
Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 1
of 126

Serverless Cloud Function

Code Development

Product Documentation

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 2
of 126

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud
Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties
referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 3
of 126

Contents

Code Development
Python

Runtime Environment
Deployment Methods
Development Methods
Log Description
Examples

Node.js
Notes on Node.js
Development Methods
Deployment Methods
Log Description
Examples
Online Dependency Installation

Golang
Environment Description
Development Methods
Deployment Methods
Log Description

PHP
Runtime Environment
Development Methods
Deployment Methods
Log Description
Examples

Java
Environment Description
Notes on Java
Deployment Methods
Using Maven to Create JAR Packs
Common Examples
Using Gradle to Create ZIP Packs

Custom Runtime
Overview
Creating Sample Bash Function

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 4
of 126

Deploying Image as Function
WebServer Image Function
Usage Method

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 5
of 126

Python Versions

Currently, the following versions of Python programming language are supported:

Python 2.7
Python 3.6

When creating a function, you can select a desired runtime environment from Python 2.7 or Python 3.6 .

Click here to view Python's official advice on choosing Python 2 or Python 3.

Environment Variables

The table below lists environment variables related to built-in Python in a current runtime environment.

Environment Variable Key Specific Value or Value Source

 PYTHONDONTWRITEBYTECODE x

 PYTHONPATH /var/user:/opt

 _ /var/lang/python3/bin/python3

For more information on environment variables, see Environment Variables.

Included Library and Usage

COS SDK

SCF's runtime environment already contains the COS SDK for Python, and specific versions are cos_sdk_v5

(recommended) and cos_sdk_v4 .

Code Development
Python
Runtime Environment
Last updated：2021-05-24 11:16:31

https://wiki.python.org/moin/Python2orPython3
https://www.tencentcloud.com/document/product/583/32748
https://www.tencentcloud.com/document/product/436/12269

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 6
of 126

The COS SDK can be referenced and used within the code as follows:

For the cos_sdk_v5 version:

import qcloud_cos_v5

from qcloud_cos_v5 import CosConfig

from qcloud_cos_v5 import CosS3Client

For the cos_sdk_v4 version:

import qcloud_cos

from qcloud_cos_v4 import CosClient

from qcloud_cos_v4 import DownloadFileRequest

from qcloud_cos_v4 import UploadFileRequest

For more detailed instructions on how to use the COS SDK, see COS SDK for Python.

Built-in Libraries

The table below lists the supported SCF libraries in the Python 3 cloud runtime environment.

Note：
To use a library not listed here, you need to locally install, package, and upload it. For detailed directions, see
Installing Dependent Libraries.

Library Name Version

absl-py 0.2.2

asn1crypto 0.24.0

astor 0.7.1

bleach 1.5.0

certifi 2019.3.9

https://www.tencentcloud.com/document/product/436/12269
https://www.tencentcloud.com/document/product/583/34879

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 7
of 126

Library Name Version

cffi 1.12.2

chardet 3.0.4

cos-python-sdk-v5 1.6.6

cryptography 2.6.1

dicttoxml 1.7.4

gast 0.2.0

grpcio 1.13.0

html5lib 0.9999999

idna 2.8

iniparse 0.4

Markdown 2.6.11

mysqlclient 1.3.13

numpy 1.15.0

Pillow 6.0.0

pip 9.0.1

protobuf 3.6.0

psycopg2-binary 2.8.2

pycparser 2.19

pycurl 7.43.0

PyMySQL 0.9.3

pytz 2019.1

qcloud-image 1.0.0

qcloudsms-py 0.1.3

requests 2.21.0

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 8
of 126

Library Name Version

serverless-db-sdk 0.0.1

setuptools 28.8.0

six 1.12.0

tencentcloud-sdk-python 3.0.65

tencentserverless 0.1.4

tensorboard 1.9.0

tensorflow 1.9.0

tensorflow-serving-api 1.9.0

termcolor 1.1.0

urllib3 1.24.2

Werkzeug 0.14.1

wheel 0.31.1

The table below lists the supported SCF libraries in the Python 2 cloud runtime environment.

Library Name Version

absl-py 0.2.2

asn1crypto 0.24.0

astor 0.7.1

backports.ssl-match-hostname 3.4.0.2

backports.weakref 1.0.post1

bleach 1.5.0

cassdk 1.0.2

certifi 2017.11.5

cffi 1.12.2

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 9
of 126

Library Name Version

chardet 3.0.4

cos-python-sdk-v5 1.6.6

cryptography 2.6.1

dicttoxml 1.7.4

enum34 1.1.6

funcsigs 1.0.2

futures 3.2.0

gast 0.2.0

grpcio 1.13.0

html5lib 0.9999999

idna 2.6

iniparse 0.4

ipaddress 1.0.22

Markdown 2.6.11

mock 2.0.0

mysqlclient 1.3.13

nose 1.3.7

numpy 1.14.5

ordereddict 1.1

pbr 4.1.0

Pillow 6.0.0

pip 18

protobuf 3.6.0

psycopg2-binary 2.8.2

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 10
of 126

Library Name Version

pyaml 2019.4.1

pycparser 2.19

pycurl 7.43.0.1

pygpgme 0.3

PyMySQL 0.9.3

pytz 2019.1

PyYAML 5.1

qcloud-image 1.0.0

qcloudsms-py 0.1.3

requests 2.18.4

serverless-db-sdk 0.0.1

setuptools 39.1.0

six 1.11.0

tencentcloud-sdk-python 3.0.65

tencentserverless 0.1.4

tensorboard 1.9.0

tensorflow 1.9.0

tensorflow-serving-api 1.9.0

termcolor 1.1.0

urlgrabber 3.10.2

urllib3 1.22

Werkzeug 0.14.1

wheel 0.31.1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 11
of 126

Function Form

The Python function form is generally as follows:

import json

def main_handler(event, context):

print("Received event: " + json.dumps(event, indent = 2))

print("Received context: " + str(context))

return("Hello World")

Execution Method

An execution method should be specified when each SCF function is created. The execution method of the Python
programming language is similar to index.main_handler , where index refers to the index.py entry

file, and main_handler refers to the main_handler entry function. When submitting the zip code package by

uploading a local zip package or uploading it through COS, the root directory of the package should contain the
specified entry file and the file should contain the specified entry function. The filename and function name should

match those entered in the execution method to ensure successful execution.

Input Parameters

The input parameters in the Python environment include event and context, both of which are of the Python dict type.

event: this parameter is used to pass the trigger event data.
context: this parameter is used to pass runtime information to your handler.

The event parameter varies with trigger or event source. For more information on its data structure, see Trigger

Overview.

Response

Deployment Methods
Last updated：2021-05-24 11:17:20

https://www.tencentcloud.com/document/product/583/9705

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 12
of 126

Your handler can use return to return a value. The return value will be handled differently depending on the

function invocation type.

In the Python environment, a serializable object such as dict object can be directly returned:

def main_handler(event, context):

resp = {

"isBase64Encoded": false,

"statusCode": 200,

"headers": {"Content-Type":"text/html","Key":["value1","value2","value3"]},

"body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

return(resp)

Two methods are available to return values:

Sync invocation: the return value of a sync invocation will be serialized in JSON and returned to the caller for
subsequent processing. The function testing in the console is sync invocation, which can capture the function’s

return value and display it after the invocation is completed.
Async invocation: the return value of an async invocation will be discarded, since the invocation method
responds right after the function is triggered, without waiting for function execution to complete.

Note：
The return value of both sync and async invocations will be recorded in the function logs.

Exception Handling

You can throw an exception using raise Exception inside the function.

If the exception is captured and handled before returning without being thrown outside, the function is considered to
have been executed. In this case, information specified in the entry function’s return will be returned.

The following sample codes show that the function is successfully executed and will return Hello World .

-*- coding: utf8 -*-

def main_handler(event, context):

try:

print("try exception")

raise Exception("err msg")

except Exception as e:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 13
of 126

print(e)

return("Hello World")

If an exception is not captured before returning, it will be thrown outside the entry function and captured by SCF. In
this case, the function is considered to have failed, and an error message will be returned.

The following sample codes show that the function execution fails.

-*- coding: utf8 -*-

def main_handler(event, context):

print("try exception")

raise Exception("err msg")

return("Hello World")

The function returns information similar to the following:

{

"errorCode":-1,

"errorMessage":"user code exception caught",

"requestId":"a325b967-ef5b-4aa3-a329-c6bb0df72948",

"stackTrace":"Traceback (most recent call last):\n File \"/var/user/index.py\",

line 4, in main_handler\n raise Exception(\"err msg\")\nException: err msg",

"statusCode":430

}

The errorCode field indicates a code error, and errorMessage provides error details. The

 stackTrace field indicates an error stack, and statusCode provides error details. For more information

about statusCode , see Function Status Code.

https://www.tencentcloud.com/document/product/583/35311

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 14
of 126

Deployment Methods

Tencent Cloud SCF provides the following function deployment methods. For more information about how to create
and update a function, see Create and Update a Function.

Uploading and deploying a zip package, as instructed in Installing and Deploying Dependencies

Editing and deploying functions via the console, as instructed in Deploying Functions.
Using the command line, as instructed in Deployment Through Serverless Framework CLI.

Installing and Deploying Dependencies

Currently, the SCF standard Python Runtime only supports writing to the /tmp directory, and other directories are

read-only. Therefore, you need to install, package and upload the local dependent library for use. The Python
dependency package can be uploaded with function codes to the cloud, or uploaded to the layer that will be bound to

the required function.

Locally installing dependency packages

Dependency manager

In Python, dependencies can be managed with the pip package manager. Replace pip with pip3 or pip2

according to the environment configurations.

Directions

1. Configure dependency information in requirements.txt .

2. Run the pip install -r requirements.txt -t . command under the code directory to install the

dependency package. You can use the -t parameter to specify the installation directory, or directly run -t .

under the project’s code directory to install the dependency package in the current directory.

Note：

Use the pip freeze > requirements.txt command to generate a requirements.txt file

that contains all dependencies of the current environment.

Development Methods
Last updated：2021-05-24 11:18:22

https://www.tencentcloud.com/document/product/583/19806
https://www.tencentcloud.com/document/product/583/32741
https://www.tencentcloud.com/document/product/583/32741

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 15
of 126

Because the function is running on CentOS 7, install the dependency package in the same environment to
avoid errors. For detailed directions, see Using Container Image.
If some dependencies require dynamic link library, please manually copy these dependencies to the

installation directory, and then package them for uploading. For more information, see Installing Dependency
with Docker.

Sample

1. Use the index.py code file shown below to install the requests dependency locally.

-*- coding: utf8 -*-

import requests

def main_handler(event, context):

addr = "www.qq.com"

resp = requests.get(addr)

print(resp)

return resp

2. Run the pip3 install requests -t . command to install the requests dependency under the

current directory of the project. The code file is as follows:

$ pip3 install requests -t .

Collecting requests

Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB)

Collecting certifi>=2017.4.17

Using cached certifi-2020.12.5-py2.py3-none-any.whl (147 kB)

Collecting chardet<5,>=3.0.2

Using cached chardet-4.0.0-py2.py3-none-any.whl (178 kB)

Collecting idna<3,>=2.5

Using cached idna-2.10-py2.py3-none-any.whl (58 kB)

Collecting urllib3<1.27,>=1.21.1

Using cached urllib3-1.26.4-py2.py3-none-any.whl (153 kB)

Installing collected packages: urllib3, idna, chardet, certifi, requests

Successfully installed certifi-2020.12.5 chardet-4.0.0 idna-2.10 requests-2.25.1

urllib3-1.26.4

$ ls -l

total 8

drwxr-xr-x 3 xxx 111 96 4 29 16:45 bin

drwxr-xr-x 7 xxx 111 224 4 29 16:45 certifi

drwxr-xr-x 8 xxx 111 256 4 29 16:45 certifi-2020.12.5.dist-info

drwxr-xr-x 44 xxx 111 1408 4 29 16:45 chardet

drwxr-xr-x 9 xxx 111 288 4 29 16:45 chardet-4.0.0.dist-info

drwxr-xr-x 11 xxx 111 352 4 29 16:45 idna

https://www.tencentcloud.com/document/product/583/39009
https://www.tencentcloud.com/document/product/583/38127

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 16
of 126

drwxr-xr-x 8 xxx 111 256 4 29 16:45 idna-2.10.dist-info

-rw-r--r--@ 1 xxx 111 177 4 29 16:33 index.py

drwxr-xr-x 21 xxx 111 672 4 29 16:45 requests

drwxr-xr-x 9 xxx 111 288 4 29 16:45 requests-2.25.1.dist-info

drwxr-xr-x 17 xxx 111 544 4 29 16:45 urllib3

drwxr-xr-x 10 xxx 111 320 4 29 16:45 urllib3-1.26.4.dist-info

Packaging and uploading

You can upload dependencies together with the project, and use them through the import statement in function

codes. You can also package and deploy dependencies to a layer, and bind the layer to a function being created to
reuse them.

The zip package for deploying functions or layers can be generated automatically by a local folder via the console or

manually. All the packaging should be under the project directory to place codes and dependencies in the root
directory of the zip package. For more information, see Packaging requirements.

Special dependency packages

Some Python dependencies such as the pycryptodome dependency need to be compiled for installation.

Because the compilation varies with the operating system, the dependent library, dynamic library, and other programs
compiled on Windows or Mac may be unable to run in the SCF environment. The following solutions are
recommended.

Use the dependent library that is ready for FaaS open source implementations.
Search dependencies or submit requirements in the SCF public layer. This layer collects and stores special
dependency packages, and provides the deployment support.
Use the container solution and SCF container image to install and extract special dependencies locally, and then
package and upload them to the code runtime environment.

https://www.tencentcloud.com/document/product/583/32741
https://github.com/awesome-scf/tencent-scf-public-layer
https://www.tencentcloud.com/document/product/583/39009

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 17
of 126

Log Development

You can use the following statements in the program to output a log:

print
logging module

For example, you can query the output content in the function log by running the following code:

Log Query

Currently, all function logs are delivered to CLS. You can configure the function log delivery. For more information, see
Log Delivery Configuration.

