
Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 77

Tencent Infrastructure Automation

for Terraform

User Guide

Product Documentation

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 77

Copyright Notice

©2013-2023 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 77

Contents

User Guide
Configuration Guide

Variables
Resource
Provider
Modules
MetaData
Backend
CLI
DataSource

Syntax Guide
Expression
Function
Basic Syntax
Terraform Style

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 77

User Guide
Configuration Guide
Variables
Last updated：2023-05-29 17:00:49

Input Variable

Input variables let you customize aspects of Terraform modules without altering the module's own source code. This
allows you to share modules across different Terraform configurations, making your module composable and
reusable.

Input variables can be dynamically passed in; for example, you can pass in variables when creating or modifying the
infrastructure, replace hard-coded access keys with variables when defining a provider in the code, and let users
(infrastructure creators) decide the desired server size.
You can understand a set of Terraform code as a function, so the input variables can be seen as function input
parameters.

Defining input variable

Input variables are defined using a variable block. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 77

variable "image_id" {

 type = string

}

variable "availability_zone_names" {

 type = list(string)

 default = ["us-west-1a"]

}

variable "docker_ports" {

 type = list(object({

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 77

 internal = number

 external = number

 protocol = string

 }))

 default = [

 {

 internal = 8300

 external = 8300

 protocol = "tcp"

 }

]

}

The label after the variable keyword is a name for the variable, which must be unique among all variables in the

same module. You can reference the variable value in the code through var.<NAME> .

A variable block can be declared with the following optional arguments:

 default : Specifies the default value of the input variable.

 type : Specifies that the input variable can only be assigned with a specific value.

 description : Specifies the description of the input variable.

 validation : Specifies the validation rules for the input variable.

 sensitive : Limits Terraform UI output when the variable is used in configuration.

 nullable : Specifies whether the input variable can be null or not.

Type

A type is defined in an input variable block by type .

Basic types: string , number , bool .

Complex types: list(<TYPE>) , set(<TYPE>) , map(<TYPE>) , object({<ATTR NAME> = <TYPE>,

... }) , tuple([<TYPE>, ...]) .

Overview

You can briefly describe the purpose of each variable. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 77

variable "image_id" {

 type = string

 description = "The id of the machine image (AMI) to use for the server."

}

Custom validation rules

Prior to Terraform 0.13.0, only type constraints could be used to ensure that input arguments were of the correct type.

Terraform 0.13.0 introduced custom validation rules for input variables. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 77

variable "image_id" {

 type = string

 description = "The id of the machine image (AMI) to use for the server."

 validation {

 condition = length(var.image_id) > 4 && substr(var.image_id, 0, 4) == "ami-

 error_message = "The image_id value must be a valid AMI id, starting with \\"am

 }

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 77

The condition argument is a bool argument. You can use an expression to determine whether the input variable

is valid. When the condition is true , the input variable is valid; otherwise, it is not. A condition

expression can reference only the currently defined variable by var.<Variable name> and must not produce

errors. If the failure of an expression is the basis of the validation decision, use the can function to detect such

errors. For example:

variable "image_id" {

 type = string

 description = "The id of the machine image (AMI) to use for the server."

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 77

 validation {

 # regex(...) fails if it cannot find a match

 condition = can(regex("^ami-", var.image_id))

 error_message = "The image_id value must be a valid AMI id, starting with \\"am

 }

}

In the above example, if the input image_id does not meet the requirements of the regex, the regex function call

will throw an error, which will be captured by the can function to output false . If the condition expression

outputs false , Terraform will return the error message defined in error_message , which should fully

describe the reason for the failure of the input variable validation, along with the valid constraints on the input variable.

Using an input variable

You can access an input variable with var.<VARIABLE NAME> only within the module where the variable is

declared. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 77

resource "tencentclould_instance" "example" {

 instance_type = "t2.micro"

 ami = var.image_id

}

Assigning a value to an input variable

Command line argument

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 77

To specify individual variables on the command line, you need to use the -var option when running the

 terraform plan and terraform apply commands. For example:

terraform apply -var="image_id=ami-abc123"

terraform apply -var='image_id_list=["ami-abc123","ami-def456"]' -var="instance_typ

terraform apply -var='image_id_map={"us-east-1":"ami-abc123","us-east-2":"ami-def45

Argument files

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 77

When you set a large number of variables, we recommend you specify their values in the variable argument file
(suffixed with .tfvars or .tfvars.json) and specify the file on the command line with -var-file . For

example:

terraform apply -var-file="testing.tfvars"

Argument definition files use the same basic syntax as Terraform language files but contain only variable name
assignments. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 77

image_id = "ami-abc123"

availability_zone_names = [

 "us-east-1a",

 "us-west-1c",

]

Terraform automatically loads a number of variable definition files:
Files named terraform.tfvars or terraform.tfvars.json .

Files suffixed with .auto.tfvars or .auto.tfvars.json .

 .json files need to be defined with the JSON syntax. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 77

{

 "image_id": "ami-abc123",

 "availability_zone_names": ["us-west-1a", "us-west-1c"]

}

Environment variables

You can specify input variables by defining environment variables prefixed with TF_VAR_ . For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 77

export TF_VAR_image_id=ami-abc123

export TF_VAR_availability_zone_names='["us-west-1b","us-west-1d"]'

Input variable priority

You may assign the same variable more than once when using multiple assignment methods at the same time.
Terraform overwrites the old value with the new one and loads variable values in the following order:
Environment variable

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 77

 terraform.tfvars files (if any)

 terraform.tfvars.json files (if any)

All .auto.tfvars or .auto.tfvars.json files in alphabetical order

Input variables passed in through the -var or -var-file command line argument, in the order defined in such

argument
If you have tried multiple assignment methods in vain, Terraform will try to use the default value. For variables without
a default value defined, Terraform will ask you to input a value on an interactive UI. Some Terraform commands will
report errors if they are executed with the -input=false argument that disables value passing on the interactive

UI.

