
Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 15

Tencent Infrastructure Automation

for Terraform

Combination with DevOps

Product Documentation

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 15

Copyright Notice

©2013-2023 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 15

Contents

Combination with DevOps
Code Management
Continuous Integration and Deployment

Terraform Application in GitHub

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 15

Concepts

GitOps

GitOps is a method of continuous delivery proposed by Weaveworks. Its core idea is having a Git version repository
that stores declarative infrastructure and applications of application systems. With Git at the center of the delivery
workflow, you can submit pull requests and use Git to accelerate and simplify the deployment and Ops of Terraform

applications. With such a simple tool like Git, you can focus more on feature creation rather than Ops tasks such as
application system installation, configuration, and migration.

Terraform root module

The root configuration (root module) is the working directory running Terraform CLI.

The criteria of a root module:

Minimize the number of resources in each root module

Avoid configuring too many resources in a root directory and storing too many resources in a directory or state. Every

time Terraform is run, all the resources in the specified root directories will be refreshed. If a state contains too many
resources, the execution may be slow. In general, a state should contain up to 100 resources (up to a dozen of
resources at best).

Use different directories for different applications

To manage applications and projects separately, put their resources in their own Terraform directories. A service can
be a certain application or general service, for example, a shared network. You should nest all the Terraform code of a

certain service in a directory (including sub-directories).

Project Structure

Split the Terraform configuration of the service into two top-level directories: modules directory containing the

actual service configuration; environments directory containing the root configuration of each environment.

Combination with DevOps
Code Management
Last updated：2023-03-07 10:35:48

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 15

The modules directory contains abstracted and reusable modules.

The environments directory isolates different environments, which allows for using providers for different

cloud vendors and configuring different accounts for multi-cloud management (the prod directory isolates

businesses by workspace).

Below is the recommended project structure. For more information, see the code repositories of CODING and GitHub.

.

├── README.md

├── environments

│ ├── dev

│ │ ├── main.tf

│ │ └── provider.tf

│ └── prod

│ ├── cicd

│ │ └── main.tf

│ ├── local.tf

│ ├── main.tf

│ ├── provider.tf

│ └── qta

│ └── main.tf

└── modules

├── network

│ ├── main.tf

│ ├── outputs.tf

│ ├── provider.tf

│ └── variables.tf

├── security_group

│ ├── main.tf

│ ├── outputs.tf

│ ├── provider.tf

│ └── variables.tf

└── tke

├── main.tf

├── outputs.tf

├── provider.tf

└── variables.tf

Code Reuse

https://tencentiac.coding.net/p/terraform/d/gitops-terraform/git
https://github.com/tongyiming/gitops-terraform

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 15

To reuse code, we recommend you use Terraform modules. You can use custom or provided modules, such as
Tencent Cloud modules. The Modules directory of the project encapsulates module templates. Resources are

categorized, and resources of the same category are managed in the same directory. Target resources are managed

in a template so as to connect target and dependent resources, for example, the TKE template and its dependent
template of Network resources.

Building a Secure Terraform Update Process

Secure infrastructure relies on a stable and secure Terraform update process.

Planning before execution

Always generate a plan first for Terraform executions and save it in the output file. Execute the plan after gaining the
approval of the infrastructure owner. Even when you design the prototype for a change locally, you should generate a

plan and view the resources to be added, modified, and terminated in an application.

Implementing an automated workflow

Execute Terraform via an automated tool to ensure execution context consistency and avoid human errors.

Avoiding importing existing resources

Avoid importing existing resources (through terraform import), as this may make it hard to understand the

source and configuration of a manually created resource. Instead, create and delete resources in Terraform.

In cases where deleting old resources would create significant toil, use the terraform import command with

explicit approval. Resources imported to Terraform can be managed only by Terraform.

Avoiding modifying the Terraform state

If you use Terraform to manage the infrastructure and manually update resource attributes in the console, the
Terraform execution plan may turn out unexpected. To modify the Terraform state information, run the terraform

state command.

Versioning

Similar to other code forms, infrastructure code can be stored in the versioning system to retain records and allow for
easy rollback.

