
TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 50

TencentDB for Redis

Development Guidelines

Product Documentation

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 50

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 50

Contents

Development Guidelines
Naming Rules
Basic Usage Guidelines
Design Principles of Key and Value
Command Usage Guidelines
Design Principles of Client Programs
Connection Pool Configuration

Suggestions for Using Redigo Connection Pool
Sample Code of Jedis Connection Pool

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 50

Development Guidelines
Naming Rules
Last updated：2023-10-20 10:46:05

Instance Naming Rules

Name Redis instance in accordance with the following rules: {Environment}-{Branch}-{Project number}-{Business
name}-{Region}-{Zone}-{Number}.
Environment: prd or dev.

Branch: Name of the branch, such as cx .

Project number: Assign a number to each project group, such as p001 .

Business name: Redis business name, such as abc .

Region: Abbreviation for the region of an instance, such as gz (Guangzhou).

Zone: Abbreviation for the zone of an instance, such as gzcx01 .

Number: The number of the first Redis instance， which starts from 1.
So the instance name is prd-cx-p001-abc-gz-gzcx01-1 .

Key Naming Rules

Key name must be prefixed with a business or a database name separated by colons to avoid key conflict. The

recommended naming rule is: business name:database name:table name: data ID .

Business name: Abbreviation of the business system, such as cx .

Database name: Name of the database, such as cxdb .

Table name: Name of the database table, such as user .

Data ID: ID or the primary key field in the data table, such as "uid"in database table.
So the key name is cx:cxdb:user:000110011 .

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 50

Basic Usage Guidelines
Last updated：2023-10-20 10:39:47

Cache-Only Policy

Redis is only used to cache data. It stores all data in memory for quicker access. However, using it to persist data may
result in data loss because it can’t store data in memory persistently after a power failure.

Non-Unique Data Source Policy

Since Redis is used for caching, cache misses are possible, so it cannot be relied upon as the sole source of data. In

case of an exception when accessing Redis, the backend database needs to be queried.

Key Eviction Policy

Set the maxmemory-policy as needed. The default policy is noeviction , which means that keys will not be

deleted. When memory is used up, OOM will occur. So we recommend that you modify the eviction policy once the
instance is created to reduce OOM.

Configurable memory eviction policy

Select one of the following eviction policies for maxmemory-policy when the Redis in-memory cache was used up.

LRU (least recently used) and TTL (time to live) are implemented by randomized and approximation algorithms.
allkeys-lru: Delete keys based on the LRU algorithm, regardless of whether the data has a timeout attribute, until
enough space is freed up.
allkeys-random: Randomly delete keys until enough space is freed up.
volatile-lru: Delete expired keys based on the LRU algorithm until enough space is freed up.
volatile-random: Randomly delete expired keys until enough space is freed up.

volatile-ttl: Delete data that is about to be expired based on the TTL attribute of key-value pairs. If there is no recently
expiring data, the policy will fall back to "noeviction".
noeviction: Evict no data, reject all write operations, and return the error message "(error) OOM command not allowed
when used memory" to the client. Redis will only respond to read operations.

Suggestions

When Redis is used as a cache, it is recommended to use the "allkeys-lru" eviction policy. This policy evicts the keys

least frequently used. By default, if a key is least frequently used, it is also less likely to be accessed in the future, so it

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 50

is evicted.
When Redis is used as data persistence and caching in a hybrid manner, the volatile-lru policy can be used. As Redis
is not recommended to store data persistently, it is only considered as an alternative.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 50

Design Principles of Key and Value
Last updated：2023-10-20 10:47:07

Key Design Principle

Redis keys should be readable and manageable. We recommend that you not use an ambiguous and long key name.
Conciseness: Shorten the length of Key while ensuring the semantic meaning. When there are large number of keys,
they take up more space, so simplify the key name. For example, simplify

 cx:cxdb:cxdb_user_info:000110011 to cx:cxdb:user:000110011 .

Naming rule: It can only contain letters, digits, symbols (|_.:) and start with a letter.
Semantic segmentation: Separate words with the same business logic meaning by English semicolons (:); while
separate words with same business logic meaning by English periods (.), indicating a complete semantic meaning.
Readability: To improve readability, Key name should end with the value type of the key, such as

 user:basic.info:userid:string .

Do not use a long key name, as a long key name takes up space too.
The key name can’t contain symbols, such as \\, *, ?, {}, [], (), space, single and double quotes, and escape
characters.

Key lifecycle policy

We recommend that you set the expiration time with expire command to control the lifecycle for keys.

 > set cx:cxdb:user:000110011 xiaoming

 > expire cx:cxdb:user:000110011 3600 # set the key to expire one hour later

Distribute expiration time evenly , preventing the centralized expiration.
For data without expiration set, pay attention to the idletime and clean it up when the it is very large. For example,
execute > object idletime cx:cxdb:user:000110011 ,

and the returned information is shown below:

 :(integer) 150039 # It indicates that the key has not been accessed for 150039

seconds.

Clear the cold data which has not been accessed for more than 1 month.

Value Design Principle

Reject big key

A big key indicates that the key has a large value and takes more space. The following are examples of big keys in
common Redis data structures:

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 50

In String data structure, the value of a string takes up space more than 10 MB (a large value).
In Set data structure, there are 10000 values (a large number of members) in a set.
In List data structure, there are 10000 values (a large number of members) in a list.