Output Variable

Output variables make information of the infrastructure available for the command line and other Terraform
configurations. An output value is similar to a returned value in traditional programming languages.

Use cases

Child modules can use output variables to pass their resource attributes to modules.

Root modules can use output variables to print certain values in the CLI output after terraform apply is

executed.
When the remote state is used, other configurations can access the root module output through the
 terraform_remote_state data source.

Defining an output variable

Output variables are declared using an output block. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 77

output "instance_ip_addr" {

 value = tencentclould_instance.server.private_ip

}

Optional argument

description
 Specifies descriptive information of the output value. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 77

output "instance_ip_addr" {

 value = tencentclould_instance.server.private_ip

 description = "The private IP address of the main server instance."

}

sensitive

 Hides the value of the output variable on the CLI when the terraform plan and terraform apply

commands are being executed.
depends_on

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 77

 Terraform parses various data and resources defined by the code and their dependencies. For example, if the
 image_id argument used to create a virtual machine is queried by data , then the virtual machine instance

depends on this image's data . Terraform creates data first and then the virtual machine resource after the

query result is obtained. In general, the order for creating data and resource is automatically calculated by

Terraform and does not need to be explicitly specified by the code writer. However, sometimes there are
dependencies that cannot be derived through code analysis, in which case the dependencies can be explicitly
declared in the code through depends_on . For example:

output "instance_ip_addr" {

 value = tencentclould_instance.server.private_ip

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 77

 description = "The private IP address of the main server instance."

 depends_on = [

 # Security group rule must be created before this IP address could

 # actually be used, otherwise the services will be unreachable.

 tencentclould_security_group_rule.local_access,

]

}

Local Variable

If you need to use a complex expression to calculate a value and use it repeatedly, you can assign the complex
expression a local value and then reference it repeatedly. If you see the input variable as the function input and output
value as the returned value of the function, the local value is equivalent to a local variable defined in the function.

Local variable definition

Local variables are declared using a locals block. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 77

locals {

 service_name = "forum"

 owner = "Community Team"

}

Additionally, local variables include not only literal constants but also other variables of the module (variables,

resource attributes, or other local values) in order to convert or combine them. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 77

locals {

 # Ids for multiple sets of EC2 instances, merged together

 instance_ids = concat(tencentclould_instance.blue.*.id, tencentclould_instance.gr

}

locals {

 # Common tags to be assigned to all resources

 common_tags = {

 Service = local.service_name

 Owner = local.owner

 }

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 77

}

Using local variable

Local variables are referenced through the local.<NAME> expression. For example:

resource "tencentclould_instance" "example" {

 # ...

 tags = local.common_tags

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 77

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 77

Resource
Last updated：2023-05-30 16:39:44

Resources are the most important element in the Terraform language. A resource is defined using a resource

block, which describes one or more infrastructure objects, such as VPC and VM.

Resource syntax

A resource is defined using a resource block, which contains the resource keyword, resource type, resource

name, and resource block body as shown below:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 77

resource "tencentcloud_vpc" "foo" {

 name = "ci-temp-test-updated"

 cidr_block = "10.0.0.0/16"

 dns_servers = ["119.29.29.29", "8.8.8.8"]

 is_multicast = false

 tags = {

 "test" = "test"

 }

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 77

Resource reference

A resource attribute is referenced in the syntax format of <Resource type>.<Name>.<Attribute> as shown

below:

tencentcloud_vpc.foo.resource # ci-temp-test-updated

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 77

Terraform relies on provider plugins to interact with cloud providers, SaaS providers, and other APIs. Terraform
configurations must declare which providers they require so that Terraform can install and use them. Additionally,
some providers require configuration before they can be used. This document describes how to configure provider

plugins.

Searching for a provider

Go to the Providers page, search, and enter the TencentCloud Provider page to view the user guide as shown below:

Downloading a provider

Run the following command to download the latest plugin version from Terraform's official repository by default.

terraform init

If you need to use a legacy version, you can specify the version information with the version argument as shown

below:

terraform {

required_providers {

tencentcloud = {

Provider
Last updated：2023-03-07 10:35:48

https://registry.terraform.io/browse/providers
https://registry.terraform.io/providers/tencentcloudstack/tencentcloud/latest

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 77

source = "tencentcloudstack/tencentcloud"

Specify the version by `version`

version = "1.60.18"

}

}

}

Provider declaration

provider "tencentcloud" {

region = "ap-guangzhou"

secret_id = "my-secret-id"

secret_key = "my-secret-key"

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 77

A module is a folder containing a set of Terraform code, which is an abstraction and encapsulation of multiple
resources.

Calling a Module

Modules are referenced in Terraform code using a module block, which contains the module keyword,

 module name, and module body (the part within the {}) as shown below:

module "servers" {

source = "./app-cluster"

servers = 5

}

A module can be called using the following arguments:

 source : Specifies the source of the referenced module.

 version : Specifies the version number of the referenced module.

 meta-arguments : It is a feature supported since Terraform 0.13. Similar to resource and data , it can

be used to manipulate the behaviors of module . For more information, see MetaData.

Parameter Description

Source

The source argument tells Terraform where to find the source code for the desired child module. Terraform uses

this during the module installation step of terraform init to download the source code to a directory on local

disk so that it can be used by other Terraform commands.