Environment Isolation

https://developer.hashicorp.com/terraform/language/modules
https://github.com/terraform-tencentcloud-modules/

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 15

The following isolation methods are supported:

Isolation by directory

Group resources by directory and configure root modules in sub-directories for isolation (as adopted in this document).

Note: In environments , the dev and prod directories use different root modules to isolate the

infrastructure configurations of different environments.

Isolation by branch

Use different branches in different environments and initialize Terraform in the root module of the corresponding
branch.

Note: Similar to isolation by directory, isolation by branch adopts root modules to configure certain environments in
different branches and deploys modification by merging changes in different branches.

Isolation by workspace

Create resources based on different workspace configurations in the same root module.

Note: In the prod directory, cicd and qta isolate the configurations of different businesses by

 workspace .

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 15

This document describes how to implement automated deployment with Terraform and GitHub Actions.

Prerequisites

1. Register at GitHub.

2. Register at Tencent Cloud.

3. Get the credentials. Create and copy SecretId and SecretKey on the Manage API Key page.

Creating a Project

Create a code repository on GitHub. Below is the directory structure:

.

├── README.md

├── environments

│ ├── dev

│ │ ├── main.tf

│ │ └── provider.tf

│ └── prod

│ ├── cicd

│ │ └── main.tf

│ ├── local.tf

│ ├── main.tf

│ ├── provider.tf

│ └── qta

│ └── main.tf

└── modules

├── network

│ ├── main.tf

│ ├── outputs.tf

│ ├── provider.tf

│ └── variables.tf

├── security_group

│ ├── main.tf

Continuous Integration and Deployment
Terraform Application in GitHub
Last updated：2023-04-20 14:56:21

https://github.com/join
https://www.tencentcloud.com/zh/document/product/378/17985
https://console.tencentcloud.com/cam/capi

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 15

│ ├── outputs.tf

│ ├── provider.tf

│ └── variables.tf

└── tke

├── main.tf

├── outputs.tf

├── provider.tf

└── variables.tf

Directory structure description:

1. The project structure mainly consists of environments and modules directories.

2. The environments directory isolates dev and prod environments and sets different configurations for

different environments. Each environment directory is an independent root module.

Note：

 dev demonstrates how to create a VPC.

 prod demonstrates how to isolate businesses through workspace . VPCs are created in the

 cicd directory, and container clusters are created in the qta directory.

3. modules encapsulates resource information for reuse. Here, it contains demo modules of the VPC, security

group, and TKE.

4. For the complete code, see gitops-terraform.

Workflow Configuration

1. To avoid security issues due to AK/SK leakage, you need to set environment variables in

 https://github.com/${USER}/${PROJECT}/settings/secrets/actions . Replace the secrets with

https://github.com/tencentcloudstack/gitops-terraform

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 15

the copied SecretId and SecretKey .

2. Configure the workflow through GitHub Actions.

Click New workflow next to Actions, or create a workflow by adding a YAML file in the
 .github/workflows/ directory. For more information on the workflow configuration, see Related Operations.

https://docs.github.com/cn/actions
https://www.tencentcloud.com/document/product/1172/52324

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 15

Check workflow

1. Terraform should not have too many root module resources. Similarly, avoid reading all resources during a check,
which should be triggered in a fine-grained manner.

2. In this document, environments are distinguished by branch. For example, if the configuration in the dev branch

needs to be updated, the update will be triggered only in dev . After the configuration update, submit the pull

request and merge the code into main (main branch). In this way, the system does not need to scan all the sub-

directories of environments for update checks, reducing unnecessary state sync operations.

3. The workflow mainly runs terraform fmt , terraform init , terraform validate , and

 terraform plan to check the code and display the build plan, so as to determine whether to execute the

deployment.

Deployment workflow

1. If all operations in the check workflow are successful and the output of terraform plan is as expected, you

can perform the merge operation.

2. After the merge is completed, trigger the deployment operation (i.e., terraform apply) as shown below:

Related Operations

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 15

After the environment directory specified by environment is entered, the system will check whether a sub-

directory exists, and if so, the system will isolate different business environments (such as qta and ci) through

 workspace ; if not, the specified directory is equivalent to a common root module.

