
TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 15

TencentDB for PostgreSQL

MSSQL Compatible Version

Product Documentation

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 15

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 15

Contents

MSSQL Compatible Version
Architecture Introduction
Function Description

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 15

MSSQL Compatible Version
Architecture Introduction
Last updated：2024-04-09 10:31:59

Based on Babelfish for PostgreSQL, TencentDB for PostgreSQL has been adapted to support the data types, syntax,
and functions of Microsoft SQL Server, the SQL Server wire-level protocol (TDS), and the communication between
SQL Server applications and PostgreSQL. This helps the migration of objects, storage procedures, and application

codes from TencentDB for SQL Server to TencentDB for PostgreSQL with minimal changes.
TencentDB for PostgreSQL does not fully support T-SQL, but you can run PostgreSQL commands to perform most
tasks that are typically handled by these commands. For example, if you frequently use specific T-SQL commands
that are not supported by TencentDB for PostgreSQL, you can connect to the PostgreSQL port and use PostgreSQL
commands instead. For more information, see the SQL commands in the PostgreSQL documentation.

Note:
All the subsequent SQL Server versions compatible with TencentDB for PostgreSQL are collectively referred to as the
MSSQL Compatible Edition.

Architecture Description

The MSSQL Compatible Edition currently supports TencentDB for PostgreSQL version 14.
The MSSQL Compatible Edition has a new database access port, allowing it to support SQL Server T-SQL and
commonly used SQL Server statements, and enable TDS-based client applications to access the TDS listener port of

the MSSQL Compatible Edition. Currently, TDS 7.1 and later versions are supported. For more information about the
SQL Server wire-level protocol, see [MS-TDS]: Tabular data stream protocol.
You can access data simultaneously by using the TDS connection from an application and the native PostgreSQL
connection.
By default, to use different database-specific syntax, please select the following ports:

For SQL Server, clients connect to port 1433.
For PostgreSQL, clients connect to port 5432.
When building a TecentDB for PostgreSQL database instance for the MSSQL Compatible Edition, the system will
create a TecentDB for PostgreSQL database named babelfish_db for the instance. The database is where all

SQL Server objects and structures are migrated to.

Note:
A database named babelfish_db will be reserved for this instance.

If you connect to the TDS port, the session will automatically be switched to the babelfish_db database. From

the perspective of T-SQL, the architecture is similar to that for connecting a SQL Server instance. You will see the

https://www.postgresql.org/docs/14/sql-commands.html
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/b46a581a-39de-4745-b076-ec4dbb7d13ec

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 15

 master and tempdb databases along with the sys.databases directory. You can create additional user

databases and switch between them through the USE statement.
When you create a SQL Server user database, the database is mapped as a schema in the babelfish_db

database. The retained cross-database syntax and semantics are equal to or similar to those assigned by SQL
Server.

Difference Between Single-Database and Multi-Databases

When you create a MSSQL Compatible Edition instance, you can choose one or more SQL Server databases. You
choice will affect how the names of SQL Server schemas within the babelfish_db database are displayed in

PostgreSQL. The migration mode is specified in the migration_mode parameter, which is an initialization

parameter and cannot be modified later.
In single-database mode, the schema name of the user database within the babelfish_db database is the same

as that in the SQL Server database. If you choose to migrate a single database, its schemas will be rebuilt in the
database, and you can name them the same as those used in SQL Server. For example, if the dbo and sche A

schemas are in the db1 database, after migration to PostgreSQL, the schemas are as follows.

When connecting via TDS, you can run USE db1 to check the dbo and sche A schemas from T-SQL, just like in SQL

Server. You can also check the same schema names from PostgreSQL.
In multi-database mode, the user database schema name becomes dbname_schemaname in PostgreSQL, while the
schema name remains unchanged in T-SQL.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 15

When connecting via TDS, you can run USE db1 or db2 to check the Sche A and Sche B schames from T-SQL, just
like in TencentDB for SQL Server. You can also check the names of their mapped schemas, such as db1_dbo and
dbA_Sche A, in TencentDB for stgreSQL.