The module can be installed from the following source types:

Local paths

Modules
Last updated：2023-03-07 10:35:48

https://www.tencentcloud.com/document/product/1172/52311

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 77

Terraform Registry

GitHub

Bitbucket

Generic Git, Mercurial repositories

HTTP URLs

S3 buckets

GCS buckets

Modules in Package Sub-directories

This document describes installation from local path, Terraform Registry, and GitHub.

Local path

Local paths can use child modules from the same project. Unlike other resources, local paths do not require the
download of relevant code. For example:

module "consul" {

source = "./consul"

}

Terraform Registry

Terraform Registry is currently the module repository solution recommended by Terraform. It uses Terraform's custom
protocol and supports version management and module use. Terraform Registry hosts and indexes a large number of
public modules, allowing quick search for a variety of official and community-supplied quality modules.

Modules in Terraform Registry can be referenced with source addresses in the format of
 <namespace>/<name>/<provider> . You can get the exact source address in the module description. For

example:

module "consul" {

source = "hashicorp/consul/xxx"

version = "0.1.0"

}

https://registry.terraform.io/

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 77

For modules hosted in other repositories, you can add <hostname>/ to the source address header to specify the

server name of the private repository. For example:

module "consul" {

source = "app.terraform.io/example-corp/k8s-cluster/azurerm"

version = "1.1.0"

}

GitHub

If Terraform reads a source argument value prefixed with github.com , it will automatically recognize it as a

GitHub source. For example, you can clone a repository using the HTTPS protocol:

module "consul" {

source = "github.com/hashicorp/example"

}

To use the SSH protocol, use the following address:

module "consul" {

source = "git@github.com:hashicorp/example.git"

}

Note：

The GitHub source is handled in the same way as generic Git repositories, as both of them get Git credentials
and reference specific versions through the ref argument in the same way. If you want to access private

repositories, you need to configure additional Git credentials.

Version

When a registry is used as a module source, you can use the version meta-argument to constrain the version of

the module used. For example:

module "consul" {

source = "hashicorp/consul/xxx"

version = "0.0.5"

servers = 3

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 77

The format of the version meta-argument is in line with the provider version constraint. In this case, Terraform will

use the latest version of the module instance that has been installed. If no compliant version is currently installed, the
latest compliant version will be downloaded.

The version meta-argument can only be used with the registry to support public or private module repositories.

Other types of module sources, such as local path, do not necessarily support versioning.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 77

MetaData
Last updated：2023-06-15 17:55:48

 Metadata is a built-in meta-argument supported by Terraform and can be used in provider, resource, data, and

module blocks. It mainly includes:
 depends_on : Explicitly declares dependencies.

 count : Creates multiple resource instances.

 for_each : Iterates a collection to create a corresponding resource instance for each element in the collection.

 provider : Specifies a non-default provider instance.

 lifecycle : Customizes the lifecycle behavior of a resource.

 dynamic : Builds repeatable nested blocks.

depends_on

 depends_on explicitly declares implicit dependencies between resources that cannot be automatically deducted

by Terraform. This is useful only if there is a dependency but no data reference between resources. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 77

variable "availability_zone" {

 default = "ap-guangzhou-6"

}

resource "tencentcloud_vpc" "vpc" {

 name = "guagua_vpc_instance_test"

 cidr_block = "10.0.0.0/16"

}

resource "tencentcloud_subnet" "subnet" {

 depends_on = [tencentcloud_vpc.vpc]

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 77

 availability_zone = var.availability_zone

 name = "guagua_vpc_subnet_test"

 vpc_id = tencentcloud_vpc.vpc.id

 cidr_block = "10.0.20.0/28"

 is_multicast = false

}

count

The count argument can be any natural number. Terraform creates count resource instances, each

corresponding to a separate infrastructure object that is created, updated, or terminated separately during Terraform
code execution. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 77

resource "tencentcloud_instance" "foo" {

 availability_zone = var.availability_zone

 instance_name = "terraform-testing"

 image_id = "img-ix05e4px"

 ...

 count = 3

 tags = {

 Name = "Server ${count.index}"

 }

 ...

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 77

 count.index : Represents the count subscript index (starting from 0) corresponding to the current object.

Access to object with multiple resource instances: <TYPE>.<NAME>[<INDEX>] (For

example:tencentcloud_instance.foo[0],tencentcloud_instance.foo[1]) .

for_each

 for_each is a new feature introduced in Terraform 0.12.6. A resource block does not allow both count

and for_each to be declared. The for_each argument can be a map or a set of strings. Terraform creates a

separate infrastructure resource object for each element in the collection; just like with count , each infrastructure

resource object is created, modified, or terminated separately during Terraform code execution. For example:
map

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 77

resource "tencentcloud_cfs_access_group" "foo" {

for_each = {

 test1_access_group = "test1"

 test2_access_group = "test2"

}

name = each.key

description = each.value

}

set(string)

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 77

resource "tencentcloud_eip" "foo" {

 for_each = toset(["awesome_gateway_ip1", "awesome_gateway_ip2"])

 name = "awesome_gateway_ip"

}

provider

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 77

If multiple instances of the same type of provider are declared, you can specify a provider argument to select a

provider instance to be used when creating a resource. If no provider argument is specified, Terraform will use

the one corresponding to the first word in the resource type name by default. For example:

provider "tencentcloud" {

 region = "ap-guangzhou"

 # secret_id = "my-secret-id"

 # secret_key = "my-secret-key"

}

provider "tencentcloud" {

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 77

 alias = "tencentcloud-beijing"

 region = "ap-beijing"