In Hash data structure, there are only 1000 values, but the total value reaches 1000 MB (a large total value) in a hash
table.
Big key is prone to causing slow queries, blocking other requests. It also poses EIN under pressure To prevent the
creation of big keys, we have provide you with the following suggestions:
Maintain the value in String type within 10 KB; maintain the members in hash , list , set , and zset

within 5000.
Don’t delete big keys unless necessary.
For non-string big keys, we recommend that you delete them with the hscan , sscan , zscan command in a

progressive manner.
Prevent big keys from being deleted automatically upon expiration.
For example, setting a zset with 2 million members to expire in 1 hour can trigger a deletion operation, causing

blocking.

Select proper data type

Redis provides various data types, including strings, hash tables, lists, sets, and sorted sets. An appropriate data type
can improve the performance and reliability of Redis.
Strings: It is suitable for storing the simple string data, such as configuration information and counters. To store binary
data, use Redis binary-safe string.

Hash tables: It is suitable for storing data with multiple fields and values, such as user information and product
information. Hash tables can save memory space and support easy batch operations.
List: It is suitable for storing ordered element set, such as message queues and task lists. List allows you you to insert
and delete operations at both ends, and operate list by various commands provided by Redis.
Set: It is suitable for storing unordered element set, such as tag lists and friend lists. Set allows you to perform

operations such as union, intersection, difference. You can operate sets by using various commands provided by
Redis.
Sorted set: It is suitable for storing ordered element set, such as leaderboards, voting lists. Sorted set allows you to
sort based on scores. You can operate ordered sets by using various commands provided by Redis.
Control and use memory encoding optimization configurations for data structures in a reasonable way. For example,
ziplist, as a special data structure, can store small lists, hash tables, and sorted sets in a continuous memory block,

which saves memory. As ziplist does not have an index, linear scanning is required for operations such as search,
insertion, or deletion on ziplist, which may compromises performance. Therefore use ziplist as needed in your actual
business. ziplist may be a good choice for a scenario where data volume is small and frequent traversal operations are
required. Try other data structures in other scenarios.
Replace String with HashMap structure for a key with multiple attributes. HashMap is a key-value data structure in

Redis for storing multiple fields and values. In Redis, you can use the HSET command to store multiple fields and

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 50

values in a hash table, and get the value of the specified field by using HGET command. To store multiple attributes in
String structure, you need to use a specified delimiter to concatenate them into one string. But this operation is
complicated and memory-consuming.

Negative example

 set user:1:name tom

 set user:1:age 19

 set user:1:favor football

Positive example

 hmset user:1 name tom age 19 favor football

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 50

Command Usage Guidelines
Last updated：2023-10-20 10:44:16

Checking N in the O(N) command

We recommend that you not excessively use these commands, including HGETALL , IRANGE , SMEMBERS ,

 ZRANGE , and sinter . When using them, you need to specify the value of N .

The HSCAN , SSCAN , and ZSCAN commands in Redis can be used to traverse hash tables, sets, and sorted

sets. These commands allow you to scan elements in the data set by using an iterator, without returning all elements
at once like HGETALL , SMEMBERS , and ZRANGE . When using these commands, we recommend that you

specify an appropriate COUNT parameter to avoid Redis performance degradation caused by excessive returned
elements at once. Returning 1000 elements per traversal is preferred, but the specific quantity depends on the actual
Redis situation. You can adjust it as needed.

Configuring disabled commands

Commands like KEYS , FLUSHALL , FLUSHDB are not allowed as the single-threaded CRedis takes a long time

to execute them, which may cause command execution blocking. To address the potential blocking, we recommend
that you use the scan command in a progressive manner or configure the disabled commands by disable-

command-list parameter.

 FLUSHDB and FLUSHALL : We recommend that you not use these two commands in the production environment,

as they will clear all data in Redis.

 KEYS : It returns all keys matched with specified mode. We recommend that you not use this command in the

production environment, as it will block Redis server.
 RANDOMKEY : It returns one key randomly. We recommend that you not use this command in the production

environment, as it will block Redis server.
 INFO : It returns various statistics and configuration items of the Redis server. We recommend that you not use this

command in the production environment, as it will block Redis server.
 CONFIG : It allows you to modify the configuration items of the Redis server. But use it with caution as it may cause

server to crash.
 SHUTDOWN : It allows you to disable the Redis server. We recommend that you not use this command in the

production environment, as it will cause data loss.

 BGREWRITEAOF and BGSAVE : It allows you to asynchronously rewrite the AOF and RDB files with a large

amount of system resources being consumed. So use it with caution.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 50

Using SELECT properly

Redis supports naming multiple databases with incrementing numbers. During the naming, you can change database
at any time by using the SELECT command. The index number of each database is specified by a digit that starts

from 0.

Redis supports multi-database operations. In standard edition, you can sort data using multiple databases; Even so,
the business requests of Redis will be affected by operations on other databases as Redis is single-threaded. In
cluster edition, we recommend that you prioritize using DB 0, as non-0 DBs do not support scaling. Additionally, when
handling customer requests, it is not necessary to execute "SELECT 0" to reduce unnecessary interactions.

Using batch operations properly

RTT consumes much time when accessing Redis . If your application needs to perform a large number of GET or

 SET operations, you can use mget and mset for batch data operations to reduce the network RTT. The

number of elements in MGET and MGET operations should not exceed 500. The greater this number is, the

greater the impact will be in the case of jitter or scaling on the backend.
Native command: MEGET , MESETmset .