Each database still contains your schemas. Each database's name is prefixed to the SQL Server schema name with
an underscore as a separator, for example:
db1 contains db1_dbo and db1_sche A.
db2 contains db2_dbo and db2_Sche B.
In the babelfish_db database, T-SQL users still need to run the USE dbname command to change databases, similar

to the operations in TencentDB for SQL Server.

How to Choose a Migration Mode

You can select a proper migration mode based on the number of user databases you have and how you plan to
migrate them. Once you create an instance, you will not be able to change the migration mode. Therefore, when
choosing a migration mode, please take into account of your user databases and client requirements.
If you create an MSSQL Compatible Edition instance, the master and tempdb system databases are also built. If you
already created or modified any objects in the system databases (master or tempdb), please be sure to re-create

these objects in the new cluster. Unlike TencentDB for SQL Server, TencentDB for PostgreSQL does not re-initialize
tempdb after cluster restart.
Single-database migration mode is recommended in the following scenario:
You intend to migrate a single TecentDB for SQL Server database. In single-database mode, the migrated schema
names are the same as the original schema names in the SQL Server, and migrating applications requires minimal

changes to SQL codes.
Your ultimate goal is to fully migrate databases to TecentDB for PostgreSQL, and the Compatible Edition is only for
transition.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 15

Multi-database migration mode is recommended in the following scenarios:
You are trying out the MSSQL Compatible Edition and are not sure about what you will need.
You need to migrate multiple user databases together, and your ultimate goal is not for a completely native migration

to TencentDB for PostgreSQL.
You have a potential need to migrate multiple databases in the future.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 15

Function Description
Last updated：2024-05-16 15:56:58

Differences in Using MSSQL Compatible Edition and T-SQL

TencentDB for PostgreSQL supports most T-SQL syntax. You can find a table below listing the currently supported T-
SQL features. It includes notes about differences in behavior compared to SQL Server.

Feature or Syntax Behavior or Difference Description

\\ (Line Continuation
Character)

Currently, line continuation characters (backslashes before newline) for strings and
hexadecimal strings are not supported. For strings, the backslash followed by a
newline is interpreted as a character in the string. For hexadecimal strings, the
backslash followed by a newline will result in a syntax error.

@@version
The format of the value returned by @@version is slightly different from that of the
value returned by SQL Server. If your code depends on the formatting of
@@version, it may not work properly.

Aggregate Function Partially support for aggregate functions (supports AVG, COUNT, COUNT_BIG,
GROUPING, MAX, MIN, STRING_AGG, and SUM).

ALTER TABLE Only adding or deleting a single column or constraint is supported.

BACKUP Statement Backup methods differ. In TencentDB for PostgreSQL's SQL Server Compatible
Edition, backup operations can only be conducted via the cloud console.

Blank Column Names
Without Aliases

sqlcmd and psql handling columns with empty names differently: SQL Server
sqlcmd returns a blank column name. PostgreSQL psql returns a system-
generated column name.

Data Type Indexes
According to ICU Library
Collation Rules

When the library version is changed, indexes of user-defined types dependent on
the International Components for Unicode (ICU) collation library (used by the
MSSQL Compatible Edition) will not become invalid.

COLLATIONPROPERTY
Function

Collation rule properties are only applicable to the supported collation rules in the
MSSQL Compatible Edition BBF.

Original Column Settings
 When a column with the original setting is being created, the constraint name is
ignored. To delete the original setting of a column, please use the following syntax:
 ALTER TABLE...ALTER COLUMN..DROP DEFAULT... .

Constraint In PostgreSQL, individual constraint conditions cannot be enabled or disabled.
The statement will be ignored and a warning will be issued.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 15

Constraints Created
Using DESC
(Descending Order)
Columns

Constraints are created using ASC (ascending order) columns.

Constraints with the
IGNORE_DUP_KEY

Creating constraints with this attribute is not supported.

