
Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 1 of 32

Tencent Kubernetes Engine

TKE Scheduling

Product Documentation

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 2 of 32

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 3 of 32

Contents

TKE Scheduling
Job Scheduling

Native Node Dedicated Scheduler
Overview

Request Recommendation
Fine Scheduling

QoSAgent

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 4 of 32

TKE Scheduling
Job Scheduling
Native Node Dedicated Scheduler
Overview
Last updated：2024-04-24 15:55:36

Overview

Component Overview

Kubernetes' scheduling logic operates based on the Pod's Request. The schedulable resources on the node are
occupied by the Pod's Request amount and cannot free up. The native node dedicated scheduler is a scheduling
plugin developed by Tencent Kubernetes Engine (TKE) based on the native Kube-scheduler Extender mechanism of

Kubernetes, which can virtually magnify the capacity of the node, resolving the issue of the node's resources being
occupied while maintaining a low utilization rate.

Kubernetes objects deployed in a cluster

Kubernetes Object Name Type Requested
Resource

Belonging
Namespace

crane-scheduler-controller Deployment

Each instance is
endowed with
200m CPU and
200Mi memory,
totaling one
instance

kube-system

crane-descheduler Deployment

Each instance is
endowed with
200m CPU and
200Mi memory,
totaling one
instance

kube-system

crane-scheduler Deployment Each instance is
endowed with
200m CPU and
200Mi memory,

kube-system

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 5 of 32

totaling three
instances

crane-scheduler-controller Service - kube-system

crane-scheduler Service - kube-system

crane-scheduler ClusterRole - kube-system

crane-descheduler ClusterRole - kube-system

crane-scheduler ClusterRoleBinding - kube-system

crane-descheduler ClusterRoleBinding - kube-system

crane-scheduler-policy ConfigMap - kube-system

crane-descheduler-policy ConfigMap - kube-system

ClusterNodeResourcePolicy CRD - -

CraneSchedulerConfiguration CRD - -

NodeResourcePolicy CRD - -

crane-scheduler-controller-
mutating-webhook

MutatingWebhookConfiguration - -

Application Scenarios

Scenario 1: Resolving the issue of high node box rate but low utilization

Note:
The fundamental concepts are as follows.
Box Rate: It refers to the ratio of the sum of Requests of all Pods on a node to the actual specifications of the node.

Utilization: It refers to the ratio of the total actual usage of all Pods on a node to the actual specifications of the node.
The native Kubernetes scheduler schedules based on the Request resources of Pod. Therefore, even if the actual
usage on the node is low at this time, if the sum of Requests of all Pods on the node is close to the actual
specifications of the node, new Pods cannot be scheduled, resulting in substantial resource waste. Moreover,
businesses tend to apply for surplus resources to ensure the stability of their services, that is, a large Request, leading
to the occupation of node resources, unable to free up. At this point, the node's box rate is substantial, but the actual

resource utilization is comparatively low.
At such times, you can use the dedicated native node scheduler to virtually enhance the specifications of CPU and
memory on a node, thus amplifying its scheduler resources. More pods can thereby be scheduled.

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 6 of 32

Scenario 2: Setting the watermark of the nodes

The watermark setting of the node is to ensure the stability of the node and set the node's target utilization rate:
Control of the watermark during scheduling: This step determines the native node's target resource utilization rate to
guarantee stability. While scheduling the Pods, nodes with resources above this watermark will not be selected.

Moreover, from nodes meeting the watermark requirements, as shown in the following figure, nodes with lower actual
load watermarks have priority to balance the cluster node's utilization distribution.
Control of the watermark during runtime: This step determines the current target resource utilization rate for native
nodes to guarantee stability. At runtime, nodes with resources above this watermark could trigger evictions. Given that
eviction is a high-risk action, bear in mind the following notes.