Non-native command: PIPELINE , which improves efficiency.

Note

We recommend that you maintain the number of elements in each batch operation within 500 and check whether there
is big key in the elements of batch operation.

The native command is an atom operation, while PIPELINE is not.

 PIPELINE allows you to pack multiple commands,while the native command not.

 PIPELINE must be supported on client and server.

Using no transactions

Redis has a limited transaction feature and does not support rollback. In addition, in the cluster edition of Redis, keys
involved in a transaction operation must reside in the same slot.

Prerequisites for cluster edition using Lua

All keys should be passed using the KEYS array. When calling Redis commands in redis.call / pcall , the

key must be in the KEYS array. Otherwise, the following error message will be returned: error，"-ERR bad lua

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 50

script for redis cluster,all the keys that the script uses should be passed using

the KEYS array" .

For a Lua bootstrap action, the keys involved must be on the same Redis node. Otherwise, the following error

message will be returned: error, "-ERR eval/evalsha command keys must in same slotrn" .

 MONITOR command

The MONITOR command has some impacts on the performance of Redis. In daily usage, it is used only for

analyzing command execution and not for monitoring. We recommend that you enable it only in the case of
troubleshooting or analysis, and disable it in time.

Prohibit setting Redis as message queue

Don't use Redis as a message queue; otherwise, you may encounter problems in capacity, network, efficiency, and

feature.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 50

Design Principles of Client Programs
Last updated：2023-10-20 10:49:47

Avoiding database reuse

You should avoid to use one Redis instance for multiple applications.
Cause: Key eviction rules cause keys of multiple applications to affect each other, reducing cache hit rate. Meanwhile,
if some applications have a large number of accesses, this will also affect the normal usage of other applications.

Suggestion: Split unrelated businesses and share common data.

Using connection pool

The total time for accessing Redis includes several parts: network connection time, command parsing time, and
command execution time. By using a database with a connection pool, you can save network connection time,
improve the efficiency of accessing Redis, and efficiently control the number of connections. The key configuration
parameters for the connection resource pool include the maximum connections, the maximum and the minimum idle

connections. We recommend that you configure these three parameters with the same value evaluated based on your
actual conditions.
Maximum Connections: Control the concurrency of your business. When the number of connections in the
connection pool reaches the maximum limit, the connection pool will no longer create new connections, so that the
system will not be overwhelmed by resource requests from the connection pool.
Maximum Idle Connections: The maximum number of idle connections allowed in the connection pool. When the

number of active connections in the connection pool exceeds the maximum idle connections, the excess connections
will be closed and removed from the connection pool, freeing up system resources. This ensures that the connection
pool does not consume excessive system resources and improves the performance and scalability of the application.
Minimum Idle Connections: The minimum number of idle connections that must be maintained in the connection
pool. If the number of idle connections in the connection pool is lower than this value, the connection pool will create

new connections to meet this requirement. This ensures that there are always enough available connections in the
connection pool, especially during high load situations.
Apart from the parameters above, here is the information regarding the specific code modifications required for the hot
queue connection used in different language connection pools:

Language Issue and Suggestion Sample Code

golang go-redis
connection pool

We recommend that you put the
used connections at the end of the
queue, and get connections from

The queen connection methods and related code

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 50

the front of the queue to avoid
always getting hot connections.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 50

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 50

func (p *ConnPool) popIdle() *Conn

 if len(p.idleConns) == 0 {

 return nil

 }

 // fix get connection from hea

 cn = nil

 //When `Lifo` is `true`, get th

 if p.opt.Lifo == true {

 cn = p.idleConns[0]

 p.idleConns = p.idleConns[1

 } else {

 idx := len(p.idleConns) - 1

 cn = p.idleConns[idx]

 p.idleConns = p.idleConns[:

 }

 p.idleConnsLen--

 p.checkMinIdleConns()

 return cn

}

For more information, see redis/go-redis . For v8.

golang redigo Redigo connection pool only allows The sample codes are as follows:

https://github.com/redis/go-redis

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 50

Connection pool
configuration

you to get connections from the
front of the queue and put the used
connections back to the front. As a
result, the hottest connection is
always being used without polling
each connection, and proxy
connection or load is always being
unbalanced. To address this issue,
you need to modify the source code
in the pool.go file and add pushBack
method and Lifo member variables.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 50

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 50

// idle connection in the pool met

Lifo bool

// fix add pushBack

if p.Lifo == true {

p.idle.pushBack(pc)

} else {

p.idle.pushFront(pc)

}

For more information, see Suggestions for Using

java_jedis_pool Queue connection mode in
connection pool
false: Take the connection from the
front of the queue and put it back to
the end, which is recommended.
true: Take the connection from the
front of the queue and put it back to
the front, which is the default mode
and ensures that the hottest
connection is always used.
Specify the regular check time for
the connection pool to avoid

For the key sample code, see Sample Code of Je
For more sample codes, see spring-boot-jedis-de

https://www.tencentcloud.com/document/product/239/56003
https://www.tencentcloud.com/document/product/239/56007
https://redis-db-backup-ap-cd-1310738255.cos.ap-chengdu.myqcloud.com/spring-boot-jedis-demo%20%281%29.zip

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 50

connections being occupied for a
long time without being released. It
is recommended to configure it as
3000 ms, which means checking
every 3 seconds.

time-between-eviction-runs:
3000ms

java_lettuce_pool Set the queue mode of the
connection pool to be the same as
that of java_jedis_pool.
Disable reuse of the connection to
avoid PipeLine.