CREATE, ALTER, DROP
SERVER ROLE

ALTER SERVER ROLE is only supported for sysadmin. Other syntax is not
supported. In MSSQL Compatible Edition, T-SQL user experiences regarding log-
ins (server principals), databases, and database users (database principals) are
similar to those in SQL Server.
In MSSQL Compatible Edition, only the dbo user exists in the user databases. To
operate as the dbo user, the log-in name must be a member of the server-level
sysadmin role (ALTER SERVER ROLE sysadmin ADD MEMBER log-in).
Log-ins that are not of the sysadmin role currently can only access the master and
tempdb databases as the guest user. Currently, since the MSSQL Compatible
Edition supports only the dbo user in user databases, all application users must
use a log-in name that is a member of the sysadmin role. You cannot create users
with lower permissions, such as read-only access to certain tables.

CREATE, ALTER LOGIN
Clauses Supporting
Limited Syntax

The clauses CREATE LOGIN... PASSWORD, ...DEFAULT_DATABASE, and
...DEFAULT_LANGUAGE are supported. The clause ALTER LOGIN...
PASSWORD is supported, but the clause ALTER LOGIN... OLD_PASSWORD is
not supported. Only log-in names that are members of the system administrator
can modify passwords.

CREATE DATABASE
Case-Sensitive Collation
Rules

The CREATE DATABASE statement does not support case-sensitive collation
rules.

CREATE DATABASE
Keywords and Clauses

Options other than COLLATE and CONTAINMENT=NONE are not supported.
The COLLATE clause can only accept the value set by
babelfishpg_tsql.server_collation_name.

CREATE SCHEMA...
Supported Clauses

You can use the CREATE SCHEMA command to create an empty schema. Use
other commands to create schema objects.

CREATE, ALTER LOGIN
Clauses Supporting
Limited Syntax

The clauses CREATE LOGIN... PASSWORD, ...DEFAULT_DATABASE, and
...DEFAULT_LANGUAGE are supported. The clause ALTER LOGIN...
PASSWORD is supported, but the clause ALTER LOGIN... OLD_PASSWORD is
not supported. Only log-in names that are members of the system administrator
can modify passwords.

LOGIN Objects All options for LOGIN objects are supported, except for the following:
PASSWORD, DEFAULT_DATABASE, ENABLE, DISABLE.

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 15

Database ID Values The primary database and tempdb database will not be database IDs 1 and 2.

Identifiers Exceeding 63
Characters

PostgreSQL supports up to 63 characters for identifiers. The MSSQL Compatible
Edition will convert identifiers exceeding 63 characters into names containing the
original name hash.

Support for IDENTITY
Columns

IDENTITY columns are supported for data types tinyint, smallint, int, bigint,
numeric, and decimal. SQL Server supports up to 38 digits of precision for the data
types numeric and decimal in IDENTITY columns. PostgreSQL supports up to 19
digits of precision for the data types numeric and decimal in IDENTITY columns.

Using
IGNORE_DUP_KEY in
Indexes

The syntax for creating an index with IGNORE_DUP_KEY will create an index as if
this attribute is omitted.

Indexes Containing More
Than 32 Columns

Indexes cannot contain more than 32 columns. The number of included index
columns is counted towards the maximum in PostgreSQL, but not in SQL Server.

Index (Clustered) The creation of a clustered index is as if NONCLUSTERED is specified.

Index Clause

Ignore the following clauses: FILLFACTOR, ALLOW_PAGE_LOCKS,
ALLOW_ROW_LOCKS, PAD_INDEX, STATISTICS_NORECOMPUTE,
OPTIMIZE_FOR_SEQUENTIAL_KEY, SORT_IN_TEMPDB, DROP_EXISTING,
ONLINE, COMPRESSION_DELAY, MAXDOP, and DATA_COMPRESSION.

NEWSEQUENTIALID
Function

Implemented as NEWID; does not guarantee sequential behavior. When
NEWSEQUENTIALID is called, PostgreSQL generates a new GUID value.