Notes

1. To avoid draining important Pods, this feature is set not to evict Pods by default. For Pods that can be safely
drained, it is essential for users to explicitly determine the workload to which the Pod belongs. For example,
StatefulSet, Deployment, and other objects can be set as drainable annotations:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 7 of 32

descheduler.alpha.kubernetes.io/evictable: 'true'

2. It is recommended to enable event persistence for the cluster, to better monitor component abnormalities and

troubleshoot. When evicting a Pod, corresponding events will be generated. You can observe if the Pod is being
repeatedly evicted based on the Descheduled event.
3. The eviction action has requirements for nodes: a cluster is required to have 3 or more low-load native nodes,
where a low-load definition refers to a Node's load that is lesser than its operational water-level control.
4. After filtering at the node dimension, evacuation begins on the workload on the Node. This necessitates the

constraint that the replica count of the workload should be equal to or greater than 2, or at least half of the Workload

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 8 of 32

spec replicas.
5. At the Pod dimension level, if a Pod's load exceeds the eviction watermark of the node, eviction is forbidden to
prevent the overloading of other nodes by relocating them there.

Scenario 3: Pods under specified Namespace shall be allocated only to native nodes upon
the subsequent scheduling

Native nodes, the newly-launched node types, are introduced by the TKE Tencent Kubernetes Engine team of
Tencent Cloud. They are built upon the technical excellence derived from Tencent Cloud's tens of millions of core
container operations, thereby delivering native-like, high-stability, and rapid-response K8s node management
capabilities. Native nodes, with amplifiable node specifications and recommended Request capabilities, are hence
highly advisable for exploiting its advantages fully by scheduling your workload to them. While enabling the native

node scheduler, you can opt for Namespace. Consequently, Pods under the specified Namespace shall be scheduled
exclusively to native nodes in the following scheduling.
Note:
If the native node resources are insufficient at this stage, it would result in Pod Pending.

Limits

This feature is only supported by the native node. For more information, see Native Node Overview.
It is required to ensure that the Kubernetes version is v1.22.5-tke.8, v1.20.6-tke.24, v1.18.4-tke.28,v1.16.3-tke.30 or

higher. For cluster versions upgrade, see Upgrading a Cluster.

Risk Control

After the uninstallation of this component, only the scheduling logic associated with the native node-dedicated
scheduler will be eliminated, leaving the scheduling capability of the native Kube-Scheduler untouched. The already
scheduled Pods on the native node will not be affected due to their pre-set schedule. However, a reboot of kubelet on
the native node might trigger Pod eviction as the sum of Pods' Requests on the native node could exceed the genuine

specifications of the native node.
In the event of the amplification coefficient being adjusted downwards, the existing Pods on the native node, due to
their already prescribed schedule, will remain unaffected. Nonetheless, if the kubelet on the native node restarts, it
might trigger Pod eviction since the aggregate of Pods' Requests on the native node could surpass the amplified
specifications of the native node after the amplification.

Users witness the inconsistency between Node resources in the Kubernetes cluster and corresponding CVM node
resources.
In the future, issues related to excessive load and instability could possibly arise.

https://www.tencentcloud.com/zh/document/product/457/54483
https://www.tencentcloud.com/zh/document/product/457/30640

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 9 of 32

After the amplification of the node specifications, the node kubelet layer and the resource QoS-related modules might
be affected. For instance, kubelet's binding cores, when a 4-core node is treated as an 8-core node for scheduling, the
Pods' binding cores could possibly be impacted.

Component Permission Description

Crane Scheduler Permission

Permission Description

The permission of this component is the minimal dependency required for the current feature to operate.