We recommend that you configure the parameter

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 50

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 50

server:

 port: 8989

spring:

 redis:

 database: 0

 host: 172.17.0.43

 port: 6379

 # Password, which can be left

 password: ######

 # Connection timeout period in

 timeout: 1000

 # If jedis is used, modify let

 lettuce:

 pool:

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 50

 # Maximum wait time for g

 max-wait: 1000ms

 # Maximum active connecti

 max-active: 2000

 # Maximum idle connection

 max-idle: 1000

 # Minimum idle connection

 min-idle: 500

 time-between-eviction-run

 # Queue connection mode in

 lifo: false

 #shutdown-timeout: 1000

spring_boot_redisson
connection pool

Configure the maximum
connections, the maximum and the
minimum idle connections with the
same value.

The queen connection methods and related code

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 50

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 50

Single-node replica node (clust

singleServerConfig

 # Idle connection timeout period

 idleConnectionTimeout: 10000

 Connection timeout period in ms

 connectTimeout: 10000

 Command wait timeout period in m

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 50

 timeout: 3000

 # Retry attempts upon command fa

 # If the command is sent success

 retryAttempts: 3

 # Command sending retry interval

 retryInterval: 1500

 # # Reconnection intervel in ms

 # reconnectionTimeout: 3000

 # # Maximum number of failed exe

 # failedAttempts: 3

 # Password

 password: 111

 # Maximum number of subscription

 subscriptionsPerConnection: 5

 # Client name

 clientName: cdkey

 # # Node address

 address: redis://172.20.1.20:637

 # Minimum idle connections for pu

 subscriptionConnectionMinimumIdl

 # pub/sub connection pool size

 subscriptionConnectionMinimumIdl

 # Minimum idle connections

 connectionMinimumIdleSize: 1000

 # Connection pool size

 connectionPoolSize: 10000

 # Database number

 database: 0

 # DNS monitoring interval in ms

 dnsMonitoringInterval: 5000

Number of thread pools. Default

threads: 64

Number of Netty thread pools. D

nettyThreads: 64

Code

codec: !<org.redisson.codec.JsonJ

Transfer mode

transportMode : "NIO”

For more information, see redisson/redisson.

Adding a circuit breaker

https://github.com/redisson/redisson/wiki/2.-%E9%85%8D%E7%BD%AE%E6%96%B9%E6%B3%95

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 50

In high-concurrency scenarios, we recommend that you configure the client with acircuit breaker, such as Netflix or
Hystrix. When configured, the circuit breaker monitors the cluster nodes in real time. The abnormal Redis node will
not be requested, hence avoiding the failure of the entire system caused by a single node failure.

Configuring a valid password

The database access password ensures data security. The requirements for password complexity are as follows:
It can contain [8,30] characters.
It must contain at least two of the following four types: lowercase letters, uppercase letters, digits, and symbols
()`~!@#$%^&*-+=_|{}[]:;<>,.?/.
It cannot start with a slash (/).

Tencent Cloud supports Secure Sockets Layer (SSL). For detailed directions, see SSL Encryption.

https://www.tencentcloud.com/document/product/239/48048

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 50

Connection Pool Configuration
Suggestions for Using Redigo Connection
Pool
Last updated：2023-10-20 10:41:52

Redigo Official Connection Pool is designed to take connections only from the front of the queue. Placing a used
connection back at the front of the line results in the same connection being consistently used, causing an uneven load
distribution across all connections. To address this, it is recommended to modify the pool.go file in the source code

and add a pushBack method to add used connections to the end of the queue.

Add pushBack sample code

https://github.com/gomodule/redigo

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 50

// idle connect push list back

func (l *idleList) pushBack(pc *poolConn) {

if l.count == 0 {

l.front = pc

l.back = pc

pc.prev = nil

pc.next = nil

} else {

pc.prev = l.back

l.back.next = pc

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 50

l.back = pc

pc.next = nil

}

l.count++

}

// idle connection in the pool method, True: pushBack, False: pushFront, default Fa

Lifo bool

// fix add pushBack

if p.Lifo == true {

p.idle.pushBack(pc)

} else {

p.idle.pushFront(pc)

}

Complete sample code

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 50

====================pool.go after modification=========================

// Copyright 2012 Gary Burd

//

// Licensed under the Apache License, Version 2.0 (the "License"): you may

// not use this file except in compliance with the License. You may obtain

// a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in writing, software

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 50

// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

// License for the specific language governing permissions and limitations

// under the License.

package redis

import (

 "bytes"

 "context"

 "crypto/rand”

 "crypto/sha1"

 "errors"

 "io"

 "strconv"

 "sync"

 "time"

)

var (

 _ ConnWithTimeout = (*activeConn)(nil)

 _ ConnWithTimeout = (*errorConn)(nil)

)

var nowFunc = time.Now // for testing

// ErrPoolExhausted is returned from a pool connection method (Do, Send,

// Receive, Flush, Err) when the maximum number of database connections in the

// pool has been reached.

var ErrPoolExhausted = errors.New("redigo: connection pool exhausted")

var (

 errConnClosed = errors.New("redigo: connection closed")

)

// Pool maintains a pool of connections. The application calls the Get method

// to get a connection from the pool and the connection's Close method to

// return the connection's resources to the pool.

