
Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 59

Cloud GPU Service

Best Practices

Product Documentation

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 59

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 59

Contents

Best Practices
Using Docker to Install TensorFlow and Set GPU/CPU Support
Using GPU Instance to Train ViT Model

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 59

Best Practices
Using Docker to Install TensorFlow and Set
GPU/CPU Support
Last updated：2024-01-11 17:11:13

Note:
This document is written by a Cloud GPU Service user and is for study and reference only.

Overview

You can use Docker to run TensorFlow in a GPU instance quickly. In this way, you only need to install the NVIDIA®

driver program in the instance and don't need to install NVIDIA® CUDA® Toolkit.
This document describes how to use Docker to install TensorFlow and configure GPU/CPU support in a GPU
instance.

Notes

This document uses a GPU instance on Ubuntu 20.04 as an example.
The GPU driver has been installed in your GPU instance.

Note:
We recommend you use a public image to create a GPU instance. If you select a public image, then select
Automatically install GPU driver on the backend to preinstall the driver on the corresponding version. This
method only supports certain Linux public images.

Directions

Installing Docker

1. Log in to the instance and run the following commands to install the required system tools:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 59

sudo apt-get update

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 59

 sudo apt-get install \\

 ca-certificates \\

 curl \\

 gnupg \\

 lsb-release

2. Run the following command to install the GPG certificate to write the software source information:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 59

sudo mkdir -p /etc/apt/keyrings

 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /e

 echo \\

 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] h

 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/

3. Run the following commands to update and install Docker-CE:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 59

sudo apt-get update

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 59

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

Installing TensorFlow

Setting the NVIDIA container toolkit

1. Run the following command to set the package repository and GPG key as instructed in Setting up NVIDIA

Container Toolkit:

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#setting-up-nvidia-container-toolkit

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 59

distribution=$(. /etc/os-release;echo IDVERSION_ID) \\

 && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --d

 && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvid

 sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-to

 sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

2. Run the following command to install the nvidia-docker2 package and its dependencies:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 59

sudo apt-get update

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 59

sudo apt-get install -y nvidia-docker2

3. Run the following command to set the default runtime and restart the Docker daemon to complete installation:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 59

sudo systemctl restart docker

4. Then, you can run the following command to run the base CUDA container to test the job settings:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 59

sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi

The following information will appear:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 59

+---+

| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |

| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 59

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

Downloading a TensorFlow Docker image

The official TensorFlow Docker images are in the tensorflow/tensorflow code repository in Docker Hub. Image tags are

defined in the following format as listed in Tags:

Tag Description

latest Latest (default) tag of the binary TensorFlow CPU image.

nightly Nightly tag of the TensorFlow image, which is unstable.

version Tag of the TensorFlow binary image, such as `2.1.0`.

devel TensorFlow masterNightly tag of the development environment, which contains the TensorFlow
source code.

custom-op Special experimental image for custom TensorFlow operation development. For more
information, see tensorflow/custom-op.

Each basic tag has variants with new or modified features:

Tag Variant Description

tag -gpu Specified tag supporting GPU.

tag -jupyter Specified tag for Jupyter, which contains the TensorFlow tutorial laptop.

You can use multiple variants at a time. For example, the following command will download the TensorFlow image
tags to your computer:

https://hub.docker.com/r/tensorflow/tensorflow/
https://hub.docker.com/r/tensorflow/tensorflow/tags/
https://github.com/tensorflow/custom-op

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 59

docker pull tensorflow/tensorflow # latest stable release

docker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU

docker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU suppo

Starting the TensorFlow Docker container

Run the following command to start and configure the TensorFlow container. For more information, see Docker run
reference.

https://docs.docker.com/engine/reference/run/

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 59

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [co

Examples

Using an image supporting only CPU

Use an image with the latest tag to verify the TensorFlow installation result. Docker will download the latest

TensorFlow image when it runs for the first time.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 59

docker run -it --rm tensorflow/tensorflow \\

 python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000,

Below are the samples of other TensorFlow Docker solutions:
Start the bash shell session in the container where TensorFlow is configured:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 59

docker run -it tensorflow/tensorflow bash

To run the TensorFlow program developed on the host in the container, use the -v hostDir:containerDir -w

workDir parameter to load the server directory and change the container working directory as follows:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 59

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py

Note:

When you allow the host to access the files created in the container, permission problems may occur. Generally, we
recommend you modify files on the host system.
Use TensorFlow with the nightly tag to start Jupyter laptop server:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 59

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-jupyter

Use a browser to visit http://127.0.0.1:8888/?token=... as instructed at the Jupyter website.