Permission Scenarios

Feature Involved Object
Involved
Operation
Permission

It is required to keep track of the updates and changes to the
node, as well as the utilization of the access node.

nodes get/watch/list

Track the updates and changes of pods, and determine the
scheduling priority of nodes based on the recent scheduling
situation of pods within the cluster.

pods/namespaces get/watch/list

It is required to update node utilization to node resources,
thereby achieving the decoupling of scheduling and query logic.

nodes/status patch

It is required to support multiple replicas to ensure component
availability.

leases create/get/update

It is required to track the updates and changes of the
configmap, implementing the feature of scheduling specified
pods to native nodes.

configmap get/list/watch

Permission Definition

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 10 of 32

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: crane-scheduler

rules:

- apiGroups:

 - ""

 resources:

 - pods

 - nodes

 - namespaces

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 11 of 32

 verbs:

 - list

 - watch

 - get

- apiGroups:

 - ""

 resources:

 - nodes/status

 verbs:

 - patch

- apiGroups:

 - ""

 resources:

 - configmaps

 verbs:

 - get

 - list

 - watch

- apiGroups:

 - extensions

 - apps

 resources:

 - deployments/scale

 verbs:

 - get

 - update

- apiGroups:

 - coordination.k8s.io

 resources:

 - leases

 verbs:

 - create

 - get

 - update

- apiGroups:

 - "scheduling.crane.io"

 resources:

 - clusternoderesourcepolicies

 - noderesourcepolicies

 - craneschedulerconfigurations

 verbs:

 - get

 - list

 - watch

 - update

 - create

 - patch

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 12 of 32

Crane Descheduler Permission

Permission Description

The permission of this component is the minimal dependency required for the current feature to operate.

Permission Scenarios

Feature Involved Object
Involved
Operation
Permission

It is required to keep track of
the updates and changes to
the node, as well as the
utilization of the access node.

nodes get/watch/list

Track the updates and
changes of the pods,
determining the pods to be
evicted first based on the
information of the pods within
the clusters.

pods get/watch/list

Drain the pod. pods/eviction create

It is required to determine
whether the number of ready
workloads where the pod
resides constitutes half or
more of the total requirements
to decide whether to drain the
pod.

replicasets/deployments/statefulsets/statefulsetpluses/job get

Report events when draining
Pods.

create events

Permission Definition

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 13 of 32

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: crane-descheduler

 namespace: kube-system

rules:

 - apiGroups: [""]

 resources: ["nodes"]

 verbs: ["get", "watch", "list"]

 - apiGroups: [""]

 resources: ["pods"]

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 14 of 32

 verbs: ["get", "watch", "list"]

 - apiGroups: [""]

 resources: ["nodes/status"]

 verbs: ["patch"]

 - apiGroups: [""]

 resources: ["pods/eviction"]

 verbs: ["create"]

 - apiGroups: ["*"]

 resources: ["replicasets"]

 verbs: ["get"]

 - apiGroups: ["*"]

 resources: ["deployments"]

 verbs: ["get"]

 - apiGroups: ["apps"]

 resources: ["statefulsets"]

 verbs: ["get"]

 - apiGroups: ["platform.stke"]

 resources: ["statefulsetpluses"]

 verbs: ["get"]

 - apiGroups: [""]

 resources: ["events"]

 verbs: ["create"]

 - apiGroups: ["*"]

 resources: ["jobs"]

 verbs: ["get"]

 - apiGroups: ["coordination.k8s.io"]

 resources: ["leases"

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 15 of 32

Request Recommendation
Last updated：2024-03-04 15:26:47

Overview

Component Overview

Kubernetes can efficiently improve business orchestration capabilities and resource utilization. With no additional
capabilities for support, this enhancement remains substantially limited. The average resource utilization of a TKE
node is merely about 14% according to the previous statistics by the TKE team.