//

// The following example shows how to use a pool in a web application. The

// application creates a pool at application startup and makes it available to

// request handlers using a package level variable. The pool configuration used

// here is an example, not a recommendation.

//

// func newPool(addr string) *redis.Pool {

// return &redis.Pool{

// MaxIdle: 3,

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 50

// IdleTimeout: 240 * time.Second

// // Dial or DialContext must be set. When both are set, DialContext takes pr

// Dial: func () (redis.Conn, error) { return redis.Dial("tcp", addr) },

// }

// }

//

// var (

// pool *redis.Pool

// redisServer = flag.String("redisServer", ":6379", "")

//)

//

// func main() {

// flag.Parse()

// pool = newPool(*redisServer)

// ...

// }

//

// A request handler gets a connection from the pool and closes the connection

// when the handler is done:

//

func GetFaceIdToken(w http.ResponseWriter, r *http.Request) {

// conn := pool.Get()

// defer conn.Close()

// ...

// }

//

// Use the Dial function to authenticate connections with the AUTH command or

// select a database with the SELECT command:

//

// pool := &redis.Pool{

// // Other pool configuration not shown in this example.

// Dial: func () (redis.Conn, error) {

// c, err := redis.Dial("tcp", server)

// if err != nil {

// return nil, err

// }

// if _, err := c.Do("AUTH", password); err != nil {

// c.Close()

// return nil, err

// }

// if _, err := c.Do("SELECT", db); err != nil {

// c.Close()

// return nil, err

// }

// return c, nil

// },

// }

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 50

//

// Use the TestOnBorrow function to check the health of an idle connection

// before the connection is returned to the application. This example PINGs

// connections that have been idle more than a minute:

//

// pool := &redis.Pool{

// // Other pool configuration not shown in this example.

// TestOnBorrow: func(c redis.Conn, t time.Time) error {

// if time.Since(t) < time.Minute {

// return nil

// }

// _, err := c.Do("PING")

// return err

// },

// }

//

type Pool struct {

 // Dial is an application supplied function for creating and configuring a

 // connection.

 //

 // The connection returned from Dial must not be in a special state

 // (subscribed to pubsub channel, transaction started, ...).

 Dial func() (Conn, error)

 // DialContext is an application supplied function for creating and configuring

 // connection with the given context.

 //

 // The connection returned from Dial must not be in a special state

 // (subscribed to pubsub channel, transaction started, ...).

 DialContext func(ctx context.Context) (Conn, error)

 // TestOnBorrow is an optional application supplied function for checking

 // the health of an idle connection before the connection is used again by

 // the application. Argument t is the time that the connection was returned

 // to the pool. If the function returns an error, then the connection is

 // closed.

 TestOnBorrow func(c Conn, t time.Time) error

 // Maximum number of idle connections in the pool.

 MaxIdle int

 // idle connection in the pool method, True: pushBack, False: pushFront, default

 Lifo bool

 // Maximum number of connections allocated by the pool at a given time.

 // When zero, there is no limit on the number of connections in the pool.

 MaxActive int

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 50

 // Close connections after remaining idle for this duration. If the value

 // is zero, then idle connections are not closed. Applications should set

 // the timeout to a value less than the server's timeout.

 IdleTimeout time.Duration

 // If Wait is true and the pool is at the MaxActive limit, then Get() waits

 // for a connection to be returned to the pool before returning.

 Wait bool

 // Close connections older than this duration. If the value is zero, then

 // the pool does not close connections based on age.

 MaxConnLifetime time.Duration

 mu sync.Mutex // mu protects the following fields

 closed bool // set to true when the pool is closed.

 active int // the number of open connections in the pool

 initOnce sync.Once // the init ch once func

 ch chan struct{} // limits open connections when p.Wait is true

 idle idleList // idle connections

 waitCount int64 // total number of connections waited for.

 waitDuration time.Duration // total time waited for new connections.

}

// NewPool creates a new pool.

//

// Deprecated: Initialize the Pool directly as shown in the example.

func NewPool(newFn func() (Conn, error), maxIdle int) *Pool {

 return &Pool{Dial: newFn, MaxIdle: maxIdle}

}

// Get gets a connection. The application must close the returned connection.

// This method always returns a valid connection so that applications can defer

// error handling to the first use of the connection. If there is an error

// getting an underlying connection, then the connection Err, Do, Send, Flush

// and Receive methods return that error.

func (p *Pool) Get() Conn {

 // GetContext returns errorConn in the first argument when an error occurs.

 c, _ := p.GetContext(context.Background())

 return c

}

// GetContext gets a connection using the provided context.

//

// The provided Context must be non-nil. If the context expires before the

// connection is complete, an error is returned. Any expiration on the context

// will not affect the returned connection.