 # secret_id = "my-secret-id"

 # secret_key = "my-secret-key"

}

resource "tencentcloud_vpc" "foo" {

 name = "ci-temp-test-updated"

 cidr_block = "10.0.0.0/16"

 dns_servers = ["119.29.29.29", "8.8.8.8"]

 is_multicast = false

 tags = {

 "test" = "test"

 }

 provider = tencentcloud.tencentcloud-beijing

}

lifecycle

Each resource instance goes through creation, update, and termination, while the lifecycle block can specify a

different behavior. Terraform supports the following types of lifecycle blocks:

create_before_destroy

 By default, when Terraform needs to modify a resource that cannot be directly upgraded due to server-side API
limitations, it will delete the existing resource object and replace it with one created using new configuration
arguments. The create_before_destroy argument can modify this behavior so that Terraform creates a new

object and terminates the old one only after it has been successfully replaced. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 77

lifecycle { create_before_destroy = true}

 Many infrastructure resources have a unique name or ID attribute, and this constraint applies to both the old and new

objects when they coexist. Some resource types have special arguments that can add a random prefix to each object
name to prevent conflicts, which is not adopted by Terraform by default. You need to understand the constraints for
each resource type before using create_before_destroy .

prevent_destroy
 The prevent_destroy argument is a safety measure. As long as it is set to true , Terraform will refuse to run

any change plan that might terminate the infrastructure resource. It prevents accidental deletion of a critical resource,

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 77

such as erroneous execution of terraform destroy or accidental modification of an argument of a resource

that makes Terraform decide to delete a resource instance and create a new one.
 Declaring prevent_destroy = true inside a resource block will prevent terraform destroy from

being executed. For example:

lifecycle {

 prevent_destroy = true

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 77

 The prevent_destroy argument should be used with caution. Note that this measure does not prevent

Terraform from deleting relevant resources after a resource block is deleted, as the corresponding

 prevent_destroy = true statement has also been deleted.

ignore_changes
 By default, when Terraform detects any difference between the configuration described by the code and an actual
infrastructure object, it will calculate a change plan to update the infrastructure object to match the state described by
the code. In some very rare cases, the actual infrastructure object is modified by a process outside of Terraform, and
Terraform will continually try to modify the object to bridge the discrepancy with the code. In such cases, you can

instruct Terraform to ignore changes to certain attributes by setting ignore_changes . The value of

 ignore_changes defines a set of attribute names that need to be created according to the values defined by the

code but do not need to be updated according to value changes. For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 77

resource "tencentcloud_instance" "foo" {

...

lifecycle {

 ignore_changes = [

 # Ignore changes to tags, e.g. because a management agent

 # updates these based on some ruleset managed elsewhere.

 tags,

]

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 77

dynamic

In a top-level block such as resource , you usually can only perform one-to-one assignments in a form like name

= expression . This assignment form is generally available, except when some resource types contain repeatable

nested blocks. For example:

resource "tencentcloud_tcr_instance" "foo" {

 name = "example"

 instance_type = "basic"

 open_public_operation = true

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 77

 security_policy {

 cidr_block = "10.0.0.1/24"

 }

 security_policy {

 cidr_block = "192.168.1.1/24"

 }

}

In this case, you can use the dynamic block to dynamically build repeatable nested blocks similar to

 security_policy . For example:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 77

resource "tencentcloud_tcr_instance" "foo" {

 name = "example"

 instance_type = "basic"

 open_public_operation = true

 dynamic "security_policy" {

 for_each = toset(["10.0.0.1/24", "192.168.1.1/24"])

 content {

 cidr_block = security_policy.value

 }

 }

}

 dynamic can be used in resource , data , provider , and provisioner blocks. Similar to a

 for expression, it produces nested blocks that iterate a complex type of data and generate a corresponding nested

block for each element. In the above example:
The label of dynamic , i.e. security_policy , determines the type of nested blocks to be generated.

The for_each argument provides the complex type values to be iterated.

The iterator argument (optional) sets the name of a temporary variable that represents the current iteration

element. If iterator is not set, the temporary variable name will default to the label of the dynamic block, i.e.

 security_policy .

The labels argument (optional) is an ordered list of block labels to generate a set of nested blocks in sequence.

Temporary iterator variables can be used in expressions with the labels argument.

The nested content block defines the body of the nested block to be generated. Temporary iterator

variables can be used inside the content block.

 for_each argument:

As the for_each argument can be a collection or a structured type, you can use for or expanded expressions

to convert the type of an existing collection.
The value of for_each must be a non-empty map or set. If you need to declare a collection of resource instances

based on nested data structures or combinations of elements in multiple data structures, you can use Terraform
expressions and functions to generate appropriate values.

 The iterator variable (setting in the above example) has the following attributes:

 key : If the iteration container is a map, then key is the key of the current element. If it is a list, then key is the

subscript number of the current element in the list. In the case of a set produced by a for_each expression,

 key and value are equal, and key should not be used.

 value : Value of the current element. A dynamic block can only generate nested block arguments within the

current block definition. It is impossible to generate meta-arguments such as lifecycle and provisioner .

Terraform must ensure the successful calculation of values for these meta-arguments.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 77

Remote state storage mechanism

Storing state files locally only may cause the following issues:

A tfstate file is stored locally in the current working directory by default. If computer damage causes file loss,

all the resources corresponding to the tfstate file will become unmanageable, leading to a resource leak.

A tfstate file cannot be shared among team members.

To facilitate the storage and sharing of state files, Terraform introduces the remote state storage mechanism called
"backend", an abstract remote storage API. Similar to a provider, backend supports a variety of remote storage
services as described in Available Backends. A Terraform backend has two modes:

Standard: Supports remote state storage and state locking.