You can query function execution logs on the log query page of SCF or CLS. For more information on the log query
method, see Log Search Guide.

Note：
Function logs are delivered to the LogSet log set and LogTopic log topic in CLS, both of which can be

queried through the function configuration.

Custom Log Fields

Log Description
Last updated：2023-06-05 16:57:45

import logging

logger = logging.getLogger()

logger.setLevel(logging.INFO)

def main_handler(event, context):

logger.info('got event{}'.format(event))

print("got event{}".format(event))

return 'Hello World!'

https://www.tencentcloud.com/document/product/583/39778
https://www.tencentcloud.com/document/product/583/39777

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 18
of 126

Currently, the string content output by simple print or logger in the function code will be recorded in the

 SCF_Message field when it is delivered to CLS. For descriptions of CLS fields, see Log Delivery Configuration.

At present, SCF supports adding custom fields to the content output to CLS. By doing so, you can output business

fields and related data content to logs and use the search capability of CLS to query and track them in the execution
process.

Note：

If you need to query the key value of a custom field such as SCF_CustomKey: SCF , add a key-value

index to the log topic for SCF log delivery as instructed in Configuring Indexes.

To avoid function log query failures caused by misuse of the index configuration, the default destination topic
for SCF log delivery (prefixed with SCF_LogTopic_) does not support modifying the index configuration.

You need to set the destination topic to custom delivery first and then update the log topic's index
configuration.
After the index configuration is modified for a log topic, it will take effect only for newly written data.

Output method

If a single-line log output by a function is in JSON format, the JSON content will be parsed into the format of

 field:value when it is delivered to CLS. Only the first level of the JSON content can be parsed in this way, while

other nested structures will be recorded as values.

You can run the following code to test:

Search method

After using the above code to perform a test, you can run the following statement to search in Function
Management > Log Query > Advanced Search:

-*- coding: utf8 -*-

import json

def main_handler(event, context):

print(json.dumps({"key1": "test value 1","key2": "test value 2"}))

return("Hello World!")

https://www.tencentcloud.com/document/product/583/39778#.E7.B4.A2.E5.BC.95.E9.85.8D.E7.BD.AE
https://www.tencentcloud.com/document/product/614/39594
https://www.tencentcloud.com/document/product/583/39778#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.8A.95.E9.80.92.3Ca-id.3D.22zdytd.22.3E.3C.2Fa.3E

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 19
of 126

Search result

After the test is written to CLS, you can find the key1 field in the log query as shown below:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 20
of 126

These examples provide code snippets based on Python 3.6 for your reference.

You can click scf-python-code-snippet to obtain the relevant code snippets and directly use them for deployment.

Obtaining Environment Variables

This example shows you how to obtain all or a single environment variable.

-*- coding: utf8 -*-

import os

def main_handler(event, context):

print(os.environ)

print(os.environ.get("SCF_RUNTIME"))

return("Hello World")

Formatting Local Time

This example shows you how to output date and time in the specified format.

The SCF environment uses the UTC format by default. To output in Beijing time, you can add the
 TZ=Asia/Shanghai environment variable to the function.

-*- coding: utf8 -*-

import time

def main_handler(event, context):

print(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))

return("Hello World")

Accessing TencentDB for MySQL Instance

This example shows you how to use the PyMySQL library for the database connection. You need to run the pip3

install PyMySQL -t . command under the project directory to install this dependent library.

Examples
Last updated：2021-05-24 11:19:11

https://github.com/awesome-scf/scf-python-code-snippet

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 21
of 126

Please note the following:

Configure the function in the same VPC where the TencentDB for MySQL instance is located to ensure the network
accessibility.

Replace the database’s IP, username, password, name and other information shown in the codes with your actual
values.

-*- coding: utf8 -*-

import pymysql

def main_handler(event, context):

Start connecting to the database

db = pymysql.connect(host="host ip",port=3306,user="user",password="password",dat

abase="db name")

Use the cursor() method to create a cursor object

cursor = db.cursor()

Use the execute() method to execute the SQL query statement

cursor.execute("SELECT VERSION()")

Use the fetchone() method to obtain a single data entry.

data = cursor.fetchone()

print ("Database version : %s " % data)

Stop connecting to database

db.close()

Initiating Network Connections in a Function

This example shows you how to use the requests library to initiate network connections in a function and obtain page
information. You can run the pip3 install requests -t . command under the project directory to install

this dependent library.

-*- coding: utf8 -*-

import requests

def main_handler(event, context):

addr = "https://cloud.tencent.com"

resp = requests.get(addr)

print(resp)

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 22
of 126

print(resp.text)

return resp.status_code

Obtaining Webpages Using SCF and API Gateway

This example shows you how to access the URL through API Gateway while obtaining the HTML page by configuring
API Gateway trigger and enabling integration response.

-*- coding: utf8 -*-

import time

def main_handler(event, context):

resp = {

"isBase64Encoded": False,

"statusCode": 200,

"headers": {"Content-Type":"text/html"},

"body": "<html><body><h1>Hello</h1><p>Hello World.</p></body></html>"

}

return resp

Obtaining Images Using SCF and API Gateway

This example shows you how to access the URL through API Gateway while obtaining the binary image file by
configuring API Gateway trigger and enabling integration response.

-*- coding: utf8 -*-

import base64

def main_handler(event, context):

with open("tencent_cloud_logo.png","rb") as f:

data = f.read()

base64_data = base64.b64encode(data)

base64_str = base64_data.decode('utf-8')

resp = {

"isBase64Encoded": True,

"statusCode": 200,

"headers": {"Content-Type":"image/png"},

"body": base64_str

}

return resp

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 23
of 126

Node.js Version Selection

Currently, the following versions of Node.js programming language are supported:

Node.js 16.13
Node.js 14.18

Node.js 12.16
Node.js 10.15
Node.js 8.9 (deactivating soon)
Node.js 6.10 (deactivating soon)

You can choose a desired runtime environment when creating a function.

Environment Variables

The environment variables built in the current Node.js runtime environment are as shown in the table below:

Node.js
Version

Environment
Variable Key

Specific Value or Value Source

Node.js
16.13

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node16/lib/node_modules:/opt:/opt/node

Node.js
14.18

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node14/lib/node_modules:/opt:/opt/node

Node.js
12.16

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node12/lib/node_modules:/opt:/opt/node

Node.js
10.15

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node10/lib/node_modules:/opt:/opt/node

Node.js
8.9

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node8/lib/node_modules:/opt:/opt/node_

Node.js
Notes on Node.js
Last updated：2022-04-29 15:55:42

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 24
of 126

Node.js
Version

Environment
Variable Key

Specific Value or Value Source

Node.js
6.10

 NODE_PATH /var/user:/var/user/node_modules:/var/lang/node6/lib/node_modules:/opt:/opt/node_

For more information on environment variables, see Environment Variables.

Included Library and Usage

Note：
For Node.js 14.18 and later, the platform no longer has additional built-in dependency libraries. For more
information on the dependencies required by code execution, see Dependency Installation and Online
Dependency Installation.

COS SDK

SCF's runtime environment for Node.js 12.16 or earlier already contains the COS SDK for Node.js, and the specific
version is cos-nodejs-sdk-v5 .

The COS SDK can be referenced and used within the code as follows:

var COS = require('cos-nodejs-sdk-v5');

For more information on how to use the COS SDK, see COS SDK for Node.js.

Built-in library in environment

The following libraries are supported in Node.js runtime:

Node.js 12.16
Node.js 10.15
Node.js 8.9
Node.js 6.10

Library Name Version

cos-nodejs-sdk-v5 2.5.20

base64-js 1.3.1

https://www.tencentcloud.com/document/product/583/32748
https://www.tencentcloud.com/document/product/583/34879
https://www.tencentcloud.com/document/product/583/38105
https://www.tencentcloud.com/document/product/436/8629
https://www.tencentcloud.com/document/product/436/8629

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 25
of 126

Library Name Version

buffer 5.5.0

crypto-browserify 3.12.0

ieee754 1.1.13

imagemagick 0.1.3

isarray 2.0.5

jmespath 0.15.0

lodash 4.17.15

microtime 3.0.0

npm 6.13.4

punycode 2.1.1

puppeteer 2.1.1

qcloudapi-sdk 0.2.1

querystring 0.2.0

request 2.88.2

sax 1.2.4

scf-nodejs-serverlessdb-sdk 1.1.0

tencentcloud-sdk-nodejs 3.0.147

url 0.11.0

uuid 7.0.3

xml2js 0.4.23

xmlbuilder 15.1.0

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 26
of 126

Function Form

A Node.js function generally has the following two forms:

Example 1:

exports.main_handler = async (event, context) => {

console.log(event);

console.log(context);

return event

};

Example 2:

exports.main_handler = (event,context,callback)=>{

console.log(event);

console.log(context);

callback(null,"hello world");

}

Execution Method

When you create an SCF function, you need to specify an execution method. If the Node.js programming language is
used, the execution method is similar to index.main_handler , where index indicates that the executed

entry file is index.js , and main_handler indicates that the executed entry function is main_handler .

When submitting the zip code package by uploading the zip file locally or through COS, please make sure that the root
directory of the package contains the specified entry file, the file contains the entry function specified by the definition,
and the names of the file and function match those entered in the trigger; otherwise, execution will fail as the entry file

or entry function cannot be found.

Input Parameters

Development Methods
Last updated：2022-12-15 11:03:33

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 27
of 126

The input parameters in the Node.js environment include event , context , and callback , where

 callback is optional.

event: This parameter is used to pass the trigger event data.

context: This parameter is used to pass runtime information to your handler.
callback (optional): callback is a function that can be used in non-async handlers to return a response.

The response object must be compatible with JSON.stringify . The callback function has two

parameters: Error and response. When invoking this function, SCF will wait for the function to complete before

returning a response or error.

Return and Exception

Async handler

Async handlers must use the async keyword, use return to return a response, and use throw to return an

error message.

In SCF, if your Node.js function contains an async task, a promise must be returned to ensure that the task is
executed on the current invocation. When you fulfill or reject the promise, SCF will return a response or error message.

Note：
The promise method does not support returning with the callback method. You should use return .

Sample async handler:

exports.main_handler = async(event,context,callback) => {

const promise = new Promise((resolve,reject) => {

setTimeout(function() {

resolve('success')

// reject('failure')

}, 2000)

})

return promise

};

Non-async handler

For non-async handlers, the function will be continuously executed until the function execution completes or times out,

and SCF will return a response or error message.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 28
of 126

Note：
Some externally referenced libraries may cause the event loop to never get empty, which leads to timeout due
to failed return of the function. In order to avoid the impact of external libraries, you can control the function
return timing by turning off event loop wait. You can modify the default callback behavior by setting

 context.callbackWaitsForEmptyEventLoop to false to avoid waiting for the event loop to get

empty.

By setting context.callbackWaitsForEmptyEventLoop = false; before the callback

callback is executed, the SCF backend can freeze the process immediately after the callback callback is

invoked and return immediately after the sync process is completed without waiting for the event in the event

loop.

Sample non-async handler:

exports.main_handler = (event, context,callback) => {

context.callbackWaitsForEmptyEventLoop = false

callback(null,'success')

setTimeout(() => {

console.log('finish')

},5000);

};

Async Feature Support

In the runtime of Node.js 10.15 and above, sync execution return and async event processing can be performed
separately:

After the sync execution process of an entry function is completed and the result is returned, function invocation will

immediately return its result, and the return information in the code will be send to the function invoker.
After the sync process is completed and the result returned, the async logic in the code will continue to be executed
and processed. The actual function execution process ends and exits only when the async event is completely
executed.

Note：

SCF logs are collected and processed after the entire execution process ends. Therefore, before the sync
execution process is completed and the result is returned, logs and operation information such as time used

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 29
of 126

and memory utilization cannot be provided in the SCF return information. You can query the detailed
information in logs by using Request Id after the actual function execution process is completed.

The function execution duration is calculated based on the async event execution duration. If the async

event queue cannot get empty or its execution cannot be completed, function timeout will occur. In this case,
the invoker may have received the correct response result of the function, but the execution status of the
function will still be marked as failure due to timeout, and the timeout period will be calculated as the
execution duration.

The sync and async execution attributes, return time, and execution duration in Node.js are as shown below:

Async attribute sample

Use the following sample code to create a function, where the setTimeout method is used to set a function that

will be executed in 2 seconds:

'use strict';

exports.main_handler = (event, context, callback) => {

console.log("Hello World")

console.log(event)

setTimeout(timeoutfunc, 2000, 'data');

callback(null, event);

};

function timeoutfunc(arg) {

console.log(`arg => ${arg}`);

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 30
of 126

After saving the code, you can invoke this function through the testing feature in the console or the Invoke API.

You can see that the function can return the result in a response period below 1 second.

You can see the following statistics in the function execution log:

START RequestId: 1d71ddf8-5022-4461-84b7-e3a152403ffc

Event RequestId: 1d71ddf8-5022-4461-84b7-e3a152403ffc

2020-03-18T09:16:13.440Z 1d71ddf8-5022-4461-84b7-e3a152403ffc Hello World

2020-03-18T09:16:13.440Z 1d71ddf8-5022-4461-84b7-e3a152403ffc { key1: 'test value

1', key2: 'test value 2' }

2020-03-18T09:16:15.443Z 1d71ddf8-5022-4461-84b7-e3a152403ffc arg => data

END RequestId: 1d71ddf8-5022-4461-84b7-e3a152403ffc

Report RequestId: 1d71ddf8-5022-4461-84b7-e3a152403ffc Duration:2005ms Memory:128

MB MemUsage:13.425781MB

A 2,005-ms execution period is logged. You can also find in the log that the arg => data is output 2 seconds

later, which shows that the relevant async operations are executed in the current invocation after the execution of the

sync process is completed, while function invocation ends after execution of the async task is completed.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 31
of 126

Deployment Methods

Tencent Cloud SCF provides the following function deployment methods. For more information about how to create
and update a function, see Create and Update a Function.