Using an image supporting GPU

Run the following command to download and run the TensorFlow image supporting GPU:

https://jupyter.org/

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 59

docker run --gpus all -it --rm tensorflow/tensorflow:latest-gpu \\

 python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000,

It may take a while to set the image supporting GPU. To run the GPU-based script repeatedly, you can use docker

exec to use the container repeatedly.

Run the following command to use the latest TensorFlow GPU image to start the bash shell session in the

container:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 59

docker run --gpus all -it tensorflow/tensorflow:latest-gpu bash

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 59

Using GPU Instance to Train ViT Model
Last updated：2024-01-11 17:11:13

Note:
This document is written by a Cloud GPU Service user and is for study and reference only.

Overview

This document describes how to use a GPU instance to train a ViT model offline to complete a simple image

classification task.

ViT Model Overview

The Vision Transformer (ViT) model is proposed by Alexey Dosovitskiy to get the state-of-the-art (SOTA) result from
multiple tasks.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 59

For an input image, ViT splits it into multiple subimage patches. Each patch is spliced with position embedding and
combined with class labels to be input to transformer encoder together. After the corresponding output layer results of

the class label positions pass through a network, the ViT result will be output. In the pretraining status, the ground
truth of the result can replaced by a patch of the mask.

Instance Environment

Instance type: In this document, you can select a GN7 or GN8 model. Based on the GPU performance comparison
provided in Tesla P40 vs Tesla T4, the performance of T4 in Turing architecture is higher than that of P40 in Pascal
architecture. Therefore, GN7.5XLARGE80 is selected in this document.

Region: As large datasets may need to be uploaded, we recommend you select the region with the lowest latency.
This document uses the online ping tool for testing. As the latency between the test region and Chongqing region
where GN7 resides is the lowest, Chongqing region is selected in this example.
System disk: 100 GB Premium Cloud Storage disk.
Operating system: Ubuntu 18.04.
Bandwidth: 5 Mbps.

https://www.tencentcloud.com/document/product/560/19701
https://www.tencentcloud.com/document/product/560/19701
https://technical.city/en/video/Tesla-P40-vs-Tesla-T4
https://cloud.feitsui.com/tencent

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 59

Local operating system: macOS

Directions

Setting passwordless login for your instance (optional)

1. (Optional) You can configure the server alias in ~/.ssh/config on your local server. In this document, the

alias tcg is used.

2. Run the ssh-copy-id command to copy the SSH public key of the local server to the GPU instance.

3. Run the following command in the GPU instance to disable password login to enhance security:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 59

echo 'PasswordAuthentication no' | sudo tee -a /etc/ssh/ssh_config

4. Run the following command to restart the SSH service.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 59

sudo systemctl restart sshd

Configuring the PyTorch-GPU development environment

To use pytorch-gpu for development, you need to further configure the environment as follows:

1. Install the NVIDIA graphics card driver.
Run the following command to install the NVIDIA graphics card driver:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 59

sudo apt install nvidia-driver-418

After the installation is completed, run the following command to check whether the installation is successful:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 59

nvidia-smi

If the following result is returned, the installation is successful.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 59

2. Configure the conda environment.
Run the following commands to configure the conda environment:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 59

wget https://repo.anaconda.com/miniconda/Miniconda3-py39_4.11.0-Linux-x86_64.sh

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 59

chmod +x Miniconda3-py39_4.11.0-Linux-x86_64.sh

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 59

./Miniconda3-py39_4.11.0-Linux-x86_64.sh

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 59

rm Miniconda3-py39_4.11.0-Linux-x86_64.sh

3. Compile the ~/.condarc file to add the following software source information and replace the conda software

source with the Qinghua source.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 59

channels:

- defaults

show_channel_urls: true

default_channels:

- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 59

- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

custom_channels:

 conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

4. Run the following command to set the pip source to the Tencent Cloud image source.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 59

pip config set global.index-url https://mirrors.cloud.tencent.com/pypi/simple

5. Install PyTorch.

Run the following command to install PyTorch:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 59

conda install pytorch torchvision cudatoolkit=11.4 -c pytorch --yes

Run the following commands to view whether PyTorch is installed successfully:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 59

python

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 59

import torch

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 59

print(torch.cuda.is_avaliable())

If the following result is returned, PyTorch is installed successfully:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 59

Preparing the experiment data

The test task in this training is an image classification task and uses the flower image classification dataset in the
Tencent Cloud online document. The dataset contains five classes of flowers and is 218 MB in size. Below are the

sampled dataset results (examples of images of flowers in each class):

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 59

The data of each class in the raw dataset is stored in the folder of the corresponding class. You need to convert it to
the standard format of ImageNet and divide the training and verification datasets at the ratio of 4:1. Use the following

code to convert the format:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 59

split data into train set and validation set, train:val=scale

import shutil

import os

import math

scale = 4

data_path = '../raw'

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 59

data_dst = '../train_val'

#create imagenet directory structure

os.mkdir(data_dst)

os.mkdir(os.path.join(data_dst, 'train'))

os.mkdir(os.path.join(data_dst, 'validation'))

for item in os.listdir(data_path):

 item_path = os.path.join(data_path, item)

 if os.path.isdir(item_path):

 train_dst = os.path.join(data_dst, 'train', item)

 val_dst = os.path.join(data_dst, 'validation', item)

 os.mkdir(train_dst)

 os.mkdir(val_dst)

 files = os.listdir(item_path)

 print(f'Class {item}:\\n\\t Total sample count is {len(files)}')

 split_idx = math.floor(len(files) * scale / (1 + scale))

 print(f'\\t Train sample count is {split_idx}')

 print(f'\\t Val sample count is {len(files) - split_idx}\\n')

 for idx, file in enumerate(files):

 file_path = os.path.join(item_path, file)

 if idx <= split_idx:

 shutil.copy(file_path, train_dst)

 else:

 shutil.copy(file_path, val_dst)

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 59

print(f'Split Complete. File path: {data_dst}')

Below is the dataset overview:

Class roses:

 Total sample count is 641

 Train sample count is 512

 Validation sample count is 129

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 59

Class sunflowers:

 Total sample count is 699

 Train sample count is 559

 Validation sample count is 140

Class tulips:

 Total sample count is 799

 Train sample count is 639

 Validation sample count is 160

Class daisy:

 Total sample count is 633

 Train sample count is 506

 Validation sample count is 127

Class dandelion:

 Total sample count is 898

 Train sample count is 718

 Validation sample count is 180

To accelerate the training process, you need to further convert the dataset to a GPU-friendly format such as NVIDIA
Data Loading Library (DALI). The DALI library can use GPU to replace CPU to accelerate data preprocessing. When

data in the ImageNet format already exists, you can simply run the following command to use DALI:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 59

git clone https://github.com/ver217/imagenet-tools.git

cd imagenet-tools && python3 make_tfrecords.py \\

 --raw_data_dir="../train_val" \\

 --local_scratch_dir="../train_val_tfrecord" && \\

python3 make_idx.py --tfrecord_root="../train_val_tfrecord"

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 59

Model training result

To facilitate subsequent training of large distributed models, this document describes how to train and develop a
model based on the distributed training framework Colossal-AI. Colossal-AI provides a set of easy-to-use APIs, which
enables you to easily perform data, model, pipeline, and mixed parallel training.

Based on the demo provided by Colossal-AI, this document uses ViT integrated in the pytorch-image-models
repository for implementation. The minimum vit_tiny_patch16_224 model at a resolution of 224*224

is used, where each sample is divided into 16 patches .