Enhanced: Supports remote operations (such as plan and apply on a remote server) in addition to the

standard features.

Backend
Last updated：2023-03-07 10:35:48

https://www.terraform.io/language/settings/backends/local

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 77

Notes

After the backend configuration is updated, you need to run terraform init to verify and configure the

backend.

If no custom backend is configured, Terraform will use the local backend by default. For example, a tfstate

file is stored in the local directory by default.

Backend configuration is subject to the following restraints:

One configuration file provides only one backend block.

Backend blocks cannot reference named values (such as input variables, local variables, or data source
attributes).

Using the backend

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 77

The definition of a backend block is nested in a top-level Terraform block. This document uses the Tencent Cloud

Object Storage (COS) service as an example for configuration. For more information on other storage modes, see
Available Backends.

terraform {

backend "cos" {

region = "ap-nanjing"

bucket = "tfstate-cos-1308126961"

prefix = "terraform/state"

}

}

If you have the tfstate-cos-1308126961 bucket in COS, the Terraform state information will be written into

the terraform/state/terraform.tfstate file as shown below:

https://www.terraform.io/language/settings/backends/local

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 77

CLI
Last updated：2023-05-30 17:00:01

This document describes how to apply Terraform code and manage the infrastructure with the Terraform command-
line interface (CLI).

Basic Features

Viewing command list

Terraform provides diversified command-line operations. Run terraform command line to view the complete list.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 77

You can use -help to view the detailed help of specific subcommands. For example, you can run the

 terraform validate -help command to view the usage of the validate subcommand.

Switching working directory

The usual way to run Terraform is to first switch to the directory containing the .tf files for your root module (for
example, with the cd command), so that Terraform will automatically find those code files and argument files to be

executed.

Global option -chdir

In some cases, particularly when wrapping Terraform in automation scripts, you can easily run Terraform from a
different directory than the root module directory. To allow that, Terraform supports a global option -chdir=...

which you can include before the name of the subcommand you intend to run:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 77

terraform -chdir=environments/production apply

The -chdir option instructs Terraform to change its working directory to the given directory before running the

given subcommand. This means that any files that Terraform would normally read or write in the current working
directory will be read or written in the given directory instead. There are two exceptions where Terraform will use the
original working directory even when you specify -chdir :

Settings in the CLI Configuration are not for a specific subcommand and Terraform processes them before acting on
the -chdir option.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 77

In case you need to use files from the original working directory as part of your configuration, a reference to
 path.cwd in the configuration will produce the original working directory instead of the overridden working

directory. Use path.root to get the root module directory.

Auto-Completion

If bash or zsh is used, you can get the support for auto-completion with the following command.

terraform -install-autocomplete

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 77

You can run the following command to uninstall auto-completion.

terraform -uninstall-autocomplete

Basic Commands

terraform init

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 77

The terraform init command is used to initialize a working directory containing Terraform configuration files.

You should run this command first after writing Terraform code or cloning a Terraform project.
Usage terraform init [options]

This command initializes the current directory in a series of steps. It is always safe to run multiple times and will not
delete configuration files or state information even if an error is reported.
General options
 -input=true : Whether to ask for input in case no input variable value is obtained.

 -lock=false : Whether to lock a state file at runtime.

 -lock-timeout=\\ : Timeout period for trying to get a state file lock. The default value is 0, indicating that an

error will be reported as soon as the lock is found to have been held by another process.
 -no-color : Disables color codes in the command output.

 -upgrade : Whether to upgrade module code and plugins.

Source module copying

By default, the terraform init command assumes that the working directory already contains a configuration

and will attempt to initialize that configuration. You can also run terraform init in an empty working directory

with the -from-module=MODULE-SOURCE option, in which case the specified module will be copied into the

current directory before any other initialization steps are run. This special mode of operation supports two use cases:
Given a version control source, it can serve as a shorthand for checking out a configuration from version control and
then initializing the working directory for it.

If the source refers to an example configuration, it can be copied into a local directory to be used as a basis for a new
configuration.
For routine running operations, we recommend you check out the code from the version control system separately
using the version control system's tool.
Backend initialization

During initialization, the root module code will be parsed to find the backend configuration, and the backend storage
will be initialized with the given configuration settings.

Re-running init with an already-initialized backend will update the working directory to use the new backend

settings. The init command may prompt you for confirmation of state migration based on the changes. You can

use the following options as needed:
 -force-copy : Skips the prompt to confirm the migration state directly.

 -reconfigure : Makes init ignore any existing configuration to prevent any state migration.

 -backend=false : Skips the backend configuration.

 Note that some initialization steps require an already initialized backend, and we recommend you use this option only
after the backend has been initialized.
 -backend-config : Specifies the backend configuration dynamically .

Child module initialization

The init command will search for module blocks and get the module code with the source argument. You

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 77

can use the following options as needed:
 -upgrade : upgrades all modules to the latest code version. By default, re-running the init command after

module installation will continue to install the modules added after the last init execution, but will not modify the

already installed modules.
 -get=false : skips child module installation steps.

 Note that other initialization steps require a complete module tree, and we recommend you use this option only after
the module has been successfully installed.
Plugin installation

The parameters are described as follows:
 -upgrade : Upgrades all previously installed plugins to the latest version in line with the version constraint. This

option is invalid for manually installed plugins.
 -get-plugins=false : Skips plugin installation. Terraform will use plugins already installed in the current

working directory or the plugin cache path. If these plugins are not sufficient to meet the requirements, init will

fail.