Uploading and deploying a zip package, as instructed in Installing and Deploying Dependencies

Editing and deploying functions via the console, as instructed in Deployment Through Console.
Using the command line, as instructed in Deployment Through Serverless Cloud Framework.

Installing and Deploying Dependencies

Currently, the SCF standard Node.js Runtime only supports writing to the /tmp directory, and other directories are

read-only. Therefore, you need to install, package and upload the local dependent library for use. The Node.js
dependency package can be uploaded with function codes to the cloud, or uploaded to the layer that will be bound to

the required function.

Online dependency installation

Node.js provides an online dependency installation feature as detailed in Online Dependency Installation.

Local dependency installation

Dependency manager

In Node.js, dependencies can be managed with the npm package manager.

Directions

Run the npm install xxx command in the code directory to install dependencies.

Note：

Because the function is running on CentOS 7, install the dependency package in the same environment to

avoid errors. For detailed directions, see Using Container Image.
If some dependencies require dynamic link library, please manually copy these dependencies to the
installation directory, and then package them for uploading. For more information, see Installing Dependency

Deployment Methods
Last updated：2023-06-05 15:16:41

https://www.tencentcloud.com/document/product/583/19806
https://www.tencentcloud.com/document/product/583/32741
https://www.tencentcloud.com/document/product/583/32741
https://www.tencentcloud.com/document/product/583/38105
https://www.tencentcloud.com/document/product/583/39009
https://www.tencentcloud.com/document/product/583/38127

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 32
of 126

with Docker.

Sample

1. Use the index.js code file shown below to install the requests dependency locally.

'use strict';

var request = require('request');

exports.main_handler = async (event, context) => {

request('https://cloud.tencent.com/', function (error, response, body) {

if (!error && response.statusCode == 200) {

console.log(body) // Processing logic for successful request

}

})

return "success"

};

2. Run the npm install request command to install the requests dependency under the current directory of

the project.

Packaging and uploading

You can upload dependencies together with the project, and use them through the require statement in function

codes. You can also package and deploy dependencies to a layer, and bind the layer to a function being created to
reuse them.

The zip package for deploying functions or layers can be generated automatically by a local folder via the console or
manually. All the packaging should be under the project directory to place codes and dependencies in the root

directory of the zip package. For more information, see Packaging requirements.

https://www.tencentcloud.com/document/product/583/38127
https://www.tencentcloud.com/document/product/583/32741

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 33
of 126

Logging

You can use the following statements in the program to output the log:

console.log()
console._stdout.write() (supported for Node.js 8.9 or later)

process.stdout.write() (supported for Node.js 8.9 or later)

For example, you can query the output in the function log by running the following code.

'use strict';

exports.main_handler = async (event, context) => {

console.log("Hello World")

console._stdout.write("Hello World")

process.stdout.write("Hello World")

return event

};

Notes

The Node.js 12.16 and 10.15 runtime environments use console.log to print logs. The platform will

encapsulate the log content in the format of "timestamp RerquestId log content" and write it to CLS.

Example:

Log print statement: console.log("hello world")

Log output: 2021-12-27T03:53:59.192Z a7358cce-489a-4674-8e4e-68665fa2b81d Hello

World

The Node.js 8.9 runtime environment uses console.log , console._stdout.write() , or

 process.stdout.write() to print logs. The platform will encapsulate the log content in the format of

"timestamp RerquestId log content" and write it to CLS.

Example:

Log print statement: console.log("hello world")

Log output: 2021-12-27T03:53:59.192Z a7358cce-489a-4674-8e4e-68665fa2b81d Hello

World

Log Description
Last updated：2022-04-29 15:55:42

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 34
of 126

The Node.js 6.10 runtime environment uses console.log to print logs. The platform will encapsulate the log

content in the format of "timestamp RerquestId log content" and write it to CLS.

Example:

Log print statement: console.log("hello world")

Log output: 2021-12-27T03:53:59.192Z a7358cce-489a-4674-8e4e-68665fa2b81d Hello

World

Log Query

Currently, the function logs can be uploaded to Tencent Cloud SCF. You can complete the configuration as instructed
in Log Delivery Configuration.

You can search function execution logs on the log query page of the SCF or CLS console. For more information on
how to query logs, see Log Search Guide.

Note：
Function logs uploaded to logset and log topic can be both queried with a function configured.

Custom Log Fields

Currently, the content output by simple log print statements in the function code will be recorded in the
 SCF_Message field when it is delivered to CLS. For descriptions of CLS fields, see Log Delivery Configuration.

Currently, SCF supports adding custom fields to logs that are uploaded to CLS. The custom fields allow you to output
business fields and relevant data to logs, and track them using the log search feature of CLS.

Note：

If you need to query the key value of a custom field such as SCF_CustomKey: SCF , add a key-value

index to the log topic for SCF log delivery as instructed in Configuring Indexes.

To avoid function log query failures caused by misuse of the index configuration, the default destination topic
for SCF log delivery (prefixed with SCF_LogTopic_) does not support modifying the index configuration.

You need to set the destination topic to custom delivery first and then update the log topic's index
configuration.
After the index configuration is modified for a log topic, it will take effect only for newly written data.

https://www.tencentcloud.com/document/product/583/39778
https://www.tencentcloud.com/document/product/583/39777
https://www.tencentcloud.com/document/product/583/39778#.E7.B4.A2.E5.BC.95.E9.85.8D.E7.BD.AE
https://www.tencentcloud.com/document/product/614/39594
https://www.tencentcloud.com/document/product/583/39778#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.8A.95.E9.80.92.3Ca-id.3D.22zdytd.22.3E.3C.2Fa.3E

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 35
of 126

Output

If a function outputs a single-line log in JSON, the log will be parsed and uploaded to CLS in the field:value

format. Only the first layer will be parsed, and the remaining nested structure will be recorded as values.

Run the following codes and check results:

'use strict';

exports.main_handler = async (event, context) => {

console._stdout.write(JSON.stringify({"key1": "test value 1","key2": "test value

2"})+'\n');

return "hello world"

};

Search

After using the above code to perform a test, you can run the following statement to search in Function

Management > Log Query > Advanced Search:

Search for logs

After the test is written to CLS, you can find the key1 field in the log query as shown below:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 36
of 126

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 37
of 126

These examples provide code snippets based on Node.js 12.16 for your reference.

You can click scf-nodejs-code-snippet to obtain the relevant code snippets and directly use them for deployment.

Obtaining Environment Variables

This example shows you how to obtain all or a single environment variable.

'use strict';

exports.main_handler = async (event, context) => {

console.log(process.env)

console.log(process.env.SCF_RUNTIME)

return "Hello world"

};

Formatting Local Time

This example uses the moment library to obtain the local time, and provides a time formatted output method to

output date and time in the specified format.

The SCF environment uses the UTC format by default. To output in Beijing time, you can add the
 TZ=Asia/Shanghai environment variable to the function.

'use strict';

const moment = require('moment')

exports.main_handler = async (event, context) => {

let currentTime = moment(Date.now()).format('YYYY-MM-DD HH:mm:ss')

console.log(currentTime)

return "hello world"

};

Initiating Network Connection in Function

Examples
Last updated：2023-06-05 15:06:13

https://github.com/awesome-scf/scf-nodejs-code-snippet

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 38
of 126

This example shows you how to use the requests library to initiate network connections in a function and obtain page
information. You can run the npm install request command under the project directory to install this

dependent library.

'use strict';

var request = require('request');

exports.main_handler = async (event, context) => {

request('https://cloud.tencent.com/', function (error, response, body) {

if (!error && response.statusCode == 200) {

console.log(body) // Processing logic for successful request

}

})

return "success"

};

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 39
of 126

Overview

Tencent Cloud SCF supports online dependency installation during function deployment.

Features

Note：
Online dependency installation is supported only for Node.js.

If Online install dependency is enabled in the function configuration, each time the code is uploaded, the SCF
backend will check the package.json file in the root directory of the code package and try using npm

install to install the dependencies based on the dependencies in package.json .

For example, if the package.json file in the project lists the following dependency:

{

"dependencies": {

"lodash": "4.17.15"

}

}

Then this dependency will be imported into the function during the deployment:

const _ = require('lodash');

exports.handle = (event, context, callback) => {

_.chunk(['a', 'b', 'c', 'd'], 2);

// => [['a', 'b'], ['c', 'd']]

};

Directions

1. Log in to the SCF console and select Guangzhou as the region.

Online Dependency Installation
Last updated：2023-03-14 15:54:10

https://console.tencentcloud.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 40
of 126

2. Select Functions on the left sidebar and locate the target function.
3. Select the Function codes tab and modify the function code as needed.

4. In the top-right corner of the IDE code editing window, click and select Automatic dependency installation:
disable in the drop-down list to enable automatic dependency installation as shown below:

After enabling online installation, refresh the page. In the bottom right corner of the code editing page, click Switch

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 41
of 126

to Old Editor. In Upload method, select Online install dependency.

5. Click Deploy, and SCF will automatically install dependencies according to package.json .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 42
of 126

Go Version Selection

Currently, the following versions of Go programming language are supported:

Go 1.8 and above

You can choose the Go1 runtime environment when creating a function.

Notes

Go is used in SCF in a different way from scripting languages such as Python and Node.js, with the following
restrictions:

Code upload is not supported: When Go is used, only developed, compiled, and packaged binary files can be
uploaded. The SCF environment does not provide Go compiling capability.
Online editing is not supported: Because code cannot be uploaded, online editing of code is not supported. The

code page of a Go runtime function only lists the ways to upload the code through the page or submit the code file
through COS.

Golang
Environment Description
Last updated：2022-04-29 15:55:43

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 43
of 126

Function Form

The Go function form is generally as follows:

package main

import (

"context"

"fmt"

"github.com/tencentyun/scf-go-lib/cloudfunction"

)

type DefineEvent struct {

// test event define

Key1 string `json:"key1"`

Key2 string `json:"key2"`

}

func hello(ctx context.Context, event DefineEvent) (string, error) {

fmt.Println("key1:", event.Key1)

fmt.Println("key2:", event.Key2)

return fmt.Sprintf("Hello %s!", event.Key1), nil

}

func main() {

// Make the handler available for Remote Procedure Call by Cloud Function

cloudfunction.Start(hello)

}

Pay attention to the following during code development:

You need to use package main to include the main function.

Import the github.com/tencentyun/scf-go-lib/cloudfunction library by running go get

github.com/tencentyun/scf-go-lib/cloudfunction before packaging and compilation.

0–2 parameters can be used as the input parameters for the entry function. If parameters are included,
 context needs to be in front, followed by event , and the combination of input parameters can be () ,

 (event) , (context) , or (context, event) . For more information, see Input parameters.

0–2 parameters can be used as the returned values for the entry function. If parameters are included, the returned

content ret needs to be in front, followed by error , and the combination of returned values can be () ,

 (ret) , (error) , or (ret, error) . For more information, see Returned values.

Development Methods
Last updated：2022-04-29 15:55:43

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 44
of 126

The event input parameter and ret returned value need to be compatible with the encoding/json

standard library for Marshal and Unmarshal operations.
Start the entry function in the main function by using the Start function inside the package.

Execution Method

When you create an SCF function, you need to specify an execution method. If the Go programming language is used,
the execution method is similar to main , where main indicates that the executable entry file is the compiled

 main binary file.

When submitting the ZIP code package by uploading the ZIP file locally or through COS, make sure that the root
directory of the ZIP package contains the specified binary files; otherwise, function creation or execution will fail as the

execution file cannot be found.

 package and main functions

When developing an SCF function with Go, you need to make sure that the main function is in the main

package. In the main function, start the entry function that actually handles the business by using the Start

function in the cloudfunction package.

You can use the Start function in the package in the main function through import

"github.com/tencentyun/scf-go-lib/cloudfunction" .

Entry function

An entry function is the function started by cloudfunction.Start , which usually handles the actual business.

The input parameters and returned values of the entry function need to be written according to certain specifications.

Input parameters

The entry function can have 0–2 input parameters, such as:

func hello()

func hello(ctx context.Context)

func hello(event DefineEvent)

func hello(ctx context.Context, event DefineEvent)

If two input parameters are present, you need to make sure that the context parameter is before the custom

parameter.

The custom parameter can be in Go's own basic data structures (such as string or int) or custom data

structures (such as DefineEvent in the sample). If a custom data structure is used, you need to make sure that

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 45
of 126

the data structure is compatible with the encoding/json standard library for Marshal and Unmarshal operations;

otherwise, an error will occur when the input parameters are passed in.

The JSON structure corresponding to the custom data structure usually corresponds to the input parameters when the

function is executed. When the function is invoked, the JSON data structure of the input parameters will be converted
to a custom data structure variable and passed to the entry function.

Note：
The event structures of input parameters passed in by certain triggers have been defined and can be used
directly. You can get and use the Go libraries through the Cloud Event Definition by importing

"github.com/tencentyun/scf-go-lib/events"` into the code. If you have any questions during use, you can submit
an issue or ticket for assistance.

Response

The entry function can have 0–2 returned values, such as:

func hello()()

func hello()(error)

func hello()(string, error)

If two returned values are defined, you need to make sure that the custom returned value is before the error value.