OUTER APPLY SQL Server's lateral joins are not supported. PostgreSQL offers SQL syntax for
lateral joins, but the behavior is different.

OUTPUT Clause Is
Supported with the
Following Limitations:

Simultaneous use of OUTPUT and OUTPUT INTO in the same DML query is not
supported. Referring to non-target tables in the OUTPUT clause for UPDATE or
DELETE operations is not allowed. OUTPUT... DELETED * , INSERTED *
in the same query is not supported.

Procedure or Function
Parameter Limitations

The MSSQL Compatible Edition supports up to 100 parameters for procedures or
functions.

RESTORE Statement
PostgreSQL snapshots of the database are different from the backup files created
in SQL Server. Additionally, the granularity of backup and restore between SQL
Server and PostgreSQL may also differ.

ROLLBACK: Table
variables do not support
transaction rollback.

If a rollback occurs in a session containing table variables, the process may be
interrupted.

ROWGUIDCOL This clause is currently ignored. Referencing $GUIDGOL in the query leads to a

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 15

syntax error.

Support for SEQUENCE
Objects

Data types tinyint, smallint, int, bigint, numeric, and decimal support SEQUENCE
objects. For the data types numeric and decimal in SEQUENCE, PostgreSQL
supports a precision of up to 19 digits.

Server-Level Roles The sysadmin server-level role is supported. Other server-level roles apart from
sysadmin are not supported.

Database-Level Roles
Other Than db_owner

The db_owner database-level role is supported. Other database-level roles apart
from db_owner are not supported.

SQL Keyword SPARSE The keyword SPARSE is accepted and ignored.

SQL Keyword Clause ON
filegroup

This clause is currently ignored.

SQL Keywords
CLUSTERED and
NONCLUSTERED for
Indexes and Constraints

The MSSQL Compatible Edition accepts and ignores the keywords CLUSTERED
and NONCLUSTERED.

sysdatabases.cmptlevel sysdatabases.cmptlevel is always NULL.

tempdb Not Reinitialized
upon Restart

Permanent objects (such as tables and procedures) created in tempdb are not
deleted when the database is restarted.

TEXTIMAGE_ON
Filegroup

The MSSQL Compatible Edition ignores the TEXTIMAGE_ON filegroup clause.

Time Precision
The MSSQL Compatible Edition supports precision up to six decimal places for
fractional seconds. It is anticipated that this behavior will not have negative
impacts.

Transaction Isolation
Levels

Treats READUNCOMMITTED in the same way as READCOMMITTED.
REPEATABLEREAD and SERIALIZABLE are not supported.

Virtual Computed
Columns (Non-Persisted)

Virtual computed columns are created as persisted columns.

WITHOUT
SCHEMABINDING
Clause

This clause is not supported for functions, procedures, triggers, or views.

Features with Limited Support

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 15

Each new version of the MSSQL Compatible Edition adds support for more features, aligning better with T-SQL
features and behaviors. Despite this, there are some unsupported features and differences in the current
implementation. The following provides information on the differences in features between the MSSQL Compatible

Edition and T-SQL, as well as some solutions or usage instructions.
Starting from MSSQL Compatible Edition 1.2.0, the following features currently have limited implementation:
SQL Server Catalogs (System Views)
The catalogs sys.sysconfigures, sys.syscurconfigs, and sys.configurations support only a single read-only
configuration. sp_configure is currently not supported. For more information on some other SQL Server views

implemented in the MSSQL Compatible Edition, see querying the database to access object information.
Granting Permissions
GRANT... TO PUBLIC is supported, but currently, GRANT..TO PUBLIC WITH GRANT OPTION is not supported.
SQL Server Ownership Chains and Permission Mechanism Limitations
In the MSSQL Compatible Edition, SQL Server ownership chains apply to views but not to stored procedures. This
means to explicitly grant the access permissions to other database objects owned by the same owner as the calling

procedure to the procedure itself. In SQL Server, granting the EXECUTE permission to the caller for the procedure is
sufficient to invoke other objects owned by the same owner. In the MSSQL Compatible Edition, it is further required to
grant the caller direct access permissions to the objects that the procedure accesses.
Resolution of Object (without schema name) References
When a SQL object (procedure, view, function, or trigger) references an object without specifying its schema name,