 -plugin-dir=PATH : Skips plugin installation and loads plugins only from a specified directory. This option will

skip plugins in the user plugin directory and all the current working directories. To restore the default behavior after
this option is used, re-run init with the -plugin-dir="" options.

 -verify-plugins=false : (not recommended) skips signature verification after plugin downloading (Terraform

does not verify signatures of manually installed plugins). Official plugins are signed by HashiCorp and verified by

Terraform.

terraform plan

The terraform plan command is used to create a change plan. Terraform will first run a refresh (this behavior

can also be disabled explicitly):
If changes are detected, you can decide which change to be executed in order to migrate the existing state to the
desired state as described by the code. You can also use the optional -out option to save the change plan in a file

for execution later using the terraform apply command.

If no change is detected, you will be prompted that there is no change to be executed.
 This command makes it easy to review all the details of a state migration without actually changing the existing
resources and state files. For example, you can run terraform plan before committing the code to the version

control system to confirm that the changes behave as expected.
Usage terraform plan [options]

By default, the plan command does not require options. It runs a refresh using the code and state files in the current
working directory.
General options:
 -compact-warnings : Displays alarms only with a message summary if Terraform generates only alarm

information but no error information.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 77

 -destroy : Generates a plan to terminate all resources.

 -detailed-exitcode : Returns a detailed exit code when the command exits:

0 = Succeeded with empty diff (no change)

1 = Error
2 = Succeeded with non-empty diff (with changes)
 -input=true : Whether to ask you to specify the input variable value in case no value is obtained.

 -lock=true : Similar to that of the apply command.

 -lock-timeout=0s : Similar to that of the apply command.

 -no-color : Disables color output.

 -out=path : Saves the change plan to a file in the specified path for execution using terraform apply .

 -parallelism-n : Limits the number of concurrent operations as the Terraform traverse graph, with a default

value of 10.
 -refresh=true : Executes a refresh before calculating changes.

 -state=path : Location of a state file, with a default value of "terraform.tfstate" . This option is invalid if

remote backend is enabled.
 -target=resource : Address of the target resource. This option can be declared repeatedly to perform partial

updates to the infrastructure.
 -var 'foo=bar' : Similar to that of the apply command.

 -var-file=foo : Similar to that of the apply command.

Partial update

Using the -target option allows Terraform to focus on a subset of resources, which can be marked with a

resource address as described below:
If a resource can be located at a given address, only the resource will be marked. If the resource uses the count

argument without a given access subscript, all instances of the resource will be marked.

If a module is located at a given address, all resources in the module and its embedded module resources will be
marked.
Note：
Exceptional scenarios, such as recovery from a previous error or bypassing certain Terraform limitations, require the
partial resource targeting and plan update calculating capability. The -target option is not recommended for

routine operations, as it can cause undetectable configuration drift and make it impossible to deduce the current actual

state from the code.
Security alarm

Change plan files saved (using the -out option) may contain sensitive information. We strongly recommend you

encrypt the files by yourself for movement or save as Terraform does not encrypt them. Terraform is expected to
launch new features to enhance the security of plan files.

terraform apply

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 77

As the most important command in Terraform, terraform apply is used to generate and (optionally) run an

execution plan so that the infrastructure resource state matches the code description.
Usage terraform apply [options] [dir-or-plan]

By default, the apply command scans the current directory for code files and performs changes accordingly. Other

code file directories can also be specified through options.

When designing an automation pipeline, you can also explicitly divide the process into two steps: creating an
execution plan and running the plan with the apply command. If no change plan file is explicitly specified,

 terraform apply will automatically create a change plan and ask you whether to approve the execution. If the

created plan does not contain any changes, terraform apply will exit immediately without prompting you for

input.
General options
 -backup-path : Path to save a backup file, with a default value of the -state-out option plus the

 ".backup" suffix. You can set it to "-" to disable backup (not recommended).

 -compact-warnings : Displays alarms only with a message summary if Terraform generates only alarm

information but no error information.
 -lock=true : Whether to lock a state file first before execution.

 -lock-timeout=0s : Interval to attempt to get a state lock again.

 -input=true : Whether to prompt you for input in case no input variable value is obtained.

 -auto-approve : Skips interactive confirmation and runs changes directly.

 -no-color : Disables color output.

 -parallelism-n : Limits the number of concurrent operations as the Terraform traverse graph, with a default

value of 10.
 -refresh=true : Whether to query the current state of the recorded infrastructure object to refresh the state file

first before specifying and running a change plan. This option is invalid if the command line specifies the change plan

file to be executed.
 -state=path : Path to save a state file, with a default value of "terraform.tfstate" . This option is invalid

if a remote backend is used. It does not affect other commands; for example, the state file it sets will not be found
when init is executed. If you want all commands to use the same location-specific state file, use a local backend.

 -state-out=path : Path to write an updated state file, with a default value of -state . This option is invalid if

a remote backend is used.

 -target=resource : Specifies to update target resources by specifying resource addresses.

 -var 'foo=bar' : sets the value of a set of input variables. This option can be set repeatedly to pass in multiple

input variable values.
 -var-file=foo : specifies an input variable file.

terraform destroy

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 77

The terraform destroy command can be used to terminate and repossess all the Terraform-managed

infrastructure resources.

Usage

 terraform destroy [options]

Before Terraform-managed resources are terminated, you will be asked for confirmation on an interactive UI. This
command can accept all options of the apply command, but cannot specify a plan file.

If the -auto-approve option is true , resources will be terminated without your confirmation.

If a resource is specified with the -target option, the resource will be terminated along with all the resources that

depend on it.