The custom returned value can be in Go's own basic data structures (such as string or int) or custom data

structures. If a custom data structure is used, you need to make sure that it is compatible with the

 encoding/json standard library for Marshal and Unmarshal operations; otherwise, an error will occur due to

exceptional conversion when the returned values are returned to the external API.

The JSON structure corresponding to the custom data structure is usually converted to the corresponding JSON data
structure in the platform as execution response passed to the invoker when the function invocation is completed.

https://github.com/tencentyun/scf-go-lib/tree/master/events
https://github.com/tencentyun/scf-go-lib/issues/new
https://console.tencentcloud.com/workorder/category

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 46
of 126

Deployment Methods

A function in the Go environment can only be uploaded as a zip package. You can choose to upload the local zip
package or use COS to import the package. The package should include the compiled executable binary file.

Compiling and Packaging

Cross-platform Go compilation can be achieved by specifying OS and ARCH on any platform, so it can be done on

Linux, Windows, or macOS.

Compile and package on Linux or macOS as follows:

GOOS=linux GOARCH=amd64 go build -o main main.go

zip main.zip main

Compile and package on Windows as follows:
i. Press Windows + R to open the "Run" window, enter cmd, and press Enter.
ii. Run the following command to compile:

set GOOS=linux

set GOARCH=amd64

go build -o main main.go

3. Use a packaging tool to package the output binary file, which should be placed in the root directory of the zip
package.

Deployment Methods
Last updated：2022-04-29 15:55:43

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 47
of 126

Logging

You can use the following statements in the program to output the log:

 fmt.Println

Or, use a method like fmt.Sprintf

For example, you can query the output in the function log by running the following code.

package main

import (

"context"

"fmt"

"github.com/tencentyun/scf-go-lib/cloudfunction"

)

type DefineEvent struct {

// test event define

Key1 string `json:"key1"`

Key2 string `json:"key2"`

}

func hello(ctx context.Context, event DefineEvent) (string, error) {

fmt.Println("key1:", event.Key1)

fmt.Println("key2:", event.Key2)

return fmt.Sprintf("Hello %s!", event.Key1), nil

}

func main() {

// Make the handler available for Remote Procedure Call by Cloud Function

cloudfunction.Start(hello)

}

Log Query

Currently, the function logs can be uploaded to Tencent Cloud SCF. You can complete the configuration as instructed
in Log Delivery Configuration.

You can search function execution logs on the log query page of the SCF or CLS console. For more information on
how to query logs, see Log Search Guide.

Log Description
Last updated：2022-04-29 15:55:43

https://www.tencentcloud.com/document/product/583/39778
https://www.tencentcloud.com/document/product/583/39777

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 48
of 126

Note：
Function logs uploaded to logset and log topic can be both queried with a function configured.

Custom Log Fields

Currently, the content output by simple log print statements in the function code will be recorded in the

 SCF_Message field when it is delivered to CLS. For descriptions of CLS fields, see Log Delivery Configuration.

Currently, SCF supports adding custom fields to logs that are uploaded to CLS. The custom fields allow you to output
business fields and relevant data to logs, and track them using the log search feature of CLS.

Note：

If you need to query the key value of a custom field such as SCF_CustomKey: SCF , add a key-value

index to the log topic for SCF log delivery as instructed in Configuring Indexes.
To avoid function log query failures caused by misuse of the index configuration, the default destination topic
for SCF log delivery (prefixed with SCF_LogTopic_) does not support modifying the index configuration.

You need to set the destination topic to custom delivery first and then update the log topic's index
configuration.
After the index configuration is modified for a log topic, it will take effect only for newly written data.

Output

If a function outputs a single-line log in JSON, the log will be parsed and uploaded to CLS in the field:value

format. Only the first layer will be parsed, and the remaining nested structure will be recorded as values.

Run the following codes and check results:

package main

import (

"context"

"fmt"

"github.com/tencentyun/scf-go-lib/cloudfunction"

)

type DefineEvent struct {

Key1 string `json:"key1"`

Key2 string `json:"key2"`

}

func hello(ctx context.Context, event DefineEvent) (string, error) {

https://www.tencentcloud.com/document/product/583/39778#.E7.B4.A2.E5.BC.95.E9.85.8D.E7.BD.AE
https://www.tencentcloud.com/document/product/614/39594
https://www.tencentcloud.com/document/product/583/39778#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.8A.95.E9.80.92.3Ca-id.3D.22zdytd.22.3E.3C.2Fa.3E

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 49
of 126

m := map[string]string{"key1": "test value 1", "key2": "test value 2"}

data, _ := json.Marshal(m)

fmt.Println(string(data))

return fmt.Sprintf("hello world"), nil

}

func main() {

cloudfunction.Start(hello)

}

Search

After using the above code to perform a test, you can run the following statement to search in Function

Management > Log Query > Advanced Search:

Search for logs

After the test is written to CLS, you can find the key1 field in the log query as shown below:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 50
of 126

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 51
of 126

PHP Version Selection

Currently, SCF supports the following versions of PHP programming language:

PHP 8.0
PHP 7.4

PHP 7.2
PHP 5.6

You can choose a desired runtime environment when creating a function, such as PHP 8.0, 7.4, 7.2, or 5.6.

Environment Variables

The PHP environment variables built in the current PHP 8.0 and 7.4 runtime environments are as shown in the table
below:

Environment Variable Key Specific Value or Value Source

 PHP_INI_SCAN_DIR /opt/php_extension:/var/user/php_extension

The PHP environment variables built in the current PHP 7.2 and 5.6 runtime environments are as shown in the table
below:

Environment Variable Key Specific Value or Value Source

 PHP_INI_SCAN_DIR /var/user/php_extension:/opt/php_extension

For more information on environment variables, see Environment Variables.

List of Built-in Extensions

PHP
Runtime Environment
Last updated：2022-06-27 16:40:27

https://www.tencentcloud.com/document/product/583/32748

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 52
of 126

Note：

For PHP 7.4 and later, the platform no longer has additional built-in dependency libraries. For more
information on the dependencies required by code execution, see Dependency Installation.

If the built-in extensions cannot meet your business requirements, you can install custom extensions as
instructed in Dependency Installation.

You can print and view the installed extensions at any time by using the
 print_r(get_loaded_extensions()); code.

The currently installed PHP extensions are listed below:

PHP 8.0、PHP 7.4

Core
runkit7
date
libxml
openssl
pcre
sqlite3
zlib
bcmath

calendar
ctype
curl
dom
hash
fileinfo
filter
ftp

gd
SPL
iconv
intl
json
mbstring
session
standard

mysqlnd
PDO
pdo_mysql
pdo_sqlite
Phar
posix
Reflection
mysqli

SimpleXML
soap
exif
tokenizer
xml
xmlreader
xmlwriter
runtime

PHP 7.2

Core
runkit7
date
libxml
openssl
pcre
sqlite3
zlib
bcmath
bz2
calendar
ctype

curl
dom
hash
fileinfo
filter
ftp
gd
SPL
iconv
json

mbstring
session
standard
mysqlnd
PDO
pdo_mysql
pdo_sqlite
Phar
posix
Reflection

mysqli
SimpleXML
soap
sockets
exif
tidy
tokenizer
xml
xmlreader
xmlwriter

zip
eio
memcached
imagick
mongodb
protobuf
redis
swoole
Zend OPcache
runtime

PHP 5.6

Core
runkit
date

ctype
curl
dom

json
mbstring
session

Reflection
mysqli
SimpleXML

xmlwriter
zip
eio

https://www.tencentcloud.com/document/product/583/34879
https://www.tencentcloud.com/document/product/583/34879

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 53
of 126

ereg
libxml
openssl
pcre
sqlite3
zlib
bcmath
bz2
calendar

hash
fileinfo
filter
ftp
gd
SPL
iconv

standard
mysqlnd
PDO
pdo_mysql
pdo_sqlite
Phar
posix

soap
sockets
exif
tidy
tokenizer
xml
xmlreader

memcached
imagick
mongodb
protobuf
redis
Zend OPcache
runtime

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 54
of 126

Function Format

The PHP function format is generally as follows:

<?php

function main_handler($event, $context) {

print_r ($event);

print_r ($context);

return "hello world";

}

?>

Execution Method

You need to specify the execution method when creating a SCF function. If the PHP programming language is used,
the execution method is similar to index.main_handler , where index indicates that the executed entry file

is index.php , and main_handler indicates that the executed entry function is main_handler .

When submitting the ZIP code package by uploading the ZIP file locally or through COS, make sure that the root
directory of the ZIP package contains the specified entry file, which contains the entry function specified by the
definition, file name, function name, and execution method; otherwise, execution will fail as the entry file or entry
function cannot be found.

Input Parameters

The input parameters in the PHP environment include $event and $context .

$event: This parameter is used to pass the trigger event data.
$context: This parameter is used to pass runtime information to your handler.

The event parameter varies with trigger or event source. For more information on its data structure, see Trigger
Overview.

Development Methods
Last updated：2022-05-20 18:49:24

https://www.tencentcloud.com/document/product/583/9705

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 55
of 126

Note：
The input parameters event and context in PHP 8.0, 7.4, 7.2, and 5.6 are in object format.

Response

Your handler can use return to return a value. The return value will be handled differently depending on the type

of invocation when the function is invoked.

In the PHP environment, a serializable object such as dict object can be directly returned:

Sync invocation: The return value of a sync invocation will be serialized in JSON and returned to the caller for
subsequent processing. The function testing in the console is sync invocation, which can capture the function’s
return value and display it after the invocation is completed.

Async invocation: The return value of an async invocation will be discarded, since the invocation method
responds right after the function is triggered, without waiting for function execution to complete.

Note：

The return value of both sync and async invocations will be recorded in the function logs. The return value
will be written to the function invocation log SCF_Message in the format of Response

RequestId:xxx RetMsg:xxx .

The value of SCF_Message is limited to 8 KB in length, and excessive parts will be truncated.

Exception Handling

You can exit the function by calling die() . At this point, the function will be marked as execution failed, and the

output from the exit using die() will also be recorded in the log.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 56
of 126

Deployment method

Tencent Cloud SCF provides the following function deployment methods. For more information about how to create
and update a function, see Create and Update a Function.

Uploading and deploying a ZIP package, as instructed in Installing and Deploying Dependencies

Editing and deploying functions via the console, as instructed in Deployment Through Console.
Using the command line, as instructed in Deployment Through Serverless Framework CLI.

Installing and Deploying Dependencies

Currently, the SCF standard PHP only supports writing to the /tmp directory, and other directories are read-only.

Therefore, you need to install, package and upload the local dependent library for use. The PHP dependency package
can be uploaded with function codes to the cloud.

Locally installing dependency packages

Dependency manager

In PHP, dependencies can be managed with the composer package manager.

Directions

1. Create a local folder /code to store the codes and dependent files, and create the dependency package

configuration file composer.json in the code root directory and configure the dependency information. Here

takes the installation of requests as an example, and the composer.json file is as follows:

2. Run the following command in the '/code' folder to install according to the dependent package and version specified
in the configuration file.

Deployment Methods
Last updated：2022-04-13 15:49:35

{

"require": {

"rmccue/requests": ">=1.0"

}

}

https://www.tencentcloud.com/document/product/583/19806
https://www.tencentcloud.com/document/product/583/32741
https://www.tencentcloud.com/document/product/583/32741

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 57
of 126

composer install

Note
Because the function is running on CentOS 7, install the dependency package in the same environment to

avoid errors. For detailed directions, see Using Container Image.

Packaging and uploading

You can upload dependencies together with the project, and use them through the require statement in function

codes.

The zip package for deploying functions can be generated automatically by a local folder via the console or manually.
All the packaging should be under the project directory to place codes and dependencies in the root directory of the

zip package. For more information, see Packaging requirements.

https://www.tencentcloud.com/document/product/583/39009
https://www.tencentcloud.com/document/product/583/32741

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 58
of 126

Log Development

You can use the following statements in the program to output a log:

echo or echo()
print or print()

print_r()
var_dump()

For example, you can query the output content in the function log by running the following code:

<?php

function main_handler($event, $context) {

print_r ($event);

print_r ($context);

echo "hello world\n";

print "hello world\n";

var_dump ($event);

return "hello world";

}

?>

Log Query

Currently, all function logs are delivered to CLS. You can configure the function log delivery. For more information, see
Log Delivery Configuration.

You can query function execution logs on the log query page of SCF or CLS. For more information on the log query

method, see Log Search Guide.

Note：
Function logs are delivered to the LogSet log set and LogTopic log topic in CLS, both of which can be

queried through the function configuration.

Log Description
Last updated：2022-01-04 16:23:04

https://www.tencentcloud.com/document/product/583/39778
https://www.tencentcloud.com/document/product/583/39777

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 59
of 126

Custom Log Fields

Currently, the string content output by simple print or logger in the function code will be recorded in the

 SCF_Message field when it is delivered to CLS. For descriptions of CLS fields, see Log Delivery Configuration.

At present, SCF supports adding custom fields to the content output to CLS. By doing so, you can output business

fields and related data content to logs and use the search capability of CLS to query and track them in the execution
process.

Note：

If you need to query the key value of a custom field such as SCF_CustomKey: SCF , add a key-value

index to the log topic for SCF log delivery as instructed in Configuring Indexes.

To avoid function log query failures caused by misuse of the index configuration, the default destination topic
for SCF log delivery (prefixed with SCF_LogTopic_) does not support modifying the index configuration.

You need to set the destination topic to custom delivery first and then update the log topic's index
configuration.
After the index configuration is modified for a log topic, it will take effect only for newly written data.

Output method

If a single-line log output by a function is in JSON format, the JSON content will be parsed into the format of

field:value when it is delivered to CLS. Only the first level of the JSON content can be parsed in this way, while other
nested structures will be recorded as values.