Creating a check workflow

Download Terraform and verify the Terraform code as follows:

This is a basic workflow to help you get started with Actions

name: CI

Controls when the workflow will run

on:

pull_request:

A workflow run is made up of one or more jobs that can run sequentially or in p

arallel

jobs:

This workflow contains a single job called "build"

build:

The type of runner that the job will run on

runs-on: ubuntu-latest

env:

TENCENTCLOUD_SECRET_KEY: ${{ secrets.TENCENTCLOUD_SECRET_KEY }}

TENCENTCLOUD_SECRET_ID: ${{ secrets.TENCENTCLOUD_SECRET_ID }}

Steps represent a sequence of tasks that will be executed as part of the job

steps:

- uses: actions/checkout@v3

- uses: hashicorp/setup-terraform@v2

with:

terraform_wrapper: false

- name: check env

run: |

if [! -d "environments/$GITHUB_HEAD_REF"]; then

echo "*************************SKIPPING************************************"

echo "Branch '$GITHUB_HEAD_REF' does not represent an oficial environment."

echo "***"

exit 1

fi

- name: terraform fmt

id: fmt

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 15

run: terraform fmt -recursive -check

- name: terraform init

id: init

working-directory: environments/${{ github.head_ref }}

run: terraform init

- name: terraform validate

id: validate

working-directory: environments/${{ github.head_ref }}

run: terraform validate

- name: terraform plan

id: plan

if: github.event_name == 'pull_request'

working-directory: environments/${{ github.head_ref }}

run: |

plan_info=""

dir_count=`ls -l | grep "^d" | wc -l`

if [$dir_count -gt 0]; then

for dir in ./*/

do

env=${dir%*/}

env=${env#*/}

echo ""

echo "========> Terraform Plan <========"

echo "At environment: ${{ github.head_ref }}"

echo "At workspace: ${env}"

echo "=================================="

terraform workspace select ${env} || terraform workspace new ${env}

plan_info="$plan_info\n$(terraform plan -no-color)"

done

else

plan_info="$(terraform plan -no-color)"

fi

plan_info="${plan_info//'%'/'%25'}"

plan_info="${plan_info//$'\n'/'%0A'}"

plan_info="${plan_info//$'\r'/'%0D'}"

echo "::set-output name=plan_info::$plan_info"

continue-on-error: true

- uses: actions/github-script@v6

if: github.event_name == 'pull_request'

with:

script: |

const output = `#### Terraform Format and Style \`${{ steps.fmt.outcome }}\`

Terraform Initialization \`${{ steps.init.outcome }}\`

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 15

Terraform Validation \`${{ steps.validate.outcome }}\`

Terraform Plan \`${{ steps.plan.outcome }}\`

<details><summary>Show Plan</summary>

\`\`\`\n

${{ steps.plan.outputs.plan_info }}

\`\`\`

</details>

Pushed by: @${{ github.actor }}, Action: \`${{ github.event_name }}\``;

github.rest.issues.createComment({

issue_number: context.issue.number,

owner: context.repo.owner,

repo: context.repo.repo,

body: output

})

Creating a deployment workflow

name: Apply

on:

pull_request:

types:

- closed

branches:

- main

jobs:

build:

if: github.event.pull_request.merged == true

runs-on: ubuntu-latest

env:

TENCENTCLOUD_SECRET_KEY: ${{ secrets.TENCENTCLOUD_SECRET_KEY }}

TENCENTCLOUD_SECRET_ID: ${{ secrets.TENCENTCLOUD_SECRET_ID }}

steps:

- uses: actions/checkout@v3

- uses: hashicorp/setup-terraform@v2

- name: terraform init

id: init

working-directory: environments/${{ github.head_ref }}

run: terraform init

- name: terraform apply

working-directory: environments/${{ github.head_ref }}

Tencent Infrastructure Automation for Terraform

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 15

run: |

dir_count=`ls -l | grep "^d" | wc -l`

if [$dir_count -gt 0]; then

for dir in ./*/

do

env=${dir%*/}

env=${env#*/}

echo ""

echo "========> Terraform Apply <========"

echo "At environment: ${{ github.head_ref }}"

echo "At workspace: ${env}"

echo "=================================="

terraform workspace select ${env} || terraform workspace new ${env}

terraform apply -auto-approve

done

else

terraform apply -auto-approve

fi