SQL Server resolves the referenced object's schema name using the schema name of the SQL object where the
reference occurs. Currently, the MSSQL Compatible Edition resolves the name differently by using the default schema
of the database user executing the procedure.
Default Schema Changes, Sessions, and Connections
If a user changes the default schema using ALTER USER...WITH DEFAULT SCHEMA, the change takes effect

immediately in that session. However, for other sessions connected under the same user account, the timing differs as
follows:
For SQL Server: This change takes effect immediately for this user across all other connections.
For the MSSQL Compatible Edition: This change will only take effect for this user in new connections.
Non-Deterministic Collation Rules and CHARINDEX
When the applicable collation rules are non-deterministic, currently, CHARINDEX cannot be used. Because the

MSSQL Compatible Edition defaults to a case-insensitive collation rule, which is non-deterministic. You may receive a
runtime error indicating "Substring search is not supported for non-deterministic collation rules". Until this error is
resolved, the issue can be handled by either of the following methods:
Explicitly convert the expression to a case-sensitive collation rule, then convert both arguments to uppercase through
applying LOWER or UPER. For example, SELECT charindex('x', a) FROM t1 would become as follows:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 15

SELECT charindex(LOWER('x'), LOWER(a COLLATE sql_latin1_general_cp1_cs_as)) FROM t1

Create a SQL function f_charindex, and then replace the CHARINDEX call with a call to the following function:

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 15

CREATE function f_charindex(@s1 varchar(max), @s2 varchar(max)) returns int

AS

BEGIN

declare @i int = 1

WHILE len(@s2) >= len(@s1)

BEGIN

 if LOWER(@s1) = LOWER(substring(@s2,1,len(@s1))) return @i

 set @i += 1

 set @s2 = substring(@s2,2,999999999)

END

return 0

TencentDB for PostgreSQL

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 15

END

go

Implementation of ROWVERSION and TIMESTAMP Data Types and escape hatch Settings
The MSSQL Compatible Edition now supports ROWVERSION and TIMESTAMP data types. To use ROWVERSION
or TIMESTAMP in the MSSQL Compatible Edition, the escape hatch setting
babelfishpg_tsql.escape_hatch_rowversion must be changed from the default value of strict to ignore. The
implementation of ROWVERSION and TIMESTAMP data types in the MSSQL Compatible Edition is semantically

similar to that in the SQL Server, with the following exception:
In SQL Server, each inserted or updated row is assigned a unique ROWVERSION/TIMESTAMP value. In the
MSSQL Compatible Edition, every row inserted by the same statement is assigned the same
ROWVERSION/TIMESTAMP value.
For instance, when an UPDATE statement or an INSERT-SELECT statement affects multiple rows, in SQL Server,
the affected rows each have different values in their ROWVERSION/TIMESTAMP column. In the MSSQL Compatible

Edition, the rows have the same value.
In SQL Server, when you create a new table using SELECT-INTO, you can convert explicit values (such as NULL)
into the ROWVERSION/TIMESTAMP column to be created. When you perform the same operation in the MSSQL
Compatible Edition, the system will assign an actual ROWVERSION/TIMESTAMP value to each row in the new table.
Note:

These subtle differences in the ROWVERSION/TIMESTAMP data types should not negatively impact applications
running on the MSSQL Compatible Edition.
Pattern Creation, Ownership, and Permissions
SQL Server and the MSSQL Compatible Edition have different permissions for non-DBO users to create objects
within schemas created by the database owner (using CREATE SCHEMA…AUTHORIZATION DBO), as shown in the

table below:

Database users (non-DBO) can perform the following
actions:

SQL Server Babelfish

Can objects be created in the schema without extra
authorization from the DBO?

No Yes

Can referenced objects created by the DBO in the schema
be used without extra authorization?

Yes No