You can run the following code to test:

<?php

function main_handler($event, $context) {

$custom_key = array('key1' => 'test value 1', 'key2' => 'test value 2');

echo json_encode($custom_key);

return "hello world";

}

?>

Search method

After using the above code to perform a test, you can run the following statement to search in Function
Management > Log Query > Advanced Search:

https://www.tencentcloud.com/document/product/583/39778#.E7.B4.A2.E5.BC.95.E9.85.8D.E7.BD.AE
https://www.tencentcloud.com/document/product/614/39594
https://www.tencentcloud.com/document/product/583/39778#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.8A.95.E9.80.92.3Ca-id.3D.22zdytd.22.3E.3C.2Fa.3E

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 60
of 126

Search result

After the test is written to CLS, you can find the key1 field in the log query as shown below:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 61
of 126

These examples provide code snippets based on PHP 7.2 for your reference.

You can click scf-php-code-snippet to obtain the relevant code snippets and directly use them for deployment.

Obtaining Environment Variables

This example shows you how to obtain all or a single environment variable.

<?php

function main_handler($event, $context) {

print_r($_ENV);

echo getenv('SCF_RUNTIME');

return "hello world";

}

?>

Formatting Local Time

This example shows you how to output date and time in the specified format.

The SCF environment uses the UTC format by default. To output in Beijing time, you can add the
 TZ=Asia/Shanghai environment variable to the function, and use

 date_default_timezone_set(getenv('TZ')); in the function code to set the needed time zone, as shown

below:

<?php

function main_handler($event, $context) {

date_default_timezone_set(getenv('TZ'));

echo date("Y-m-d H:i:s",time());

return "hello world";

}

?>

Initiating Network Connections in a Function

Examples
Last updated：2021-07-07 15:14:14

https://github.com/awesome-scf/scf-php-code-snippet

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 62
of 126

<?php

function main_handler($event, $context) {

$url = 'https://cloud.tencent.com';

echo file_get_contents($url);

return "hello world";

}

?>

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 63
of 126

Java Version Selection

Currently, SCF supports the following versions of Java programming language:

Java 11 (Kona JDK)
Java 8 (Open JDK)

You can choose Java 8 or Java 11 as the runtime environment when creating a function.

SCF Java 11 is provided based on Tencent Kona. Tencent Kona is based on OpenJDK and maintained, optimized,
and safeguarded by Tencent's professional technical team. The Tencent Cloud team has further developed and
optimized Kona's support and features in cloud scenarios, making it more suitable for Java cloud businesses and
delivering the best Java cloud production environment and solution.

Environment Variables

The environment variables built in the Java 8 and Java 11 runtime environments are as shown in the table below:

Java 11

Environment Variable Key Specific Value or Value Source

 CLASSPATH /var/runtime/java11:/var/runtime/java11/lib/*

Java 8

Environment Variable Key Specific Value or Value Source

 CLASSPATH /var/runtime/java8:/var/runtime/java8/lib/*:/opt

For more information on environment variables, see Environment Variables.

Notes

As the Java language can be executed in JVM only after compilation, it is used in SCF in a different way from scripting
languages such as Python and Node.js, with the following restrictions:

Code upload is not supported: When Java is used, only developed, compiled, and packaged ZIP or JAR packages
can be uploaded. The SCF environment does not provide Java compiling capability.

Java
Environment Description
Last updated：2022-04-29 15:55:43

https://www.tencentcloud.com/document/product/583/32748

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 64
of 126

Online editing is not supported: Because code cannot be uploaded, online code editing is not supported. The code
page of a Java runtime function only lists the ways to upload the code through the page or submit the code through
COS.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 65
of 126

Code Form

The code form of a SCF function developed in Java is generally as follows:

package example;

public class Hello {

public String mainHandler(KeyValueClass kv) {

System.out.println("Hello world!");

System.out.println(String.format("key1 = %s", kv.getKey1()));

System.out.println(String.format("key2 = %s", kv.getKey2()));

return String.format("Hello World");

}

}

Create the parameter KeyValueClass class:

package example;

public class KeyValueClass {

String key1;

String key2;

public String getKey1() {

return this.key1;

}

public void setKey1(String key1) {

this.key1 = key1;

}

public String getKey2() {

return this.key2;

}

public void setKey2(String key2) {

this.key2 = key2;

}

public KeyValueClass() {

}

}

Notes on Java
Last updated：2023-02-01 17:37:37

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 66
of 126

Execution Method

As Java has the concept of package, its execution method is different from other languages and requires package
information. The corresponding execution method in the code example is example.Hello::mainHandler ,

where example is identified as the Java package, Hello the class, and mainHandler the class method.

Input Parameters and Returns

In the sample code, the input parameters used by mainHandler are of POJO type, and the response is of string

type. Currently, types supported for event input parameters and function responses include Java base types and
POJO type, the function runtime is of com.qcloud.scf.runtime.Context type, and its associated library files

can be downloaded here.

Types supported for event input and response parameters

Event Input
Parameter

Response Parameter Type

Java base types
These include eight basic types and wrapper classes (byte , int , short ,
 long , float , double , char , and boolen) and String type.

POJO (Plain Old
Java Object) type

You should use variable POJOs and public getters and setters to provide implementations
of the corresponding types in the code.

Context input parameters

To use Context, you need to use com.qcloud.scf.runtime.Context; in the code to reference the

package and bring the jar package when it is packaged.
If this object is not used, you can ignore it in the function input parameters, which can be written as public

String mainHandler(String name) .

Note：
The event structures of input parameters passed in by certain triggers have been defined and can be used
directly. You can get and use the Java libraries through the Cloud Event Definition. If you have any questions

during use, you can submit an issue or ticket for assistance.

https://search.maven.org/artifact/com.tencentcloudapi/scf-java-events/0.0.2/jar
https://github.com/tencentyun/scf-java-libs
https://github.com/tencentyun/scf-java-libs/issues/new
https://console.tencentcloud.com/workorder/category

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 67
of 126

This document describes how to create a zip deployment package with Gradle and create a jar deployment package
with Maven. Then, you can upload the created package (if less than 50 MB) directly in the SCF console, or upload it to
a COS bucket and then specify the bucket and object information in the SCF console.

Creating zip Deployment Package with Gradle

This document describes how to create a Java-type SCF function deployment package with Gradle. As long as the
created zip package conforms to the following rules, it can be recognized and invoked by the SCF runtime
environment.

The compiled package, class files and resource files are located in the root directory of the zip package.
The jar package required by the dependencies is located in the /lib directory.

Preparing environment

Make sure that you have Java and Gradle installed.

For Java 11, install TencentKona 11 or JDK 11.
For Java 8, install JDK 8. You can download and install the JDK appropriate for your system by using OpenJDK
(Linux) or through Java.

Installing Gradle

For Gradle installation details, see Gradle Installation. The manual installation steps are as follows:

1. Download Gradle's binary package or full package with documentation and source code.

2. Unzip the package to a desired directory, such as C:\Gradle (Windows) or /opt/gradle/gradle-4.1

(Linux).
3. Add the path of the bin directory in the unzipped directory to the system environment variable PATH in the

following way as appropriate:

Linux: Add through export PATH=$PATH:/opt/gradle/gradle-4.1/bin .

Windows: Right click Computer and select Properties > Advanced system settings > Advanced >
Environment Variables, select the Path variable, click Edit, and add ;C:\Gradle\bin; at the end of the

variable value.

4. Run the following command on the command line to check whether Gradle is installed correctly.

Deployment Methods
Last updated：2022-04-29 15:55:43

https://www.java.com/zh-CN/
https://gradle.org/install/
https://services.gradle.org/distributions/gradle-4.1-bin.zip
https://services.gradle.org/distributions/gradle-4.1-all.zip

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 68
of 126

gradle -v

If the following is output, Gradle is properly installed. If you have any questions, see Gradle's official documentation.

--

Gradle 4.1

--

Build time: 2017-08-07 14:38:48 UTC

Revision: 941559e020f6c357ebb08d5c67acdb858a3defc2

Groovy: 2.4.11

Ant: Apache Ant(TM) version 1.9.6 compiled on June 29 2015

JVM: 1.8.0_144 (Oracle Corporation 25.144-b01)

OS: Windows 7 6.1 amd64

Preparing code

Preparing code file

1. Create a project folder in the selected location, such as scf_example .

2. In the root directory of the project folder, create a directory src/main/java/ as the directory where the

package is stored.

3. Create an example package directory in the created directory and then create a Hello.java file in the

package directory. The final directory structure is formed as follows:

scf_example/src/main/java/example/Hello.java

4. Enter the following code content in the Hello.java file:

package example;

public class Hello {

public String mainHandler(String name, Context context) {

System.out.println("Hello world!");

return String.format("Hello %s.", name);

}

}

Preparing compilation file

https://gradle.org/docs/

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 69
of 126

Create a build.gradle file in the root directory of the project folder and enter the following content:

apply plugin: 'java'

task buildZip(type: Zip) {

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

Using Maven Central library to handle package dependencies

If you need to reference the external package of Maven Central, you can add dependencies as needed. The content of
the build.gradle file is as follows:

apply plugin: 'java'

repositories {

mavenCentral()

}

dependencies {

compile (

'com.tencentcloudapi:scf-java-events:0.0.2'

)

}

task buildZip(type: Zip) {

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

After repositories is used to indicate that the dependent library source is mavenCentral, Gradle will pull the

dependencies from Maven Central during compilation, i.e., the com.tencentcloudapi:scf-java-

events:0.0.2 package specified in dependencies .

Using local jar package to handle package dependencies

If you have already downloaded the Jar package to your local system, you can use the local library to handle package
dependencies. In this case, create a jars directory in the root directory of the project folder and place the

downloaded dependent Jar package into it. The content of the build.gradle file is as follows:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 70
of 126

apply plugin: 'java'

dependencies {

compile fileTree(dir: 'jars', include: '*.jar')

}

task buildZip(type: Zip) {

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

After dependencies is used to indicate that the search directory is the *.jar file in the jars directory, the

dependencies will be automatically searched for during compilation.

Compiling and packaging

Execute the command gradle build in the root directory of the project folder, and the compilation output should

be like the example below:

Starting a Gradle Daemon (subsequent builds will be faster)

BUILD SUCCESSFUL in 5s

3 actionable tasks: 3 executed

If a compilation failure is displayed, adjust the code based on the outputted compilation error message.

The compiled zip package is located in the /build/distributions directory of the project folder and named

 scf_example.zip after the project folder.

Creating jar Deployment Package Using Maven

This document describes how to create a Java-type function deployment jar package with Maven.

Preparing environment

Make sure that you have Java and Gradle installed.

For Java 11, install TencentKona 11 or JDK 11.
For Java 8, install JDK 8. You can download and install the JDK appropriate for your system by using OpenJDK

(Linux) or through Java.

Installing Maven

https://www.java.com/zh-CN/

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 71
of 126

For Maven installation details, see Installing Apache Maven. The manual installation steps are as follows:

1. Download Maven's zip or tar.gz package.
2. Unzip the package to a desired directory, such as C:\Maven (Windows) or /opt/mvn/apache-maven-

3.5.0 (Linux).

3. Add the path of the bin directory in the unzipped directory to the system environment variable PATH in the

following way as appropriate:

Linux: Add through export PATH=$PATH:/opt/mvn/apache-maven-3.5.0/bin .

Windows: Right click Computer and select Properties > Advanced system settings > Advanced >

Environment Variables, select the Path variable, click Edit, and add ;C:\Maven\bin; at the end of the

variable value.

4. Run the following command on the command line to check whether Maven is installed correctly.

mvn -v

If the following is output, Maven is properly installed. If you have any questions, see Maven's official documentation.

Apache Maven 3.5.0 (ff8f5e7444045639af65f6095c62210b5713f426; 2017-04-04T03:39:06

+08:00)

Maven home: C:\Program Files\Java\apache-maven-3.5.0\bin\..

Java version: 1.8.0_144, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1.8.0_144\jre

Default locale: zh_CN, platform encoding: GBK

OS name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

Preparing code

Preparing code file

1. Create a project folder in the selected location, such as scf_example .

2. In the root directory of the project folder, create a directory src/main/java/ as the directory where the

package is stored.

3. Create an example package directory in the created directory and then create a Hello.java file in the

package directory. The final directory structure is formed as follows:

scf_example/src/main/java/example/Hello.java

https://maven.apache.org/install.html
https://maven.apache.org/install.html

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 72
of 126

4. Enter the following code content in the Hello.java file:

package example;

public class Hello {

public String mainHandler(String name, Context context) {

System.out.println("Hello world!");

return String.format("Hello %s.", name);

}

}

Preparing compilation file

Create a pom.xml file in the root directory of the project folder and enter the following content:

Java 11 Java

Java 8 Java

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/

2001/XMLSchema-instance" xsi:schemalocation="http://maven.apache.org/POM/4.0.0 h

ttp://maven.apache.org/maven-v4_0_0.xsd">

<modelversion>4.0.0</modelversion>

<groupid>examples</groupid>

<artifactid>java-example</artifactid>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>java-example</name>

<build>

<plugins>

<plugin>

<groupid>org.apache.maven.plugins</groupid>

<artifactid>maven-shade-plugin</artifactid>

<version>2.3</version>

<configuration>

<source>11

<target>11</target>

</configuration>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 73
of 126

Using Maven Central library to handle package dependencies

If you need to reference the external package of Maven Central, you can add dependencies as needed. The content of
the pom.xml file is as follows. To add dependencies, pay attention to the <dependencies> section.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2

001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/mav

en-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>examples</groupId>

<artifactId>java-example</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>java-example</name>

<dependencies>

<dependency>

<groupId>com.tencentcloudapi</groupId>

<artifactId>scf-java-events</artifactId>

<version>0.0.2</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<version>2.3</version>

<configuration>

<createDependencyReducedPom>false</createDependencyReducedPom>

</configuration>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

</goals>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 74
of 126

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Compiling and packaging

Execute the command mvn package in the root directory of the project folder, and the compilation output should

be like the example below:

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building java-example 1.0-SNAPSHOT

[INFO] --

[INFO]

...