The main reason for the poor resource utilization rate of a Kubernetes cluster is adherence to Kubernetes' resource
scheduling logic. When creating Kubernetes workloads, it's typical to configure suitable resource Requests and Limits
for the workload, indicating resource concession and restriction. Among these, the Requests have the most significant
impact on the utilization rate. To prevent the resources employed by their workload from being occupied by others, or
to cater to the resource demands during peak traffic, users tend to set larger values for Request. The disparity

between the Requests and the actual utilized resources cannot be employed by other workloads, resulting in wastage.
The unreasonable setting of Request values leads to a low resource utilization rate in the Kubernetes cluster.
Tencent Kubernetes Engine (TKE) supports the installation of Request Recommendation component in the cluster.
Request Recommendation allows for the suggestion of Request/Limit values for container-level resources in
Kubernetes workloads, reducing resource wastage.

Resource objects deployed in a cluster

By enabling Request Recommendation in a cluster, it will deploy the following Kubernetes objects within a cluster:

Kubernetes Object Name Type Default Resource
Occupation

Associated
Namespace

analytics.analysis.crane.io CustomResourceDefinition - -

recommendations.analysis.crane.io CustomResourceDefinition - -

crane-system Namespace - -

housekeeper-default Analytics - crane-system

recommendation-config ConfigMap - crane-system

craned ClusterRole - -

craned ClusterRoleBinding - -

craned Service - crane-system

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 16 of 32

craned ServiceAccount - crane-system

craned Deployment - crane-system

Feature Overview

It supports recommending suitable Request/Limit values of resources for each container in Deployment, StatefulSet,
and DaemonSet.
It supports one-click update of the resource values for containers in the initial workload with recommended values.
It supports maintaining the Request/Limit ratio. The recommended Request/Limit will preserve the proportion between
the Reqeust/Limit in the initial Workload Container Settings. If the Limit is not set upon Workload creation, a Limit

recommendation won't be provided.
The console's one-click update capability for Request recommendations will add a nodeSelector attribute to the
workload by default. During workload updates, Pods can only be scheduled on native nodes. If native node resources
are insufficient, it will lead to a pending of the Pod.

Principles of Request Recommendation

The component creates an Analytics CR object under the crane-system Namespace, covering all native Kubernetes

workloads (Deployment, DaemonSet, StatefulSet) in all clusters. It analyzes workload data for up to 14 days, updating
recommended values every 12 hours.
It then produces a Recommendation CR object for each workload within the cluster based on Analytics, purposed for
data storage of recommendations.
If recommendation CR generates recommendation data, it will inscribe this information into the corresponding
workload's Annotation.

Notes

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 17 of 32

Environment Requirements

Kubernetes version: 1.10+

Node Requirements

The One-Click Update Workload Request feature in the Tencent Kubernetes Engine Console will migrate the
workload to the native node. If your cluster's native node lacks resources, it could result in a pending of the Pod.

Requirements on the Controlled Resources

It supports Deployment, StatefulSet, and DaemonSet.
It does not support Job and CronJob, as well as the Pods that are not managed by a workload.

Recommended Threshold

Suggested minimum values: The recommended minimum value for CPU per container is 0.125 core, i.e. 125 m; the
minimum memory is 125 Mi.

Instructions

Installing a Component

1. Log in to the Tencent Kubernetes Engine Console.

2. Select TKE Insight > Node Map on the left.
Note:
You can also undertake the installation in TKE Insight > Workload Map.
3. On the Node Map page, hover your mouse over a Node at the bottom of the page, and click Details.
4. In the top right corner of the Node details page, enable the Request Recommendation switch to configure the
scheduler's parameters.

Note:
This feature comprises a global switch at the cluster level. After the feature is enabled, it will automatically analyze the
historical monitoring data of workloads to recommend appropriate Request values.

https://www.tencentcloud.com/zh/document/product/457/54483
https://console.tencentcloud.com/tke2/cluster?rid=8

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 18 of 32

This feature does not take effect immediately after enabling. The system will analyze the resource usage history to
provide accurate recommended values.
The period for calculation may vary for different workloads. One workload within a cluster may potentially impact

another.
After this feature is enabled, values will be recommended for the workloads that run at least for one day.
For workloads created after this feature is enabled, it usually takes one day to recommend values.
It is recommended to update the Workload with the recommended values after the workload has been running stably
for a while.