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 50

//

// If the function completes without error, then the application must close the

// returned connection.

func (p *Pool) GetContext(ctx context.Context) (Conn, error) {

 // Wait until there is a vacant connection in the pool.

 waited, err := p.waitVacantConn(ctx)

 if err != nil {

 return errorConn{err}, err

 }

 p.mu.Lock()

 if waited > 0 {

 p.waitCount++

 p.waitDuration += waited

 }

 // Prune stale connections at the back of the idle list.

 if p.IdleTimeout > 0 {

 n := p.idle.count

 for i := 0; i < n && p.idle.back != nil && p.idle.back.t.Add(p.IdleTimeout).B

 pc := p.idle.back

 p.idle.popBack()

 p.mu.Unlock()

 pc.c.Close()

 p.mu.Lock()

 p.active--

 }

 }

 // Get idle connection from the front of idle list.

 for p.idle.front != nil {

 pc := p.idle.front

 p.idle.popFront()

 p.mu.Unlock()

 if (p.TestOnBorrow == nil || p.TestOnBorrow(pc.c, pc.t) == nil) &&

 (p.MaxConnLifetime == 0 || nowFunc().Sub(pc.created) < p.MaxConnLifetime)

 return &activeConn{p: p, pc: pc}, nil

 }

 pc.c.Close()

 p.mu.Lock()

 p.active--

 }

 // Check for pool closed before dialing a new connection.

 if p.closed {if(pause){

 p.mu.Unlock()

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 50

 err := errors.New("redigo: get on closed pool")

 return errorConn{err}, err

 }

 // Handle limit for p.Wait == false.

 if !p.Wait && p.MaxActive > 0 && p.active >= p.MaxActive {

 p.mu.Unlock()

 return errorConn{ErrPoolExhausted}, ErrPoolExhausted

 }

 p.active++

 p.mu.Unlock()

 c, err := p.dial(ctx)

 if err != nil {

 p.mu.Lock()

 p.active--

 if p.ch != nil && !p.closed {

 p.ch <- struct{}{}

 }

 p.mu.Unlock()

 return errorConn{err}, err

 }

 return &activeConn{p: p, pc: &poolConn{c: c, created: nowFunc()}}, nil

}

// PoolStats contains pool statistics.

type PoolStats struct {

 // ActiveCount is the number of connections in the pool. The count includes

 // idle connections and connections in use.

 ActiveCount int

 // IdleCount is the number of idle connections in the pool.

 IdleCount int

 // WaitCount is the total number of connections waited for.

 // This value is currently not guaranteed to be 100% accurate.

 WaitCount int64

 // WaitDuration is the total time blocked waiting for a new connection.

 // This value is currently not guaranteed to be 100% accurate.

 WaitDuration time.Duration

}

// Stats returns pool's statistics.

// Stats returns pool's statistics.

 p.mu.Lock()

 stats := PoolStats{

 ActiveCount: p.active,

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 50

 IdleCount: p.idle.count,

 WaitCount: p.waitCount,

 WaitDuration: p.waitDuration,

 }

 p.mu.Unlock()

 return stats

}

// ActiveCount returns the number of connections in the pool. The count

// includes idle connections and connections in use.

func (p *Pool) ActiveCount() int {

 p.mu.Lock()

 active := p.active

 p.mu.Unlock()

 return active

}

// IdleCount returns the number of idle connections in the pool.

func (p *Pool) IdleCount() int {

 p.mu.Lock()

 idle := p.idle.count

 p.mu.Unlock()

 return idle

}

// Close releases the resources used by the pool.

func (p *Pool) Close() error {

 p.mu.Lock()

 if p.closed {if(pause){

 p.mu.Unlock()

 return nil

 }

 p.closed = true

 p.active -= p.idle.count

 pc := p.idle.front

 p.idle.count = 0

 p.idle.front, p.idle.back = nil, nil

 if p.ch != nil {

 close(p.ch)

 }

 p.mu.Unlock()

 for ; pc != nil; pc = pc.next {

 pc.c.Close()

 }

 return nil

}

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 50

func (p *Pool) lazyInit() {

 p.initOnce.Do(func() {

 p.ch = make(chan struct{}, p.MaxActive)

 if p.closed {

 close(p.ch)

 } else {

 for i := 0; i < p.MaxActive; i++ {

 p.ch <- struct{}{}

 }

 }

 })

}

// waitVacantConn waits for a vacant connection in pool if waiting

// is enabled and pool size is limited, otherwise returns instantly.

// If ctx expires before that, an error is returned.

//

// If there were no vacant connection in the pool right away it returns the time sp

// for that connection to appear in the pool.

func (p *Pool) waitVacantConn(ctx context.Context) (waited time.Duration, err error

 if !p.Wait || p.MaxActive <= 0 {

 // No wait or no connection limit.

 return 0, nil

 }

 p.lazyInit()

 // wait indicates if we believe it will block so its not 100% accurate

 // however for stats it should be good enough.

 wait := len(pch) == 0

 var start tim.e.Time

 if wait {

 start = time.Now()

 }

 select {

 case <-p.ch:

 // Additionally check that context hasn't expired while we were waiting,

 // because `select` picks a random `case` if several of them are "ready".

 select {

 case <-ctx.Done():

 p.ch <- struct{}{}

 return 0, ctx.Err()

 default:

 }

 case <-ctx.Done():

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 50

 return 0, ctx.Err()

 }

 if wait {

 return time.Since(start), nil

 }

 return 0, nil

}

func (p *Pool) dial(ctx context.Context) (Conn, error) {

 if p.DialContext != nil {

 return p.DialContext(ctx)

 }

 if p.Dial != nil {

 return p.Dial()

 }

 return nil, errors.New("redigo: must pass Dial or DialContext to pool")

}

func (p *Pool) put(pc *poolConn, forceClose bool) error {

 p.mu.Lock()

 if !p.closed && !forceClose {

 pc.t = nowFunc()