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.785 s

[INFO] Finished at: 2017-08-25T10:53:54+08:00

[INFO] Final Memory: 17M/214M

[INFO] --

If a compilation failure is displayed, adjust the code based on the outputted compilation error message.

The compiled zip package is located in the target directory of the project folder and named java-example-

1.0-SNAPSHOT.jar after the artifactId and version fields in pom.xml.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 75
of 126

Logging

You can use the System.out.println() and java.util.logging.Logger() statements in the

program to output a log:

For example, you can query the output in the function log by running the following code.

System.out.println("Hello world!");

Logger logger = Logger.getLogger("AnyLoggerName");

logger.setLevel(Level.INFO);

logger.info("logging message here!");

Log Query

Currently, the function logs can be uploaded to Tencent Cloud SCF. You can complete the configuration as instructed
in Log Delivery Configuration.

You can search function execution logs on the log query page of the SCF or CLS console. For more information on
how to query logs, see Log Search Guide.

Note：
Function logs uploaded to logset and log topic can be both queried with a function configured.

Custom Log Fields

Currently, the content output by simple log print statements in the function code will be recorded in the
 SCF_Message field when it is delivered to CLS. For descriptions of CLS fields, see Log Delivery Configuration.

Currently, SCF supports adding custom fields to logs that are uploaded to CLS. The custom fields allow you to output
business fields and relevant data to logs, and track them using the log search feature of CLS.

Using Maven to Create JAR Packs
Last updated：2022-04-29 15:55:43

https://www.tencentcloud.com/document/product/583/39778
https://www.tencentcloud.com/document/product/583/39777
https://www.tencentcloud.com/document/product/583/39778#.E7.B4.A2.E5.BC.95.E9.85.8D.E7.BD.AE

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 76
of 126

Note：

If you need to query the key value of a custom field such as SCF_CustomKey: SCF , add a key-value

index to the log topic for SCF log delivery as instructed in Configuring Indexes.
To avoid function log query failures caused by misuse of the index configuration, the default destination topic
for SCF log delivery (prefixed with SCF_LogTopic_) does not support modifying the index configuration.

You need to set the destination topic to custom delivery first and then update the log topic's index
configuration.
After the index configuration is modified for a log topic, it will take effect only for newly written data.

Output

If a function outputs a single-line log in JSON, the log will be parsed and uploaded to CLS in the field:value

format. Only the first layer will be parsed, and the remaining nested structure will be recorded as values.

Run the following codes and check results:

package example;

public class Hello {

public String mainHandler(KeyValueClass kv) {

System.out.println("{\"key1\": \"test value 1\",\"key2\": \"test value 2\"}");

return String.format("hello world");

}

}

Search

After using the above code to perform a test, you can run the following statement to search in Function Service >
Log Query > Advanced Search:

https://www.tencentcloud.com/document/product/614/39594
https://www.tencentcloud.com/document/product/583/39778#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.8A.95.E9.80.92.3Ca-id.3D.22zdytd.22.3E.3C.2Fa.3E

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 77
of 126

For detailed directions, see Log Search Guide.

Search for logs

After the test is written to CLS, you can find the key1 field in the log query as shown below:

https://www.tencentcloud.com/document/product/583/39777#.E6.8E.A7.E5.88.B6.E5.8F.B0.E6.A3.80.E7.B4.A2

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 78
of 126

Operation Scenarios

With POJO type parameters, you can handle more complex data structures than simple event input parameters. This
document uses an example to describe how to use POJO parameters in SCF and which input parameter formats are
supported.

Prerequisites

You have logged in to the SCF Console.

Directions

Event input parameters and POJOs

The event input parameters used in this document are as follows:

{

"person": {"firstName":"bob","lastName":"zou"},

"city": {"name":"shenzhen"}

}

With the input parameters above, the following content is outputted:

{

"greetings": "Hello bob zou.You are from shenzhen"

}

Based on the input parameters, the following four classes are built:

RequestClass: used to accept the event as the class that accepts events

PersonClass: used to handle the person section in the event JSON

CityClass: used to handle the city section in the event JSON

ResponseClass: used to assemble the response content

Code preparations

Common Examples
Last updated：2022-04-11 15:37:14

https://console.tencentcloud.com/scf/index?rid=1

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 79
of 126

Prepare the code by following the steps below for the four classes constructed based on the input parameters and
entry function:

Project directory preparations

Create a project root directory, such as scf_example .

Code directory preparations

1. Create the folder src\main\java as the code directory in the project root directory.

2. According to the name of the package to be used, create a package folder in the code directory.

For example, create example to form the directory structure scf_example\src\main\java\example .

Code preparations

Create files Pojo.java , RequestClass.java , PersonClass.java , CityClass.java , and

 ResponseClass.java in the example folder with the following contents respectively:

Pojo.java

package example;

public class Pojo{

public ResponseClass handle(RequestClass request){

String greetingString = String.format("Hello %s %s.You are from %s", request.pers

on.firstName, request.person.lastName, request.city.name);

return new ResponseClass(greetingString);

}

}

RequestClass.java

package example;

public class RequestClass {

PersonClass person;

CityClass city;

public PersonClass getPerson() {

return person;

}

public void setPerson(PersonClass person) {

this.person = person;

}

public CityClass getCity() {

return city;

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 80
of 126

public void setCity(CityClass city) {

this.city = city;

}

public RequestClass(PersonClass person, CityClass city) {

this.person = person;

this.city = city;

}

public RequestClass() {

}

}

PersonClass.java

package example;

public class PersonClass {

String firstName;

String lastName;

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public PersonClass(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

public PersonClass() {

}

}

CityClass.java

package example;

public class CityClass {

String name;

public String getName() {

return name;

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 81
of 126

}

public void setName(String name) {

this.name = name;

}

public CityClass(String name) {

this.name = name;

}

public CityClass() {

}

}

ResponseClass.java

package example;

public class ResponseClass {

String greetings;

public String getGreetings() {

return greetings;

}

public void setGreetings(String greetings) {

this.greetings = greetings;

}

public ResponseClass(String greetings) {

this.greetings = greetings;

}

public ResponseClass() {

}

}

Code compilation

In the example, Maven is chosen to compile and package the code. You can choose another packaging
method according to your own conditions.

1. Create the pom.xml function in the project root directory and enter the following content:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.or

g/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/m

aven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>examples</groupId>

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 82
of 126

<artifactId>java-example</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>java-example</name>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<version>2.3</version>

<configuration>

<createDependencyReducedPom>false</createDependencyReducedPom>

</configuration>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

2. Run the mvn package command on the command line and make sure that there is a successful compilation

message. If the output result is as follows, the packaging is successful:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.800 s

[INFO] Finished at: 2017-08-25T15:42:41+08:00

[INFO] Final Memory: 18M/309M

[INFO] --

If the compilation fails, please modify the code as prompted.

3. The generated package after compilation is located at target\java-example-1.0-SNAPSHOT.jar .

Function creation and testing

1. Create a function. For more information, please see Creating and Updating Functions.

https://www.tencentcloud.com/document/product/583/19806

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 83
of 126

2. Upload the compiled package as a submission package.

You can choose to upload the packaging by zipping it or uploading it to a COS bucket and then submitting it
through COS bucket upload.

3. Set the execution method of the function to example.Pojo::handle .

4. Expand the testing page by using the test button and enter the input parameters expected to be handled in the test
template:

{

"person": {"firstName":"bob","lastName":"zou"},

"city": {"name":"shenzhen"}

}

After clicking "Execute", you can see the return as shown below:

{

"greetings": "Hello bob zou.You are from shenzhen"

}

You can also modify the values of the structures in the test input parameters, and you can see the modification effect

after execution.

Sample

You can go to the following address and pull the sample code for testing:

https://github.com/tencentyun/scf-demo-java

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 84
of 126

This document describes how to create a Java-type SCF function deployment package with Gradle. As long as the
created zip package conforms to the following rules, it can be recognized and invoked by the SCF runtime
environment.

The compiled package, class files, and resource files are located in the root directory of the zip package.
The jar package required by the dependencies is located in the /lib directory.

Environment Preparations

Make sure that you have installed Java and Gradle. For the Java version, please use JDK 8. You can download and
install the JDK appropriate for your system through OpenJDK (Linux) or at www.java.com .

Installing Gradle

The specific installation instructions can be found at https://gradle.org/install/ . The following describes

how to install it manually:

1. Download Gradle's binary package or full package with documentation and source code.
2. Unzip the package to a desired directory, such as C:\Gradle (Windows) or /opt/gradle/gradle-4.1

(Linux).
3. Add the path of the bin directory in the unzipped directory to the system environment variable PATH in the

following way as appropriate:

Linux: add through export PATH=$PATH:/opt/gradle/gradle-4.1/bin .

Windows: right click Computer and select Properties > Advanced system settings > Advanced

> Environment Variables , select the Path variable, click Edit, and add ;C:\Gradle\bin; at the

end of the variable value.
4. Run the following command on the command line to check whether Gradle is installed correctly.

gradle -v

If the following is output, Gradle is properly installed. If you have any questions, please see Gradle's official
documentation.

--

Gradle 4.1

--

Build time: 2017-08-07 14:38:48 UTC

Using Gradle to Create ZIP Packs
Last updated：2020-04-20 12:07:10

https://services.gradle.org/distributions/gradle-4.1-bin.zip
https://services.gradle.org/distributions/gradle-4.1-all.zip
https://gradle.org/docs/

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 85
of 126

Revision: 941559e020f6c357ebb08d5c67acdb858a3defc2

Groovy: 2.4.11

Ant: Apache Ant(TM) version 1.9.6 compiled on June 29 2015

JVM: 1.8.0_144 (Oracle Corporation 25.144-b01)

OS: Windows 7 6.1 amd64

Code Preparations

Preparing code file

1. Create a project folder in the selected location, such as scf_example .

2. In the root directory of the project folder, create a directory src/main/java/ as the directory where the

package is stored.
3. Create an example package directory in the created directory and then create a Hello.java file in the

package directory. The final directory structure is formed as follows:

scf_example/src/main/java/example/Hello.java

4. Enter the following code content in the Hello.java file:

package example;

public class Hello {

public String mainHandler(String name, Context context) {

System.out.println("Hello world!");

return String.format("Hello %s.", name);

}

}

Preparing the compilation file

Create a build.gradle file in the root directory of the project folder and enter the following content:

apply plugin: 'java'

task buildZip(type: Zip) {

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 86
of 126

Using Maven Central library to handle package dependencies

If you need to reference the external package of Maven Central, you can add dependencies as needed. The content of

the build.gradle file is as follows:

apply plugin: 'java'

repositories {

mavenCentral()

}

dependencies {

compile (

'com.tencentcloudapi:scf-java-events:0.0.2'

)

}

task buildZip(type: Zip) {

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

After repositories is used to indicate that the dependent library source is mavenCentral, Gradle will pull the

dependencies from Maven Central during compilation, i.e., the com.tencentcloudapi:scf-java-

events:0.0.2 package specified in dependencies .

Using local Jar package to handle package dependencies

If you have already downloaded the Jar package to your local system, you can use the local library to handle package
dependencies. In this case, create a jars directory in the root directory of the project folder and place the

downloaded dependent Jar package into it. The content of the build.gradle file is as follows:

apply plugin: 'java'

dependencies {

compile fileTree(dir: 'jars', include: '*.jar')

}

task buildZip(type: Zip) {

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 87
of 126

from compileJava

from processResources

into('lib') {

from configurations.runtime

}

}

build.dependsOn buildZip

After dependencies is used to indicate that the search directory is the *.jar file in the jars directory, the

dependencies will be automatically searched for during compilation.

Compilation and Packaging

Run the gradle build command in the root directory of the project folder, and the compilation output should be

like the example below:

Starting a Gradle Daemon (subsequent builds will be faster)

BUILD SUCCESSFUL in 5s

3 actionable tasks: 3 executed

If a compilation failure is displayed, adjust the code based on the output compilation error message.

The compiled zip package is located in the /build/distributions directory of the project folder and named

 scf_example.zip after the project folder.

Function Usage

After the zip package is generated after compilation and packaging, when creating or modifying a function, you can
upload the package (if less than 10 MB) through the page or upload it (if bigger) to a COS bucket and then update it
into the function through COS upload.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 88
of 126

In addition to the standard runtime environments for supported programming languages and versions, to satisfy
personalized needs of function implementation in more custom programming languages and versions, SCF also
provides the Custom Runtime service, which allows you to customize runtime environments. It can implement custom

function runtime by opening up its capabilities, enable you to use any programming language on any version to write
functions as needed, and implement global operations in function invocation, such as extension load, security plugin,
and monitoring agent. SCF and Custom Runtime respond to and process events over HTTP.

Custom Runtime Deployment File Description

Bootstrap file: fixed executable bootstrap file of Custom Runtime. You need to create an executable file with the
same name and implement it with a custom programming language and version. It can be directly processed or start

another executable file to initialize and invocate the function runtime.

Function file: function program file developed and implemented with a custom programming language and version.

Library files or executable files dependent on by the runtime: relevant dependent library files or executable files
required by the runtime in the custom programming language and version.

The function is published in the form of deployment package, which consists of the following files:

Bootstrap file (required)

Function file (required)
Library files or executable files dependent on by runtime (optional)

As the deployment package size is limited, if a library file or executable file dependent on by the runtime is large, we
recommend you publish the function by binding the deployment package to applicable layers, which involves the
following files:

Deployment package:
Bootstrap file (required)
Function file (required)

Layer
Library files or executable files dependent on by runtime (optional)

Custom Runtime
Overview
Last updated：2020-09-10 16:20:16

Note：

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 89
of 126

Custom Runtime Operating Mechanism

Custom Runtime divides the function runtime into initialization stage and invocation stage. Initialization is executed
only once during the instance cold start, while invocation is the execution process called for every event response.