Note：
All the operations to be performed by terraform destroy can be previewed at any time by running the

 terraform plan -destroy command.

terraform graph

The terraform graph command is used to generate a visual graph of the infrastructure of the code description

or the execution plan. Its output is in DOT format and can be converted to an image using GraphViz.
Usage terraform graph [options] [DIR]

This command generates a visual dependency graph of Terraform resources as described by the code lock in the DIR
path (the current working directory is used if the default DIR option is used).
General options
 -type : specifies the type of diagram to be output. Terraform creates different graphs for different operations. The

default type of the code file is "plan" , and that of the change plan file is "apply" .

 -draw-cycles : highlights the rings in the graph with colored edges to help analyze ring errors in the code

(Terraform prohibits ring dependencies).
 -type=plan : generates different types of diagrams, including plan , plan-destroy , apply ,

 validate , input , and refresh .

Creating an image file

The terraform graph command outputs data in DOT format, which can be converted to an image file with the

following command on GraphViz:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 77

terraform graph | dot -Tsvg > graph.svg

 If Graphviz is not installed, you can install it with the following command:

CentOS: yum install graphviz

Windows: choco install graphviz

macOS: brew install graphviz

The output image is similar to the one as shown below:

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 77

terraform show

The terraform show command prints readable output from a state file or change plan file, which can be used to

check the change plan to ensure that all operations are as expected, or to review the current state file.

Note：
Machine-Readable JSON data can be output by adding the -json option, but all the data marked as

 sensitive will be output in plaintext.

Usage
 terraform show [options] [path]

General options
 path : Specifies a state file or change plan file. If no path is given, the state file corresponding to the current working

directory will be used.
 -no-color : Similar to that of the apply command.

 -json : Outputs in JSON format.

Output in JSON Format

The state information can be printed in JSON format using the terraform show -json command. If a change

plan file is specified, terraform show -json will record the change plan, configuration, and current state in

JSON format.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 77

terraform import

The terraform import command is used to import an existing resource object into Terraform.

If there exists a set of running infrastructure resources that are not built or managed using Terraform and
corresponding Terraform code has been written for them, you can use terraform import to "import" the

resource objects into the Terraform state file.
Usage
 terraform import [options] ADDRESS ID

 terraform import finds the corresponding resource based on its resource ID (subject to the type of the

imported resource object) and imports its information to the resource corresponding to ADDRESS in the state file.

 ADDRESS must be in the valid resource address format as described in the resource address. terraform

import can import resources into not only root modules but also child modules.

Note：
Each resource object in Terraform corresponds to only one actual infrastructure object. You need to avoid importing
the same object to two and more addresses, which can lead to unpredictable behaviors in Terraform.
General options

 -backup=path : address of the generated state backup file, with a default value of the -state-out path plus

the ".backup" suffix. You can set it to "-" to disable backup (not recommended).

 -config=path : path to the folder containing the Terraform code with the import target. The default path is the

current working directory.
 -input=true : whether to allow prompting for the input of provider configuration information.

 -lock=true : whether to lock a state file with backend support.

 -lock-timeout=0s : interval to attempt to get a state lock again.

 -no-color : disables color output.

 -parallelism=n : limits the maximum parallelism of the Terraform traversing graph, with a default value of 10.

 -state=path : address of the state file to be read. The default address is the configured backend storage address

or the "terraform.tfstate" file.

 -state-out=path : specifies the path to save a modified state file. By default, the source state file is overwritten.

This option can be used to create a state file while avoiding corrupting the existing one.
 -var 'foo=bar' : sets the input variable value on the command line.

 -var-file=foo : similar to that of the apply command.

Provider configuration

Terraform will try to read the configuration information of the provider corresponding to the resource to be imported. If
no relevant provider configuration is found, Terraform will ask you to input relevant access credentials. You can either
input credentials or configure them through environment variables.

The only restriction to read provider configuration in Terraform is that the configuration cannot rely on the input of "non-
input variables", such as data sources.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 77

If you need to import Tencent Cloud resources, Terraform will use the secret_id and secret_key input

variables to configure TencentCloud Provider. The configuration files are as follows:

variable "secret_id" {}

variable "secret_key" {}

provider "tencentcloud" {

 secret_id = var.secret_id

 secret_key = var.secret_key

}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 77

Upon the completion of configuration, you can import resources by running a command similar to the following:

terraform import tencentcloud_instance.foo ins-2s6ewubw

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 77

Data sources allow Terraform to use information defined outside of Terraform, defined by another separate Terraform
configuration, or modified by functions.

Using a data source

A data source is accessed via a special kind of resource known as a data resource, declared using a data block

as shown below:

data "tencentcloud_availability_zones" "my_favourite_zone" {

name = "ap-guangzhou-3"

}

Referencing a data source

The syntax for referencing data from a data source is data.<type>.<name>.<attribute> as shown below:

resource "tencentcloud_subnet" "app" {

...

availability_zone = data.tencentcloud_availability_zones.default.zones.0.name

...

}

DataSource
Last updated：2023-03-07 10:35:48

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 77

Operators

Operators are used for arithmetic or logical operations.

Arithmetic operators

Operator Description

a + b Returns the result of adding `a` and `b` together.

a - b Returns the result of subtracting `b` from `a`.

a * b Returns the result of multiplying `a` and `b`.

a / b Returns the result of dividing `a` by `b`.

a % b Returns the remainder of dividing `a` by `b`. This operator is generally useful only when used with
whole numbers.

-a Returns the result of multiplying `a` by -1.