Using a Component

1. Log in to the Tencent Kubernetes Engine Console.
2. Select TKE Insight > Workload Map on the left.
Note:
Workload Map mainly displays various states and metrics of workloads through a visual interface, assisting users in
comprehending the current configuration volume of the workload and its actual usage, thereby helping in analyzing
potential issues within the workload. For more information, see the Workload Map documentation.

3. On the Workload Map page, hover your mouse over a workload at the bottom of the page, and click
Recommended.

4. In the pop-up window, click Confirm to use the suggested Request value for updating the original value in the

Workload.
Note:
The One-Click Update Workload Request feature in the Tencent Kubernetes Engine Console will migrate the
workload to the native nodes. If your native nodes in your cluster lack resources, it will result in a pending of the Pod.

https://console.tencentcloud.com/tke2/cluster?rid=8
https://www.tencentcloud.com/zh/document/product/457/54196
https://www.tencentcloud.com/zh/document/product/457/54483

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 19 of 32

Accessing Recommended Values in the Background

The Request Recommendation engine stores the recommended values in the YAML file of each workload. You can
use the standard Kubernetes API to access these recommended values for each workload and then integrate them
into your business's deployment system. The following demonstrates how to peek into the recommended Request

amount for each container under a workload:

apiVersion: apps/v1

kind: Deployment

metadata:

 annotations:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 20 of 32

 analysis.crane.io/resource-recommendation: |

 containers:

 # If a Pod contains multiple containers, each container has recommended value

 - containerName: nginx

 target:

 cpu: 125m

 memory: 125Mi #If unit is missing herein, a character string "58243235" w

Note:
The component itself does not recommend a Limit. When updating the Workload using the Request recommendation
value in the console, it will maintain the ratio of the Workload’s Request and Limit to ensure the Quality of Service

(QoS) remains constant. If you access the recommended value of the Request in the background, you can consider it
as a reference to update the resource configuration of the original Workload.

Component Permission Description

Permission Description

The permission of this component is the minimal dependency required for the current feature to operate.

Permission Scenarios

Feature Involved Object
Involved
Operation
Permission

Recording the oom record of the pod pod get/list/watch

Searching and recommending idle nodes based on the node node get/list/watch

It is required to record the exception information in the form of
events.

event create/patch/update

Monitoring changes in related recommendation resources, and
making resource recommendation

analysis.crane.io All permissions

Permission Definition

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 21 of 32

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: craned

rules:

- apiGroups:

 - ""

 resources:

 - configmaps

 - pods

 - nodes

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 22 of 32

 verbs:

 - get

 - list

 - watch

- apiGroups:

 - analysis.crane.io

 resources:

 - "*"

 verbs:

 - "*"

- apiGroups:

 - apps

 resources:

 - daemonsets

 - deployments

 - deployments/scale

 - statefulsets

 - statefulsets/scale

 verbs:

 - get

 - list

 - watch

- apiGroups:

 - apps

 resources:

 - daemonsets/status

 - deployments/status

 - deployments/scale

 - statefulsets/status

 - statefulsets/scale

 verbs:

 - update

- apiGroups:

 - autoscaling

 resources:

 - horizontalpodautoscalers

 verbs:

 - '*'

- apiGroups:

 - autoscaling.crane.io

 resources:

 - '*'

 verbs:

 - '*'

- apiGroups:

 - ""

 resources:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 23 of 32

 - events

 verbs:

 - create

 - patch

 - update

- apiGroups:

 - prediction.crane.io

 resources:

 - '*'

 verbs:

 - '*'

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: craned

 namespace: crane-system

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 - secrets

 verbs:

 - create

 - apiGroups:

 - ""

 resourceNames:

 - craned

 resources:

 - configmaps

 verbs:

 - get

 - patch

 - update

 - apiGroups:

 - ""

 resourceNames:

 - clusters-secret-store

 resources:

 - secrets

 verbs:

 - get

 - apiGroups:

 - coordination.k8s.io

 resources:

 - leases

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 24 of 32

 verbs:

 - get

 - patch

 - update

 - create

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 25 of 32

Fine Scheduling
QoSAgent
Last updated：2024-02-05 16:28:54

QoS Agent is an extended component enhanced by Tencent Cloud based on quality of service, offering an array of
capabilities. It ensures stability while increasing the utilization rate of cluster resources.
Note:

QoS capabilities are only supported on native nodes. If your nodes are not native, or your workload does not reside on
native nodes, these capabilities will not be effective.

Kubernetes objects deployed in a cluster

Kubernetes Object Name Type
Default
Resource
Occupation

Associated
Namespaces

avoidanceactions.ensurance.crane.io CustomResourceDefinition - -

nodeqoss.ensurance.crane.io CustomResourceDefinition - -

podqoss.ensurance.crane.io CustomResourceDefinition - -

timeseriespredictions.prediction.crane.io CustomResourceDefinition - -

kube-system Namespace - -

all-be-pods PodQOS - kube-system

qos-agent ClusterRole - -

qos-agent ClusterRoleBinding - -

crane-agent Service - kube-system

qos-agent ServiceAccount - kube-system

qos-agent Daemonset - kube-system

Feature Overview

https://www.tencentcloud.com/zh/document/product/457/54483

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 26 of 32

Feature Description

Priority of CPU
Usage

The feature of setting CPU usage priority ensures a sufficient supply of resources for high-
priority tasks during resource competition, thereby suppressing low-priority tasks.

CPU Burst CPU Burst permits temporary provision of resources beyond the limit for latency-sensitive
applications, ensuring their stability.

CPU
Hyperthreading
Isolation

Preventing L2 Cache of high-priority container threads from being affected by low-priority
threads running on the same CPU physical core.

Memory QoS
Enhancement

A comprehensive enhancement of memory performance, along with the flexible limitations
on the memory usage of the container.

Network QoS
Enhancement

A comprehensive enhancement of network performance, along with flexible limitations on
the network usage of the container.

Disk IO QoS
Enhancement

A comprehensive enhancement of disk performance, along with flexible limitations on the
disk usage of the container.

QoS Agent Permission

Note:
The Permission Scenarios section only lists the permissions related to the core features of the components, for a
complete permission list, please refer to the Permission Definition.

Permission Description

The permission of this component is the minimal dependency required for the current feature to operate.

Permission Scenarios

Feature Involved Object Involved Operation
Permission

Reading podqos, nodeqos, time series, and other
configurations

podqoss / nodeqoss /
avoidanceactions

get/list/watch/update

Viewing the pod information of the current node pod get/list/watch

Enabling isolation capability based on Podqos/
Modifying node resources to increase offline resources

pod status update/patch

Adding a taint to the node node get/list/watch/update

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 27 of 32

Sending events based on the status of isolation and
resource interference

event All Permissions

Permission Definition

rules:

 - apiGroups:

 - ""

 resources:

 - pods

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 28 of 32

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - ""

 resources:

 - pods/status

 verbs:

 - update

 - patch

 - apiGroups:

 - ""

 resources:

 - nodes

 verbs:

 - get

 - list

 - watch

 - update

 - apiGroups:

 - ""

 resources:

 - nodes/status

 - nodes/finalizers

 verbs:

 - update

 - patch

 - apiGroups:

 - ""

 resources:

 - pods/eviction

 verbs:

 - create

 - apiGroups:

 - ""

 resources:

 - configmaps

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - ""

 resources:

 - events

 verbs:

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 29 of 32

 - "*"

 - apiGroups:

 - "ensurance.crane.io"

 resources:

 - podqoss

 - nodeqoss

 - avoidanceactions

 verbs:

 - get

 - list

 - watch

 - update

 - apiGroups:

 - "prediction.crane.io"

 resources:

 - timeseriespredictions

 - timeseriespredictions/finalizers

 verbs:

 - get

 - list

 - watch

 - create

 - update

 - patch

 - apiGroups:

 - "topology.crane.io"

 resources:

 - "noderesourcetopologies"

 verbs:

 - get

 - list

 - watch

 - create

 - update

 - patch

Deployment Methods

1. Log into the Tencent Kubernetes Engine Console, and choose Cluster from the left navigation bar.

2. In the Cluster list, click the desired Cluster ID to access its detailed page.
3. Select Add-on management from the left-side menu, and click Create within the Component Management page.
4. On the Create Add-on management page, tick the box for QoS Agent.
5. Click Complete to install the add-on.

https://console.qcloud.com/tke2

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 30 of 32

Please Note:
With the completion of the deployment, you need to manually select the corresponding driver due to potential
differences in cgroup driver of the cluster. The instructions are as follows:

1. Within the Add-on in your cluster, locate the successfully deployed QoS Agent, and click Update configuration
on the right.
2. On the add-on configuration page of QoS Agent, select the dropdown box to the right of the cgroupDrive option, and
choose cgroupDrive that matches your cluster.
3. Click Complete.

FAQs

How to confirm the cgroupDrive of a cluster?

The cgroupDrive of a cluster can only be either cgroupfs or systemd. The confirmation method is as follows:
Initially, the operation of peekcluster can be viewed in the "basic information" page of the cluster, specifically in the
"operating add-on", by determining whether the current cluster serves as a docker or containerd.
If the operating cluster is docker, on any node in the cluster, execute docker info and view the field content of

 Cgroup Driver .

If the operating cluster is containerd, in the file of /etc/containerd/config.toml on any node in the cluster, the presence

of the field: SystemdCgroup = true signifies a systemd, otherwise, it is a cgroup.

How to select the operating business or node?

Choosing a specific resource object via label or scope is supported.

Note:
When both of the following selectors exist concurrently, the operation used is an "and", i.e. all conditions must be met.

labelSelector

The labelSelector filters resources by associating them with the resource labels of the object. The usual method of

usage is to attach a specific tag to the designated workloads on the business end. This Tag is then given to the
operation team. When creating a PodQOS, the operation team associates this tag through the labelSelector field,
effectively granting different QoS capabilities to different businesses.

scopeSelector

The scopeSelector is composed of multiple MatchExpressions. The relationship between these MatchExpressions is
an "and". There are three fields in MatchExpressions, namely ScopeName, Operator, and Values corresponding to

ScopeName;
The ScopeName includes three types: QOSClass, Priority, and Namespace;

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 31 of 32

QOSClass refers to a desired Workload that is associated with a specific QOSClass. The Values can be one or more
among Guaranteed, Burstable, and BestEffort;
Priority refers to a desired Workload that is associated with a specific Priority. The Values can be specific priority

values, such as ["1000", "2000-3000"], supporting a range of priorities;
Namespace refers to a desired Workload that is associated with a specific Namespace. The Values can be one or
more.
Operator includes two types, specifically In and NotIn. If left it blank, the default type is In.
As illustrated below, it denotes that the BestEffortPod meets a condition of app-type=offline, with a CPU priority of 7:

apiVersion: ensurance.crane.io/v1alpha1

Tencent Kubernetes Engine

©2013-2022 Tencent Cloud. All rights reserved. Page 32 of 32

kind: PodQOS

metadata:

 name: offline-task

spec:

 allowedActions:

 - eviction

 resourceQOS:

 cpuQOS:

 cpuPriority: 7

 scopeSelector:

 matchExpressions:

 - operator: In

 scopeName: QOSClass

 values:

 - BestEffort

 labelSelector:

 matchLabels:

 app-type: offline