The start time and execution time vary by programming language and version. The initialization timeout period and

execution timeout period configuration items are added to SCF specially for Custom Runtime to manage the
runtime lifecycle.

Loading function bootstrap

SCF first searches for the executable bootstrap file in the deployment package and performs the following operations
based on the search result:

If the bootstrap file is found and executable, SCF will load and execute it to enter the function initialization stage.

If the bootstrap file cannot be found or is not executable, a message indicating that the bootstrap file does not exist
and the start failed will be returned.

Initializing function

The bootstrap file is executed to start function initialization. You can customize the bootstrap to implement custom
operations as needed and directly process it or call another executable file to complete initialization. We recommend
you perform the following basic operations during initialization:

Set the paths and environment variables of the runtime's dependent libraries.

Load the dependent library files and extensions of the custom programming language and version. If there are
dependent files that need to be pulled in real time, you can download them to the /tmp directory.

Parse the function file and execute the global operations or initialization processes (such as initializing SDK client
(HTTP client) and creating database connection pool) required before function invocation, so they can be reused
during invocation.

Start plugins such as security and monitoring.
After initialization is completed, you need to proactively call the runtime API to access the initialization readiness
API /runtime/init/ready , which informs SCF that Custom Runtime has been initialized and is ready;

otherwise, SCF will keep waiting until the configured initialization timeout period elapses and then end Custom
Runtime and return an initialization timeout error. If the notifications are repeated, the first access time will be used

as the readiness time.

Before publishing the executable files among the above deployment files to SCF, you should set the file
executable permission for them, package the deployment files into a ZIP package, and upload the package
directly or through COS.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 90
of 126

Logs and exceptions

SCF logs all standard outputs during initialization.
If function initialization is executed and completed normally within the timeout period, the logs generated during
initialization will be combined and returned together with the logs of the first invocation. If initialization failed due to

an error or exception within the timeout period, an initialization timeout error will be returned as the execution result,
and program errors written into the standard outputs and exception logs will be reported to SCF and displayed in
logs and log query in the console.

Function invocation

In the function invocation stage, you need to customize event acquisition, function invocation, and result return and
loop this process.

Get events through long polling. You can use the custom programming language and version to access the event
acquisition API /runtime/invocation/next of the runtime API with HTTP client. The response body

contains the event data. If this API is repeatedly accessed during an invocation, the same event data will be
returned.

Construct function invocation parameters based on the environment variables, required information in the response
header, and event information.

Push parameter data such as event information and call the function processing program.
Access the runtime response result API /runtime/invocation/response to push the processing result of

the function. The first invocation success will be considered as the final event status, which will be locked by SCF,
and the result cannot be changed after push.
If an error occurs during function invocation, you can call the runtime invocation error API

 /runtime/invocation/error to push the error message. The current invocation will end, and the first

invocation will be considered as the final event status, which will be locked by SCF, and the result cannot be
changed in subsequent pushes.
Release the resources that are no longer needed after the current invocation.

Logs and exceptions

SCF logs all standard outputs during invocation.

After SCF distributes an event, if Custom Runtime does not get it after the function execution timeout period
elapses, SCF will end the instance and return an event acquisition wait timeout error.

Note：

Do not set a timeout period for the GET method of the HTTP client.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 91
of 126

After SCF distributes an event, if Custom Runtime gets it but does not return the execution result after the function
execution timeout period elapses, SCF will end the instance and return an execution timeout error.

Custom Runtime API

You need to implement Custom Runtime with your custom programming language and version, and Custom Runtime

and SCF need to communicate with each other over a standard protocol during processes such as event distribution
and result returning. Therefore, SCF provides runtime APIs to meet the interaction needs in the lifecycle of Custom
Runtime.

SCF has the following built-in environment variables:

SCF_RUNTIME_API: runtime API address.

SCF_RUNTIME_API_PORT: runtime API port.
For more information, please see Environment Variables.

Custom Runtime can access runtime APIs through SCF_RUNTIME_API:SCF_RUNTIME_API_PORT .

Path Method Description

/runtime/init/ready post Calls the API to mark the ready status after runtime initialization.

/runtime/invocation/next get

Gets invocation event.

The response header contains the following information

request_id: request ID, which identifies the request triggering
function invocation.
memory_limit_in_mb: maximum function memory in MB
time_limit_in_ms: function timeout period in milliseconds

For the structures of the event data contained in the response body,
please see Trigger Event Message Structure Summary.

/runtime/invocation/response post
Function processing result.

After calling the function processing program, the runtime will push
the response from the function to the invocation response API.

/runtime/invocation/error post A function return error will be pushed to the invocation error API to
mark the current invocation failure.

https://www.tencentcloud.com/document/product/583/32748
https://www.tencentcloud.com/document/product/583/31439

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 92
of 126

Creating Sample Bash Function
Last updated：2023-04-27 17:44:54

Scenario

This document describes how to create, package, and release a Custom Runtime cloud function to respond to the
triggered event. You will learn the development process and operating mechanism of Custom Runtime.

Directions

Before creating a Custom Runtime cloud function, you need to create a runtime boot file bootstrap and function file.

Creating a bootstrap file

Bootstrap is a runtime entry bootloader. When Custom Runtime loads a function, it retrieves the file named “bootstrap”
and executes the file to start Custom Runtime, which allows developers to develop runtime functions using any
programming language and version. Bootstrap must:
Have the execute permission.
Be able to run in the SCF system environment (CentOS 7.6).

You can refer to the following sample code to create a bootstrap file in a command line terminal. Bash is used as an
example in this document.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 93
of 126

#! /bin/bash

set -euo pipefail

Initialization - Load the function file.

source ./"$(echo $_HANDLER | cut -d. -f1).sh"

After the initialization is completed, access the runtime API to report the readi

curl -d " " -X POST -s "http://$SCF_RUNTIME_API:$SCF_RUNTIME_API_PORT/runtime/init/

Start the loop that listens to events, handles events, and pushes event handlin

while true

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 94
of 126

do

 HEADERS="$(mktemp)"

 # Gets event data through long polling

 EVENT_DATA=$(curl -sS -LD "$HEADERS" -X GET -s "http://$SCF_RUNTIME_API:$SCF_RUNT

 # Invokes a function to handle the event

 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

 # Pushes the function handling result

 curl -X POST -s "http://$SCF_RUNTIME_API:$SCF_RUNTIME_API_PORT/runtime/invocation

done

Sample description

In the preceding sample, Custom Runtime has two phases, the initialization and invocation phases. Initialization is
executed only once during the cold start of a function instance. After the initialization, the invocation loop starts, which
listens to events, invokes functions for handling, and pushes the handling results.
Initialization phase

For more information, see Initializing function.

After the initialization, you need to proactively invoke the runtime API to report the readiness to SCF. The sample code
is as follows:

https://www.tencentcloud.com/document/product/583/38129#.E5.87.BD.E6.95.B0.E5.88.9D.E5.A7.8B.E5.8C.96

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 95
of 126

After the initialization is completed, access the runtime API to report the readi

curl -d " " -X POST -s "http://$SCF_RUNTIME_API:$SCF_RUNTIME_API_PORT/runtime/init/

Because Custom Runtime is implemented with a custom programming language and version, a standard protocol is
needed for the communication between Custom Runtime and SCF. In the current sample, SCF provides runtime APIs
and built-in environment variables to Custom Runtime over HTTP. For more information, see Environment Variables.
 SCF_RUNTIME_API : Runtime API address

 SCF_RUNTIME_API_PORT : Runtime API port

https://www.tencentcloud.com/document/product/583/32748

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 96
of 126

Initialization logs and exceptions

For more information, see Logs and exceptions.
Invocation phase

For more information, see Function invocation.
1.1 After initialization, the invocation loop starts. A function is invoked to listen to events. The sample code is as
follows:

Gets event data through long polling

 EVENT_DATA=$(curl -sS -LD "$HEADERS" -X GET -s "http://$SCF_RUNTIME_API:$SCF_RUNT

https://www.tencentcloud.com/document/product/583/38129#.E6.97.A5.E5.BF.97.E5.8F.8A.E5.BC.82.E5.B8.B8
https://www.tencentcloud.com/document/product/583/38129#.E5.87.BD.E6.95.B0.E8.B0.83.E7.94.A8

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 97
of 126

During the long-polling of events, do not set timeout of the GET method. Access the runtime event acquisition API
(/runtime/invocation/next) to wait for event delivery. If you access this API repeatedly within an invocation,

the same event data will be returned. The response body is event_data . The response header includes:

 Request_Id : Request ID, identifying the request that triggers function invocation.

 Memory_Limit_In_Mb : Function memory limit, in MB.

 Time_Limit_In_Ms : Function timeout limit, in milliseconds.

1.2 Based on the environment variables, response header information, and event information, construct parameters of
the function and start function invocation for event handling. The sample code is as follows:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 98
of 126

Invokes a function to handle the event

 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

1.3 Access the runtime invocation response API to push the function handling result. The first invocation success will
be considered as the final event status, which will be locked by SCF. The pushed result cannot be changed. The
sample code is as follows:

Pushes the function handling result

 curl -X POST -s "http://$SCF_RUNTIME_API:$SCF_RUNTIME_API_PORT/runtime/invocation

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 99
of 126

If an error occurs during function invocation, access the runtime invocation error API to push the error message, which
ends the current invocation. The first invocation result will be considered as the final event status, which will be locked
by SCF. The pushed result cannot be changed. The sample code is as follows:

Push the function handling error.

 curl -X POST -s "http://$SCF_RUNTIME_API:$SCF_RUNTIME_API_PORT/runtime/invocation

Invocation logs and exception

For more information, see Logs and exceptions.

Creating a function file

https://www.tencentcloud.com/document/product/583/38129#.E6.97.A5.E5.BF.97.E5.8F.8A.E5.BC.82.E5.B8.B8

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 100
of 126

Note
The function file contains the implementation of function logic. The execution method and parameters can be
implemented by Custom Runtime.

Create index.sh in the command line terminal.

function main_handler () {

 EVENT_DATA=$1

 echo "$EVENT_DATA" 1>&2;

 RESPONSE="Echoing request: '$EVENT_DATA'"

 echo $RESPONSE

}

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 101
of 126

Releasing a Function

1. After the bootstrap file and function file are successfully created, the directory structure is as follows:

├ bootstrap

└ index.sh

2. Run the following command to grant execute permission on the bootstrap file:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 102
of 126

Note
Windows does not support the chmod 755 command. Therefore, you need to run the command in Linux or

macOS.

$ chmod 755 index.sh bootstrap

3. Create and publish functions by using Serverless Cloud Framework. Or, run the following command to generate a
ZIP package and then create and publish functions through the SDK or SCF console.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 103
of 126

$ zip demo.zip index.sh bootstrap

adding: index.sh (deflated 23%)

adding: bootstrap (deflated 46%)

Using Serverless Cloud Framework to create and publish a function

Creating a function

1. Install Serverless Cloud Framework.
2. Configure the Serverless.yml file in the bootstrap directory to create the dotnet function.

https://www.tencentcloud.com/document/product/1040/37034

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 104
of 126

#Component information

component: scf # Component name. `scf` is used as an example.

name: ap-guangzhou_default_helloworld # Instance name.

#Component parameters

inputs:

 name: helloworld #Function name.

 src: ./

 description: helloworld blank template function.

 handler: index.main_handler

 runtime: CustomRuntime

 namespace: default

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 105
of 126

 region: ap-guangzhou

 memorySize: 128

 timeout: 3

 events:

 - apigw:

 parameters:

 endpoints:

 - path: /

 method: GET

Note
For more information on the configurations of SCF components, see Configuration Documentation.
3. Run the scf deploy command to create a cloud function. A successful creation returns the following message:

https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 106
of 126

serverless-cloud-framework

Action: "deploy" - Stage: "dev" - App: "ap-guangzhou_default_helloworld" - Instance

functionName: helloworld

description: helloworld blank template function.

namespace: default

runtime: CustomRuntime

handler: index.main_handler

memorySize: 128

lastVersion: $LATEST

traffic: 1

triggers:

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 107
of 126

 apigw:

 - http://service-xxxxxx-123456789.gz.apigw.tencentcs.com/release/

Full details: https://serverless.cloud.tencent.com/apps/ap-guangzhou_default_hellow

36s › ap-guangzhou_default_helloworld › Success

Note
For more information, see SCF Component.

Invoking a function

As events is set to apigw in the serverless.yml file, an API gateway is created together with the

function. The cloud function can be accessed over this API gateway. If a message similar to the following is returned,
the access is successful.

https://www.tencentcloud.com/document/product/1040/33164

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 108
of 126

Echoing request:

'{

 "headerParameters":{},

 "headers":{

"accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/we

 "accept-encoding":"gzip, deflate",

 "accept-language":"zh-CN,zh-TW;q=0.9,zh;q=0.8,en-US;q=0.7,en;q=0.6",

 "cache-control":"max-age=259200",

 "connection":"keep-alive",

 "host":"service-eiu4aljg-1259787414.gz.apigw.tencentcs.com",

 "upgrade-insecure-requests":"1",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 109
of 126

 "user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

 "x-anonymous-consumer":"true",

 "x-api-requestid":"b8b69e08336bb7f3e06276c8c9******",

 "x-api-scheme":"http",

 "x-b3-traceid":"b8b69e08336bb7f3e06276c8c9******",

 "x-qualifier":"$LATEST"},

 "httpMethod":"GET",

 "path":"/",

 "pathParameters":{},

 "queryString":{},

 "queryStringParameters":{},

 "requestContext":{"httpMethod":"GET","identity":{},"path":"/",

 "serviceId":"service-xxxxx",

 "sourceIp":"10.10.10.1",

 "stage":"release"

 }

}'

Using SDK to create and release a function

Creating a function

Run the following commands to use the Python SDK of SCF to create a function named CustomRuntime-Bash .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 110
of 126

from tencentcloud.common import credential

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.scf.v20180416 import scf_client, models

from base64 import b64encode

try:

 cred = credential.Credential("SecretId", "secretKey")

 httpProfile = HttpProfile()

 httpProfile.endpoint = "scf.tencentcloudapi.com"

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 111
of 126

 clientProfile = ClientProfile()

 clientProfile.httpProfile = httpProfile

 client = scf_client.ScfClient(cred, "na-toronto", clientProfile)

 req = models.CreateFunctionRequest()

 f = open('demo.zip', 'r')

 code = f.read()

 f.close()

 params = '{\\"FunctionName\\":\\"CustomRuntime-Bash\\",\\"Code\\":{\\"ZipFile\\

 req.from_json_string(params)

 resp = client.CreateFunction(req)

 print(resp.to_json_string())

except TencentCloudSDKException as err:

 print(err)

Special parameters of Custom Runtime

Parameter Type Description

 "Runtime":"CustomRuntime" Runtime type of Custom Runtime.