 // fix add pushBack

 if p.Lifo == true {

 p.idle.pushBack(pc)

 } else {

 p.idle.pushFront(pc)

 }

 if p.idle.count > p.MaxIdle {

 pc = p.idle.back

 p.idle.popBack()

 } else {

 pc = nil

 }

 }

 if pc != nil {

 p.mu.Unlock()

 pc.c.Close()

 p.mu.Lock()

 p.active--

 }

 if p.ch != nil && !p.closed {

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 50

 p.ch <- struct{}{}

 }

 p.mu.Unlock()

 return nil

}

type activeConn struct {

 p *Pool

 pc *poolConn

 state int

}

var (

 sentinel []byte

 sentinelOnce sync.Once

)

func initSentinel() {

 p := make([]byte, 64)

 if _, err := rand.Read(p); err == nil {

 sentinel = p

 } else {

 h := sha1.New()

 io.WriteString(h, "Oops, rand failed. Use time instead.") // nolint: er

 io.WriteString(h, strconv.FormatInt(time.Now().UnixNano(), 10)) // nolint: er

 sentinel = h.Sum(nil)

 }

}

func (ac *activeConn) firstError(errs ...error) error {

 for _, err := range errs[:len(errs)-1] {

 if err != nil {

 return err

 }

 }

 return errs[len(errs)-1]

}

func (ac *activeConn) firstError(errs ...error) error {

 pc := ac.pc

 if pc == nil {

 return nil

 }

 ac.pc = nil

 if ac.state&connectionMultiState != 0 {

 err = pc.c.Send("DISCARD")

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 50

 ac.state &^= (connectionMultiState | connectionWatchState)

 } else if ac.state&connectionWatchState != 0 {

 err = pc.c.Send("UNWATCH")

 ac.state &^= connectionWatchState

 }

 if ac.state&connectionSubscribeState != 0 {

 err = ac.firstError(err,

 pc.c.Send("UNSUBSCRIBE"),

 pc.c.Send("PUNSUBSCRIBE"),

)

 // To detect the end of the message stream, ask the server to echo

 // a sentinel value and read until we see that value.

 sentinelOnce.Do(initSentinel)

 err = ac.firstError(err,

 pc.c.Send("ECHO", sentinel),

 pc.c.Flush(),

)

 for {

 p, err2 := pc.c.Receive()

 if err2 != nil {

 err = ac.firstError(err, err2)

 break

 }

 if p, ok := p.([]byte); ok && bytes.Equal(p, sentinel) {

 ac.state &^= connectionSubscribeState

 break

 }

 }

 }

 _, err2 := pc.c.Do("")

 return ac.firstError(

 err,

 err2,

 ac.p.put(pc, ac.state != 0 || pc.c.Err() != nil),

)

}

func (ac *activeConn) Err() error {

 pc := ac.pc

 if pc == nil {

 return errConnClosed

 }

 return pc.c.Err()

}

func (ac *activeConn) Do(commandName string, args ...interface{}) (reply interface{

 pc := ac.pc

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 50

 if pc == nil {

 return nil, errConnClosed

 }

 ci := lookupCommandInfo(commandName)

 ac.state = (ac.state | ci.Set) &^ ci.Clear

 return pc.c.Do(commandName, args...)

}

func (ac *activeConn) DoWithTimeout(timeout time.Duration, commandName string, args

 pc := ac.pc

 if pc == nil {

 return nil, errConnClosed

 }

 cwt, ok := pc.c.(ConnWithTimeout)

 if !ok {

 return nil, errTimeoutNotSupported

 }

 ci := lookupCommandInfo(commandName)

 ac.state = (ac.state | ci.Set) &^ ci.Clear

 return cwt.DoWithTimeout(timeout, commandName, args...)

}

func (ac *activeConn) Send(commandName string, args ...interface{}) error {

 pc := ac.pc

 if pc == nil {

 return errConnClosed

 }

 ci := lookupCommandInfo(commandName)

 ac.state = (ac.state | ci.Set) &^ ci.Clear

 return pc.c.Send(commandName, args...)

}

func (ac *activeConn) Flush() error {

 pc := ac.pc

 if pc == nil {

 return errConnClosed

 }

 return pc.c.Flush()

}

func (ac *activeConn) Do(commandName string, args ...interface{}) (reply interface{

 pc := ac.pc

 if pc == nil {

 return nil, errConnClosed

 }

 return pc.c.Receive()

}

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 50

func (ac *activeConn) ReceiveWithTimeout(timeout time.Duration) (reply interface{},

 pc := ac.pc

 if pc == nil {

 return nil, errConnClosed

 }

 cwt, ok := pc.c.(ConnWithTimeout)

 if !ok {

 return nil, errTimeoutNotSupported

 }

 return cwt.ReceiveWithTimeout(timeout)