1. Run the following command to install Colossal-AI and pytorch-image-models as instructed in Start Locally:

https://colossalai.org/
https://github.com/rwightman/pytorch-image-models

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 59

pip install colossalai==0.1.5+torch1.11cu11.3 -f https://release.colossalai.org

pip install timm

2. Write the following model training code based on the demo provided by Colossal-AI:

https://github.com/hpcaitech/ColossalAI-Examples

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 59

from pathlib import Path

from colossalai.logging import get_dist_logger

import colossalai

import torch

import os

from colossalai.core import global_context as gpc

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 59

from colossalai.utils import get_dataloader, MultiTimer

from colossalai.trainer import Trainer, hooks

from colossalai.nn.metric import Accuracy

from torchvision import transforms

from colossalai.nn.lr_scheduler import CosineAnnealingLR

from tqdm import tqdm

from titans.utils import barrier_context

from colossalai.nn.lr_scheduler import LinearWarmupLR

from timm.models import vit_tiny_patch16_224

from titans.dataloader.imagenet import build_dali_imagenet

from mixup import MixupAccuracy, MixupLoss

def main():

 parser = colossalai.get_default_parser()

 args = parser.parse_args()

 colossalai.launch_from_torch(config='./config.py')

 logger = get_dist_logger()

 # build model

 model = vit_tiny_patch16_224(num_classes=5, drop_rate=0.1)

 # build dataloader

 root = os.environ.get('DATA', '../train_val_tfrecord')

 train_dataloader, test_dataloader = build_dali_imagenet(

 root, rand_augment=True)

 # build criterion

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 59

 criterion = MixupLoss(loss_fn_cls=torch.nn.CrossEntropyLoss)

 # optimizer

 optimizer = torch.optim.SGD(

 model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

 # lr_scheduler

 lr_scheduler = CosineAnnealingLR(

 optimizer, total_steps=gpc.config.NUM_EPOCHS)

 engine, train_dataloader, test_dataloader, _ = colossalai.initialize(

 model,

 optimizer,

 criterion,

 train_dataloader,

 test_dataloader,

)

 # build a timer to measure time

 timer = MultiTimer()

 # create a trainer object

 trainer = Trainer(engine=engine, timer=timer, logger=logger)

 # define the hooks to attach to the trainer

 hook_list = [

 hooks.LossHook(),

 hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=True),

 hooks.AccuracyHook(accuracy_func=MixupAccuracy()),

 hooks.LogMetricByEpochHook(logger),

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 59

 hooks.LogMemoryByEpochHook(logger),

 hooks.LogTimingByEpochHook(timer, logger),

 hooks.TensorboardHook(log_dir='./tb_logs', ranks=[0]),

 hooks.SaveCheckpointHook(checkpoint_dir='./ckpt')

]

 # start training

 trainer.fit(train_dataloader=train_dataloader,

 epochs=gpc.config.NUM_EPOCHS,

 test_dataloader=test_dataloader,

 test_interval=1,

 hooks=hook_list,

 display_progress=True)

if __name__ == '__main__':

 main()

Below is the specific model configuration:

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 59

from colossalai.amp import AMP_TYPE

BATCH_SIZE = 128

DROP_RATE = 0.1

NUM_EPOCHS = 200

CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))

gradient_accumulation = 16

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 59

clip_grad_norm = 1.0

dali = dict(

 gpu_aug=True,

 mixup_alpha=0.2

)

Below is the model execution process. Each epoch time is within 20s:

The result shows that the highest accuracy of the model with the verification dataset is 66.62%. You can also increase
the number of model parameters; for example, you can change the model to `v.

Cloud GPU Service

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 59

.

Summary

The biggest problem encountered in this example was that cloning from GitHub was very slow. To solve this, a tunnel
and ProxyChains were used for acceleration. However, such operations violated the CVM use rules and caused a

period of unavailability. Eventually, this problem was solved by deleting the proxy and submitting a ticket.

Using a public network proxy doesn't comply with the CVM use regulations. To guarantee the stable operations of your
business, do not violate the regulations.

References

[1] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv
preprint arXiv:2010.11929 (2020).

[2] NVIDIA/DALI

[3] Bian, Zhengda, et al. "Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training." arXiv
preprint arXiv:2110.14883 (2021).

https://github.com/NVIDIA/DALI