 "InitTimeout":3

Initialization timeout period. Custom Runtime adds a configuration of
initialization timeout period. The initialization period starts from the
boot-time of bootstrap and ends when the runtime API is reported
ready. When the initialization period exceeds the timeout period, the
execution ends and an initialization timeout error is returned.

 "Timeout":3

Invocation timeout period. This parameter configures the timeout
period of function invocation. The invocation period starts from the
event delivery time and ends upon the time when the function pushes
the handling result to the runtime API. When the invocation period
exceeds the timeout period, the execution ends and an invocation
timeout error is returned.

Invoking a function

Run the following commands to use the Python SDK of SCF to invoke the CustomRuntime-Bash function.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 112
of 126

from tencentcloud.common import credential

from tencentcloud.common.profile.client_profile import ClientProfile

from tencentcloud.common.profile.http_profile import HttpProfile

from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudS

from tencentcloud.scf.v20180416 import scf_client, models

try:

 cred = credential.Credential("SecretId", "secretKey")

 httpProfile = HttpProfile()

 httpProfile.endpoint = "scf.tencentcloudapi.com"

 clientProfile = ClientProfile()

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 113
of 126

 clientProfile.httpProfile = httpProfile

 client = scf_client.ScfClient(cred, "na-toronto", clientProfile)

 req = models.InvokeRequest()

 params = '{\\"FunctionName\\":\\"CustomRuntime-Bash\\",\\"ClientContext\\":\\"{

 req.from_json_string(params)

 resp = client.Invoke(req)

 print(resp.to_json_string())

except TencentCloudSDKException as err:

 print(err)

If a message similar to the following is returned, the invocation is successful.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 114
of 126

{"Result":

 {"MemUsage": 7417***,

 "Log": "", "RetMsg":

 "Echoing request: '{

 \\"key1\\": \\"test value 1\\",

 \\"key2\\": \\"test value 2\\"

 }'",

 "BillDuration": 101,

 "FunctionRequestId": "3c32a636-****-****-****-d43214e161de",

 "Duration": 101,

 "ErrMsg": "",

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 115
of 126

 "InvokeResult": 0

 },

 "RequestId": "3c32a636-****-****-****-d43214e161de"

}

Creating and publishing a function in the console

Creating a function

1. Log in to the SCF console and click Functions on the left sidebar.
2. Choose a region at the top of the Functions page and click Create to start creating a function.

3. On the Create function page, click Create from scratch and select Custom Runtime in Running
environment.

4. In Function codes, set Submitting method and Function codes.

https://console.tencentcloud.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 116
of 126

Submitting method: Select Local ZIP file.
Function codes: Select the demo.zip .

Advanced settings: Expand Advanced settings and set Initialization timeout period as well as other related

parameters.
5. Click Complete.

Invoking a function

1. Log in to the SCF console and click Functions on the left sidebar.
2. Choose a region at the top of the Functions page, and click the function to be invoked to go to the function detail
page.

3. Select Function management on the left and select the Function codes tab.

https://console.tencentcloud.com/scf

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 117
of 126

4. Click Test below the editor, and the invocation execution result and log will be displayed in the console.

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 118
of 126

SCF allows you to deploy container images as functions. This document describes the background, principles,
development, log printing, cold start optimization, billing, and use limits of image deployment functions.

Background

SCF is a FaaS service based on the cloud native architecture from the very beginning of design. After adding support

for deploying container images as functions at the runtime layer, its entire service form has evolved towards a
containerized ecosystem. On the one hand, it solves the environment dependency problem in function runtime and
gives you more freedom to customize. On the other hand, this service form enables you to cross the technical
thresholds, such as Kubernetes cluster management, security maintenance, and troubleshooting, and sinks auto
scaling, availability, and other needs to the computing platform, further unleashing the capabilities of cloud computing.

How It Works

Before developing specific function logic, you need to determine the function type. SCF provides event-triggered
functions and HTTP-triggered functions.

During the initialization of the function instance, SCF will obtain the temporary user name and password of the image
repository as the access credential to pull the image. After the image is pulled successfully, start the HTTP Server you
defined according to the specified startup command Command , the parameter Args and the port (fixed to 9000).

Finally, HTTP Server will receive all entry requests of SCF, including the event-triggered function invocations and

HTTP-triggered function invocations.

Deploying Image as Function
WebServer Image Function
Last updated：2023-07-10 10:28:48

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 119
of 126

How a function works is as shown below:

Developing Function Deployed Based on Image

Building HTTP server

For a function deployed based on an image, you need to build an HTTP server and configure it as follows:

It should listen on 0.0.0.0:9000 or *:9000 .

It should be started within 30 seconds.

If the above step is not completed, health check may time out, and the following error may be reported:

The request timed out in 30000ms.Please confirm your http server have enabled lis

tening on port 9000.

Function input parameters

event: POST request body (HTTP body)

The request body contains the event data. For its structure, see Trigger Event Message Structure Summary.

context: Request header (HTTP header)

Common parameters: Parameters used to identify the user and API signature, which must be carried in each
request.
Use X-Scf-Request-Id to get the current request ID.

Note

https://www.tencentcloud.com/document/product/583/31439

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 120
of 126

Both event-triggered and HTTP-triggered functions contain common headers.
The common request headers are generated by SCF, which mainly contain permissions and basic
function information.

The input parameters are as detailed below:

Header Field Description

X-Scf-Request-Id Current request ID

X-Scf-Memory Maximum memory that can be used during function instance execution

X-Scf-Timeout Timeout period for function execution

X-Scf-Version Function version

X-Scf-Name Function name

X-Scf-Namespace Function namespace

X-Scf-Region Function region

X-Scf-Appid `Appid` of function owner

X-Scf-Uin `Uin` of function owner

X-Scf-Session-Token Temporary `SESSION TOKEN`

X-Scf-Secret-Id Temporary `SECRET ID`

X-Scf-Secret-Key Temporary `SECRET KEY`

X-Scf-Trigger-Src Timer (if a scheduled trigger is used)

Built-in environment variables

Environment variables built in the container in custom image-based deployment are different from those in code
package-based deployment. You can import them as needed.

Environment Variable Key Specific Value or Value Source

TENCENTCLOUD_RUNENV SCF

USER_CODE_ROOT /var/user/

USER qcloud

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 121
of 126

Environment Variable Key Specific Value or Value Source

SCF_FUNCTIONNAME Function name

SCF_FUNCTIONVERSION Function version

TENCENTCLOUD_REGION Region

TENCENTCLOUD_APPID Account APPID

TENCENTCLOUD_UIN Account UIN

Function invocation

For event-triggered functions, you need to listen on the fixed path /event-invoke to receive function

invocation requests.

For HTTP-triggered functions, you don't need to listen on a specified path; instead, API Gateway uses layer-7
reverse proxy to pass through the request path.

Function log printing

SCF collects standard output logs such as stdout and stderr generated in the container in a non-intrusive

manner and reports them to the log module. After invoking a function, you can view the aggregated logs in the
console.

Cold Start Optimization

As file layers such as basic environment and system dependency are added to the image, compared with code

package-based function deployment where files are completely built-in, image-based function deployment requires
extra file download and image decompression time. To further reduce the cold start time, we recommend you use the
following practices:

Downsizing image

Create an image repository and a function in the same region, so that the image can be pulled over VPC when the
function triggers image pull, which makes the pull faster and more stable.

The image should be as small as possible, that is, it should contain only the necessary basic environment and
execution dependencies without any unnecessary files.

Enabling image acceleration

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 122
of 126

After image acceleration is enabled, the function platform will prefetch the image nearby through the internal
acceleration mechanism. When calling a function instance, it will directly load and decompress the image from the
cache, eliminating the time for downloading the image file. This expedites the launch by five times on average.

Directions

1. Log in to the SCF console and select Functions on the left sidebar.
2. On the Functions list page, select the name of the target image function.
3. Select Function codes on the Function management page.
4. On the Function codes page, click Edit.
5. Select *Enable in Image acceleration.

6. Click Save.

Notes

This feature is currently in beta test free of charge. Acceleration can be enabled for up to five functions in one region
under each account.

Using provisioned concurrency

Use provisioned concurrency when deploying an image to start a function instance in advance and thus reduce the
cold start time and optimize the user experience. For more information, see Provisioned Concurrency.

Billing

The billable items of image-based functions are the same as those of code package-based functions. For more

information on billing, see Pay-As-You-Go (Postpaid).

Use Limits

Image size

Currently, only images below 1 GiB in size are supported. We recommend you select an appropriate function instance
execution memory based on the image size. To increase the limit, submit a ticket for application.

Image Size (X) Execution Memory (Y)

X < 256 MB 256 MB < Y < 512 MB

256 MB < X < 512 MB 512 MB < Y < 1 GiB

512 MB < X < 1 GiB Y > 1 GiB

https://console.tencentcloud.com/scf/list
https://www.tencentcloud.com/document/product/583/37704
https://www.tencentcloud.com/document/product/583/42969
https://console.tencentcloud.com/workorder/category

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 123
of 126

Image repository access

Currently, only the TCR Enterprise Edition and Personal Edition are supported. For more information, see Tencent
Container Registry.

For more information on the TCR Enterprise Edition, see Basic Image Repository Operations.

For more information on the TCR Personal Edition, see Personal Getting Started (Old).
Currently, only images in a private image repository in the same region can be read.

Permission to read/write file in container

 /tmp is readable and writable by default. We recommend you select /tmp when outputting a file.

Avoid using other users' files with restricted access or execution.
The storage space of the writable layer in the container is 512 MB.

CPU architecture limits for image build client

Currently, SCF functions run on the x86 architecture, so images built on the ARM platform (such as Apple Mac with
M1 chip) are not supported.

Image build client limits

The client should meet one of the following requirements:

Docker Image Manifest v2, Schema 2 (Docker should be on v1.10 or later)
Open Container Initiative (OCI) Specifications (v1.0.0 or later)

https://www.tencentcloud.com/document/product/1051
https://www.tencentcloud.com/document/product/1051/35488
https://www.tencentcloud.com/document/product/1051/38866

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 124
of 126

Usage Method
Last updated：2023-05-04 18:05:50

This document describes how to use image to deploy function via the console.

Prerequisites

SCF supports the image repositories of TCR Enterprise Edition and Personal Edition. You can select the image
repository as needed.

Purchase a TCR Enterprise Edition instance. For more information, see Quick Start.
Use a TCR Personal Edition image repository. For more information, see Getting Started.

Creating functions via the console

Image pushing

Run the following code to push the built image to your image repository.

https://www.tencentcloud.com/document/product/1051/35484
https://www.tencentcloud.com/document/product/1051/45257

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 125
of 126

Switch to the file download directory

cd /opt

Download Demo

git clone https://github.com/awesome-scf/scf-custom-container-code-snippet.git

Log in to the image repository. Replace $YOUR_REGISTRY_URL with your image reposi

docker login $YOUR_REGISTRY_URL --username $USERNAME --password $PASSWORD

Build images. Replace $YOUR_IMAGE_NAME with your image address.

docker build -t $YOUR_IMAGE_NAME .

Serverless Cloud Function

©2013-2022 Tencent Cloud. All rights reserved. Page 126
of 126

Push images

docker push $YOUR_IMAGE_NAME

Creating a function

1. Log in to the SCF console and click Function Service in the left sidebar.
2. At the top of the page, select the region and the namespace where to create a function, and click Create to enter
the function creation process.
3. Select Use TCR image and specify the basic function information.

Parameter Operation

Function type Select Event-triggered function or HTTP-triggered Function.

Function name Define the function name.

Region Select the region where to deploy the function. The function must be in the same region as the
image repository.

time zone
SCF uses the UTC time by default, which you can modify by configuring the TZ
environment variable. After you select a time zone, the TZ environment variable
corresponding to the time zone will be added automatically.

Images Select the Personal Edition or Enterprise Edition image repository you created.

Image tag Select the image tag. If this parameter is left empty, the latest version of the image will be
used by default.

Entrypoint
Enter the bootstrap command of the container. Parameter input specification: enter an
executable command, such as a python command. This parameter is optional. If it is left
empty, the Entrypoint value in the Dockerfile will be used by default.

CMD
Enter the bootstrap parameter of the container. Parameter input specification: use "space" as
the parameter separator, for example, -u app.py . This parameter is optional. If it is left
empty, the CMD value in the Dockerfile will be used by default.

Image
acceleration

Enable image acceleration as needed. After image acceleration is enabled, SCF can pull
images more efficiently. It takes over 30 seconds to enable image acceleration, so please be
patient.

4. Click Complete.

https://console.tencentcloud.com/scf