}

type errorConn struct{ err error }

func (ec errorConn) Do(string, ...interface{}) (interface{}, error) { return nil, e

func (ec errorConn) DoWithTimeout(time.Duration, string, ...interface{}) (interface

 return nil, ec.err

}

func (ec errorConn) Send(string, ...interface{}) error { return

func (ec errorConn) Err() error { return

func (ec errorConn) Close() error { return

func (ec errorConn) Flush() error { return

func (ec errorConn) Receive() (interface{}, error) { return

func (ec errorConn) ReceiveWithTimeout(time.Duration) (interface{}, error) { return

type idleList struct {

 count int

 front, back *poolConn

}

type poolConn struct {

 c Conn

 t time.Time

 created time.Time

 next, prev *poolConn

}

func (l *idleList) pushFront(pc *poolConn) {

 pc.next = l.front

 pc.prev = nil

 if l.count == 0 {

 l.back = pc

 } else {

 l.front.prev = pc

 }

 l.front = pc

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 50

 l.count++

}

// idle connect push list back

func (l *idleList) pushBack(pc *poolConn) {

 if l.count == 0 {

 l.front = pc

 l.back = pc

 pc.prev = nil

 pc.next = nil

 } else {

 pc.prev = l.back

 l.back.next = pc

 l.back = pc

 pc.next = nil

 }

 l.count++

}

func (l *idleList) popFront() {

 pc := l.front

 l.count--

 if l.count == 0 {

 l.front, l.back = nil, nil

 } else {

 pc.next.prev = nil

 l.front = pc.next

 }

 pc.next, pc.prev = nil, nil

}

func (l *idleList) popBack() {

 pc := l.back

 l.count--

 if l.count == 0 {

 l.front, l.back = nil, nil

 } else {

 pc.prev.next = nil

 l.back = pc.prev

 }

 pc.next, pc.prev = nil, nil

}

==

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 50

Initial method:

// Establish a connection pool

redisClient = &redis.Pool{

 MaxIdle: maxIdle,

 MaxActive: maxActive,

 IdleTimeout: MaxIdleTimeout * time.Second,

 Wait: true,

 Lifo: true, # It must be set to `true`.

 Dial: func() (redis.Conn, error) {

 con, err := redis.Dial("tcp", conf["Host"].(string),

 redis.DialPassword(conf["Password"].(string)),

 redis.DialDatabase(int(conf["Db"].(int64))),

 redis.DialConnectTimeout(timeout*time.Second),

 redis.DialReadTimeout(timeout*time.Second),

 redis.DialReadTimeout(timeout*time.Second),

 if err != nil {

 return nil, err

 }

 return con, nil

 },

}

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 50

Sample Code of Jedis Connection Pool
Last updated：2023-10-20 10:43:18

Prerequisite

Download and install Jedis. The latest version is recommended.

Sample code

Sample code of the connection pool and the meaning of the parameters are as follows:

Parameter Description Suggestion

setMaxTotal
Maximum
connections in the
connection pool

It is subjected to the factors like the volume of concurrent
business, access delay, and maximum connections.

setMaxIdle
Maximum idle
connections in the
connection pool

Set it to a value same as setMaxTotal

setMinIdle
Minimum idle
connections in the
connection pool

Set it the same as setMaxTotal

timeout Timeout period

It is set based on your business model and the network linkage
performance.
When network latency is low and your businesses are very
sensitive to service latency, set the value from 50 to 100 ms.
If your business has high latency tolerance or large volume of
key-value data, set it to 500 ms or 1,000 ms.

setTestOnBorrow
Whether to test the
connection when
obtaining it in a
connection pool

When the value is true , connection.isValid() will
be called for the connection test. This ensures the availability
of the obtained connection while consuming QPS
performance.
When the value is false , connection test will not be
performed. The speed of obtaining a connection can be
improved, but available connections may not be obtained.

setTestOnReturn Whether to perform
verification when the

When the value is true , connection.isValid() will
be called when returning the connection,

https://github.com/redis/jedis/wiki/Getting-started

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 50

connection is
returned to the
connection pool.

ensuring the connections are valid.
When the value is false , connection test will not be
performed. The speed of returning a connection can be
improved, but the returned connections may be unavailable.

JedisPoolConfig config = new JedisPoolConfig();

// Maximum idle connections, which can't exceed the maximum connections of Redis in

config.setMaxIdle(200);

// Maximum connections, which can't exceed the maximum connections of Redis instanc

config.setMaxTotal(200);

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 50

// Minimum idle connections in the connection pool

config.setMinIdle(20);

// Maximum wait time when the connections are used up

config.setMaxWaitMillis(3000);

// When an object is obtained from the connection pool, a ping check will be perfor

config.setTestOnBorrow(false);

// When a connection is returned, a check will be performed first. Once the check f

config.setTestOnReturn(false);

// Set the connection pool mode to “queue”

config.setLifo(false);

// Set the minimum connections

config.setTimeBetweenEvictionRunsMillis(3000);

// Replace the values of "host" and "password" with the connection address and pass

String host = "192.xx.xx.195";

String password = "123ad6aq";

// Read/write timeout in ms

int timeout = 2000;

int port = 6379;

JedisPool pool = new JedisPool(config,host,port,timeout,password);

Jedis jedis = null;

boolean broken = false;

try

{

 jedis = pool.getResource();

 /// ... do stuff here ... for example

 jedis.set("redis", "tencent");

 String foobar = jedis.get("redis");

 jedis.zadd("tec", 0, "a");

 jedis.zadd("tec", 0, "b");

 Set < String > sose = jedis.zrange("tec", 0, -1);

}

catch(Exception e)

{

 broken = true;

}

finally

{

 if(broken)

 {

 pool.returnBrokenResource(jedis);

 }

 else if(jedis != null)

 {

 pool.returnResource(jedis);

 }

}

TencentDB for Redis

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 50