Comparison operators

Operator Description

a == b Returns `true` if `a` and `b` both have the same type and the same value, or `false` otherwise.

a != b Contrary to `==`.

a < b Returns `true` if `a` is less than `b`, or `false` otherwise.

a > b Returns `true` if `a` is greater than `b`, or `false` otherwise.

a <= b Returns `true` if `a` is less than or equal to `b`, or `false` otherwise.

a >= b Returns `true` if `a` is greater than or equal to `b`, or `false` otherwise.

Logical operators

Syntax Guide
Expression
Last updated：2023-03-07 10:35:48

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 77

Operator Description

a || b Returns `true` if either `a` or `b` is `true`, or `false` if both are `false`.

a && b Returns `true` if both `a` and `b` are `true`, or `false` if either one is `false`.

!a Returns `true` if `a` is `false`, or `false` if `a` is `true`.

Conditional Expression

A conditional expression uses the value of a Boolean expression to select one of two values. For example:

condition ? one_value : two_value

for Expression

A for expression can be used to traverse a set of collections and map one collection type to another. For example:

[for item in items : upper(item)]

Splat Expression

A splat expression provides a more concise way to express a common operation that could otherwise be performed
with a for expression. For example:

[for o in var.list : o.id]

is equivalent to

var.list[*].id

Function Expression

Terraform supports the use of some built-in functions when expressions are calculated. An expression to call a

function is similar to an operator. For example:

upper("123")

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 77

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 77

Numeric functions

Function Feature Sample Result

abs Returns an absolute value abs(-1024) 1024

ceil Rounds up ceil(5.1) 6

floor Rounds down floor(4.9) 4

log Calculates a logarithm log(16, 2) 4

pow Calculates an exponent pow(3,2) 9

max Returns the maximum value max(12,54,3) 54

min Returns the minimum value min(12, 54, 3) 3

String functions

Function Feature Sample Result

chomp Removes newline characters at the end of a string chomp("hello\n") "hello"

format Formats a string format("Hello, %s!",
"Ander")

"Hello,
Ander!"

lower Converts all cased letters in a string to lowercase lower("HELLO") "hello"

upper Converts all cased letters in a string to uppercase upper("hello") "HELLO"

join Concatenates elements of a string list with the given
delimiter

join(", ", ["foo", "bar",
"baz"])

"foo, bar,
baz"

replace Replaces specified characters in a string replace("1 + 2 + 3", "+",
"-")

"1 - 2 - 3"

For more information on functions, see Built-in Functions.

Function
Last updated：2023-03-07 10:35:48

https://www.terraform.io/language/functions

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 77

Basic Type

A primitive type is simple type that is not made from any other types. All primitive types in Terraform are represented
by a type keyword. Available primitive types include:

 string : A sequence of Unicode characters representing some text (such as "hello").

 number : A numeric value, which can be an integer or a decimal.

 bool : A Boolean value, which can be true or false .

Sample:

id = 123

vpc_id = "123"

status = true

Complex Type

A complex type is a type that groups multiple values into a single value.

Collection type

A collection contains a set of values of the same type:

 list(...) : A sequence of values identified by consecutive integers starting with 0.

 map(...) : A set of values, each of which is identified by a string label.

 set(...) : A set of unique values.

Structural type

 object(...) : A custom type that contains its own named attributes.

 tuple(...) : A sequence of elements identified by consecutive integers starting with 0, where each element

has its own type.

Basic Syntax
Last updated：2023-05-29 17:32:17

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 77

Special type

 null : An argument set to null is considered omitted. Terraform will automatically ignore the argument and use

the default value.

 any : It is a very special type constraint in Terraform. It is not a type but simply a placeholder. Whenever a value

is given a complex type constrained by any , Terraform will try to calculate the most accurate type to replace

 any .

Argument

Argument assignment means assigning a value to a specific argument name. The name can contain letters, numbers,
underscores, and hyphens and cannot begin with a number, such as:

id = "123"

Block

A block is a container for a set of arguments, such as:

resource "tencentcloud_instance" "foo" {

tags = {}

vpc_id = "vpc-5bt2ix8p"

}

Comment

Terraform supports the following three types of comments:

 # : A single-line comment followed by the comment content.

 // : A single-line comment followed by the comment content.

 /* and */ : Multi-line comments that might be span over multiple lines.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 77

The Terraform language has some idiomatic style conventions, and we recommend you always follow them to ensure
consistency between files and modules written by different teams. In addition, automatic formatting tools also need to
conform to such conventions, and you can use terraform fmt for formatting.

Code constraint

Indent two spaces for each nesting level.

When multiple arguments with single-line values appear on consecutive lines at the same nesting level, align their
equals signs:

ami = "abc123"

instance_type = "t2.micro"

When both arguments and blocks appear together inside a block body, place all of the arguments together at the
top and then place nested blocks below them. Use one blank line to separate the arguments from the blocks.

Use blank lines to separate logical groups of arguments within a block.

For blocks that contain both arguments and "meta-arguments" (as defined by the Terraform language semantics),
list meta-arguments first and separate them from other arguments with one blank line. Place meta-argument blocks

last and separate them from other blocks with one blank line. For example:

resource "tencentclould_instance" "example" {

count = 2 # meta-argument first

ami = "abc123"

instance_type = "t2.micro"

network_interface {

...

}

lifecycle {

Terraform Style
Last updated：2023-05-29 17:37:47

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 77

meta-argument block last

create_before_destroy = true

}

}

Top-Level blocks should always be separated from one another by one blank line. Nested blocks should also be
separated by blank lines, except when grouping together related blocks of the same type (like multiple

 provisioner blocks in a resource).

Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are
defined by semantics to form a family.

