Execute the following command:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 187
of 194

php -S localhost:8080

2. Visit the following link in the browser:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 188
of 194

http://localhost:8080/rolldice

http://localhost:8080/rolltwodices

http://localhost:8080/error

Each time the page is accessed, OpenTelemetry will create linkage data and report it to APM.

Connection Verification

After starting the PHP application, visit the corresponding interface via port 8080, for example,
 https://localhost:8080/getID . If there is normal traffic, the integrated application will be displayed in APM

https://console.tencentcloud.com/monitor/apm/system

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 189
of 194

> Application monitoring > Application list, and the integrated application instances will be displayed in APM >
Application monitoring > Application details > Instance monitoring. Since there is a certain delay in processing
observable data, if the application or instance is not found in the console after integration, please wait about 30

seconds.

https://console.tencentcloud.com/monitor/apm/system
https://console.tencentcloud.com/monitor/apm/application

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 190
of 194

Installing tencent-opentelemetry-operator
Last updated：2024-06-19 16:31:30

For applications deployed on TKE, the Tencent Cloud observability team offers an Operator solution: tencent-
opentelemetry-operator. Built upon the community opentelemetry-operator, it enables agent automatic injection,
facilitating applications connecting APM quickly. Currently, tencent-opentelemetry-operator supports programming

languages including Java, Python, Node.js, and .Net.
Note:
tencent-opentelemetry-operator supports Kubernetes version 1.19 and above for TKE standard clusters and TKE
Serverless clusters but does not support edge clusters and register clusters.

Configuration Items Description

tencent-opentelemetry-operator is deployed via Helm, with all configuration items centralized in values.yaml .

Pay attention to the hierarchical relationship of parameters within the YAML file. See the following YAML snippet:

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 191
of 194

env:

 TKE_CLUSTER_ID: "cls-ky8nmlra"

 TKE_REGION: "ap-guangzhou"

 APM_ENDPOINT: "http://pl.ap-guangzhou.apm.tencentcs.com:4317"

 APM_TOKEN: "apmdemotoken"

Required Field

Parameter Description

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 192
of 194

env.TKE_CLUSTER_ID TKE cluster ID.

env.TKE_REGION TKE Cluster region, for example, ap-guangzhou. For more details, see CVM Regions
and AZs value range.

env.ENDPOINT APM private network connect point. Each cluster must specify a unique APM
private network connect point.

env.APM_TOKEN Default APM business system token, which can specify other business systems at
the workload level.

Optional Field

Parameter Description

env.JAVA_INSTR_VERSION
Java agent version. You may fill in latest (default) or a specific
version number. Filling in this field is not recommended unless necessary.

env.PYTHON_INSTR_VERSION
Python agent version. You may fill in latest (default) or a specific
version number. Filling in this field is not recommended unless necessary.

env.NODEJS_INSTR_VERSION
Node.js agent version. You may fill in latest (default) or a specific
version number. Filling in this field is not recommended unless necessary.

env.DOTNET_INSTR_VERSION
.Net agent version. You may fill in latest (default) or a specific
version. Filling in this field is not recommended unless necessary.

env.INTL_SITE For the international site, fill in true .

Note:
If you need to specify a specific version number of the Agent, go to Agent Version Information to get the version
number.

Installing Method

One-click Installation via the APM Console (Recommended)

Due to the complexity of filling configuration items, it is recommended to use the one-click installation of the tencent-
opentelemetry-operator feature via the APM console to simplify the installation steps.

1. Log in to the TCOP console.
2. In the left menu column, select Application Performance Management > Application monitoring, and click
Application list > Access application.

https://www.tencentcloud.com/document/product/213/6091
https://www.tencentcloud.com/document/product/1166/60819#
https://console.tencentcloud.com/monitor/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 193
of 194

3. Click on the language you need to connect, and select Automatic onboarding of TKE environment as the
reporting method.
4. Click One-click Install Operator.

5. In the pop-up dialog box, select the corresponding reporting region, default business system, TKE's region, and
TKE cluster, and click Confirm to complete the installation in the corresponding TKE cluster.
Note:
The tencent-opentelemetry-operator one-click installed via in the APM console will be installed in the kube-system
namespace. If you need to modify related configuration items, you can update the same TKE cluster through the

console.

Installing via TKE Application Market

1. Log in to TKE console.
2. In the left sidebar, select Application Market and search for tencent-opentelemetry-operator.
3. Click Create Application, select the TKE cluster you want to install, and fill in the required parameters to complete
the installation.
Note:

The tencent-opentelemetry-operator installed via the TKE application market can be installed in any namespace. In
the same TKE cluster, only one tencent-opentelemetry-operator can be installed at most.

Connecting Applications

After the installation of tencent-opentelemetry-operator, the opentelemetry-operator-system namespace is

automatically created, and related Kubernetes resources are created. By adding related annotations to the workloads
that need to connect APM, agent automatic injection can be realized, and monitoring data can be reported to APM.

https://console.tencentcloud.com/tke2/overview

Application Performance Management

©2013-2022 Tencent Cloud. All rights reserved. Page 194
of 194

Upgrading Agent Version
Last updated：2024-06-19 16:31:30

Automatic Connection Mode for TKE Environment

Applications that automatically connect to the TKE environment use the agent auto-update policy by default. Users do
not need to worry about agent upgrades. Before they push a new version of the agent, the APM team conducts
multiple rounds of stability testing to ensure the agent's stability and compatibility.

If you have already actively specified an agent version at the Operator or workload level, it is recommended to remove
the configuration items used to specify the agent version and return to the auto-update mode. If it is indeed necessary
to specify a specific agent version, see Agent Version Information to obtain the updated version number.

Non-Automatic Connection Mode for TKE Environment

See directions in respective connection documentation, download and update the agent packet, or introduce
dependencies of updated versions.

If you are using the Tencent Cloud OpenTelemetry Java Agent Enhanced Edition, you can go to Agent Version
Information to download new versions of the agent.

https://www.tencentcloud.com/document/product/1166/60819#
https://www.tencentcloud.com/document/product/1166/60819#

